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Author’s reply to peer-review comments on  

“Associativity Analysis of SO2 and NO2 for Alberta Monitoring Data Using KZ Filtering and Hierarchical Clustering” by 

Joana Soares et al. submitted to ACP 

 

Dear Anonymous Referee #1, 

We are grateful for your efforts and the overall positive evaluation of our manuscript. The constructive comments have 

helped us to further improve the paper. Below we give our detailed responses to your comments and describe the revisions 

prepared for the manuscript. The Referee comments are cited in italics and our responses in regular type while revisions 

prepared to the manuscript are marked in red. 

General and specific comments: 

1) Given the scientific significance and the potentiality of this work, I believe it deserves more visibility. I think the authors 

are underselling their work. For instance, the title seems to suggest a study with highly technical details which can 

discourage non-expert readers, whilst could be more general to attract more audience. Consider avoiding the use of KZ in 

the title, it is just a moving average filter. 

 We thank you for this comment as will allow increasing the visibility of the paper to a broader audience. We took a 

further step and we will change the title to: “The Use of Hierarchical Clustering for the Design of Optimized Monitoring 

Networks” 

 

2) It’s not clear to me the average behind figure 9. It shows the correlation map of each grid cell with any other cell? Does it 

imply an average over R? or it is the time or spatial series correlation being investigated? Please clarify in the text 

 This is a good point, and we have revised the text (below) to try to clarify this issue. Figure 9a and b show the values of 

1-R for each grid cell at the point in the analysis where that grid square becomes part of a cluster, therefore no averaging 

was used. Those grid cells with high values of 1-R thus join clusters at much lower correlation levels than those which 

have joined clusters at low values of 1-R.  The maps show the extent of dissimilarity for the grid cells; higher values 

show grid cells which are so unlike others that they remain separate from the clusters throughout much of the analysis.  

In contrast, Figure 9c and d show the clusters which exist for a specific level of 1-R. These show how the methodology 

may be used to design a monitoring network for a given number of stations (i.e. one station within each of the coloured 

regions will be sufficient to represent that coloured region, to within the value of 1-R used to generate the clusters).  

P14,L5-9 “Figure 9 depicts the resulting mapped 1-R cluster analysis in this area, when each model grid-cell has been treated 

as a potential monitoring station location. Figure 9 (a and b) shows the spatial distribution of the 1-R dissimilarity levels the 

values of 1-R for each grid cell at the point in the analysis where that grid square becomes part of a cluster for NO2 and for 

SO2, respectively. Those grid cells with high values of 1-R thus join clusters at much lower correlation levels than those 

which have joined clusters at low values of 1-R. As a result, the maps show the extent of dissimilarity for the grid cells; 

higher values show grid cells which are so unlike others that they remain separate from the clusters throughout much of the 

analysis. In contrast, Figure 9 (c and d) show the clusters which exist for a specific level of 1-R.  These show how the 
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methodology may be used to design a monitoring network for a given number of stations (i.e. one station within each of the 

coloured regions will be sufficient to represent that coloured region, to within the value of 1-R used to generate the clusters). 

Figure 9c,d shows the spatial distribution of the clusters generated by dissimilarity levels of 0.65 for NO2 and 0.8 for SO2, 

respectively (these levels were chosen based on the analysis above, where the model was shown to provides reasonable 

results).  

 

3) it is not clear how redundancy is defined: Overlapping variance, coefficient of determination above a certain threshold; 

 Here, redundancy has been defined as the relative dissimilarity level at which a station joins a cluster, with respect to a 

given metric for clustering.   We have modified the text to make this more clear, specifically: 

P3 L6-7: “Dissimilarity may thus be used to rank stations in terms of potential redundancy, here we define redundancy as the 

relative dissimilarity level at which a station joins a cluster. where sStations having the lowest levels of dissimilarity may 

hence be considered sufficiently similar to be considered potentially redundant.”  

P7 L25-28: “Hierarchical clustering as described above was used to assist in the evaluation of potential monitoring station 

redundancies (defined as the relative dissimilarity level at which a station joins a cluster), as one of many considerations that 

could influence decision making on monitoring network design. Having carried out hierarchical clustering using station data, 

the values of the dissimilarity metric as stations join clusters may be used to define the extent of similarity between stations, 

as well as a relative ranking of stations based on these similarities.”  

 We do not define specific levels of dissimilarity since by its nature the analysis provides relative information.  We have 

mentioned that it is up to the decision maker to set the levels of dissimilarity that stations can be considered redundant, 

as these levels differ substantially depending of the data used (no. of stations, no. of records, species analysed), P8 L8-

13:  ““Redundancy” with regards to the metrics examined here is thus relative to a given chemical species and dataset 

used for hierarchical clustering. Therefore, we do not propose specific thresholds of the two metrics for determining 

redundancy. We note also that the results of the analyses for two metrics may be combined – station data that are 

relatively similar under one metric may be examined for their degree of similarity under another metric. The metric 

levels at which these combinations are examined are themselves also qualitative, but station time series which are highly 

similar under multiple metrics are in turn a stronger indication of potential redundancy”. Therefore stations will be 

potentially redundant if stations highly correlate with each other (low 1-R levels) and if the Euclidean distance levels are 

low. To decide if stations are redundant or not, a level of 1-R and/or Euclidean distance should be set; all the stations 

clustering under the same cluster at that given level should be under consideration for being removed or moved. 

 

4) based on this study, can the authors comment on the minimum exposure period (length of time series) for the clustering 

analysis to be reliable 

 This is a very good question, but difficult to answer with the available data. For example, we seem to have 

reasonable/useful results for the bimonthly analysis using 5 years of data (30 values), while our hourly analysis of model 

output includes a year of data (8760 values in the centre of the latter dataset).  The ideal answer is “as much data as is 

available”, if, for example, one wants to limit year-to-year variability.  This may not always be possible or practical, 
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especially for the deterministic model applications, which can be very computationally expensive. We added a 

paragraph to Section 7 to point out this issue. 

P16,L15: “We note here that the results of analyses of this nature are dependent on the time series data used (including its 

duration).  We have used a 5 year dataset to evaluate bimonthly observation data, and a one-year dataset to evaluate annual 

data and deterministic model results.  Longer time periods may be preferred in future applications to limit the potential 

impact of year-to-year variability.   

 

5) page 4 ,line 17. Consider Vardoulakis et al. 2011. Atmospheric Environment 45 (2011) 5069-5078 

 We will revise the original text to accommodate this reference 

 

6) page 8, line3. Not only ‘dissimilarity metrics’ but also agglomeration method and definition of correlation coefficient are 

quite sensitive parameters 

•  Thank you for pointing this out, the dissimilarity metric is indeed not the only sensitive parameter. We have revised the 

original text to accommodate this comment:  

P7,L34-35: “1. The ranking of stations is relative and specific to a given chemical species, the corresponding set of station 

time series, and the parameters used for the hierarchical cluster analysis: the metric of dissimilarity and the method to 

recalculate the dissimilarity matrix used in the analysis.” P8,L3: “An important corollary to the first point above is that 

different methods dissimilarity metrics used in hierarchical clustering may result” 

 

7) Can the Euclidean distance be used to spot systematic detection error? 

 We believe that is possible when comparing with station that have similar features but the user should be knowledgeable 

of the stations’ characteristics, surrounding sources, topography, etc., so the metric value can be analysed properly. For 

example, stations which are in close spatial proximity yet have substantial differences in Euclidean distance imply 

systematic detection errors in the monitoring data.  We believe though, that 1-R might be a better indicator if the user 

has no prior or little knowledge of the stations included in the analysis. 

 

8) page 14 line 16. Can the authors comment on the spatial continuity of the solution? Is it a requirement or the area can 

contain holes and/or be even detached? 

 There is no inherent requirement on the methodology that a cluster be spatially continuous.  An example of this can be 

seen in Figure 9c, wherein a cluster extending from the centre of the emitting region to the lower-left corner of the map 

is split into two separate regions (red coloured region, cluster 3). In Figure 9d, the same area does not show the same 

split. Local knowledge of the emissions sources, as well as analysing Figure 9a and c, help explain these results. The 

centre of the grey region (cluster 8) in the lower-left of Figure 9 d, and the corresponding dark yellow (cluster 5) region 
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in Figure 9b, mark the location of a local emissions source, moderate in magnitude relative to the larger sources in the 

middle of the domain. The clustering thus recognizes the local influence of this emissions source (creating the clustered 

areas in the two figures). However, at greater distances from this moderate source of emissions, the impact of the major 

sources in the centre of the domain dominates. The green area (cluster 4) in Figure 9d, and the red areas (cluster 3) in 

Figure 9c, show that this large source has both a local and long-range influence, which only locally can be overwhelmed 

by the moderate source for both SO2 and NO2.  We note that we are using 1-R in our demonstration here, so the 

magnitude of the signal of the two chemicals is not being analysed, rather, its time variation.  We added text based on 

the explanation above. 

P14,L23: “We note that in some cases a single cluster can be discontinuous, split into more than one area. An example of 

this can be seen in Figure 9c, where a cluster is split into two separate red coloured regions (cluster 3), whereas Figure 9d 

does not show the same split. Local knowledge of the emissions sources, as well as analysing Figure 9a and b, help explain 

these results. The dark yellow region (cluster 5) in Figure 9c and the grey region (cluster 8) in Figure 9d mark the location of 

a local emissions source, moderate in magnitude relative to the larger sources in the middle of the domain (Oil Sand facility 

boundaries marked in these Figures). The clustering thus recognizes the local influence of this moderate source of emissions, 

however, at greater distances from this source, the impact of the larger sources dominates. The red areas (cluster 3) in Figure 

9c and the green area (cluster 4) in Figure 9d show that the larger sources have both a local and long-range influence, which 

only locally can be overwhelmed by the moderate source for both SO2 and NO2. We note that we are using 1-R in this 

application of the methodology with deterministic model output, so the magnitude of the signal of the two chemicals is not 

being analysed, rather, its time variation.” 

 

9) Page 15, line37. Solazzo and Galmarini misspelled. 

 We will revise the original text to accommodate this comment. 

 

10) Page 15, line37. A source of dissimilarity was found to be the reporting time not harmonised across European countries. 

Data reporting at the beginning or at the end of the hour can make a significant difference 

 We understand the reviewers comment. We will remove the sentence “As mentioned in Sollazzo and Gamarini (2015), 

the manner in which the data is reported may significantly impact the analysis.” as the reference here is not applicable. 

 

I invite the authors to comment on the following: 

I think we are still far away from using clustering for operational use. Clustering is known to provide some qualitative 

insight, but it is quantitatively weak as it depends on many parameters. Indeed, a fundamental challenge of clustering is the 

high sensitivity to the options controlling the underlying algorithms, such as the agglomerative method, the distance metric, 

the number of clusters, and the cut-off distance are aspects that need to be determined case by case. In particular, the cut-off 

(the threshold similarity above which clusters are to be considered disjointed) determines the dimension of the sub-space of 

non-redundant information and is decided by visual inspection of the dendrogram. Supervised clustering (e.g. k-Means) 

initiated with the results of unsupervised clustering might be more robust. 
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 The authors agree that there are many controlling factors to the outcome but we see this approach suitable for 

unsupervised clustering. Even bearing in mind these considerations, the methodology has been shown to provide “real” 

insights, for example picking out stations which are known to experience significantly different conditions than others 

(e.g. closer to a major emissions source, or at a remote higher elevation location where no sources usually impact the 

site). By the same token, the methodology can objectively identify issues of potential concern (such as co-located 

observation records which are highly dissimilar. We view this methodology can be a starting point for the redundancy 

decision making and, with the results from this analysis, a more supervised strategy to follow. We also note that while 

many papers suggest that k-Means give a more robust outcome, if the user has no prior knowledge how the first set of 

clustering should appear (a requirement for k-means), this will a priori jeopardize a k-Means analysis. We noted that this 

methodology isolated stations that for technical reasons or specific local characteristics should appear different, and 

therefore have confidence that this methodology is a good starting point for monitoring network analysis. 

 

The application of associativity analysis for detecting potential redundancy in the context of regulatory air quality 

monitoring might have some pitfalls (most of which are anyway mentioned by the authors in the text, but I think deserve 

more words). For example, the potential duplicate of information obeys some policy precautionary principle and might 

reveal useful in some instances (double checking, reduce missing records, cross validation, etc). Further, redundancy should 

be determined with some long-term climatology and should also serve future decision making in the sense that what might be 

redundant based on the past ten years of data might not be in the next ten years. In this sense the adoption of models for 

future scenarios might help. 

 The reviewer raises good points.  We have included the following paragraph into the caveats section of the paper and as 

an addition to the length of the time series proposed in comment 4) 

P16, L15: “Nevertheless, if emissions change in the future, the analysis should be repeated in order to determine whether the 

pattern of clusters has changed in response to the changes in emissions. Similarly, while long time sets are desired from the 

standpoint of removing the potential impacts of annual variability in meteorological conditions, if changes in emissions 

happen frequently, it may argue for yearly rather than multi-year analyses. ” 

 We agree that redundancy could be determined with some long-term climatology and emission scenarios. 

  

I think that, more than the estimation of redundancy, the main strengths of the methodology are the potential for 

classification and the estimation of the area of representativeness (AoR). Indeed I would have framed the whole work in the 

context of classification.  

 We do agree with the Reviewer that a strength of the work is that it provides an estimation of the AoR of a station 

(potentially useful for other applications such as data assimilation), but our first goal was to develop a tool for decision 

makers that only have observational data in hand, and need to assess the potential redundancy of existing stations. Our 

second goal was to determine the extent to which deterministic models could be used to provide information for future 

monitoring networks.  The clustering maps from the latter application provide AoR information, as well as the potential 

to account for future changes in emissions (via deterministic model simulations which use projections of future 

emissions to determine clusters). To use this work in the context of classification is indeed interesting and worth 

considering for future manuscripts.  
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For example, can the methodology assist in the classification of monitoring station based on area-type or site-type?  

 The authors belive that maps such the ones presented in Figure 9 can be overlayed with information such as population 

density, emission sources and orography, allowing classification of the monitoring stations. 

 

Do the authors expect the diurnal signal to be the associated over long distance?  

 We’re not completely certain what is meant by “over the long distance” in this context.  The relative impact of the 

diurnal signal in the time series will depend on the extent to which diurnal variation controls the emissions, 

transportation and deposition of the given pollutant. As we noted in the paper, we have conducted analyses which 

suggest that much of the signal which provides information on local conditions (including local emissions sources) 

resides within the shorter time scales on the order of a day or less. There is of course a diurnal signal that will be present 

across the larger region, due to the diurnal variation in chemistry associated with the transition between day and night.  

Again, our work would suggest that much of the similarity between observation sites resides within that diurnal 

variation. 

 

In siting a new station, its area-type can be defined by looking at how the signal of existing stations compares with the signal 

of the new station?  

 We are assuming that the reviewer is asking whether the analysis can provide ancillary “area of representativeness” 

information beyond simply describing the shape of regions of equal similarity.  Provided the analysis is combined with 

additional information, some additional information can be derived from figures such as Figure 9.  For example, the SO2 

cluster map (9(d)) is similar to a “wind rose” pattern – pie wedge shaped regions extending radially outward from the 

centre of the emissions region, with a smaller number of smaller and more irregularly shaped clusters in the middle of 

the emissions region.  SO2 emissions from this region are largely (>90%) from point sources; large stacks which create 

discrete plumes which are carried downwind and may fumigate to the surface.  For these very discrete sources of SO2, 

the wedges thus relate to the relative probability that a plume will be carried in a given direction downwind (note that a 

1-R metric implies that a plume fumigating downwind over a long distance will have an equal correlation radially 

outward from the emissions point).  The irregular shaped regions closer to the sources thus represent regions over which 

very local fumigation under stagnant conditions may take place, “earning” them a separate set of clusters.  This may be 

contrasted with Figure 9(c), for NO2.  In this region, about 40% of NO2 emissions is from large stacks, while the 

remainder is from more spatially distributed sources such as the off-road fleet of large diesel vehicles used to haul 

unprocessed bitumen to processing facilities.  The radial pattern is present, but muted compared to SO2, when the same 

number of clusters is generated, suggesting the larger impact of the “area” sources for NO2.  So, in this case, the pattern 

of the clusters is diagnostic of the type of source – large stacks (SO2, a “sharp” radial pattern dominates) versus a 

combination of large stacks and more distributed area sources (NO2, with broader regions for the radial pattern, and 

more of the irregular localized clusters).  Note, however, that additional information regarding the source types was 

required to make this observation, and further work will be needed to determine whether these patterns may be used in 

the absence of such information to infer area-type.  One can also run the analysis for existing station location and a 

planned new station to determine how the planned station would compare to an existing network; if existing stations are 
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known to be impacted by a specific source type, the resulting dissimilarity analysis could be used to determine the 

“type” of the planned station.  Other Graphical Information System datasets could also be overlaid with information 

such as shown in Figure 9 to help define the relationships between the observed patterns and other geographical 

information.   However, we are reluctant at this stage to convert these observations, which may be specific to the sub-

region examined here, to a more general guidance in the text regarding the use of the methodology to provide ancillary 

area-type data.   

 

I would invite the authors to add some further considerations about the potentiality of the methodology devised, also in light 

that some reflections are already part of the paper, for example the clustering of long term signals. 

 The authors will revise the text to add further considerations about the potentiality of the methodology. A paragraph 

summarizing the potentiality of the methodology was added in the end of Section 4.1, P9, L38: 

“In summary, the methodology is able to identify groups of stations which are influenced by common emissions sources 

(e.g. stations which are influence by oil sands emissions as opposed to stations located elsewhere) when the methodology is 

applied to hourly and, to some extent, daily time-filtered time series. Stations mainly influenced by seasonality are identified 

when the methodology is applied to weekly and monthly time-filtered data. The analysis groups stations according to their 

degree of similarity but does not provide the cause for that degree of similarity. The latter may only be achieved by 

examination of the data records, and the use of local knowledge of sources and conditions. The level of information about 

the sources present in the study area will be greater when the results of both metrics are combined, and information about the 

sources may be inferred from the analysis; for example, stations could be classified as background or industrial impacted if 

seasonality or hourly data are shown to contain most of the signal.” 

Concerning the AoR, the authors (or at least some of them) have already experience with the topic, and I have been 

surprised that it was not expanded in the text, especially since model results are available. The maps in figure 9 indeed show 

some AoR! The authors mentioned it at the beginning of page 3 but then drop it. For example, some discussion about AoR 

would fit nicely in section 4.1. Again, in light of better exploiting the large amount of work done, I would invite the authors 

to consider adding some further words about the potentiality of the analysis for determining the AoR. 

 The authors thank the Reviewer for the words of encouragement. We admit that Figure 9 was a teaser for future 

manuscripts, as the authors would like to publish further on this topic. We have added further considerations about the 

potentiality of the methodology:  

P14,L23: “To  satisfy  different  monitoring  objectives,  stations  are  placed  by  both  geographical and physical location, 

with physical location defined by the concept of spatial scale of representativeness, the area where actual pollutant 

concentrations are reasonably uniform. We note that each of these coloured subregions in which a single station could be 

placed has a relatively large geographic extent, and, using this metric, do not describe the concentration gradient in the 

region but could be used as a first guess for areas of representativeness, potentially providing useful input for applications 

such as data assimilation of air-quality and meteorological observations. Combining spatial distribution of the clusters for 1-

R metric with the Euclidean distance will provide further information about the concentration gradients in the area of 

representativeness.” 
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Author’s reply to peer-review comments on  

“Associativity Analysis of SO2 and NO2 for Alberta Monitoring Data Using KZ Filtering and Hierarchical Clustering” by 

Joana Soares et al. submitted to ACP 

 

Dear Anonymous Referee #2, 

We are grateful for your efforts and for the very positive evaluation of our manuscript.  
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Author’s reply to peer-review comments on  

“Associativity Analysis of SO2 and NO2 for Alberta Monitoring Data Using KZ Filtering and Hierarchical Clustering” by 

Joana Soares et al. submitted to ACP 

 

Dear Anonymous Referee #3, 

We are grateful for your efforts and the overall positive evaluation of our manuscript. The constructive comments have 

helped us to further improve our paper. Below we give our detailed responses to your comments and describe the revisions 

prepared for the manuscript. The Referee comments are cited in italics and our responses in regular type while revisions 

prepared to the manuscript are marked in red. 

 

General and specific comments: 

1) The abstract is too long and can be shortened only giving the key results and a recommendation to follow. 

 The Authors have shorted the abstract: “Associativity analysis is a powerful tool to deal with large-scale datasets by 

clustering the data on the basis of (dis)similarity, and can be used to assess the efficacy and design of air-quality 

monitoring networks. We describe here our use of Kolmogorov-Zurbenko filtering and hierarchical clustering of NO2 

and SO2 passive and continuous monitoring data, to analyse and optimize air quality networks for these species in the 

province of Alberta, Canada. The methodology applied in this study assesses dissimilarity between monitoring station 

time series based on two metrics: 1-R, R being the Pearson correlation coefficient, and the Euclidean distance; we find 

that both should be used in evaluating monitoring site similarity. We have combined the analytic power of hierarchical 

clustering with the spatial information provided by deterministic air quality model results, using the gridded time series 

of model output as potential station locations, as a proxy for assessing monitoring network design and for network 

optimization. We find that both metrics should be used to evaluate the similarity between monitoring time series, since 

this allows a cross-comparison in terms of temporal variation and magnitude of concentrations to assess station potential 

redundancy.Here, the relative level of potential redundancy of an existing monitoring location was ranked according to 

each dissimilarity metric, with sites forming clusters at low values of both 1-R and Euclidean distance being the most 

redundant. We demonstrate clustering results depend on the air contaminant analyzed, reflecting the difference in the 

respective emission sources of SO2 and NO2 in the region under study. Our work shows that much of the signal 

identifying the sources of NO2 and SO2 emissions resides in shorter time scales (hourly to daily) due to short-term 

variation of concentrations, and that longer term averages in data collection may lose the information needed to identify 

local sources. However, the methodology nevertheless identifies stations mainly influenced by seasonality, if larger time 

scales (weekly to monthly) are considered. We have found that data consisting of longer-term averages may lose the 

short-term variation needed to identify local sources, implying that long-term averaged observations are not suitable for 

source identification purposes. In addition to averaging time, round-off levels in data reports, and the accuracy of 

instrumentation were also shown to have a negative influence on the clustering results. We have performed the first 

dissimilarity analysis based on gridded air-quality model output, and have shown that the methodology is capable of 

generating maps of sub-regions within which a single station will represent the entire sub-region, to a given level of 

dissimilarity. Maps of this nature may be combined with other georeferenced data (e.g. road networks, power 
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availability) to assist in monitoring network design. We have also shown that our methodology approach is capable of 

identifying different sampling methodologies, as well as identifying outliers (stations’ time series which are markedly 

different from all others in a given dataset).” 

 

2) Can the authors explain why they consider only SO2 and NO2? 

 This manuscript focused only on NO2 and SO2 because only these two species had both passive and continuous 

monitoring data available, as mentioned in P3, L34-35 “We analyse data from both passive and continuous instruments 

measuring NO2 and SO2 ambient concentrations, the two species that include observations from both measurement 

methodologies.” We have examined other continuous data using the methodology, and intend to discuss these other air 

contaminants in future work.  We revised the text to make this clearer in the manuscript, viz:  

P3,L34-35 “In this study we included observations We analyse data from both passive and continuous instruments 

measuring NO2 and SO2 ambient concentrations, since these are the only two species in the available data that include 

observations from both of these measurement methodologies.” 

 

3) In the introduction, between lines 25-39, the authors only list the available literature but do not make a synthesis of these 

results and link it to their motivation of doing this study. What was missing in these studies? 

 The authors wanted to describe the scientific work using cluster analysis of observational data that apply the same 

metrics used in this study. We are not implying that is missing something in the referenced work, we wanted to illustrate 

how cluster analysis techniques have been used for different species and locations.  The text was revised to 

accommodate this comment. 

P2, L33: “oxidant (Ox), non-methane hydrocarbons (NMHC), and PM. In this past work, cluster analysis is usually 

applied to a small number of stations (5 to 70) in different locations around the globe. Solazzo and Galmarini (2015) 

applied cluster analysis data showing that cluster analysis can potentially accommodate different sampling technologies, 

and could be applied for large areas without the need of prior knowledge of the study area.  Note that the data was pre-

filtered by iterative moving averages (Kolmogorov-Zurbenko (KZ) filtering, Zurbenko, 1986). Their methodology to 

assessed the similarity of the spectral components of the hourly time series, independent of station...” 

P3, L4: “(2015) and references therein, and further expands that methodology to focus on monitoring network 

optimization. We use the methdology for the first time for observation datasets collected in Alberta, analysing the data 

using two different similarity metrics, and rank existing observation stations based on relative station redundancy.  We 

then extend the methodology to a new application of gridded air-quality model data – showing that time series from a 

deterministic air quality model (Global Environmental Multiscale – Modelling Air-quality and Chemistry; GEM-

MACH) may be used as a surrogate for observations in air-quality clustering analysis. The methodology uses the time 

series of observations at different monitoring stations in Alberta, and analyses this data based on two dissimilarity 

metrics. Dissimilarity may thus be used to rank stations in terms of potential redundancy, where stations having the 

lowest levels of dissimilarity may be considered sufficiently similar to be considered potentially redundant. 

In addition, we apply the same methodology to time series from a deterministic air-quality forecast model (Global 

Environmental Multiscale – Modelling Air-quality and Chemistry; GEM-MACH) and assess the extent to which the 

model output can be used as a potential surrogate for observations in clustering analysis The combined use of 
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deterministic model output and clustering analysis is shown to be a potentially powerful tool for network design, and/or 

optimization of existent air quality networks.  

 

4) Is it not possible to higher in resolution in the modelling part as 2.5 km resolution might be coarse for the purpose of the 

study? I think this deserves a discussion. 

 The potential use of even higher resolution (1km) was examined in separate work.  The results were inconclusive in that 

higher resolution does not guarantee a more accurate air-quality forecast.  For example, if the predicted synoptic or 

mesoscale meteorology is inaccurate due to poor spatial representation of a region in the meteorological monitoring 

network, then the benefits of higher resolution in air-quality simulations (resolving the sources to a higher degree) may 

be overwhelmed by the issues associated with highly resolved plume locations being inaccurately predicted. There are 

also practical computational considerations – to carry out the same domain simulations as carried out here would have 

required a 6.25x increase in processing time and memory.   

 

5) Figure title of S6, S7 and S8 are wrong, please correct them to SO2. 

 The authors noted that the dendograms are actually for NO2 and not for SO2, as it should be. The figures were revised. 
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Abstract. Associativity analysis is a powerful tool to deal with large-scale datasets by clustering the data on the basis of 11 

(dis)similarity, and can be used to assess the efficacy and design of air-quality monitoring networks. We describe here our 12 

use of Kolmogorov-Zurbenko filtering and hierarchical clustering of NO2 and SO2 passive and continuous monitoring data, 13 

to analyse and optimize air quality networks for these species in the province of Alberta, Canada. The methodology applied 14 

in this study assesses dissimilarity between monitoring station time series based on two metrics: 1-R, R being the Pearson 15 

correlation coefficient, and the Euclidean distance; we find that both should be used in evaluating monitoring site similarity. 16 

We have combined the analytic power of hierarchical clustering with the spatial information provided by deterministic air 17 

quality model results, using the gridded time series of model output as potential station locations, as a proxy for assessing 18 

monitoring network design and for network optimization. We find that both metrics should be used to evaluate the similarity 19 

between monitoring time series, since this allows a cross-comparison in terms of temporal variation and magnitude of 20 

concentrations to assess station potential redundancy. Here, the relative level of potential redundancy of an existing 21 

monitoring location was ranked according to each dissimilarity metric, with sites forming clusters at low values of both 1-R 22 

and Euclidean distance being the most redundant. We demonstrate that clustering results depend on the air contaminant 23 

analyzed, reflecting the difference in the respective emission sources of SO2 and NO2 in the region under study. Our work 24 

shows that much of the signal identifying the sources of NO2 and SO2 emissions resides in shorter time scales (hourly to 25 

daily) due to short-term variation of concentrations, and that longer term averages in data collection may lose the 26 

information needed to identify local sources. However, the methodology nevertheless identifies stations mainly influenced 27 

by seasonality, if larger time scales (weekly to monthly) are considered. We have found that data consisting of longer-term 28 

averages may lose the short-term variation needed to identify local sources, implying that long-term averaged observations 29 

are not suitable for source identification purposes. In addition to averaging time, round-off levels in data reports, and the 30 

accuracy of instrumentation were also shown to have a negative influence on the clustering results. We have performed the 31 

first dissimilarity analysis based on gridded air-quality model output, and have shown that the methodology is capable of 32 

generating maps of sub-regions within which a single station will represent the entire sub-region, to a given level of 33 

dissimilarity. Maps of this nature may be combined with other georeferenced data (e.g. road networks, power availability) to 34 

assist in monitoring network design. We have also shown that our methodology approach is capable of identifying different 35 

sampling methodologies, as well as identifying outliers (stations’ time series which are markedly different from all others in 36 

a given dataset). 37 

1 Introduction 38 

Air quality monitoring networks are established to obtain objective, reliable and comparable information on the air quality of 39 

a specific area, and serve the purposes of supporting measures to reduce impacts on human health and the natural 40 

environment, monitoring specific sources, and documenting air quality trends over time. Typically, the site locations of an 41 
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air quality monitoring network may be determined in response to regulations enforced by government-regulated agencies 1 

(e.g. EEA, 1997; US-EPA, 2008), and requires at least some a priori knowledge of the expected concentrations and 2 

concentration gradients of the pollutants of interest. The latter are highly dependent on the spatial and temporal distribution 3 

and magnitude of the emission sources, the physical and chemical properties of the emitted substance, and atmospheric 4 

conditions. The extent to which stations are accessible and the availability of electrical power are additional considerations in 5 

monitoring network design. However, recommendations regarding the optimum location and number of monitoring stations 6 

may also be achieved by the scientific analysis of existing data. For example, statistical methods making use of existing data 7 

have been used to recommend the number and location of monitoring stations required in a network (e.g. Lindley, 1956; 8 

Rhoades, 1973; Husain and Khan, 1983; Caselton and Zidek, 1984). Analytical tools such as Gaussian and Eulerian 9 

deterministic dispersion models may also be used to identify possible site locations (e.g. Bauldauf et al., 2002; Mazzeo and 10 

Venegas, 2008; Mofarrah and Husain, 2009; Zheng et al., 2011). More recently, the spatial distribution of measured 11 

pollutants combined with geostatistical modelling has been used to analyse station data (e.g. Cocheo et al., 2008; Lozano et 12 

al., 2009; Ferradás et al., 2010, Zhuang and Liu, 2011).  13 

Cluster analysis is a good example of an analysis approach which assumes, like many statistical methods, that the data 14 

analysed contain a certain degree of redundant information, which in turn may be used to describe degrees of similarity or 15 

dissimilarity between data records from those stations. Typically applied to large and complex air quality databases to 16 

identify spatial patterns based on a metric describing the degree of (dis)similarity between data time series from different 17 

stations, cluster analysis (Everitt, et al., 2011) may be used for source identification and network station density 18 

optimization, with a minimum loss of information (Munn, 1981). Hierarchical clustering is a well-established associativity 19 

analysis methodology used to determine the inherent or natural groupings of objects, and/or to provide a summarization of 20 

data into groups (Johnson and Wicherrn, 2007). The theoretical basis of hierarchical clustering has the advantage of making 21 

no assumptions regarding the mutual independence of samples, and does not require examining all clustering possibilities. 22 

The similarity among members is established by a distance metric or function, which is used to create a similarity matrix in 23 

which data are cross-compared using the metric. This is followed by operations on the similarity matrix which group data 24 

according to their degree of (dis)similarity with respect to that metric. Many studies have aimed to quantify the spatial 25 

similarities among monitoring sites in terms of concentration levels and time variation, by applying respectively the 26 

Euclidean distance and correlation coefficient as similarity metrics. Studies such as Lavecchia et al. (1996), Gabusi and 27 

Volta (2005), Gramsh et al. (2006), Lu et al. (2006) and Giri et al. (2007) applied these metrics for analyzing the spatial and 28 

temporal distribution of air contaminants in cities or regions and present possible links between those concentrations with 29 

specific sources, topography or meteorological patterns. The majority of these studies focused on ozone (O3) and particulate 30 

matter (PM). Saksena et al. (2003) applied the methodology to nitrogen dioxide (NO2) and sulfur dioxide (SO2), Ionescu et 31 

al. (2000) to NO2, Hopke et al. (1976), McGregor (1996) to SO2, and Ignaccolo et al. (2008) to PM10, NO2 and O3. Cluster 32 

analysis has also been suggested for monitoring network optimization, including station redundancy analysis in studies such 33 

as Ortuño et al. (2005) for CO, Jaimes et al., (2005) and Ibarra-Berastegi et al. (2010) for SO2, Omar et al. (2005) for aerosol 34 

optical properties, Pires et al., (2008) for O3 and PM, and Iizuka et al. (2014) for nitrogen oxides (NOx), photochemical 35 

oxidant (Ox), non-methane hydrocarbons (NMHC), and PM. In this past work, cluster analysis is usually applied to a small 36 

number of stations (5 to 70) in different locations around the globe. Solazzo and Galmarini (2015) applied cluster analysis 37 

data showing that cluster analysis can potentially accommodate different sampling technologies, and could be applied for 38 

large areas without the need of prior knowledge of the study area. Solazzo and Galmarini (2015) applied cluster analysis 39 

Note that the data was pre-filtered by iterative moving averages (Kolmogorov-Zurbenko (KZ) filtering, Zurbenko, 1986) to . 40 

Their methodology assessed the similarity of the spectral components of the hourly time series, independent of station 41 

location or monitoring technology employed, without a requirement of prior knowledge of the study area. Their analysis 42 

investigated the extent to which concentration time series similarities between the air quality monitoring stations were 43 
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defined by areas with specific chemical regimes and/or predominant air masses, versus by country borders and/or monitoring 1 

network jurisdiction. The latter were identified as resulting from differences in monitoring methodology, reducing 2 

comparability of the data across those borders/jurisdictions.  3 

Monitoring of air-quality within and downwind of the oil sands region is a key concern with the provincial and federal 4 

governments of Canada. In order to better quantify emissions, downwind chemical transformation, and downwind fate of 5 

emitted chemicals from this region, the Governments of Canada and Alberta set–up the Joint Oil Sands Monitoring (JOSM) 6 

Plan to “improve, consolidate and integrate the existing disparate monitoring arrangements into a single, transparent 7 

government-led approach with a strong scientific base” (JOSM, 2016). A key part of this overall framework was to develop 8 

methodologies to assess the consistency and spatial representativeness of the existing air quality network of the Province of 9 

Alberta. The assessment presented here is based on the associativity analysis described in the work of Solazzo and Galmarini 10 

(2015) and references therein, and further expands that methodology to focus on monitoring network optimization. We use 11 

the methodology for the first time for observation datasets collected in Alberta, analysing the data using two different 12 

similarity metrics, and rank existing observation stations based on relative station redundancy. We then extend the 13 

methodology to a new application of gridded air-quality model data – showing that time series from a deterministic air 14 

quality model (Global Environmental Multiscale – Modelling Air-quality and Chemistry; GEM-MACH) may be used as a 15 

surrogate for observations in air-quality clustering analysis. The methodology uses the time series of observations at 16 

different monitoring stations in Alberta, and analyses this data based on two dissimilarity metrics. Dissimilarity may thus be 17 

used to rank stations in terms of potential redundancy, here we define redundancy as the relative dissimilarity level at which 18 

a station joins a cluster. where sStations having the lowest levels of dissimilarity may hence be considered sufficiently 19 

similar to be considered potentially redundant. 20 

In addition, we apply the same methodology to time series from a deterministic air-quality forecast model (Global 21 

Environmental Multiscale – Modelling Air-quality and Chemistry; GEM-MACH) and assess the extent to which the model 22 

output can be used as a potential surrogate for observations in clustering analysis. The combined use of the model and 23 

clustering analysis is shown to be a potentially powerful tool for network design, and/or optimization of existent air quality 24 

networks.  25 

We introduce the methodology to assess potential redundancy of monitoring stations (Section 2) and describe the 26 

observational and model data used to develop the methodology (Section 3). The subsequent sections present the associativity 27 

analysis for the continuous monitoring (Section 4), and discuss how the methodology can be used to identify different 28 

sampling methodologies (Section 5). We then show how the same methodology may be used with output from an air-quality 29 

model.  With favourable comparisons to clustering results from air quality monitoring station observations, we show that 30 

model output combined with hierarchical clustering provides a new approach for monitoring network design (Section 6). We 31 

also discuss potential factors impacting the methodology (Section 7) and our conclusions are drawn in Section 8. 32 

2  Monitoring and AQ model data 33 

2.1 Study area 34 

Alberta, one of the western provinces of Canada (Figure 1), is the largest producer of conventional crude oil, synthetic crude, 35 

and natural gas and gas products in Canada, and is home to one of the world’s largest deposits of oil sand (a mixture of clay, 36 

sand, water and bitumen) (CAPP, 2016). The monitoring of atmospheric pollutants and the provision of public information 37 

on air quality in Alberta is carried out by non-profit organizations called “Airsheds”; these organizations are responsible for 38 

air pollution monitoring in specified sub-regions of the province. Figure 1b shows the spatial distribution of these monitoring 39 

networks within the province, as well as the largest NO2 and SO2 stack emission sources (National Pollutant Release 40 

Inventory (NPRI, 2013). The relative proportion of emissions from different sources depends on the sub-region. For 41 
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example, in the Athabasca oil sands area (monitored by WBEA stations, red symbols, Figure 1b), SO2 is mainly emitted 1 

from stacks (flue-gas desulfurization; “major point sources”) and NO2 is emitted from both stacks and off-road vehicle mine-2 

fleets (“area sources”). The 2013 total emissions for Alberta were approximately 681 kt for NOx (NO and NO2) and 311 kt 3 

for SO2, respectively.  4 

2.2 Monitoring data 5 

In this study we included observations We analyse data from both passive and continuous instruments measuring NO2 and 6 

SO2 ambient concentrations, since these are the only two species in the available data that include observations from both 7 

measurement methodologies. The nine Airsheds within Alberta are shown in Figure 1b: West Central Airshed Society 8 

(WCAS), Wood Buffalo Environmental Association (WBEA), Fort Air Partnership (FAP), Alberta Capital Airshed Alliance 9 

(ACAA), Calgary Regional Airshed Zone (CRAZ), Peace Airshed Zone Association (PAZA), Palliser Airshed Society 10 

(PAS), Parkland Airshed Management Zone (PAMZ) and Lakeland Industrial Community Association (LICA). Figure 1b 11 

colour-codes the sampling site locations by Airshed, with continuous station locations shown as circles and passive stations 12 

shown as inverted triangles. 13 

Continuous sampling is typically carried out for regulatory compliance, where high-temporal resolution is required in order 14 

to monitor short-term exceedances in highly variable concentrations of pollutants in ambient air. The continuous monitoring 15 

principles used to detect and measure SO2 in Alberta are ultraviolet pulsed fluorescence, and chemiluminescence for NO2, 16 

and the maximum value for detection limits of the NO2 and SO2 continuous samplers is 1.0 ppbv (AEP, 2014, 2016). In 17 

contrast, passive sampling is carried out in order to determine monthly average ambient air concentrations of atmospheric 18 

compounds for determination of long-term trends, assessment of potential ecological exposure risks, and to understand the 19 

spatial distribution of the measured pollutant. The majority of the Alberta passive monitors for NO2 and SO2 were developed 20 

by Maxxam Analytics Inc. (Tang et al., 1997; Tang et al., 1999; Tang, 2001), with the exception of those employed by PAS 21 

(PAS, 2016). The detection limit for 30-day average NO2 and SO2 sampling periods with these samplers is 0.1 ppbv. We 22 

analyse here the data records from 39 continuous and 89 passive SO2 monitoring sites, and 38 continuous and 88 passive 23 

NO2 monitoring sites, within the province of Alberta. 24 

Passive sampling techniques have several advantages such as ease of deployment, no power requirements and low 25 

maintenance, and have been used as an alternative to continuous monitors for monitoring temporal trends of air pollutants in 26 

remote areas (Krupa and Legge, 2000; Cox, 2003; Seethapathy et al., 2008; Bytnerowicz et al., 2010) and evaluation of air 27 

quality of large areas (Gerboles et al., 2006). Their disadvantages are low sensitivity, inability to resolve short duration 28 

concentration peaks, and adverse effects of meteorological conditions on reported observations (Tang et al. 1997, 1999; 29 

Krupa and Legge, 2000; Tang, 2001; Kirby et al., 2001; Partyka et al., 2007; Fraczek et al., 2009; Salem et al., 2009; 30 

Zabiegala et al., 2010, Vardoulakis et al., 2011). Moreover, the passive monitors depend on monthly meteorological 31 

information, needed in order to calculate diffusion rates. This information is obtained from the nearest site with 32 

meteorological observations, as most Alberta passive sampling sites do not have collocated meteorological measurements. 33 

These constraining factors could influence the sampling and, therefore, the accuracy of the results, causing under- or 34 

overestimation of ambient gas concentrations in relation to continuous analysers (Krupa and Legge, 2000).  35 

We first analyse the continuous data, reported as hourly values to AEP for the period from July 2013 through September 36 

2014, in a manner similar to Solazzo and Galmarini (2015), by focusing on the variations associated with different time 37 

scales and the determination of relative redundancy levels for different continuous monitoring stations. The time period for 38 

this continuous-only analysis was chosen to overlap with the Environment and Climate Change Canada (ECCC) air quality 39 

model simulations (described further in Section 2.3). In a second analysis, continuous and passive observations 40 

encompassing the period from February 2009 to December 2015 were analysed together, in an effort to cross-compare the 41 

different sampling methodologies. The intent of this second analysis was to determine the extent to which the two 42 
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methodologies provide similar results, in addition to determining the relative redundancy levels for the passive monitoring 1 

stations. In the second analysis, the continuous data were time-averaged to a similar interval as the passive monitoring data, 2 

(the passive data were typically available as monthly or bimonthly averages).  3 

All data were extracted from Alberta and Environment and Parks (AEP) archives (http://airdata.alberta.ca/) and were 4 

subjected to additional quality assurance and control (QA/QC) procedures due to the requirement of cluster analysis 5 

methodologies that there are no gaps in the time series of observations. We followed the recommendations of Solazzo and 6 

Galmarini (2015), that continuous station data should be rejected if their hourly data records for the analysis period have 7 

more than 10% of the total data for the year missing, or contain data gaps of more than 168 consecutive hours in duration 8 

Missing data may indicate a calibration period or stations which came on or off line during the analysis period. We also 9 

follow their recommendations that data gaps of 1 to 6 hours duration are replaced by the linear interpolation between the 10 

nearest valid data on either side of the gap and, for data gaps of longer duration, the annual average of the non-gap data was 11 

used. No substantial difference was found between the resulting cluster analysis by filling the longer gaps with these long-12 

term averages versus using the average of the same number of missing days both before and after the gap.  13 

For the comparison between passive and continuous SO2 and NO2 observations, the hourly continuous station data records 14 

were subject to the same station rejection criteria and gap-filling procedures as described above. Passive samplers nominally 15 

record either one-month or two-month averages, depending on location. One-month data were averaged to bimonthly data in 16 

order to have a consistent time interval for the dataset. When one of the two-monthly values was missing from the original 17 

data, the bimonthly average was treated as missing. Passive stations missing more than 25% of the data over the five year 18 

period were rejected from the subsequent analysis. This rejection criterion was less stringent than that applied to continuous 19 

data, but was necessary in order to achieve a balance between including monitoring sites with most complete data and 20 

attaining good spatial coverage. An inclusion criterion of less than 10% for missing passive data would have reduced the 21 

number of SO2 passive sites in the analysis from 52 to 18, and NO2 passive sites from 39 to 18. The missing data were gap-22 

filled using the averages for the given station for the remainder of the 5 year time period. The gap-filled continuous data for 23 

the 5 year period were averaged to the same bimonthly intervals as the passive data. The monitors included in this study are 24 

listed in Tables S1, S2, S3 and S4, for the continuous monitoring network analysis for NO2 and SO2 and passive monitoring 25 

network analysis for NO2 and SO2, respectively, in Supplement 1. 26 

2.3 Modelling output 27 

GEM-MACH (Moran et al., 2010; Makar et al., 2015(a,b), Gong et al., 2015) is an on-line chemical transport model 28 

describing several air quality processes, including gas-phase (42 gases), aqueous-phase, and heterogeneous chemistry, and 29 

aerosol microphysical processes (9 particle species with a 2-bin sectional representation in the configuration used here). 30 

GEM-MACH version 2 simulations were carried out for the period between August 2013 and July 2014, over a domain 31 

centred over North America with 10 km grid spacing. The resulting outputs were used as initial and boundary conditions for 32 

a nested set of simulations at 2.5km resolution, for a domain covering the provinces of Alberta and Saskatchewan (Figure 33 

1a). The model was driven by regulatory reported emissions and additional emissions data emissions developed for the 34 

model simulations of JOSM (see Zhang et al., 2017, for further details on the model emissions) to better simulate Athabasca  35 

oil sand surface mining and processing facilities. 36 

GEM-MACH simulations have been previously evaluated for both NO2 and SO2 concentrations against monitoring network 37 

data, satellite observations and cross-compared to the output of other air quality models, in Im et al. (2015), Wang et al. 38 

(2015), Makar et al. (2015a,b), and Moran et al. (2016). Further evaluation of GEM-MACH on the high resolution domain 39 

used here can be found in Makar et al. (2017, this special issue) and Akingunola et al. (2017, this special issue). 40 

We use the output from GEM-MACH in two ways – first, hourly 2.5km resolution model results were extracted at 41 

monitoring station locations, and cluster analyses for the model and observation data were then compared. This comparison 42 
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was carried out in order to evaluate the extent to which the model could act as a proxy for the observations, as well as 1 

provide any caveats on the observation analysis associated with time averaging, sampling errors, and accuracy of the 2 

observations. In our final analysis, we demonstrate the use of the model as a proxy for monitoring network design, by 3 

treating every model grid-cell as if it contained a monitoring station – the clustering analysis of this proxy “data” was then 4 

used to define sub-regions within the model domain which could be represented by a single station, for different values of 5 

the clustering metric. We carried out this analysis on a test 36 by 36 cell sub-domain centred on the Athabasca oil sands, but 6 

could the methodology could be scaled to larger regions. The result of this final analysis are spatial maps at different levels 7 

of a given dissimilarity metric, which may then be used as an aid in determining the locations for observation stations, in an 8 

optimized monitoring network. 9 

3 Associativity analysis for monitoring data based on dissimilarity 10 

3.1 Separating different time scales using KZ filtering  11 

The KZ filter (Zurbenko, 1986) is a means for removing smaller time scales from a time series, based on an iterative moving 12 

average over a specific time window. The combination of the number of times the moving average is applied (m) and the 13 

duration of the averaging window (p) determines the time scales removed from the time series (KZm,p), following the energy 14 

characteristics of the filter. Filtering parameters m and p can be derived from the transfer function (see Eskridge et al. (1997) 15 

and Zurbenko, (1986) for details on the transfer function). The removal of high frequency variations in the data allows 16 

different time scales to be isolated and analysed separately. The KZ filter belongs to the class of low-pass filters. 17 

For our analysis, hourly continuous time series data were KZ-filtered to remove short-time-scale variations, resulting in three 18 

additional datasets, which have had filtered out time variations with periods less than a day (KZ17,3), a week (KZ95,5), and a 19 

month (KZ523,3). The subsequent analysis may thus examine the effect of removing the signal of the different time scales on 20 

the relationships between the stations. The time series resulting from each level of filtering may then be cross-compared, 21 

using hierarchical clustering, described in the following section. 22 

In previous work appearing in the literature (Solazzo and Galmarini, 2015), the KZ filter was used in a “band-pass” 23 

configuration. A “band-pass” is the difference between two KZ filters, for two different frequencies, and was used in an 24 

attempt to isolate the energy between those two frequencies. However, Hogrefe et al. (2000, 2003) indicated that applying 25 

the difference in KZ filters for band-pass purposes does not separate the spectral components completely, with the energy 26 

spectrum overlapping on between the neighbour components. Rather than each band defining an exclusive set of frequencies, 27 

some of the energy from one band could be detected by the neighbouring band. We carried out a detailed analysis of the 28 

band-pass configuration, and confirmed Hogrefe et al’s analysis, further finding that this energy “leakage” between bands 29 

was sufficient that the frequency bands associated with the shorter time-scales could not be distinguished from each other. 30 

However, the KZ filter in its original low-pass form was found to be able to separate the time scales in the test data 31 

accurately, simply by choosing m,p coefficients to ensure that all energy was removed below specific frequencies. 32 

Subsequent clustering was shown to distinguish the influence of the different time scales, given an appropriate choice of the 33 

filtering parameters m and p. Our detailed analysis of the KZ filter in low-pass and band-pass configurations is described in 34 

detail in Supplement 2. Note that the m,p values used in this study were chosen to give an equivalent impact as band-pass 35 

filters used in Solazzo and Galmarini (2015). 36 

It should be noted that time filtering and time averaging do not provide the same information. In the case of low-pass time-37 

filtering, the higher frequency variation above some frequency is removed from the time series, while in the case of 38 

averaging, that information is added to the average. 39 



18 

 

3.2 Dissimilarity Analysis using Hierarchical Clustering 1 

“Dissimilarity analysis” encompasses a group of methodologies used to rank datasets based on the extent to which they are 2 

different (or dissimilar) from each other. Dissimilarity may thus be used to rank stations in terms of potential redundancy 3 

such that stations having low levels of dissimilarity may be similar enough to be redundant. One of the most commonly used 4 

methodologies for dissimilarity analysis is hierarchical clustering (Johnson and Wicherrn, 2007). 5 

The first step for hierarchal clustering is to choose a metric to describe how dissimilar the time series are from each other. 6 

This metric is then calculated for all possible pairs of the time series comprising the dataset. This initial set of calculations 7 

results in a dissimilarity matrix, which may then be used to cluster the data, based on the level of dissimilarity. The pair of 8 

time series with the lowest level of dissimilarity is combined and forms the first cluster. The metric of dissimilarity is then 9 

recalculated between the first cluster and the remaining time series, followed by pairing time series and/or clusters with the 10 

lowest dissimilarity in the reduced matrix. The number of clusters, which was originally equal to the number of time series in 11 

the original dataset, is thus reduced at each stage of the hierarchical clustering process; the process will be completed when 12 

the two last clusters have joined.  13 

In this work, we have used two dissimilarity metrics: (1) 1-R, where R is the Pearson linear correlation coefficient (Solazzo 14 

and Gamarini, 2015) and (2) the Euclidean distance (the latter is the square-root of the sum of the squares of the differences 15 

between the two time series’ members). The metric based on correlation assesses dissimilarities associated with the changes 16 

in concentration as a function of time, while the Euclidian distance metric assesses dissimilarities on the basis of magnitude, 17 

over the time period of the analysis. We included the Euclidean distance out of concern that 1-R alone would fail to assess 18 

the magnitude differences, which may be more important than correlation, for some monitoring network applications. An 19 

extreme example would be two perfectly correlated time series, one of which has an order of magnitude lower average 20 

concentrations than the first; such a comparison could result from two stations positioned at different distances in a line 21 

downwind from an emissions source. Using 1-R alone, one of these stations could be considered redundant, despite the 22 

information inherent in the lower concentrations associated with increasing distance from the emissions source. For both 23 

metrics, the recalculation of the dissimilarity matrix is carried out here with the general averaging method (Nӕs et al., 2010), 24 

as it provides robust and accurate clustering, with a substantial reduction in the processing time required to generate clusters 25 

(Solazzo and Galmarini, 2015). 26 

The level of dissimilarity at which individual station records, and then clusters of records, merge as each new cluster, is 27 

called a “node”. The order in which station records merge, as well as the level of dissimilarity at which they merge, may be 28 

displayed in diagrams known as dendrograms. Dendrograms show the pattern of linkages between nodes as the analysis 29 

progressed, with the vertical axis representing the level of dissimilarity, vertical lines representing specific clusters, and 30 

horizontal lines joining the clusters representing the nodes where the clusters are linked. A dendrogram has the appearance 31 

of the roots of a tree, with the join between the lowest roots representing the node of the most similar time series, and the 32 

trunk of the tree the point at which all data have been joined to clusters. Very similar stations are thus joined at the bottom of 33 

a dendrogram. 34 

3.3 Assessing potential station redundancy 35 

Hierarchical clustering as described above was used to assist in the evaluation of potential monitoring station redundancies 36 

(defined as the relative dissimilarity level at which a station joins a cluster), as one of many considerations that could 37 

influence decision making on monitoring network design. Having carried out hierarchical clustering using station data, the 38 

values of the dissimilarity metric as stations join clusters may be used to define the extent of similarity between stations, as 39 

well as a relative ranking of stations based on these similarities. This provides a quick assessment station record similarities 40 

and offers insight into how the records are related to each other with respect to their temporal variations (1-R) and 41 

magnitudes (Euclidean distance) throughout the time interval analysed. We would consider stations potentially redundant if 42 
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stations highly correlate with each other (low 1-R levels) and if the Euclidean distance levels are low. To decide if stations 1 

are redundant or not, a level of 1-R and/or Euclidean distance should be set; all the stations clustering under the same cluster 2 

at that given level should be under consideration for being removed or moved. 3 

An assessment of monitoring record redundancies must be made prudently, the metrics used should be carefully assessed, 4 

and the physical distance between the stations and emissions sources should be taken into consideration (see section 7).  The 5 

inherent limitations of the analysis should also be noted. These include: 6 

1. The ranking of stations is relative and specific to a given chemical species, the corresponding set of station time series, 7 

and the parameters used for the hierarchical cluster analysis: metric of dissimilarity and the method to recalculate the 8 

dissimilarity matrixused in the analysis. 9 

2. Stations excluded because of data incompleteness are not analysed and not evaluated for possible redundancies. 10 

3. The methodology has been applied in the past using observations from existing monitoring stations, in order to analyse 11 

the relative dissimilarity between those stations’ data records.  However, the methodology may also be applied to 12 

gridded model-generated concentration time series. The latter application provides information on possible new 13 

locations for monitoring stations, for a given number of monitoring stations or dissimilarity level (this process is 14 

described in more detail in Section 6).  15 

4. Other considerations may factor strongly into monitoring network decision redundancy; for example, the availability of 16 

roads and electrical power, regulatory requirements, cost, etc. 17 

An important corollary to the first point above is that different dissimilarity metrics methods used in hierarchical clustering 18 

may result in different relative rankings of station records. Station records which are highly similar when 1-R is used (this 19 

metric is unitless and zero/unity for the most/least similar time series or clusters), may be highly dissimilar when the 20 

Euclidean distance is used (the Euclidean distance will have units of the chemical species being analysed, will be zero for the 21 

most similar clusters, but the magnitude of the upper limit of dissimilarity will depend on the specific time series being 22 

clustered).  23 

“Redundancy” with regards to the metrics examined here is thus relative to a given chemical species and dataset used for 24 

hierarchical clustering. Therefore, we do not propose specific thresholds of the two metrics for determining redundancy. We 25 

note also that the results of the analyses for two metrics may be combined – station data that are relatively similar under one 26 

metric may be examined for their degree of similarity under another metric. The metric levels at which these combinations 27 

are examined are themselves also qualitative, but station time series which are highly similar under multiple metrics are in 28 

turn a stronger indication of potential redundancy. 29 

Despite the above limitations, the methodology is nevertheless highly useful. In the event of limited available resources for 30 

monitoring, an assessment of relative redundancy, through the use of more than one metric, may aid in decision-making.  31 

Aside from implying redundancy between two data records, a high level of similarity may also indicate that a station may 32 

provide more information to the network if placed elsewhere, as opposed to its current location. In the last part of the 33 

analysis (Section 6), we show how the methodology may be extended through the use of air-quality model output to design 34 

dissimilarity-optimized air-quality networks.   35 

4 Dissimilarity analysis for the continuous monitoring networks in Alberta 36 

4.1 Spatial distribution of clusters 37 

The dissimilarity analysis was applied to NO2 and SO2 observational time series data for all the stations complying with the 38 

QA/QC criteria described in Section 2. The dendrograms resulting from the analysis are provided in Supplement 1. 39 

The hierarchical clustering results for NO2 using 1-R as the dissimilarity metric are depicted in Figure S1. This NO2 40 

dendrogram shows frequent clustering between stations within the same Airshed (if represented by more than a single 41 
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station) or Airsheds that are in relatively close physical proximity, such as Airsheds ACAA and FAP (see Figure 1b). A 1 

horizontal line cutting across a dendrogram such as Figure S1 may be used to define the station records that are part of a 2 

cluster at a given level of the dissimilarity metric, and these may be plotted spatially: Figure 2 shows the spatial distribution 3 

of the clusters of NO2 continuous monitors at three levels of the 1-R dissimilarity metric: 0.75 (Figure 2a), 0.65 (Figure 2b) 4 

and 0.55 (Figure 2c). The results show that stations tend to cluster over successively smaller areas as the level of 5 

dissimilarity decreases (the three clusters of Figure 2a as dissimilarity decreases become eleven clusters by Figure 2c). The 6 

clustering at high dissimilarity levels (aka low correlation coefficients) also allows anomalous groupings of stations. For 7 

example, cluster 1 in Figure 2a includes both WBEA stations at the upper right of the panel, one WCAS and one PAMZ 8 

station, despite the latter two sampling air in other parts of the province and subject to different sources. This tendency is 9 

reduced at lower levels of dissimilarity, where stations influenced by similar sources tend to cluster. For example, in Figure 10 

2c, cluster 8 includes all the stations in a highly urbanized area (Edmonton, capital city of the province) and cluster 11 is a 11 

station located at a relatively high elevation upwind of most emission sources. Overall, the methodology shows the ability to 12 

group together monitoring station locations which might be expected to be influenced by similar sources of emissions. 13 

We next examine how the time scales inherent in the data may affect similarities. Figure 3 shows the clustering of stations 14 

which occurs at a 1-R dissimilarity level of 0.55 after time scales less than daily (Figure 3a, dendrogram in Figure S2), 15 

weekly (Figure 3b, dendrogram in Figure S3) and monthly (Figure 3c, dendrogram in Figure S4) are removed. Four clusters 16 

are shown on the first panel, three on the second, and two on the third. Comparing back to Figure 2c with the original hourly 17 

data, this shows that much of the “signal” in 1-R contributing to the eleven clusters in Figure 2c is contained within the 18 

shorter time scales, of less than a day, and are relatively similar at longer time scales. Moreover, correlation levels between 19 

stations increase as KZ filtering is applied and shorter time variability is removed. All of this evidence indicates that much of 20 

the variation in NO2 in the region takes place on relatively short time scales and is due to local sources. The analysis also 21 

indicates that some stations are more influenced by seasonality than others, e.g., the high altitude, largely upwind site of 22 

cluster 2 in Figure 3c remains separate from the other stations even when time scales of less than a month are removed from 23 

the analysis. 24 

The dissimilarity analysis for SO2 produced different results from that for NO2. Figure 4 shows the spatial distribution of the 25 

clusters of SO2 continuous monitors with the 1-R dissimilarity metric (the dendrogram resulting from the hierarchical 26 

clustering appears in Figure S5), and may be compared to Figure 2. For a given level of 1-R, there are more SO2 clusters 27 

than NO2 clusters. The observations of SO2, despite being largely collocated with the observations of NO2, are nevertheless 28 

more dissimilar than the observations of NO2. Even at higher levels of dissimilarity (compare Figure 2a and Figure 4a), there 29 

are more SO2 clusters, indicating a greater degree of local variability in the SO2 data, which drives correlation coefficients 30 

lower and dissimilarity levels for the 1-R metric higher. This greater degree of dissimilarity for SO2 is due to the nature of 31 

the SO2 emissions, i.e., almost exclusively from industrial “point” sources in the region under study, whereas NO2 32 

concentrations are also influenced by more broadly geographically dispersed “area” sources of emissions including mobile 33 

on and off-road vehicles. The dispersion of SO2 from the former source type is thus more dependent on very local 34 

meteorological conditions governing the rise of buoyant plumes from stacks than are the emissions from area sources. The 35 

direction and concentration of the rising and dispersing SO2 plumes is thus more highly variable in time, compared to the 36 

area-source dominated emissions of NO, which are chemically transformed rapidly to NO2. Concentrations from the same 37 

SO2 source may therefore not correlate to the same degree between different downwind stations as NO2. This contributes to 38 

the lesser degree of similarity between the SO2 station data even when monthly and shorter time scales are removed (the SO2 39 

dendrograms with the removal of time scales less than daily, weekly and monthly appear in Figure S6, Figure S7, and Figure 40 

S8, respectively). 41 

The Euclidean distance dendrograms for both NO2 (Figure S9) and SO2 (Figure S10) do not show the same distinctive 42 

clustering within Airshed as can be seen with the 1-R metric. This might be expected, as Euclidean distance between two 43 
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time series may result from a single instance in which the hourly concentration records of the two stations differ substantially 1 

or several hours in which the concentration differences are smaller. Stations located sufficiently far apart that they monitor 2 

different sources of pollutants may thus have similar Euclidean distances if their average concentration magnitude is similar.  3 

The analysis also indicates that Euclidean distances become more similar in magnitude, and that these magnitudes decrease, 4 

as increasingly larger time scales are filtered, across all of Alberta (Figure S9 for NO2 and Figure S10 for SO2). That is, 5 

concentration magnitudes recorded at the different stations approach each other as the shorter duration time variations are 6 

removed. At these time scales, the magnitude of both species is driven by low concentration levels of long-term duration and 7 

larger spatial extent. This is particularly true for SO2 monitors that typically measure low concentration (background levels) 8 

interspersed with infrequent short-term high concentrations (surface fumigation events of buoyant plumes). However, within 9 

an Airshed affected by a common set of emissions sources, Euclidean distance will nevertheless be useful, by identifying the 10 

presence of high concentration gradients, as will be shown in the next section. 11 

In summary, the methodology is able to identify groups of stations which are influenced by common emissions 12 

sources (e.g. stations which are influence by oil sands emissions as opposed to stations located elsewhere) when 13 

the methodology is applied to hourly and, to some extent, daily time-filtered time series. Stations mainly 14 

influenced by seasonality are identified when the methodology is applied to weekly and monthly time-filtered 15 

data. The analysis groups stations according to their degree of similarity but does not provide the cause for that 16 

degree of similarity. The latter may only be achieved by examination of the data records, and the use of local 17 

knowledge of sources and conditions. The level of information about the sources present in the study area will be 18 

greater when the results of both metrics are combined, and information about the sources may be inferred from 19 

the analysis; for example, stations could be classified as background or industrial impacted if seasonality or 20 

hourly data are shown to contain most of the signal.  21 

 22 

4.2 Ranking of stations by dissimilarity 23 

Previous work appearing in the literature (Solazzo and Gamarini, 2015) was motivated by the aims of evaluation and pre-24 

screening of monitoring data, for the purpose of the evaluation and development of regional-scale air pollution models. Their 25 

focus was on observations of ozone which, in the troposphere, is a secondary pollutant resulting from gas-phase reactions 26 

and broader-scale chemistry and transport. They consequently focused on the different time scales associated with KZ 27 

filtering. Here, however, we have shown that for primary pollutants such as SO2 and “secondary” pollutants such as NO2 28 

which are nevertheless very rapidly (on time scales of less than 5 minutes) produced from their primary precursors, much of 29 

the signal driving similarity resides at shorter time scales. Consequently, our ranking of continuous monitoring stations in 30 

this section is based solely on the original hourly observation data, as opposed to KZ filtered observations.  31 

The cluster analysis results for hourly time series were ranked from highest to lowest values of 1-R and Euclidean distance 32 

resulting from clustering of continuous monitoring station data. Stations clustering at high levels of 1-R and Euclidean 33 

distances are significantly different in time variation and concentration magnitudes, respectively. Conversely, stations at the 34 

bottom of the ranking are the most similar. The latter stations could be, therefore, considered potentially redundant. Our 35 

rankings are based on the dissimilarity level at which a given station joins another station as a new cluster, or when a given 36 

station joins a pre-existing cluster. If the latter were to occur at a sufficiently low level of dissimilarity, either the new station 37 

or the pre-existing cluster might be considered potentially redundant. The uppermost and lowermost ranked stations for NO2 38 

and SO2 are shown in Tables 1 and 2, respectively. The corresponding full ranking for the full list of stations is show in 39 

Tables S5 and S6.  40 

The tabulated values indicate clear differences between the two compounds. The stations measuring NO2 cluster with each 41 

other at substantially lower 1-R levels (that is, they correlate at substantially higher values of R) than do the stations 42 

measuring SO2. In one extreme case, the records of one SO2 station, Redwater Industrial, anti-correlate with the records of 43 

other stations, indicating that the SO2 time series at that location is substantially different from those of the remaining 44 

stations. However, the NO2 Euclidean distance metric cluster values tend to form at higher levels than their SO2 counterparts, 45 



22 

 

with the exception of Redwater Industrial, indicating that despite their higher correlations, the NO2 stations may have larger 1 

differences in concentration magnitudes relative to SO2. We note that the Euclidean distance between SO2 station 2 

observations is, in many cases, relatively low (e.g., 24 ppbv for 8760 hourly values summed), and likely indicates stations 3 

which rarely record SO2 concentrations above background levels and hence have relatively “similar” Euclidean distances due 4 

to similarly low concentration records for much of the recorded time series. Another interesting difference between the two 5 

atmospheric compounds is that the relative ranking by dissimilarity is closer to being the same for the two metrics for SO2, 6 

than for NO2. 7 

Two different dissimilarity metrics thus result in different relative rankings the two chemical species, so the results must be 8 

interpreted with care. For example, the stations Fort McKay South and Fort McKay Bertha Ganter have the highest 9 

correlation for SO2 (R=0.81) but their Euclidean distance is 177 ppbv, and a similar disparity between 1-R and Euclidean 10 

distance rankings for these stations may be seen in their values of the corresponding NO2 metrics (R=0.84 and Euclidean 11 

distance of 411 ppbv). These stations are 4 km apart; the high correlation coefficients indicate that they may measure similar 12 

events, but the high Euclidean distances indicate that the magnitude of the events observed likely vary considerably despite 13 

the small separation distance. That is, substantial gradients in concentration may exist between the two stations at any given 14 

time. We note again here that low values of the dissimilarity metrics indicate a greater level of potential redundancy with 15 

respect to the rest of the stations – a high value of the Euclidean distance between two station records, or between a station 16 

record and a cluster, indicates that they are very dissimilar, and hence less potentially redundant. A second example is the 17 

pair of stations measuring NO2 with the lowest 1-R, Ross Creek and Fort Saskatchewan: these stations’ data records are 18 

highly similar with respect to 1-R, that is, they are highly correlated, but the Euclidean distance between the two is 400 ppbv, 19 

despite the stations being separated in distance by only 2.6 km. Again, the gradients in concentration between closely placed 20 

stations can be substantial. The intended purpose of the monitoring at such locations is key in assessing their level of 21 

potential redundancy. For example, if the aim of monitoring is to provide short-term exposure data for human health 22 

impacts, then these large Euclidean distances (despite the high correlations) indicate the presence of large gradients in 23 

concentration, and hence such station pairs should be considered less redundant. The combination of the metrics is thus 24 

shown to be important in network assessment – the addition of the Eulerian distance metric provides a broader context for 25 

station-ranking than the use of 1-R alone. 26 

5 Hierarchical clustering to cross-compare methodologies and technologies 27 

Solazzo and Galmarini (2015) noted that clustering analysis can be used to determine the extent to which the different 28 

monitoring methodologies are comparable. Thus if different methodologies do not provide equivalent data, the clusters 29 

generated will be split according to methodology, rather than being associated with local chemical and meteorological 30 

conditions. The combination of both methodologies in a single clustering analysis here thus has two purposes – exploring the 31 

relative dissimilarities between the station records, and the extent to which the two methodologies examined here (passive 32 

and continuous monitors) provide similar data. 33 

The hierarchical clustering methodology was applied to the five year bimonthly averaged time series sampled by continuous 34 

and passive monitors (we leave out the a priori KZ filtering step as the data in this case are already long-term averages). The 35 

dendrograms resulting from the clustering analysis are shown in Figure S11 for NO2 and Figure S12 for SO2. The spatial 36 

distributions for the station clusters for the 1-R dissimilarity metric will be the focus here.    37 

The spatial distributions of the NO2 clusters at dissimilarity levels of 1-R=0.55 and 0.5 are shown in Figure 5a and 5b, 38 

respectively, with the locations of continuous monitors plotted as inverted triangles and passive monitors as circles. At 39 

correlation level R=0.45 (Figure 5a) there is a clear distinction between passive and continuous monitors, all the continuous 40 

monitors belong to cluster 1, independent of their spatial location. A large number of the passive monitors also fall within 41 
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this cluster; however, when a slight increase in correlation is applied (Figure 5, R=0.5), the clustering pattern changes 1 

significantly – most of the continuous monitors remain within the same cluster, but the passive monitors form separate 2 

clusters. Two WCAS continuous monitors separate and form a separate cluster at dissimilarity level 0.5 (Figure 5b). Figure 5 3 

also shows several cases of collocated continuous and passive monitors which do not fall within the same cluster for 4 

correlation levels of 0.5 or higher. The analysis shows that as higher levels of correlation are required, the continuous and 5 

passive monitors for NO2 do not cluster together despite close physical proximity or even collocation. Some of the passive 6 

monitor clusters at R = 0.5 (Figure 5b) appear anomalous; for example, cluster 3 (red) includes stations in LICA and WBEA, 7 

despite these airsheds being separated by a distance of several hundred kilometres. As the level of dissimilarity is decreased 8 

from 0.55 to 0.5, the biggest difference in clustering patters is seen for WBEA monitors, in the upper right of the panels of 9 

Figure 5, as passive and continuous monitors located closer to the oil sands facilities are fall within cluster 1, while some of 10 

the passive monitors farther from the oil sands facilities fall within cluster 3. For levels of correlation above 0.5, the 11 

clustering between stations monitoring similar source areas is rare, independent of the Airshed (see dendrogram in Figure 12 

S8).  13 

Figure 6 depicts the clustering results for SO2 based on the 1-R metric for dissimilarity levels 0.75 (Figure 8a) and 0.65 14 

(Figure 8b). Higher dissimilarity levels were used as examples for the generation of spatial distributions, than for NO2 in this 15 

Figure. The highly variable nature of the SO2 concentrations, as a result of their origin in stack emissions, results in a greater 16 

degree of variability inherent in the collected data, as described earlier (at lower dissimilarity levels, the number of clusters 17 

increases markedly). Comparing Figure S9 and Figure 6, most of WBEA passive and continuous monitors in the north-east 18 

of the region form a common cluster at R=0.25 (Figure 6a, cluster 11, red). However, at this low correlation level, a common 19 

cluster connects sites in LICA, FAP, WBEA and PAZA Airsheds, despite these sites being widely separated in space and 20 

influenced by different local sources of SO2 (cluster 12, green, Figure 6a). At the slightly higher correlation level of R=0.35 21 

(Figure 6b), the clustering across airsheds has been reduced, though LICA and FAP still share a common cluster (number 4, 22 

light blue). Again, the most direct interpretation of the differences between the SO2 and NO2 results for the 1-R metric 23 

analysis, when passive and continuous monitors are clustered together, is that the data time series records for SO2 are more 24 

highly variable than for NO2. If 1-R similarity is used for assessing potential station redundancies, then there is a lesser 25 

overall degree of potential redundancy in the SO2 data, due to its greater degree of variability. However, the cause of that 26 

variability should also be considered. For example, we note again that some of the collocated passive and continuous 27 

monitors for SO2 do not fall within the same cluster at lower 1-R values (these are shown as different colours in overlapping 28 

inverted triangles and circles in Figure 6b). This indicates that at least some of the variability may reside in the measurement 29 

methodologies employed. 30 

In their analysis of European ozone monitoring networks, Solazzo and Galmarini (2015) found similar patterns between 31 

different European nations, noting that the differences likely related to different sampling methodologies, instrument 32 

sensitivities, and data acquisition protocols not being harmonised between the countries. The same seems to be true for the 33 

Alberta passive and continuous monitoring stations, as the 1-R cluster analysis shows that the continuous stations are more 34 

similar to each other within and across Airsheds, than they are to the passive stations within the same Airshed, or located 35 

nearby. Collocated continuous and passive stations do not always show high levels of similarity, which would be expected, 36 

had they reported the same concentrations. We analysed WBEA data alone using the 1-R metric (dendrogram in Figure S13), 37 

and found that most of the continuous monitors formed a separate cluster from the passive monitors at relatively high levels 38 

of the 1-R metric, indicating that the two sources of data are providing fundamentally different records. Collocated passive 39 

and continuous monitors also tended to have high levels of the Euclidean distance (not shown). Thus, at least some of the 40 

variability noted with these datasets seems to lie with the overall sampling methodology, and related confounding factors, 41 

discussed further in Section 7. 42 
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There have been several studies comparing passive and continuous analysers in Alberta (WBK, 2007; Hsu et al., 2010; 1 

Pippus, 2012; Bari et al., 2015). Bari et al. (2015), the study with the highest number of samples, cautioned that direct 2 

comparisons between NO2 and SO2 continuous and passive methods may be hampered by lower field accuracy in the passive 3 

methodology. Several studies show that passive samplers overestimate SO2 ambient concentrations and underestimate NO2, 4 

relative to continuous monitors. For example, the Bari et al. (2015) study showed that the median values for the absolute 5 

difference between the collocated passive and continuous monitors for NO2 is 1.5 ppbv and 0.2 ppbv for SO2.The same study 6 

assessed the relationship between passive and continuous measurements by regression analysis, concluding that the 7 

agreement between the different types of monitors is moderate, with the coefficient of determination being 0.42 and 0.40 for 8 

NO2 and SO2 respectively. We note that these previous comparisons were done for urban sites only; in this study we have 9 

carried out cluster analysis including passive and continuous monitoring data for rural, urban, and industrial sites outside of 10 

urban regions. 11 

6 Model information as a potential surrogate for observations: optimized monitoring network design 12 

Air-quality models such as GEM-MACH provide gridded time series concentrations of atmospheric pollutants and related 13 

chemicals at a common time interval, as a standard output. These are compared to observations in order to evaluate the 14 

model’s performance (cf. Makar et al., 2017; Akingunola et al., 2017, Stroud et al., 2017 for traditional evaluations using the 15 

model output used herein). We introduce here for the first time the concept of the use of these time series of air-quality 16 

model output, combined with hierarchical clustering analysis, as a surrogate for station data, for the purposes of monitoring 17 

network analysis and design. Two possible approaches can be taken. First, the model output at the model grid-squares 18 

containing existing monitoring stations may be analysed, in order to determine the extent to which the clustering analysis of 19 

model output mimics the clustering analysis of the corresponding observational data. Aside from presenting a new means by 20 

which the model output can be evaluated, this approach also can highlight possible causes for the observation data clustering 21 

results. The second approach is to use the gridded model output as a surrogate for a dense monitoring network (one “station” 22 

at every model grid-square center). The outcome of this second approach is a set of gridded maps – similar to the sparsely 23 

distributed observation location maps shown in the figures above, these show the clustering of potential stations. However, 24 

the cluster maps resulting from the use of the dense “network” of model grid-squares, defines more precisely a set of regions 25 

within each of which a single station may represent that larger region, for the value of the dissimilarity metric chosen. We 26 

investigate this second approach from the standpoint of monitoring network design. Note that, in the work above, we have 27 

attempted to show how hierarchical clustering may be used to analyse existing monitoring networks; here we show how the 28 

same techniques, coupled with the output of a long-term simulation of an air-quality model, can provide an optimized 29 

network design (where we here define “optimized” as “having a common level of dissimilarity for potential station locations, 30 

for the dissimilarity metrics chosen”). Equivalently, these optimized networks maximize the dissimilarity, and hence 31 

minimize the potential redundancy, in the location of monitoring network stations. 32 

Our first analysis using model output evaluates the extent to which the model is capable of creating similar clusters as the 33 

observations.  Hourly model output for the one-year simulation of GEM-MACH was extracted from those model grid 34 

squares containing the station locations, and the resulting time series data were submitted to the same hierarchical clustering 35 

methodology as described above. Figure 7 shows the spatial distribution for the cluster analysis at the same levels of 1-R, 36 

0.75, 0.65 and 0.55, as was shown using observation data (compare to Section 4, Figure 2). Each Airshed is plotted with a 37 

different polygon, and colours indicate clusters. The corresponding dendrograms for these model results are shown in 38 

Supplement 1, Figure S14. Note that cluster colours/numbers differ between Figures 2 and 7; stations are falling within 39 

similar clusters in each Figure. For SO2 dissimilarity level 1-R =0.75 (Figure 7a), the difference between the results for 40 

model and observations is not substantial; the clustering is identical aside from a single station both in WBEA and LICA, 41 
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and AEP and PAS stations not forming separate clusters. The difference between observed and modelled NO2 clustering 1 

results is more notable as the level of dissimilarity decreases (Figure 7b,c): the model tends to create a larger number of 2 

clusters than the observations at intermediate levels of dissimilarity (comparing Figure 2b and Figure 7b: six clusters versus 3 

ten clusters; 2c and 7c: eleven clusters versus thirteen clusters). The model results also tend to cluster within the same 4 

Airshed to a greater degree compared to the observations results. The model dendrograms tend to have clusters forming at 5 

higher levels of dissimilarity for some stations such as Steeper (Figure S14 for Steeper is 1-R=0.8, while Figure S1 for 6 

Steeper’s node is 1-R=0.7). Some of these differences may be due to inaccuracies in the emissions data driving the model. 7 

For example, the major point source emissions data used in the simulations is based on regulatory reporting to the NPRI, 8 

wherein the regulatory requirement for reporting is an annual total.  These annual totals must be temporally allocated using 9 

assumed temporal profiles for each source, and these month-of-year, day-of-week, and hour-of-day temporal profiles may 10 

not always match actual hourly emission levels at any given time. We show elsewhere (Akingunola et al., 2017) that hourly 11 

continuous emissions monitoring data used as model inputs may result in very different short-term concentration behaviour, 12 

with the corollary here that temporal allocation used here may influence the pattern of clusters. However, the model results 13 

at level of dissimilarity 0.65 tend to cluster more similarly with the observation results at level of dissimilarity at 0.55, 14 

indicating that the clustering analysis for the model results and observations show a similar spatial distribution, though the 15 

model shows overall higher correlation values than the observations. 16 

The results for SO2 (dendrograms for the cluster analysis in Supplement 1, Figure S12, compare to Figure S5) show the 17 

model results clustering similarly to the observations for PAMZ, ACCA and WCAS stations. Alternatively while WBEA 18 

stations in the model results (Figure S15, red station labels) are split into two clusters, while these stations are part of the 19 

same cluster in the observation-based analysis (Figure S5). At 1-R level 0.75, both model and observation cluster analysis 20 

results (Figure 8a, compare to Figure 4a) already show many clusters composed of one or few stations, with the model 21 

showing slightly more clusters than the observations (21 clusters versus 25, respectively). As noted earlier, SO2 in this region 22 

is emitted mainly by point-sources, and the use of annual emissions data with an assumed temporal allocation, along with the 23 

additional inherent difficulties in accurately predicting plume rise (Akingunola et al., 2017), make the reproduction of the 24 

time record of SO2 by the model a challenge. Inaccuracies in both the emissions and the model meteorology may contribute 25 

to these differences. 26 

We next show an example of how hierarchical clustering using gridded model output may be used to generate an optimized 27 

monitoring network. For this analysis, we focus on a specific sub-section of the model grid; namely a 72x72 block of model 28 

grid-squares centred on the Athabasca Oil Sands. Figure 9 depicts the resulting mapped 1-R cluster analysis in this area, 29 

when each model grid-cell has been treated as a potential monitoring station location. Figure 9a and ,c shows the spatial 30 

distribution of the 1-R dissimilarity levels the values of 1-R for each grid cell at the point in the analysis where that grid 31 

square becomes part of a cluster for NO2 and for SO2, respectively, . Those grid cells with high values of 1-R thus join 32 

clusters at much lower correlation levels than those which have joined clusters at low values of 1-R. As a result, the maps 33 

show the extent of dissimilarity for the grid cells; higher values show grid cells which are so unlike others that they remain 34 

separate from the clusters throughout much of the analysis. In contrast, Figure 9 (c and d) show the clusters which exist for a 35 

specific level of 1-R.  These show how the methodology may be used to design a monitoring network for a given number of 36 

stations (i.e. one station within each of the coloured regions will be sufficient to represent that coloured region, to within the 37 

value of 1-R used to generate the clusters).and Figure 9 (b and, d) shows the spatial distribution of the clusters generated by 38 

dissimilarity levels of 0.65 for NO2 and 0.8 for SO2, respectively (these levels were chosen based on the analysis above, 39 

where the model was shown to provides reasonable results). All the panels in Figure 9 have the areas where the oil and gas 40 

extraction sites and processing facilities are located as a visual aid; these areas are contoured in black. 41 

The 1-R metric maps (Figure 9a and,c) have the highest values where main emissions sources are located – these identify the 42 

main open-pit mine facilities of the oil sands, within which may be found both area and stack emissions sources. These 43 
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regions of high variability are thus where the influence of the emissions and the local meteorology on the dispersion of the 1 

emissions is the strongest. In the NO2 dissimilarity map “point” (stack), “line” (roads) and “area” sources (mines) can be 2 

distinguished; for SO2 the locations of the stacks for processing and flaring are identified. The spatial distribution of the 3 

clusters (each cluster is mapped with a different colour in Figure 9(b and ,d) shows the areas wherein a single measurement 4 

station, placed anywhere within a given coloured region, would represent that region to the given level of dissimilarity. 5 

Figure 9c thus shows that for NO2, and for a 1-R dissimilarity level of 0.65, fourteen seventeen monitoring stations, each 6 

placed at any location within each of the fourteen coloured regions, would constitute an optimized network for NO2. 7 

Similarly, Figure 9d shows that seventeen stations would be required to monitor SO2 with a common 1-R dissimilarity of 8 

0.80, and the regions over which those stations could each be placed. The analysis thus identifies regions which are 9 

equivalent from the standpoint of the dissimilarity metric used.  10 

We note that in some cases a single cluster can be discontinuous, split into more than one area. An example of this can be 11 

seen in Figure 9c, where a cluster is split into two separate red coloured regions (cluster 3), whereas Figure 9d does not show 12 

the same split. Local knowledge of the emissions sources, as well as analysing Figure 9a and b, help explain these results. 13 

The dark yellow region (cluster 5) in Figure 9c and the grey region (cluster 8) in Figure 9d mark the location of a local 14 

emissions source, moderate in magnitude relative to the larger sources in the middle of the domain (Oil Sand facility 15 

boundaries marked in these Figures). The clustering thus recognizes the local influence of this moderate source of emissions, 16 

however, at greater distances from this source, the impact of the larger sources dominates. The red areas (cluster 3) in Figure 17 

9c and the green area (cluster 4) in Figure 9d show that the larger sources have both a local and long-range influence, which 18 

only locally can be overwhelmed by the moderate source for both SO2 and NO2. We note that we are using 1-R in this 19 

application of the methodology with deterministic model output, so the magnitude of the signal of the two chemicals is not 20 

being analysed, rather, its time variation 21 

To  satisfy  different  monitoring  objectives,  stations  are  placed  by  both  geographical and physical location, with 22 

physical location defined by the concept of spatial scale of representativeness, the area where actual pollutant concentrations 23 

are reasonably uniform. We note that each of these coloured subregions in which a single station could be placed has a 24 

relatively large geographic extent, and, using this metric, do not describe the concentration gradient in the region but could 25 

be used as a first guess for areas of representativeness, potentially providing useful input for applications such as data 26 

assimilation of air-quality and meteorological observations. Combining spatial distribution of the clusters for 1-R metric with 27 

the Euclidean distance will provide further information about the concentration gradients in the area of representativeness. 28 

HoweverNote that, maps such as these could be overlaid with other geographic information (e.g., road networks, the local 29 

power grid, etc.) to further optimize and decide on potential station locations. The similarity maps, combined with these 30 

other factors, could be used to aid in the design of air pollution monitoring networks.   31 

 32 

The cluster distribution maps show that the areas for potential station location depend on the pollutant – the SO2 map is 33 

influenced to a greater degree by the wind directions throughout the year than NO2, likely due to the emissions sources for 34 

the former pollutant being driven almost entirely by stack sources in this region. The wind-rose-like pattern around SO2 35 

sources likely stems from plume fumigation events at different times of the year, leading to a high correlation of SO2 36 

concentrations leading downwind from the sources. The NO2 cluster distribution is patchier, reflecting both the impact of the 37 

stacks (which account for about 40% of the total NO emissions in the region) and the off-road mobile mine fleet (other 38 

“area” sources, which account for the bulk of the remainder of the NOx emissions). If potential multi-pollutant monitoring 39 

station locations are desired, overlapping the optimized maps for each pollutant, for a given number of stations, would be a 40 

further way of aiding the monitoring network design process. 41 
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We also note that other metrics could be used in order to capture other aspects of concentration spatial and temporal 1 

variability, such as concentration gradients, in addition to temporal correlation – here we have demonstrated a “proof of 2 

concept”, and other metrics will be analyzed  in future work. 3 

7 Potential factors impacting the analysis  4 

Factors that can negatively impact the results of hierarchical clustering include data dispersion (large variance between 5 

cluster members), outliers and non-uniform cluster densities (clusters which are non-compact and non-isolated, thus not 6 

properly distinct from one another) (cf. Mangiameli et al., 1996; Milligan, 1980). However, we find that the analysis itself 7 

may also be used to identify these conditions.  We have shown in the results in Section 4 and 5 that the analysis has indeed 8 

identified stations that are outliers relative to the rest of the dataset – these stations separate from the other stations as single-9 

member clusters at high levels of dissimilarity. In other words, that is, the analysis identifies the records of those stations as 10 

being substantially different from all other station records, for the dissimilarity metric used.  This was particularly noticeable 11 

in the bimonthly data analyses. The methodology also identified cases of data dispersion, for example, the analysis of 12 

combined bimonthly passive and continuous monitors showed cases where monitors in close proximity or even collocated 13 

did not cluster together. The methodology thus seems capable of isolating outlier records and data dispersion, as well as 14 

recognizing cases of substantial differences between data collection methodologies. The latter was noted in the case of 15 

hourly ozone observations by Solazzo and Galmarini (2015). 16 

The analysis of combined continuous and passive data has identified systematic differences between the two monitoring 17 

methodologies as a potential confounding factor on the station ranking of passive stations; the analysis identifies collocated 18 

stations with concentration differences and poorly matching concentration time variation, but cannot identify the causes for 19 

these differences. These issues should be the subject of follow-up work. Nevertheless, we note that both passive and 20 

continuous data may be subject to errors associated with the accuracy and precision of the sampling methodology.  21 

We examined the potential errors associated with the reported detection limit of the monitoring methodology by using the 22 

GEM-MACH derived time series at station locations. Random noise was added to the original model time series results, with 23 

the maximum magnitude of the noise for each species taken from the detection limit range of each instrument (i.e. random 24 

noise in the range +/-0.5 ppbv was added to the NO2 time series and +/-1 ppbv was added to the SO2 time series). The NO2 25 

cluster results for hourly time series using 1-R as the dissimilarity metric (Figure S13, Supplement 1, compare to Figure 2), 26 

show no significant difference between the original and noise-added time series. However, this changed as time scales were 27 

removed from the original data sets by KZ filtering, especially once monthly and all shorter time scales were removed. 28 

Random noise was thus shown to be a potential confounding factor in 1-R hierarchical clustering analyses.  However, for the 29 

corresponding NO2 Euclidean distance metric, both the hourly and monthly filtered data, with and without noise-added, 30 

resulted in identical clustering (not shown). The SO2 results showed a larger variation between the clusters generated with 31 

the original time series and those containing additional random noise. The difference in clustering was particularly 32 

noticeable for the 1-R dendrograms, for both hourly and time filtered data, and slightly less pronounced for Euclidean 33 

distances (not shown). The work described above suggests that much of the “signal” for primary emitted or quickly reacting 34 

secondary pollutants for correlation analysis resides in the shorter time scales (hourly to daily); the greater influence of 35 

random noise on the results of the time-filtered data implies that the latter are dominated by close-to-background 36 

concentrations, which are in turn similar in magnitude to the noise levels added here, and hence a greater influence is seen on 37 

clustering of the time-filtered data. For species such as SO2, which are dominated by short-duration high concentration 38 

plumes, this effect may extend to the shorter timescales as well.  39 

As mentioned in Sollazzo and Gamarini (2015), the manner in which the data is reported may significantly impact the 40 

analysis. Besides the detection limit of the instrument, Airsheds report the passive observations with a reporting limit of 0.1 41 
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ppbv, hence we also tested the accuracy of the instrument or the number of significant figures being reported, again using the 1 

model time series at station locations as a surrogate for observation data. The model results were filtered for three or zero 2 

significant figures below the decimal, and the resulting analyses were compared. As for the random error test, we found that 3 

for both NO2 and SO2 the dendrogram patterns changed, indicating that the use of fewer significant digits in data reporting 4 

will result in enough loss of information to change the interpretation of the data. 5 

In the analysis described in Section 4, it was noted that as successively larger time scales are filtered from the data used for 6 

clustering, the magnitudes of the clustering metrics show an increasingly higher degree of similarity, with monitors 7 

clustering both within and across Airsheds. However, the filtering of time series to remove successively larger time scales is 8 

not equivalent to averaging, in which shorter time scale information may be retained in the average. To specifically examine 9 

the effect of time averaging during data collection on clustering results, the clusters for the hourly data were compared to 10 

those from daily, weekly and monthly averages (Figure 10). With the original hourly data, specific Airsheds were identified 11 

as unique clusters (as expected, for 1-R hierarchical clustering; stations located close to Airshed-specific sources were 12 

identified as being more similar). However, with increasing averaging times, this Airshed-specific clustering was gradually 13 

lost. Most of the information driving the ability of 1-R clustering to link local sources was thus shown to reside in the shorter 14 

time scales. Nevertheless, this information was lost as increasing averaging periods were applied (Figure 10). A fundamental 15 

result of this analysis is that measurements that consist of long-term averages may lose the ability to identify the influence of 16 

local sources on the basis of time variation, i.e., they will correlate at an equal level with both adjacent monitoring stations 17 

and those that are located in distant regions. However, this information is retained in hourly records, and the latter may be 18 

used to identify unique source regions on the basis of correlation.  19 

We note here that the results of analyses of this nature are dependent on the time series data used (including its duration).  20 

We have used a 5 year dataset to evaluate bimonthly observation data, and a one-year dataset to evaluate hourly data and 21 

deterministic model results. Longer time periods may be preferred in future applications to limit the potential impact of year-22 

to-year variability. Nevertheless, if emissions change in the future, the analysis should be repeated in order to determine 23 

whether the pattern of clusters has changed in response to the changes in emissions. Similarly, while long time sets are 24 

desired from the standpoint of removing the potential impacts of annual variability in meteorological conditions, if changes 25 

in emissions happen frequently, it may argue for yearly rather than multi-year analyses.   26 

8 Conclusions 27 

A methodology for cross-comparing air quality monitoring networks was proposed here, expanding on the work of Solazzo 28 

and Galmarini (2015) by including the Euclidean distance as well as 1-R as dissimilarity metrics for hierarchical clustering, 29 

and by making use of chemical reaction-transport model output as a surrogate for observation station data.  We adopted the 30 

KZ filter in its original low-pass configuration, in order to improve the ability of the methodology to distinguish the impact 31 

of different time scales of variation on clustering. The Euclidean distance metric allowed cross-comparison of the stations in 32 

terms of the magnitude of the concentrations, whereas 1-R evaluated their temporal variation similarity. Both metrics can be 33 

used together or separately to evaluate the similarity of the stations and their potential redundancy. The relative level of 34 

potential redundancy for existing observation stations was ranked based on each dissimilarity metric, and we recommend 35 

evaluating monitoring station redundancy using both metrics where possible. Stations which form clusters at low values of 36 

both 1-R and Euclidean distance are the most redundant, while those with high values of either or both of these metrics are 37 

the least redundant. Absolute thresholds for redundancy cannot be generated since the relative rankings depend on the 38 

available observation data (number of stations and chemical species observed). In addition, other considerations such as 39 

spatial proximity to sensitive receptors, the regulatory purpose of the station(s), and logistics (e.g. accessibility or power 40 

supply), may outweigh the recommendations based on similarity alone. 41 
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We have shown, through several analyses, that much of the observation signal which may be used to identify common 1 

sources of both primary pollutants and secondary products of fast reactions resides in shorter time scales (hourly to daily). 2 

When hourly data are available, the methodology is able to identify groups of stations that are influenced by common 3 

emissions sources (e.g., stations that are influenced by oil sands emissions as opposed to stations located elsewhere), as well 4 

as identify outliers or stations records that are markedly different from all others in a given dataset. The former property is 5 

useful for identifying the influence range of specific emission sources.  The latter property shows that the methodology is a 6 

useful tool for identifying station instrumentation that may be located such that they are subject to unique conditions (e.g. 7 

very nearby sources, anomalous long-term variation, etc.), or which have anomalous readings. However, for data consisting 8 

of longer-term averages, or observations in which the shorter time scales have been removed by filtering, at least some of the 9 

information which identifies the influence of common emissions sources is lost. Nonetheless, the methodology, when 10 

applied to time-filtered data, is able to single out stations mainly influenced by seasonality. 11 

Clustering was shown to depend on the chemical species analyzed, suggesting that optimization of networks using this 12 

methodology should be carried out on a “by species” basis rather than a “by station” basis. The two species examined here 13 

originate in different types of emissions sources in the region under study, and consequently have different dissimilarity 14 

rankings for the corresponding stations. 15 

We have corroborated the work of Solazzo and Galmarini (2015) for ozone in that the methodology is capable of identifying 16 

monitoring stations making use of different monitoring methodologies (via our 5 year analysis of passive and continuous 17 

SO2 and NO2 observations on a common bimonthly averaging interval). Passive and continuous monitors in the same 18 

airsheds did not always fall within common clusters (with several examples in which collocated monitors from the two 19 

technologies did not correlate). Some of these issues may be result of averaging time, though data round-off and accuracy 20 

(random noise) were also shown to have a negative influence on the clustering results.   21 

We have expanded the use of hierarchical clustering for air pollution to include its use with air-quality model output. This 22 

presents a new avenue for monitoring network optimization and design in that each high resolution air-quality model grid 23 

square can be treated as a potential monitoring station location. Comparisons of the results of the clustering of model and 24 

observed time series at monitoring station locations showed clusters generated from model output tended to be more similar 25 

within Airsheds than was the case for clusters generated from observations. However, the results are quite comparable, albeit 26 

at higher correlation levels for the model than the observations, and the match to observations depends on the chemical 27 

species. Tests in which gridded model output were treated as potential station locations resulted in the first dissimilarity 28 

analysis based maps of optimized air pollution monitoring networks. These showed that the methodology is capable of 29 

generating sub-regions within which a single station will represent that entire sub-region, to a given level of a dissimilarity 30 

metric. Maps of this nature may be combined with other georeferenced data (e.g., road networks, power availability) to assist 31 

in monitoring network design.    32 

While hierarchical clustering’s pitfalls include data dispersion and outliers, we show here that the methodology is also able 33 

to identify differences in sampling methodologies and anomalous stations records. The analysis was shown to be particularly 34 

sensitive for monitors sampling air contaminants such as SO2, in areas of low background concentrations and sudden 35 

concentration peaks. For SO2, this is a result of the variation inherent in the type of sources that dominate SO2 emissions in 36 

our study region, i.e., large stack plumes. We also note that comparing observation-based cluster analysis with those of air-37 

quality model output at station locations might help identify possible deficiencies in the emission data used to drive air 38 

quality models. Given that short-term variation has been shown here to have a key impact on identifying common sources, 39 

the use of annual totals and assumed temporal profiles as the basis for emission inventory reporting should be avoided, and 40 

more time specific records, should be used where possible. 41 
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Tables 1 

 2 

Table 1 Hourly NO2 Similarity Ranking for the 1-R and Euclidean Distance (EuD) metrics. Note that stations at the bottom of the 3 
two columns are the most similar (hence one measure of their level of redundancy) with respect to each metric of dissimilarity. 4 
Here we show only the first 10 and last 10 items of the ranking, the full ranking can be consulted in Table S5 in Supplement 1. 5 

1-R Name ID Aished EuD Name ID Aished 

0.72 Maskwa 1248 LICA 1009 Shell Muskeg River 1244 WBEA 

0.61 Anzac 1225 WBEA 950 Millennium Mine 1075 WBEA 

0.60 ST.LINA 1250 LICA 950 
Fort McMurray-Athabasca 

Valley 
1064 WBEA 

0.56 Steeper 1055 WCAS 923 Grande Prairie (Henry Pirker) 1165 PAZA 

0.56 Caroline 1092 PAMZ 839 Calgary Northwest 1039 CRAZ 

0.55 Lethbridge 1049 AEP 839 Calgary Central 2 1221 CRAZ 

0.55 Crescent Heights 1172 PAS 807 Redwater Industrial 1156 FAP 

0.54 Wagner2 1241 WCAS 769 Red Deer-Riverside 1142 PAMZ 

0.54 Genesee 1057 WCAS 735 Edson 1062 WCAS 

0.51 Shell Muskeg River 1244 WBEA 722 Meadows 1058 WCAS 

… … … … … … … … 

0.18 Range Road 220 1161 FAP 400 Fort Saskatchewan 2001 FAP 

0.16 Lamont County 1162 FAP 387 Anzac 1225 WBEA 

0.16 Elk Island 1157 FAP 350 Violet Grove 1052 WCAS 

0.16 Fort McKay South 1076 WBEA 350 Tomahawk 1053 WCAS 

0.16 Fort McKay-Bertha Ganter 1032 WBEA 348 Power 1059 WCAS 

0.15 Edmonton Central 1028 ACCA 301 Caroline 1092 PAMZ 

0.14 Woodcroft 2002 ACCA 280 Steeper 1055 WCAS 

0.14 Edmonton South 1036 ACCA 280 ST.LINA 1250 LICA 

0.11 Ross Creek 1159 FAP 263 Lamont County 1162 FAP 

0.11 Fort Saskatchewan 2001 FAP 263 Elk Island 1157 FAP 

 6 

 7 

Table 2 Hourly SO2 Similarity Ranking. Note that stations at the bottom of the two columns are the most similar (hence one 8 
measure of their level of redundancy) with respect to each metric of dissimilarity. Here only the first and last 10 items of the 9 
ranking, the full ranking can be consulted in Table S6 in Supplement 1. 10 

1-R Name ID Aished EuD Name ID Aished 

1.01 Redwater Industrial 1156 FAP 1594 Redwater Industrial 1156 FAP 

0.95 Caroline 1092 PAMZ 709 Mannix 1069 WBEA 

0.88 Valleyview 1170 PAZA 532 Mildred Lake 1066 WBEA 

0.88 Smoky Heights 1167 PAZA 470 Millennium Mine 1075 WBEA 

0.85 Maskwa 1248 LICA 412 Shell Muskeg River 1244 WBEA 

0.85 Mannix 1069 WBEA 372 Lower Camp 1074 WBEA 

0.83 Red Deer-Riverside 1142 PAMZ 269 CNRL Horizon 1226 WBEA 

0.81 Steeper 1055 WCAS 231 Wagner2 1241 WCAS 

0.81 Power 1059 WCAS 231 Genesee 1057 WCAS 

0.81 Meadows 1058 WCAS 220 Edmonton East 1029 ACCA 
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1.01 Redwater Industrial 1156 FAP 215 Maskwa 1248 LICA 

… … … … … … … … 

0.48 Wagner2 1241 WCAS 102 Caroline 1092 PAMZ 

0.48 Genesee 1057 WCAS 91 Smoky Heights 1167 PAZA 

0.45 Range Road 220 1161 FAP 79 Carrot Creek 1054 WCAS 

0.45 Fort Saskatchewan 2001 FAP 70 Lethbridge 1049 CRAZ 

0.39 Lamont County 1162 FAP 58 Beaverlodge 1168 PAZA 

0.39 Bruderheim 2000 FAP 55 
Grande Prairie (Henry 

Pirker) 
1165 PAZA 

0.35 Fort McMurray-Patricia McInnes 1070 WBEA 50 Crescent Heights 1172 PAS 

0.35 Fort McMurray-Athabasca Valley 1064 WBEA 42 Evergreen Park 1166 PAZA 

0.19 Fort McKay South  1076 WBEA 24 Steeper 1055 WCAS 

0.19 Fort McKay-Bertha Ganter 1032 WBEA 24 Red Deer-Riverside 1142 PAMZ 

 1 

  2 



38 

 

Figures 1 

 2 

Figure 1: Study area: a) model domain covering the provinces of Alberta and Saskatchewan, and b) NO2 and SO2 continuous and passive 3 
monitors located at the different air quality monitoring networks (Airsheds) and main NO2 and SO2 stacks in the Province of Alberta. 4 
Stations are colour-coded according to Airsheds and plotted with different polygons (circle for passive, inverted triangle for continuous): 5 
West Central Airshed Society (WCAS), Wood Buffalo Environmental Association (WBEA), Fort Air Partnership (FAP), Alberta Capital 6 
Airshed Alliance (ACAA), Calgary Regional Airshed Zone (CRAZ), Peace Airshed Zone Association (PAZA), Palliser Airshed Society  7 
(PAS), Parkland Airshed Management Zone (PAMZ) and Lakeland Industrial Community Association (LICA). 8 

 9 

 10 

Figure 2: Associativity analysis for observed NO2 hourly time series using 1-R as the metric to compute the dissimilarity matrix, assuming 11 
a dissimilarity level of a) 0.75, b) 0.65 and c) 0.55. Stations are colour-coded by cluster, and Airsheds are plotted with different polygons. 12 
The acronyms for the Airsheds are as in Figure 1.  13 

 14 

(b)(a)

Alberta

Alberta

a) (b) (c)



39 

 

 1 

Figure 3: Associativity analysis for observed NO2 filtered time series using 1-R as the metric to compute the dissimilarity matrix, 2 
assuming a dissimilarity level of 0.55: a) daily, b) weekely and c) monthly  and short time periods. Stations are colour-coded according to 3 
cluster formation, and Airsheds are plotted with different polygons. The acronyms for the Airsheds are as in Figure 1. 4 

 5 

 6 

Figure 4: Associativity analysis for observed SO2 hourly time series using 1-R as the metric to compute the dissimilarity matrix, assuming 7 
a dissimilarity level of a) 0.75, b)  0.65 and c) 0.55. Stations are colour-coded by cluster, and Airsheds are plotted with different polygons. 8 
The acronyms for the Airsheds are as in Figure 1.  9 

 10 

 11 

(b) (c)(a)

(b) (c)(a)
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 1 

Figure 5: Associativity analysis for passive and continuous bimonthly NO2 averages for 1-R = 0.55  (R=0.3) Stations are colour-coded 2 
according to cluster formation, with continuous stations are marked as inverted triangles and passive stations as circles. The acronyms for 3 
the Airsheds are as in Figure 1.  4 

 5 

 6 

Figure 6: Associativity analysis for passive and continuous bimonthly SO2 averages for 1-R = 0.7 (R=0.3) Stations are colour-coded 7 
according to cluster formation, with continuous stations are marked as triangles and passives as circles. The acronyms for the Airsheds are 8 
as in Figure 1.  9 

a) b)

a) b)
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 1 

 2 

Figure 7: Associativity analysis for modelled NO2 hourly time series using 1-R as the metric to compute the dissimilarity matrix, 3 
assuming a dissimilarity level of a) 0.75, b)  0.65 and c) 0.55. Stations are colour-coded according to cluster formation, and Airsheds are 4 
plotted with different polygons. The acronyms for the Airsheds are as in Figure 1.  5 

 6 

 7 

Figure 8: Associativity analysis for modelled SO2 hourly time series using 1-R as the metric to compute the dissimilarity matrix, assuming 8 
a dissimilarity level of a) 0.75, b)  0.65 and c) 0.55. Stations are colour-coded according to cluster formation, and Airsheds are plotted with 9 
different polygons. The acronyms for the Airsheds are as in Figure 1.  10 

 11 

a) b) c)

a) b) c)
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 1 
Figure 9: Dissimilarity maps based on 1-R metric for a) NO2 and c) SO2 modelled hourly output at each GEM-MACH grid-cell. 2 
Associativity analysis maps for modelled NO2 and SO2, based on these gridded output time series, appear in b) and d), respectively. The 3 
latter maps were generated using a (1-R) dissimilarity level of b) 0.65, and d) 0.8. All maps show the areas enclosing the property 4 
boundaries of the main mining facilities operating in the Athabasca oil sands region (black contours enclosing transparent light grey 5 
shading). 6 
 7 

a) b)

c) d)
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  1 
Figure 10: Dendrogram analysis for NO2  and SO2  hourly (a) and b), respectively) and monthly or shorter time scales time 2 

series (c) and d), respectively) using 1-R as the metric to compute the dissimilarity matrix, for the Airsheds decribed in 3 

Figure 1. The dendrongram is colour-coded according to Airshed. Right side:stations ranked from low to high correlation 4 

level. 5 

a) b)

c) d)


