Interactive comment on "Seasonal influences on surface ozone variability in continental South Africa and implications for air quality" by Tracey Leah Laban et al. (Ref. No.: acp-2017-1115)

Anonymous Referee #1

5 Received and published: 4 February 2018

The paper describes observations of ozone and other relevant gas phase species made over a number of years in central South Africa and attempts to evaluate the ozone production regime. The paper describes the sites used and the methodology for assessment.

There are few reported observations of air pollution in Africa and this paper provides a useful description
 of the regional background conditions present in South Africa. In general, the publication is suitable for publication. However, I have a couple of suggestions which might improve the usefulness of the publication. I outline my major comments and then identify some minor issues.

We would like to thank Referee #1 for the positive review of this paper through recognition of the usefulness of this manuscript and deeming this work suitable for publication in ACP. We would also like to thank

15 Referee #1 for the major and minor suggestions made, which were each carefully considered and addressed/implemented in the paper. Below is a point-by-point response to each of these comments/questions. In addition, a marked-up version of the revised manuscript is also provided indicating all changes made throughout the manuscript. The paper was also proofread by a professional language editor.

- 20 Source of the ozone. The authors are trying to make the case that CO plays a significant or dominant role in the production of O3 over south Africa - 'Abstract: It was indicated that the appropriate emission control strategy should be CO (and VOC) reduction associated with household combustion and regional open biomass burning to effectively reduce O3 pollution in continental South Africa.' They do this through Figure 6 which shows the that trajectories arriving with high CO are the same trajectories with high O3.
- 25 They back this up with the arguments from their calculation of ozone production which is essentially ranks the local O3 production for the different VOCs / CO by their OH reactivity. The difficulty with the trajectories argument is that it provides evidence of a common source (biomass burning) but doesn't necessarily show that the CO is leading to the ozone. Biomass burning is known to emit significant quantities of VOCs and NOx into an airmass, which overall leads to O3 production. Attributing the ozone

30 production to the CO specifically from the biomass burning is difficult and probably requires a more

detailed analysis than that provided here. Similarly, the local reactivity calculation shows that CO is a significant player in the reactivity, but there are not many datapoints in Figure A2 where the CO is the dominant source of the reactivity. For much of the time it appears that the aromatics, presumably from local industrial activities would outweigh the CO.

Given this, I think that the strength of the comments about the role of CO should probably be toned down. 5 CO is obviously playing a large role here and this is surprising as CO is generally not seen as really leading to regional O3 production. However, I think a policy of reducing both the CO and the VOCs together is likely the story here rather than an emphasis on CO alone. This would probably change the emphasis of sources from those for CO alone (domestic burning, biomass burning) to include some industrial component 10 which would presumably be the source of the aromatic compounds.

We agree with Referee #1 that the strength of the role of CO on O₃ formation should be toned down and that policy should focus on reducing both CO and VOCs. However, the significance of CO to O₃ formation for this region where biogenic VOCs are relatively less abundant (Jaars et al., 2016) is indicated in this paper, especially through the correlation plots in Fig. 9 and 10 (now Fig. 8 and 9 in the revised manuscript).

15 Therefore the strength of the role of CO on O₃ was toned down in the manuscript in different sections and the contribution of VOCs indicated, without compromising the significance of CO on O₃ formation shown for this region in this paper. Section where changes were made are:

Abstract:

"...emissions of NO_x in the interior of South Africa. The study indicated that the most effective emission control strategy to reduce O₃ levels in continental South Africa should be CO and VOC reduction mainly 20 associated with household combustion and regional open biomass burning."

Section 3.3.1 (now Section 3.4.1):

"...characterise the dispersion of biomass burning emissions over southern Africa (Mafusire et al., 2016).

25

Therefore the regional transport of CO and VOCs (and NO_x to a lesser extent) associated with biomass burning occurring from June to September in southern Africa can be considered an important source of surface O₃ in continental South Africa (Fig. A4)."

Section 3.4.1 (now Section 3.5.1):

"In Fig. 8 the correlations between O_3 , NO_x and CO concentrations at Welgegund, Botsalano and Marikana are presented, which clearly indicates higher O₃ concentrations associated with increased CO levels, while O_3 levels remain relatively constant (or decrease) with increasing NO_x. The highest O₃ concentrations occur for NO_x levels below 10 ppb, since the equilibrium between photochemical production of O₃ and chemical removal of O₃ shifts towards the former i.e. greater O₃ formation. In general there seems to exist a marginal negative correlation between O₃ and NO_x (Fig. A6) at all four sites, which is a reflection of the photochemical production of O₃ from NO₂ and the destruction of O₃ through NO_x titration. These correlations between NO_x, CO and O₃ indicate that O₃ production in continental South Africa is limited by CO (and VOCs) concentrations, i.e. VOC-limited."

Section 3.4.2 (now Section 3.5.2):

5

"...concentrations, which is most pronounced (highest CO/NO_x ratios) during winter and spring. This
indicates that the winter and spring O₃ maximum is primarily driven by increased peroxy radical production from CO and VOCs. The seasonal maximum in O₃ concentration coincides with the maximum CO concentration at the background sites, whilst the O₃ peak occurs just after June/July when CO peaked at the polluted site Marikana (Fig. A5). This observed seasonality in O₃ production signifies the importance of precursor species emissions from open biomass burning during winter and spring in this region, while
household combustion for space heating and cooking is also an important source of O₃ precursors as previously discussed."

Section 3.5.2 (now Section 3.6.2):

"As indicated above (Section 3.4 and 3.5), O₃ formation in the regions where Welgegund, Botsalano and Marikana are located can be considered VOC-limited, while the highly industrialised region with high NO_x
emissions where Elandsfontein is located could also be considered VOC-limited. Rural remote regions are generally considered to be NO_x-limited due to the availability of NO_x and the impact of BVOCs (Sillman, 1999). However, Jaars et al. (2016) indicated that BVOC concentrations at a savannah-grassland were at least an order of magnitude lower compared to other regions in the world. Therefore very low BVOC concentrations together with high anthropogenic emissions of NO_x in the interior of South Africa result in 25.

25 VOC-limited conditions at background sites in continental South Africa.

It is evident that reducing CO and VOC concentrations associated with anthropogenic emissions e.g. household combustion, vehicular emissions and industries, would be the most efficient control strategy to reduce peak O_3 concentrations in the interior of South Africa. It is also imperative to consider the seasonal variation in the CO and VOC source strength in managing O_3 pollution in continental southern Africa. This

30 study also revealed the significant contribution of biomass burning to O₃ precursors in this region, which should also be considered when implementing O₃ control strategies. However, since open biomass burning

3

in southern Africa is of anthropogenic and natural origin, while O₃ concentrations in continental South Africa are also influenced by trans boundary transport of O₃ precursors from open biomass burning occurring in other countries in southern Africa (as indicated above), it is more difficult to control. Nevertheless, open biomass burning caused by anthropogenic practices (e.g. crop residue, pasture maintenance fires, opening burning of garbage) can be addressed."

5

10

15

Conclusions:

"The relationship between O_3 , NO_x and CO at Welgegund, Botsalano and Marikana indicated a strong correlation between O_3 on CO, while O_3 levels remained relatively constant (or decreased) with increasing NO_x . Although NO_x and VOCs are usually considered to be the main precursors in ground-level O_3 formation, CO can also drive photochemical O₃ formation. The seasonal changes in the relationship between O₃ and precursors species also reflected the higher CO emissions associated with increased household combustion in winter, and open biomass burning in late winter and spring. The calculation of the P(O₃) from a two-year VOC dataset at Welgegund, indicated that at least 40% of O₃ production occurred in the VOC-limited regime. These results indicated that large parts in continental South Africa can be considered VOC-limited, which can be attributed to high anthropogenic emissions of NO_x in this region. It is, however, recommended that future studies investigate more detailed relationships between NO_x , CO, VOCs and O_3 through photochemical modelling analysis, while concurrent measurement of atmospheric VOCs and 'OH would also contribute to the better understanding of surface O_3 in this region.

In this paper some new aspects on O_3 for the continental South Africa have been indicated, which must be 20 taken in consideration when O_3 mitigation strategies are deployed. Emissions of O_3 precursor species associated with the concentrated location of industries in this area could be regulated, while CO and VOC emissions associated with household combustion and regional open biomass burning should also be targeted. However, emissions of O_3 precursor species related to factors, such as household combustion associated with poor socio-economic circumstances and long-range transport, provides a bigger challenge

25 for regulators."

> Observed concentrations. It would be useful to provide a basic time series of concentration for the key compounds measured at the 4 sites (O3, CO, NO, NO2 etc). The summary plots (Figure 3 and Figure 4) are fine in themselves but it would be useful to see the full dataset as this would show the scope of the observations and boost the confidence in the quality of the dataset and the subsequent analysis.

Basic time series of O_3 , NO_x and CO were included in the Appendix in Fig. A2, A7 and A8, respectively. The following was also included in Section 3.2 (now Section 3.1) and Section 3.3.1 (now Section 3.4.1) referencing these time series plots:

"In Fig. 2 the monthly and diurnal variation for O_3 concentrations measured at the four sites in this study are presented (time series plotted in Fig. A2). Although there is some variability between the sites, monthly..."

"...open biomass burning emissions (i.e. NO_x and CO indicated in Fig. A3 and Fig. A4, respectively – time series plotted in Fig. A7 and A8), while O_3 levels at Botsalano were predominantly..."

The abstract says that much of region is above 40 ppbv of ozone, whereas the corresponding text (Page 13
lines 15) says that this is the case only in the spring time. Figure 3 would suggest that the observational sites are rarely above 40 ppbv. Can this all be clarified? The color scale on Figure 2 makes it almost impossible to define the color for 40 ppbv. Could this be improved and the color scale on Figure 2 lengthened so that the relationship between colors and concentrations is easier to understand?

We agree with Referee #1 on both aspects indicated here. Although O₃ concentrations exceeded 40 ppb on a daily basis at most of the sites throughout the year as indicated in Fig. 4 (now Fig. 2 in the revised manuscript), this is not clearly indicated in Fig. 3 (now Fig. 4 in the revised manuscript), since mean O₃ concentrations are presented in this figure. The spatial map, i.e. Fig. 2 (now Fig. 3) compiled from average spring O₃ concentrations do, however, indicate relatively high O₃ levels across the region, albeit not necessarily above 40 ppb. Therefore the text referring to the regional O₃ problem in the Abstract, Section

20 3.1.1 (now Section 3.2.1) and the Conclusions was changed as follows:

Abstract

5

"...four sites in continental South Africa was conducted. The regional O_3 problem was evident with O_3 concentrations regularly exceeding the South African air quality standard limit, while O_3 levels were higher compared to other background sites in the Southern Hemisphere. The temporal O_3 patterns observed at the

25 four sites..."

Section 3.1.1 (now Section 3.2.1)

"...Johannesburg-Pretoria megacity, while the rural Vaalwater site in the north also has significantly higher O_3 levels. From Fig. 3 it is evident that O_3 can be considered a regional problem with O_3 concentrations

being relatively high across continental South Africa during spring. Fig. 3 also clearly indicates that the four research sites..."

Conclusions

5

20

25

"A spatial distribution map of O_3 levels in the interior of South Africa indicated the regional O_3 problem in continental South Africa, which was signified by the regular exceedance of the South African air quality standard limit. The seasonal and diurnal O_3 patterns observed at the four sites in this study resembled typical trends for O_3 in continental..."

The colour scale in Fig. 2 (now Fig. 3) was also improved by lengthening the scale and adding more values10 on the scale.

Reactivity calculation The reactivity calculation is based on the measured CO and the measured VOCs. It is therefore a lower limit. This should be more explicitly explained. There are some obvious missing compounds in this calculation methane, alkanes, alkenes etc. Their concentrations could be estimated. Would they change the perspective offered on whether the site is VOC or NOx limited? Presumably not

and it it would only have a slight tendency to move the data-points in figure 11 upwards but not very much?It would be better to make some comments about this head on rather than ignoring it.

We agree with Referee #1 that our VOC reactivity estimates are a lower limit. We can only speciate a fraction of the VOCs present in our grab samples. Although we are likely measuring the major contributors to VOC reactivity at Welgegund such as *o*-xylene, CO, styrene, *p,m*-xylene, toluene, ethylbenzene limonene, isoprene, α -pinene, β -pinene, hexane (depicted in Fig. A2), we are certainly missing methane that could also contribute to increasing the VOC reactivity. Yet, assuming a global ambient concentrations of 1.85 ppm and a rate of oxidation by OH radicals of 6.68×10^{-15} cm³ molec⁻¹ s⁻¹ (Srinivasan et al., 2005) would lead to a VOC reactivity of 0.3 s⁻¹. Thus, as Referee #1 mentions, a slight tendency to move the data points upwards by 0.3 s⁻¹. However, this shift would not impact the O₃ production regime inferred. Nonetheless, our VOC dataset is quite comprehensive and includes 6 trace gases, 19 biogenic VOCs and 20 anthropogenic VOCs, including 13 aromatic and 7 aliphatic compounds as presented in Jaars, et al. 2014, 2016.

To further address Referee #1 comments, we have also amended our tone in the paragraph to discuss all sources of error and estimation in detail in an attempt to be transparent with our calculations and

assumptions. Consequently, the paragraph presenting the model in <u>Section 2.4</u> has been entirely rewritten to address these issues as follows:

"The only speciated VOC dataset available and published in South Africa exists for Welgegund (Jaars et al., 2016; Jaars et al., 2014), which could be used to model instantaneous O_3 production at this site. The 5 concentration of these biogenic and anthropogenic VOCs were obtained from grab samples taken between 11:00 and 13:00 LT over the course of two extensive field campaigns conducted from February 2011 to February 2012 and from December 2013 to February 2015. During this time, 6 trace gases, 19 biogenic VOCs and 20 anthropogenic VOCs, including 13 aromatic and 7 aliphatic compounds were measured. The VOC reactivity were calculated from the respective rate coefficients of each VOC with 'OH radicals 10 obtained from chemical kinetic databases such as JPL, NIST and the MCM (e.g. Jaars et al., 2014), to estimate ozone production at 11:00 LT at Welgegund. Specifically, each VOC reactivity was then summed to obtain the total VOC reactivity for each measurement, i.e. VOC reactivity = $\sum k_{1i} [VOC]_i$. The major contributors to VOC reactivity are depicted in Fig. A1 and include, in approximate order of contribution, o-xylene, CO, styrene, p,m-xylene, toluene, ethylbenzene limonene, isoprene, α -pinene, β -pinene and 15 hexane. Of note, key compounds such as methane are not included that could contribute to VOC reactivity, and thus this VOC reactivity can only be a lower estimate. However, if a global ambient concentration of 1.85 ppm and a rate of oxidation by $^{\circ}$ OH radicals of 6.68×10^{-15} cm³ molec⁻¹ s⁻¹ is assumed (Srinivasan et al., 2005), a VOC reactivity of 0.3 s⁻¹ would be obtained and would therefore account for a small increase in the VOC reactivity calculated in Fig. A1 and Fig. 10.

- 20 A mathematical box-model was applied to model O₃ production as a function of VOC reactivity and NO₂ concentrations. This model involves three steps, (1) estimation of HO_x (sum of •OH and HO₂• radicals) production, (2) estimation of the •OH radical concentration, and (3) the calculation for O₃ production (Murphy et al., 2006; Geddes et al., 2009). The VOC concentrations are the limiting factor in the ability to model O₃ production at Welgegund, since only data for the 11:00 to 13:00 LT grab samples was available
- (Fig. A1). Therefore, the model approach does not coincide with peak O₃ typically observed around 14:00 to 15:00 LT, and thus likely represents a lower estimate.

The production rate of HO_x (P(HO_x)) depends on the photolysis rate of O₃ (J_{O3}), concentration of O₃ and vapour pressure of water (Jaegle et al., 2001). The photolysis rate proposed for the Southern Hemisphere, i.e. $J_{O3} = 3 \times 10^{-5} \text{ s}^{-1}$ (Wilson, 2015) was used from which P(HO_x) was calculated as follows:

30
$$P(HO_X) = 2J_{O3}k_{O3}[O_3][H_2O]$$

and estimated to be 6.09×10^6 molec cm⁻³ s⁻¹ or 0.89 ppbv h⁻¹ (calculated for a campaign O₃ average of 41 ppbv and a campaign RH average of 42 % at 11:00 LT each day) at STP. The P(HO_x) at Welgegund is approximately a factor of two lower compared to other reported urban P(HO_x) values (Geddes et al., 2009). The factors and reactions that affect [•OH] include:

- 5
- linear dependency between •OH and NO_x due to the reaction NO + HO₂ \rightarrow •OH + NO₂, until •OH begins to react with elevated NO₂ concentrations to form HNO₃ (OH + NO₂ + M \rightarrow HNO₃ + M);
- P(HO_x) is affected by solar irradiance, temperature, O₃ concentrations, humidity; and
- partitioning of HO_x between RO₂, HO₂, OH.

[OH] was calculated at 11:00 LT each day as follows:

10
$$A = k_{5eff} \left(\frac{VOC \ reactivity}{k_{2eff}[NO]}\right)^2$$

 $B = k_4[NO_2] + \alpha * VOC reactivity$

$$C = P(HO_x)$$

$$[OH] = \frac{-B + \sqrt{B^2 + 24C * A}}{12 * A}$$

The instantaneous production rate of O₃, P(O₃) could then be calculated as a function of NO₂ levels and
 VOC reactivity. A set of reactions used to derive the equations that describe the dependence of the *OH, peroxy radicals (HO₂*+RO₂*) and P(O₃) on NO_x is given by Murphy et al. (2006), which present the following equation to calculate P(O₃):

$$P(O_3) = k_{2eff}[HO_2 + RO_2][NO] = 2 * VOC Reactivity * [OH]$$

20

where k_2 eff is the effective rate constant of NO oxidation by peroxy radicals (chain propagation and termination reactions in the production of O₃). The values of the rate constants and other parameters used as input parameters to solve the equation above, can be found in Murphy et al. (2006) and Geddes et al. (2009)."

In addition <u>Section 3.4.3 (now Section 3.5.3)</u> was also rewritten to indicate limitations of the model as follows:

"In Fig. 10 P(O₃) as a function of VOC reactivity calculated from the available VOC dataset for Welgegund (Section 2.4) and NO₂ concentrations is presented. O₃ production at Welgegund during two field campaigns, specifically at 11:00 LT, were found to range between 0 and 10 ppbv h⁻¹. The average P(O₃) over the 2011 to 2012 and the 2014 to 2015 campaigns combined were 3.0 ± 1.9 ppbv h⁻¹ and 3.2 ± 3.0 ppbv h⁻¹,

5 respectively. The dashed black line in Fig. 10, called the ridge line, separates the NO_x- and VOC-limited regimes. To the left of the ridge line is the NO_x-limited regime, when O₃ production increases with increasing NO_x concentrations. The VOC-limited regime is to the right of the ridge line, when O₃ production decreases with increasing NO_x. According to the O₃ production plot presented, approximately 40% of the

data is found in the VOC-limited regime area, which would support the regional O₃ analysis conducted for

- 10 continental South Africa in this study. However, the O_3 production plot for Welgegund transitions between NO_x and VOC-limited regimes with Welgegund being in a NO_x -limited production regime the majority of the time, especially when NO_x concentrations are very low (<1 ppb). As indicated in Section 2.4, limitations to this analysis include limited VOC speciation data, as well as a single time-of-day grab sample. The O_3 production rates can therefore only be inferred at 11:00 am LT despite O_3 concentrations peaking during
- 15 the afternoon at Welgegund. Therefore, clean background air O₃ production is most-likely NO_x-limited (Tiitta et al., 2014), while large parts of the regional background of continental South Africa can be considered VOC-limited."

Minor comments.

25

The abstract is rather long. Could this be shortened?

20 We agree with Referee #1 (and Referee #2) that the abstract is too long, which was significantly shortened in the revised manuscript as follows:

"Although elevated surface ozone (O_3) concentrations are observed in many areas within southern Africa, few studies have investigated the regional atmospheric chemistry and dominant atmospheric processes driving surface O_3 formation in this region. Therefore an assessment of comprehensive continuous surface O_3 measurements performed at four sites in continental South Africa was conducted. The regional O_3 problem was evident with O_3 concentrations regularly exceeding the South African air quality standard limit, while O_3 levels were higher compared to other background sites in the Southern Hemisphere. The temporal O_3 patterns observed at the four sites resembled typical trends for O_3 in continental South Africa

with O_3 concentration peaking in late winter and early spring. Increased O_3 concentrations in winter were

30 indicative of increased emissions of O_3 precursors from household combustion and other low-level sources, while a spring maximum observed at all the sites was attributed to increased regional biomass burning.

Source area maps of O_3 and CO indicated significantly higher O_3 and CO concentrations associated with air masses passing over a region with increased seasonal open biomass burning, which indicated CO associated with open biomass burning as a major source of O_3 in continental South Africa. A strong correlation between O_3 on CO was observed, while O_3 levels remained relatively constant or decreased with

- 5 increasing NO_x, which supports a VOC-limited regime. The instantaneous production rate of O₃ calculated at Welgegund indicated that ~40% of O₃ production occurred in the VOC-limited regime. The relationship between O₃ and precursor species suggests that continental South Africa can be considered VOC-limited, which can be attributed to high anthropogenic emissions of NO_x in the interior of South Africa. The study indicated that the most effective emission control strategy to reduce O₃ levels in continental South Africa
- 10 should be CO and VOC reduction mainly associated with household combustion and regional open biomass burning."

The explanation of ozone production at the top of page 3 is a little confused. It starts of saying that the only way to produce ozone is through NO2 photolysis but then says that this doesn't make ozone. Can this be re-phrased to be clearer?

15 NO₂ photolysis is the only known way through which O₃ is produced in the troposphere. However the resultant O₃ reacts with NO to form NO₂, which will again undergo photolysis to produce O₃ and NO resulting in a null cycle, i.e. the photostationary state (PSS). This equilibrium is disturbed when peroxy radicals alter the PSS producing NO₂, which lead to the formation of O₃ in excess of the null cycle.

This entire paragraph in the Introduction was changed in accordance with a suggestion made by Referee #2 and to address the confusion indicated by Referee #1 in the above mentioned comment as follows:

20

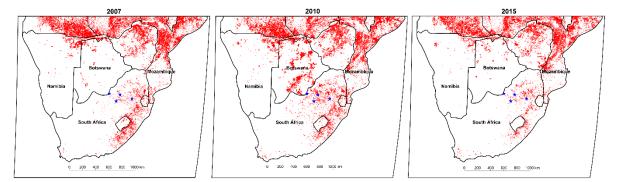
25

"Tropospheric O_3 concentrations are regulated by three processes, i.e. chemical production/destruction, atmospheric transport and losses to surface through dry deposition (Monks et al., 2015). The photolysis of nitrogen dioxide (NO₂) in the presence of sunlight is the only known way of producing O₃ in the troposphere (Logan, 1985). O₃ can recombine with nitric oxide (NO) to regenerate NO₂, which will again undergo photolysis to regenerate O₃ and NO. This continuous process is known as the NO_x-dependent photostationary state (PSS) and results in no net production or consumption of ozone (null cycle). However, net production of O₃ in the troposphere occurs outside the PSS when peroxy radicals (HO₂ and RO₂) alter the PSS by oxidising NO to produce 'new' NO₂ (Cazorla and Brune, 2010) resulting in net O₃ production. The main source of these peroxy radicals in the atmosphere is the reaction of the hydroxyl radical (OH[•])

30 with volatile organic compounds (VOCs) or carbon monoxide (CO) (Cazorla and Brune, 2010)."

Page 4 line 30. It would be useful to explain what the South Africa AQ standard for O3 is here. It is mentioned in a couple of places in the text but it take us a bit of time to find out what these values are.

We thank Referee #1 for pointing this out. The following has been included in the Introduction:


5

10

"...provincial governments, local municipalities and industries (<u>http://www.saaqis.org.za</u>). High O_3 concentrations are observed in many areas within the interior of South Africa that exceed the South African standard O_3 limit, i.e. an 8-hour moving average of 61 ppb (e.g. Laakso et al., 2013). These exceedances can be attributed to high anthropogenic..."

The resolution of Figure 7 is rather low. The country names are not clear at the output resolution.

We agree with Referee #1 and have improved the resolution, text size and marker sizes. The modified figures are presented below.

Fig. 7. Spatial distribution of fires in 2007, 2010 and 2015 from MODIS burnt area product. Blue stars indicate (from left to right) Botsalano, Welgegund, Marikana and Elandsfontein.

15 The text at the start of section 3.4 is a little confused. The first sentence says that there is an absence of VOC data. The next sentence talks about a two-year dataset. It's not obvious what the first sentence therefore means.

We completely agree with the confusion/inconsistence in these two sentences indicated by Referee #1. What was meant here is that no continuous measurement data existed for VOCs for any of the sites.

20 However, there was VOC data available for Welgegund from VOC measurements conducted with adsorbent tubes during two sampling campaigns, which could be used to calculate the instantaneous production rate of O₃. Therefore the text was changed as follows to clarify the confusion:

"The relationship between O_3 , NO_x and CO was used as an indicator to infer the O_3 production regime at Welgegund, Botsalano and Marikana (no CO measurements were conducted at Elandsfontein as indicated above), since no continuous VOC measurements were conducted at each of these sites. However, as indicated in Section 2.4, a two-year VOC dataset was available for Welgegund (Jaars et al., 2016; Jaars et

5

al., 2014), which was used to calculate the instantaneous production rate of O_3 as a function of NO_2 levels and VOC reactivity (Geddes et al., 2009; Murphy et al., 2006)."

I'm not sure that Figure A1 is necessary. Its comes out of the calculation but its isn't really needed for the calculation of P(O3) which essentially just uses the reactivity. Just stating the campaign average value and the variability is enough to show that the calculation is giving a reasonable number.

10 Figure A1 was removed from the Appendix as suggested by Referee #1. In response to a previous comment by Referee #1, the paragraph presenting the model in <u>Section 2.4</u> was also entirely rewritten.

Interactive comment on "Seasonal influences on surface ozone variability in continental South Africa and implications for air quality" by Tracey Leah Laban et al. (Ref. No.: acp-2017-1115)

Anonymous Referee #2

5 Received and published: 23 February 2018

This paper reports four sets of surface ozone measurements in South Africa to explore the spatio-temporal variations as well as the major processes affecting surface ozone variability. Although the measurement data are quite valuable and can enrich the global tropospheric ozone observation database, the current manuscript cannot merit for publication at a high quality journal like ACP. The authors are encouraged to

10 revise the manuscript and submit to another localized journal. I have the following concerns and comments for the author's reference.

We would like to thank Referee #2 for reviewing this manuscript and indicating that valuable measurement data are presented, which can enrich the global tropospheric ozone observation database. However, in view of the positive review of Referee #1 of this paper, who deemed this work suitable for publication in ACP,

- 15 we do consider that the work presented in this paper does merit publication in ACP. Referee #1 also highlighted that few observations of air pollution in general are reported for Africa and that a useful description of regional background conditions are presented for South Africa. The results presented in this paper are also considered to be novel and relevant for *southern* Africa, and not only South Africa, which indicate that it is not only of local interest. The relevance and significance of atmospheric measurements
- 20 conducted in South Africa are also emphasised by the solid body of papers published in ACP during the last few years on atmospheric studies conducted in South Africa. Other original aspects in this paper include: 1) the use of the Tropospheric Ozone Assessment Report data to compile a surface plot to indicate ozone spatial variations for this region; and 2) relating the ozone spring peak in this region to CO and VOCs (and co-emitted species) associated with biomass burning rather than biogenic VOCs. None of these aspects
- 25 have been indicated in previous papers published for this region. Also by addressing each of the major and minor comments made by both referees, the scientific relevance of this paper was further improved.

We would also like to thank Referee #2 for major concerns raised and minor comment made, which were each carefully considered and addressed/implemented in the paper. Below is a point-by-point response to each of these comments/questions. In addition, a marked-up version of the revised manuscript is also provided indicating all changes made throughout the manuscript. The paper was also proofread by a

professional language editor.

30

Major Concerns:

5

On the significance of this study: the current manuscript looks more like a report other than an academic paper. Almost all the results and findings regarding the ozone variations and processes are already well known, except for that the data are newly acquired from South Africa (actually some of the data had been reported in previous studies). The authors need shorten the general description and interpretation of the results and elaborate more about the new findings and significance of the present study.

The novelty and significance of this study are argued in the response to the general introductory comment made by Referee #2. The manuscript in general was shorten (by ~1300 words as indicated in the marked-up version of the revised manuscript) and written more concisely through addressing comments/suggestions

10 up version of the revised manuscript) and written more concisely through addressing comments/suggestion made by Referee #1 and Referee #2.

On the writing of the paper: although the organization and writing of the paper is overall fair, the manuscript is too long and contains a lot of very basic information which I presume the readership of the journal has already known. Some discussions are redundant with each other. For example, the abstract and conclusions

- 15 are very long and should be largely shortened. The second paragraph in the Introduction (Page 3) describes the ozone formation principles which are very familiar with the community. Seasonal variations of ozone were discussed in Sections 3.1.2 (Fig. 3), 3.2 (Fig. 4), and 3.3 (Fig. 5). The authors are encouraged to remove/shorten such general description and focus on the main findings, and write the paper more concisely.
- 20 We agree with Referee #2 that certain sections in the manuscript are too long and therefore these sections were shortened to exclude basic information and repetition. In addition, the Results section was also restructured in order to contribute to a more concise manuscript:
 - 3.1 Temporal variation of O₃
 - 3.2 Spatial distribution of O₃ in continental South Africa
- 25 3.3 Comparison with international sites
 - 3.4 Sources contributing to surface O₃ in continental South Africa
 - 3.4.1 Anthropogenic and open biomass burning emissions
 - 3.4.2 Stratospheric O₃
 - 3.5 Insights into the O₃ production regime
- **30** 3.5.1 The relationship between NO_x , CO and O_3

- 3.5.2 Seasonal change in O₃-precursors relationship
- 3.5.3 O₃ production rate
- 3.6 Implications for air quality management
- 3.6.1 Ozone exceedances
- **5** 3.6.2 O₃ control strategies

Shortened/re-written sections include:

Abstract:

"Although elevated surface ozone (O₃) concentrations are observed in many areas within southern Africa, few studies have investigated the regional atmospheric chemistry and dominant atmospheric processes
driving surface O₃ formation in this region. Therefore an assessment of comprehensive continuous surface O₃ measurements performed at four sites in continental South Africa was conducted. The regional O₃ problem was evident with O₃ concentrations regularly exceeding the South African air quality standard limit, while O₃ levels were higher compared to other background sites in the Southern Hemisphere. The temporal O₃ patterns observed at the four sites resembled typical trends for O₃ in continental South Africa
with O₃ concentration peaking in late winter and early spring. Increased O₃ concentrations in winter were indicative of increased emissions of O₃ precursors from household combustion and other low-level sources, while a spring maximum observed at all the sites was attributed to increased regional biomass burning.

- Source area maps of O₃ and CO indicated significantly higher O₃ and CO concentrations associated with air masses passing over a region with increased seasonal open biomass burning, which indicated CO associated with open biomass burning as a major source of O₃ in continental South Africa. A strong correlation between O₃ on CO was observed, while O₃ levels remained relatively constant or decreased with increasing NO_x, which supports a VOC-limited regime. The instantaneous production rate of O₃ calculated at Welgegund indicated that ~40% of O₃ production occurred in the VOC-limited regime. The relationship between O₃ and precursor species suggests that continental South Africa can be considered VOC-limited,
- 25 which can be attributed to high anthropogenic emissions of NO_x in the interior of South Africa. The study indicated that the most effective emission control strategy to reduce O_3 levels in continental South Africa should be CO and VOC reduction mainly associated with household combustion and regional open biomass burning.

Introduction:

30 "High surface O₃ concentrations are a serious environmental concern, due to their detrimental impacts on human health, crops and vegetation (National Research NRC, 1991). Photochemical smog, comprising O₃

as a constituent together with other atmospheric oxidants, is a major air quality concern on urban and regional scales. Tropospheric O_3 is also a greenhouse gas that directly contributes to global warming (IPCC, 2013).

Tropospheric O₃ concentrations are regulated by three processes, i.e. chemical production/destruction,
atmospheric transport and losses to surface through dry deposition (Monks et al., 2015). The photolysis of nitrogen dioxide (NO₂) in the presence of sunlight is the only known way of producing O₃ in the troposphere (Logan, 1985). O₃ can recombine with nitric oxide (NO) to regenerate NO₂, which will again undergo photolysis to regenerate O₃ and NO. This continuous process is known as the NO_x-dependent photostationary state (PSS) and results in no net production or consumption of ozone (null cycle). However, net production of O₃ in the troposphere occurs outside the PSS when peroxy radicals (HO₂ and RO₂) alter the PSS by oxidising NO to produce 'new' NO₂ (Cazorla and Brune, 2010) resulting in net O₃ production. The main source of these peroxy radicals in the atmosphere is the reaction of the hydroxyl radical (OH[•]) with volatile organic compounds (VOCs) or carbon monoxide (CO) (Cazorla and Brune, 2010).

O₃ precursor species can be emitted from natural and anthropogenic sources. Fossil fuel combustion is considered to be the main source of NO_x in South Africa, which include coal-fired power-generation, petrochemical operations, transportation and residential burning (Wells et al., 1996; Held et al., 1996). Satellite observations indicate a well-known NO₂ hotspot over the South African Highveld (Lourens et al., 2012) attributed to industrial activity in the region. CO is produced from three major sources, i.e. fossil fuel combustion, biomass burning, as well as the oxidation of methane (CH₄) and VOCs (Novelli et al., 1992).

- 20 Anthropogenic sources of VOCs are largely due to industrial and vehicular emissions (Jaars et al., 2014), while biogenic VOCs are also naturally emitted (Jaars et al., 2016). Regional biomass burning, which includes household combustion for space heating and cooking, agricultural waste burning and open biomass burning (wild fires), is a significant source of CO, NO_x and VOCs (Macdonald et al., 2011; Crutzen and Andreae, 1990; Galanter et al., 2000; Simpson et al., 2011) in southern Africa. In addition, stratospheric
- 25 intrusions of O₃-rich air to the free troposphere can also lead to elevated tropospheric O₃ concentrations (Diab et al., 1996; Diab et al, 2004). O₃ production from natural precursor sources, the long-range transport of O₃ and the injections from stratospheric O₃ contribute to background O₃ levels, which is beyond the control of regulators (Lin et al., 2012).

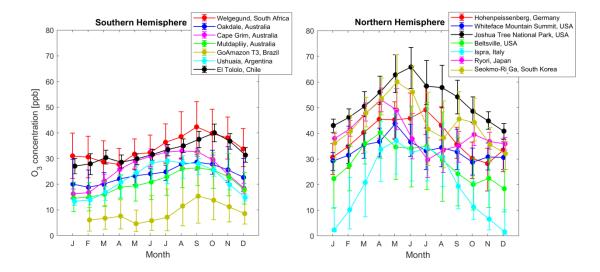
Since O₃ concentrations are regulated in South Africa, O₃ monitoring is carried out across South Africa
 through a network of air quality monitoring stations established mainly by provincial governments, local municipalities and industries (<u>http://www.saaqis.org.za</u>). High O₃ concentrations are observed in many areas within the interior of South Africa that exceed the South African standard O₃ limit, i.e. an 8-hour

moving average of 61 ppb (e.g. Laakso et al., 2013). These exceedances can be attributed to high anthropogenic emissions of NO_x and VOCs in dense urban and industrial areas (Jaars et al., 2014), regional biomass burning (Lourens et al., 2011) and O_3 conducive meteorological conditions (e.g. sunlight). Since O_3 is a secondary pollutant, high levels of O_3 can also be found in rural areas downwind of city centres and

- 5 industrial areas. In order for South Africa to develop an effective management plan to reduce O₃ concentrations through controlling NO_x and VOC emissions, it is important to determine whether a region is NO_x- or VOC-limited. However, O₃ production has a complex and non-linear dependence on precursor emissions (e.g. National Research NRC, 1991), which makes its atmospheric levels difficult to control (Holloway and Wayne, 2010). Under VOC-limited conditions, O₃ concentrations increase with increasing
- 10 VOCs, while a region is considered NO_x-limited when O₃ production increases with increasing NO_x concentrations. Results from a photochemical box model study in South Africa, for instance, revealed that the Johannesburg-Pretoria megacity is within a VOC-limited regime (Lourens et al., 2016). VOC reductions would therefore be most effective in reducing O₃, while NO_x controls without VOC controls may lead to O₃ increases. In general, it is considered that O₃ formation in regions close to anthropogenic sources are
 15 VOC-limited, while rural areas distant form source regions are NO_x-limited (Sillman, 1999).

Previous assessments of tropospheric O_3 over continental South Africa focussed on surface O_3 (Venter et al., 2012; Laakso et al., 2012; Lourens et al., 2011; Josipovic et al., 2010; Zunckel et al., 2004), as well as free tropospheric O_3 based on soundings and aircraft observations (Diab et al., 1996; Thompson, 1996; Swap et al., 2003; Diab et al., 2004). Two major field campaigns (SAFARI-92 and SAFARI 2000) were

- conducted to improve the understanding of the effects of regional biomass burning emissions on O₃ over southern Africa. These studies indicated a late winter early spring (August and September) maximum over the region that was mainly attributed to increased regional open biomass burning during this period, while Lourens et al. (2011) also attributed higher O₃ concentrations in spring in the Mpumalanga Highveld to increased regional open biomass burning. A more recent study demonstrated that NO_x strongly affects O₃
 levels in the Highveld, especially in winter and spring (Balashov et al., 2014). A regional photochemical modelling study (Zunckel et al., 2006) have attempted to explain surface O₃ variability, which found no
- dominant source/s on elevated O_3 levels.


The aim of the current study is to provide an up-to-date assessment of the seasonal and diurnal variations in surface O_3 concentrations over continental South Africa, as well as to identify local and regional sources

30 of precursors contributing to surface O_3 . Another objective is to use available ambient data to qualitatively assess whether O_3 formation is NO_x - or VOC-limited in different environments. An understanding of the key precursors that control surface O_3 production is critical for the development of an effective O_3 control strategy."

Section 3.1.2 (now Section 3.3 and Fig. 4):

"In an effort to contextualise the O_3 levels measured in this study, the monthly O_3 concentrations measured at Welgegund were compared to monthly O_3 levels measured at monitoring sites in other parts of the world (downloaded from the JOIN web interface <u>https://join.fz-juelich.de</u> (Schultz et al., 2017)) as indicated in

- 5 Fig. 4. Welgegund was used in the comparison since it had the most extensive data record, while the measurement time period considered was from May 2010 to December 2014. The seasonal O₃ cycles observed at other sites in the Southern Hemisphere are comparable to the seasonal cycle at Welgegund with slight variations in the time of year when O₃ peaks as indicated in Fig. 4. Cape Grim, Australia; GoAmazon T3 Manancapuru, Brazil; Ushuaia, Argentina; and El Tololo, Chile are regional background GAW (Global
- 10 Atmosphere Watch) stations with O₃ levels lower than the South African sites. However, the O₃ concentrations at El Tololo, Chile are comparable to Welgegund. Oakdale, Australia and Mutdapliiy, Australia are semi-rural and rural locations, which are influenced by urban and industrial pollution sources, which also had lower O₃ concentrations compared to Welgegund.

15 Fig. 4. Seasonal cycle of O_3 at rural sites in other parts of the world. The black dot indicate monthly median (50th percentile) and the upper and lower limits the 25th and 75th percentile, respectively for monthly O_3 concentrations. The data is averaged from May 2010 to December 2014, except in a few instances where 2014 data was not available.

The Northern Hemispheric O₃ peak over mid-latitude regions is similar to seasonal patterns in the Southern
 Hemisphere where a springtime O₃ maximum is observed (i.e. Whiteface Mountain Summit, Beltsville, Ispra, Ryori and Seokmo-Ri Ga). However, there are other sites in the Northern Hemisphere where a summer maximum is more evident (Vingarzan, 2004), i.e. Joshua Tree and Hohenpeissenberg. The

discernible difference between the hemispheres is that the spring maximum in the Southern Hemisphere refers to maximum O_3 concentrations in late winter and early spring, whilst in the Northern Hemisphere it refers to a late spring and early summer O_3 maximum (Cooper et al., 2014). The spring maximum in the Northern Hemisphere is associated with stratospheric intrusions (Zhang et al., 2014; Parrish et al., 2013),

- 5 while the summer maximum is associated with photochemical O₃ production from anthropogenic emissions of O₃ precursors being at its highest (Logan, 1985; Chevalier et al., 2007). Maximum O₃ concentrations at background sites in the United States and Europe are similar to values at Welgegund in spring with the exception of Joshua Tree National Park in the United States that had significant higher O₃ levels. This is most-likely due its high elevation and deep boundary layer (~4 km asl) during spring and summer allowing
- 10 free tropospheric O₃ to be more effectively mixed down to the surface (Cooper et al., 2014). Maximum O₃ levels at the two sites in East Asia (Ryori and Seokmo-Ri Ga) were also generally higher than at Welgegund, especially at Seokmo-Ri Ga."

Section 3.2 (now Section 3.1 and Fig. 2):

"In Fig. 2 the monthly and diurnal variation for O₃ concentrations measured at the four sites in this study are presented (time series plotted in Fig. A2). Although there is some variability between the sites, monthly O₃ concentrations show a well-defined seasonal variation at all four sites, with maximum concentrations occurring in late winter and spring (August-November), which is expected for the South African interior as indicated above and previously reported (Zunckel et al., 2004; Diab et al., 2004). In Fig. A1 monthly averages of meteorological parameters and total monthly rainfall for Welgegund are presented to indicate

- 20 typical seasonal meteorological patterns for continental South Africa. These O₃ peaks in continental South Africa, generally points to two major contributors of O₃ precursors, i.e. open biomass burning (wild fires) (Vakkari et al., 2014) and increased low-level anthropogenic emissions e.g. increased household combustion for space heating and cooking (Oltmans et al., 2013; Lourens et al., 2011). In addition to the seasonal patterns of O₃ precursor species, during the dry winter months synoptic scale recirculation is more
- 25 predominant and inversion layers are more pronounced, while precipitation is minimal (e.g. Tyson and Preston-Whyte, 2000). These changes in meteorology results in the build-up of precursor species that reaches a maximum in August/September when photochemical activity starts to increase. The diurnal concentration profiles of O_3 at the four locations follow the typical photochemical cycle, i.e. increasing during daytime in response to maximum photochemical production and decreasing during the nighttime
- 30 due to titration with NO. O_3 levels peaked from midday to afternoon, with a maximum at approximately 15:00 (LT, UTC+2). From Fig. 2 it is also evident that nighttime titration of O_3 at Marikana is more pronounced as indicated by the largest difference between daytime and nighttime O_3 concentrations in

comparison to the other sites, especially, compared to Elandsfontein where nighttime concentrations of O_3 remain relatively high in winter."

Section 3.3.1 (now Section 3.4.1 – Fig. 5 removed from manuscript to avoid repetition):

"Comparison of the O₃ seasonal cycles at background and polluted locations is useful for source attribution.
From Fig. 3 it is evident that daytime O₃ levels peaked at Elandsfontein, Marikana and Welgegund during late winter and spring (August to October), while O₃ levels at Botsalano peaked later in the year during spring (September to November). This suggests that Elandsfontein, Marikana and Welgegund were influenced by increased levels of O₃ precursors from anthropogenic and open biomass burning emissions (i.e. NO_x and CO indicated in Fig. A3 and Fig. A4, respectively – time series plotted in Fig. A6 and A7),

- 10 while O₃ levels at Botsalano were predominantly influenced by regional open biomass burning (Fig. A4). Although Welgegund and Botsalano are both background sites, Botsalano is more removed from anthropogenic source regions than Welgegund (Section 2.1.3), which is therefore not directly influenced by the increased concentrations of O₃ precursor species associated with anthropogenic emissions during winter. Daytime O₃ concentrations were the highest at Marikana throughout most of the year, which indicate
- 15 the influence of local and regional sources of O₃ precursors at this site (Venter et al., 2012). In addition, a larger difference between O₃ concentrations in summer and winter/spring is observed at Marikana compared to Welgegund and Botsalano, which can be attributed to local anthropogenic emissions (mainly household combustion) of O₃ precursors at Marikana.
- O₃ concentrations at Elandsfontein were lower compared to the other three sites throughout the year, with
 the exception of the winter months (June to August). The major point sources at Elandsfontein include NO_x emissions from coal-fired power stations and are characterized by high-stack emissions, which are emitted above the low-level nighttime inversion layers. During daytime downwards mixing of these emitted species occurs, which result in daytime peaks of NO_x (as indicated in Fig. A3 and by Collett et al., 2010) and subsequent O₃ titration. In contrast, Venter et al. (2012) indicated that at Marikana low-level emissions associated with household combustion for space heating and cooking was a significant source of O₃ precursor species, i.e. NO_x and CO. The diurnal pattern of NO_x and CO (Fig. A3 and Fig. A4, respectively) at Marikana was characterised by bimodal peaks during the morning and evening, which resulted in increased O₃ concentrations during daytime and nighttime titration of O₃, especially during winter. Therefore the observed differences in nighttime titration at Marikana and Elandsfontein can be attributed
- 30 different sources of O₃ precursors, i.e. mainly low-level emissions (household combustion) at Marikana (Venter et al., 2012) compared to predominant high-stack emissions at Elandsfontein (Collette et al., 2010)

The higher O_3 concentrations at Elandsfontein during winter are most-likely attributed to the regional increase in O_3 precursors."

Section 3.5.2 (now section 3.6.2):

"As indicated above (Section 3.4 and 3.5), O₃ formation in the regions where Welgegund, Botsalano and
Marikana are located can be considered VOC-limited, while the highly industrialised region with high NO_x emissions where Elandsfontein is located could also be considered VOC-limited. Rural remote regions are generally considered to be NO_x-limited due to the availability of NO_x and the impact of BVOCs (Sillman, 1999). However, Jaars et al. (2016) indicated that BVOC concentrations at a savannah-grassland were at least an order of magnitude lower compared to other regions in the world. Therefore very low BVOC
concentrations together with high anthropogenic emissions of NO_x in the interior of South Africa result in VOC-limited conditions at background sites in continental South Africa.

It is evident that reducing CO and VOC concentrations associated with anthropogenic emissions e.g. household combustion, vehicular emissions and industries, would be the most efficient control strategy to reduce peak O₃ concentrations in the interior of South Africa. It is also imperative to consider the seasonal

- variation in the CO and VOC source strength in managing O₃ pollution in continental southern Africa. This study also revealed the significant contribution of biomass burning to O₃ precursors in this region, which should also be considered when implementing O₃ control strategies. However, since open biomass burning in southern Africa is of anthropogenic and natural origin, while O₃ concentrations in continental South Africa are also influenced by trans boundary transport of O₃ precursors from open biomass burning occurring in other countries in southern Africa (as indicated above), it is more difficult to control.
- 20 occurring in other countries in southern Africa (as indicated above), it is more difficult to control. Nevertheless, open biomass burning caused by anthropogenic practices (e.g. crop residue, pasture maintenance fires, opening burning of garbage) can be addressed."

Conclusions:

"A spatial distribution map of O₃ levels in the interior of South Africa indicated the regional O₃ problem in
continental South Africa, which was signified by the regular exceedance of the South African air quality standard limit. The seasonal and diurnal O₃ patterns observed at the four sites in this study resembled typical trends for O₃ in continental South Africa with O₃ concentration peaking in late winter and early spring (cf. Zunckel et al., 2004), while daytime O₃ corresponded to increased photochemical production. The seasonal O₃ trends observed in continental southern Africa could mainly be attributed to the seasonal changes in emissions of O₃ precursor species and local meteorological conditions. Increased O₃ concentrations in winter at Welgegund, Marikana and Elandsfontein reflected increased household combustion for space

heating and the trapping of low-level pollutants near the surface. A spring maximum observed at all the sites was attributed to increased regional open biomass burning. Significantly higher O_3 concentrations, which corresponded with increased CO concentrations, were associated with air masses passing over a region in southern Africa where a large number of open biomass burning occurred from June to September.

5 Therefore the regional transport of CO associated with open biomass burning in southern Africa was considered a significant source of surface O₃ in continental South Africa. A very small contribution from the stratospheric intrusion of O₃-rich air to surface O₃ levels at the four sites was indicated.

The relationship between O_3 , NO_x and CO at Welgegund, Botsalano and Marikana indicated a strong correlation between O_3 on CO, while O_3 levels remained relatively constant (or decreased) with increasing NO_x . Although NO_x and VOCs are usually considered to be the main precursors in ground-level O_3

- 10 NO_x. Although NO_x and VOCs are usually considered to be the main precursors in ground-level O₃ formation, CO can also drive photochemical O₃ formation. The seasonal changes in the relationship between O₃ and precursors species also reflected the higher CO emissions associated with increased household combustion in winter, and open biomass burning in late winter and spring. The calculation of the $P(O_3)$ from a two-year VOC dataset at Welgegund, indicated that at least 40% of O₃ production occurred
- 15 in the VOC-limited regime. These results indicated that large parts in continental South Africa can be considered VOC-limited, which can be attributed to high anthropogenic emissions of NO_x in this region. It is, however, recommended that future studies investigate more detailed relationships between NO_x, CO, VOCs and O₃ through photochemical modelling analysis, while concurrent measurement of atmospheric VOCs and 'OH would also contribute to the better understanding of surface O₃ in this region.
- In this paper some new aspects on O₃ for the continental South Africa have been indicated, which must be taken in consideration when O₃ mitigation strategies are deployed. Emissions of O₃ precursor species associated with the concentrated location of industries in this area could be regulated, while CO and VOC emissions associated with household combustion and regional open biomass burning should also be targeted. However, emissions of O₃ precursor species related to factors, such as household combustion associated with poor socio-economic circumstances and long-range transport, provides a bigger challenge for regulators."

On the calculation of the ozone production rate: the authors should carefully evaluate if this empirical method is applicable to the environmental conditions in the present study. From the equation in the paper, the P(O3) was calculated as the double reaction rates of VOCs with OH. This assumption may only work

30 to some degree for the high NOx and low VOC conditions. And even under such conditions, the ozone production rate might be also largely underestimated as the contributions of the VOC oxidation products to ozone formation are ignored. Furthermore, the empirical calculation of OH concentrations should be also

22

only applicable to rural atmospheres where ozone photolysis is the dominant OH source, and may be subject to large uncertainty in polluted areas where other radical sources such as HONO and OVOCs photolysis become more important. Therefore, the calculation of P(O3) in this study may be subject to large uncertainty that the authors have to address.

5 We agree with Referee #2 that the P(O3) model utilised in this study may be subject to uncertainty. However, it can only be our current best tool for estimating P(O3), and we have rewritten the paragraph on ozone production in <u>Section 2.4</u> to highlight the assumptions made and the caveats of this model as follows:

"The only speciated VOC dataset available and published in South Africa exists for Welgegund (Jaars et al., 2016; Jaars et al., 2014), which could be used to model instantaneous O_3 production at this site. The

- 10 concentration of these biogenic and anthropogenic VOCs were obtained from grab samples taken between 11:00 and 13:00 LT over the course of two extensive field campaigns conducted from February 2011 to February 2012 and from December 2013 to February 2015. During this time, 6 trace gases, 19 biogenic VOCs and 20 anthropogenic VOCs, including 13 aromatic and 7 aliphatic compounds were measured. The VOC reactivity were calculated from the respective rate coefficients of each VOC with 'OH radicals
- 15 obtained from chemical kinetic databases such as JPL, NIST and the MCM (e.g. Jaars et al., 2014), to estimate ozone production at 11:00 LT at Welgegund. Specifically, each VOC reactivity was then summed to obtain the total VOC reactivity for each measurement, i.e. VOC reactivity = $\sum k_{1i} [VOC]_i$. The major contributors to VOC reactivity are depicted in Fig. A1 and include, in approximate order of contribution, *o*-xylene, CO, styrene, *p,m*-xylene, toluene, ethylbenzene limonene, isoprene, α-pinene, β-pinene and
- 20 hexane. Of note, key compounds such as methane are not included that could contribute to VOC reactivity, and thus this VOC reactivity can only be a lower estimate. However, if a global ambient concentration of 1.85 ppm and a rate of oxidation by $^{\circ}$ OH radicals of 6.68×10^{-15} cm³ molec⁻¹ s⁻¹ is assumed (Srinivasan et al., 2005), a VOC reactivity of 0.3 s⁻¹ would be obtained and would therefore account for a small increase in the VOC reactivity calculated in Fig. A1 and Fig. 10.
- 25 A mathematical box-model was applied to model O₃ production as a function of VOC reactivity and NO₂ concentrations. This model involves three steps, (1) estimation of HO_x (sum of •OH and HO₂• radicals) production, (2) estimation of the •OH radical concentration, and (3) the calculation for O₃ production (Murphy et al., 2006; Geddes et al., 2009). The VOC concentrations are the limiting factor in the ability to model O₃ production at Welgegund, since only data for the 11:00 to 13:00 LT grab samples was available
- (Fig. A1). Therefore, the model approach does not coincide with peak O₃ typically observed around 14:00 to 15:00 LT, and thus likely represents a lower estimate.

The production rate of HO_x (P(HO_x)) depends on the photolysis rate of O₃ (J_{O3}), concentration of O₃ and vapour pressure of water (Jaegle et al., 2001). The photolysis rate proposed for the Southern Hemisphere, i.e. $J_{O3} = 3 \times 10^{-5} \text{ s}^{-1}$ (Wilson, 2015) was used from which P(HO_x) was calculated as follows:

$$P(HO_X) = 2J_{03}k_{03}[O_3][H_2O]$$

- 5 and estimated to be 6.09×10^6 molec cm⁻³ s⁻¹ or 0.89 ppbv h⁻¹ (calculated for a campaign O₃ average of 41 ppbv and a campaign RH average of 42 % at 11:00 LT each day) at STP. The P(HO_x) at Welgegund is approximately a factor of two lower compared to other reported urban P(HO_x) values (Geddes et al., 2009). The factors and reactions that affect [•OH] include:
 - linear dependency between °OH and NO_x due to the reaction NO + HO₂ → °OH + NO₂, until °OH begins to react with elevated NO₂ concentrations to form HNO₃ (OH + NO₂ + M→ HNO₃ + M);
- 10
- P(HO_x) is affected by solar irradiance, temperature, O₃ concentrations, humidity; and
- partitioning of HO_x between RO₂, HO₂, OH.

[•OH] was calculated at 11:00 LT each day as follows:

$$A = k_{5eff} (\frac{VOC \ reactivity}{k_{2eff}[NO]})^2$$

15 $B = k_4[NO_2] + \alpha * VOC reactivity$

$$C = P(HO_x)$$

$$[OH] = \frac{-B + \sqrt{B^2 + 24C * A}}{12 * A}$$

The instantaneous production rate of O_3 , $P(O_3)$ could then be calculated as a function of NO₂ levels and VOC reactivity. A set of reactions used to derive the equations that describe the dependence of the •OH, peroxy radicals (HO₂•+RO₂•) and P(O₃) on NO_x is given by Murphy et al. (2006), which present the

20

 $P(O_3) = k_{2eff}[HO_2 + RO_2][NO] = 2 * VOC Reactivity * [OH]$

where k_2 eff is the effective rate constant of NO oxidation by peroxy radicals (chain propagation and termination reactions in the production of O_3). The values of the rate constants and other parameters used as input parameters to solve the equation above, can be found in Murphy et al. (2006) and Geddes et al. (2009)."

5 In addition Section 3.4.3 (now Section 3.5.3) was also rewritten to indicate limitations of the model as follows:

"In Fig. 10 P(O₃) as a function of VOC reactivity calculated from the available VOC dataset for Welgegund (Section 2.4) and NO₂ concentrations is presented. O₃ production at Welgegund during two field campaigns, specifically at 11:00 LT, were found to range between 0 and 10 ppbv h^{-1} . The average P(O₃) over the 2011

- 10 to 2012 and the 2014 to 2015 campaigns combined were 3.0 ± 1.9 ppbv h⁻¹ and 3.2 ± 3.0 ppbv h⁻¹. respectively. The dashed black line in Fig. 10, called the ridge line, separates the NO_x - and VOC-limited regimes. To the left of the ridge line is the NO_x -limited regime, when O_3 production increases with increasing NO_x concentrations. The VOC-limited regime is to the right of the ridge line, when O₃ production decreases with increasing NO_x. According to the O_3 production plot presented, approximately 40% of the
- data is found in the VOC-limited regime area, which would support the regional O₃ analysis conducted for 15 continental South Africa in this study. However, the O₃ production plot for Welgegund transitions between NO_x- and VOC-limited regimes with Welgegund being in a NO_x-limited production regime the majority of the time, especially when NO_x concentrations are very low (<1 ppb). As indicated in Section 2.4, limitations to this analysis include limited VOC speciation data, as well as a single time-of-day grab sample. The O₃
- 20 production rates can therefore only be inferred at 11:00 am LT despite O₃ concentrations peaking during the afternoon at Welgegund. Therefore, clean background air O_3 production is most-likely NO_x -limited (Tiitta et al., 2014), while large parts of the regional background of continental South Africa can be considered VOC-limited."
- On the "CO-limited ozone formation regime": the authors concluded from the O3-NOxCO relationship 25 analysis that CO played a significant role in O3 formation in South Africa (or the so-called "CO-limited O3 formation regime"). I highly suspect that this should be not true. In general, CO is less important than VOCs for ozone formation even though it contributes to a significant fraction of OH reactivity. This is because that the contributions of VOCs can be magnified by not only the ROx radical cycle but also the further reactions of their oxidation intermediates and products. The authors are strongly encouraged to 30 utilize the available data of VOCs, NOx, CO and O3 to perform a photochemical modeling analysis to

examine the detailed O3 formation regimes.

This point was also raised by Referee #1 who suggested that the comments on the strength of the role of CO on O_3 formation should be toned down and that policy should focus on reducing both CO and VOCs. However, the significance of CO to O_3 formation for this region where biogenic VOCs are relatively less abundant (Jaars et al., 2016) is indicated in this paper, especially through the correlation plots in Fig. 9 and

5

10 (now Fig. 8 and 9 in the revised manuscript). In addition, Referee #1 also recognised the large role of CO on O_3 formation shown in this study. In view of the comment of Referee #1, the strength of the role of CO on O_3 was toned down in the manuscript in different sections and the contribution of VOCs indicated, without compromising the significance of CO on O_3 formation shown for this region in this paper. Section where changes were made are:

10 <u>Abstract:</u>

"...emissions of NO_x in the interior of South Africa. The study indicated that the most effective emission control strategy to reduce O_3 levels in continental South Africa should be CO and VOC reduction mainly associated with household combustion and regional open biomass burning."

Section 3.3.1 (now Section 3.4.1):

15 "...characterise the dispersion of biomass burning emissions over southern Africa (Mafusire et al., 2016). Therefore the regional transport of CO and VOCs (and NO_x to a lesser extent) associated with biomass burning occurring from June to September in southern Africa can be considered an important source of surface O₃ in continental South Africa (Fig. A4)."

Section 3.4.1 (now Section 3.5.1):

- ²⁰ "In Fig. 8 the correlations between O_3 , NO_x and CO concentrations at Welgegund, Botsalano and Marikana are presented, which clearly indicates higher O_3 concentrations associated with increased CO levels, while O_3 levels remain relatively constant (or decrease) with increasing NO_x . The highest O_3 concentrations occur for NO_x levels below 10 ppb, since the equilibrium between photochemical production of O_3 and chemical removal of O_3 shifts towards the former i.e. greater O_3 formation. In general there seems to exist a marginal
- 25 negative correlation between O_3 and NO_x (Fig. A5) at all four sites, which is a reflection of the photochemical production of O_3 from NO_2 and the destruction of O_3 through NO_x titration. These correlations between NO_x , CO and O_3 indicate that O_3 production in continental South Africa is limited by CO (and VOCs) concentrations, i.e. VOC-limited."

Section 3.4.2 (now Section 3.5.2):

"...concentrations, which is most pronounced (highest CO/NO_x ratios) during winter and spring. This indicates that the winter and spring O_3 maximum is primarily driven by increased peroxy radical production from CO and VOCs. The seasonal maximum in O_3 concentration coincides with the maximum CO concentration at the background sites, whilst the O_3 peak occurs just after June/July when CO peaked at the

5

polluted site Marikana (Fig. A4). This observed seasonality in O₃ production signifies the importance of precursor species emissions from open biomass burning during winter and spring in this region, while household combustion for space heating and cooking is also an important source of O₃ precursors as previously discussed."

Section 3.5.2 (now Section 3.6.2):

"As indicated above (Section 3.4 and 3.5), O₃ formation in the regions where Welgegund, Botsalano and Marikana are located can be considered VOC-limited, while the highly industrialised region with high NO_x emissions where Elandsfontein is located could also be considered VOC-limited. Rural remote regions are generally considered to be NO_x-limited due to the availability of NO_x and the impact of BVOCs (Sillman, 1999). However, Jaars et al. (2016) indicated that BVOC concentrations at a savannah-grassland were at least an order of magnitude lower compared to other regions in the world. Therefore very low BVOC concentrations together with high anthropogenic emissions of NO_x in the interior of South Africa result in

VOC-limited conditions at background sites in continental South Africa.

It is evident that reducing CO and VOC concentrations associated with anthropogenic emissions e.g. household combustion, vehicular emissions and industries, would be the most efficient control strategy to reduce peak O₃ concentrations in the interior of South Africa. It is also imperative to consider the seasonal variation in the CO and VOC source strength in managing O₃ pollution in continental southern Africa. This study also revealed the significant contribution of biomass burning to O₃ precursors in this region, which should also be considered when implementing O₃ control strategies. However, since open biomass burning in southern Africa is of anthropogenic and natural origin, while O₃ concentrations in continental South

25 Africa are also influenced by trans boundary transport of O_3 precursors from open biomass burning occurring in other countries in southern Africa (as indicated above), it is more difficult to control. Nevertheless, open biomass burning caused by anthropogenic practices (e.g. crop residue, pasture maintenance fires, opening burning of garbage) can be addressed."

Conclusions:

30 "The relationship between O₃, NO_x and CO at Welgegund, Botsalano and Marikana indicated a strong correlation between O₃ on CO, while O₃ levels remained relatively constant (or decreased) with increasing

 NO_x . Although NO_x and VOCs are usually considered to be the main precursors in ground-level O_3 formation, CO can also drive photochemical O_3 formation. The seasonal changes in the relationship between O_3 and precursors species also reflected the higher CO emissions associated with increased household combustion in winter, and open biomass burning in late winter and spring. The calculation of

- 5 the P(O₃) from a two-year VOC dataset at Welgegund, indicated that at least 40% of O₃ production occurred in the VOC-limited regime. These results indicated that large parts in continental South Africa can be considered VOC-limited, which can be attributed to high anthropogenic emissions of NO_x in this region. It is, however, recommended that future studies investigate more detailed relationships between NO_x, CO, VOCs and O₃ through photochemical modelling analysis, while concurrent measurement of atmospheric
- 10 VOCs and $^{\circ}$ OH would also contribute to the better understanding of surface O_3 in this region.

In this paper some new aspects on O_3 for the continental South Africa have been indicated, which must be taken in consideration when O_3 mitigation strategies are deployed. Emissions of O_3 precursor species associated with the concentrated location of industries in this area could be regulated, while CO and VOC emissions associated with household combustion and regional open biomass burning should also be

15 targeted. However, emissions of O₃ precursor species related to factors, such as household combustion associated with poor socio-economic circumstances and long-range transport, provides a bigger challenge for regulators."

We agree with Referee #2 that photochemical modeling would greatly assist in establishing O₃ formation
 regime. However, comprehensive modeling was beyond the scope of this paper (which is already long as indicated by Referee #2) since this was a measurement study. However, this is an important future recommendation that was included in the Conclusions section:

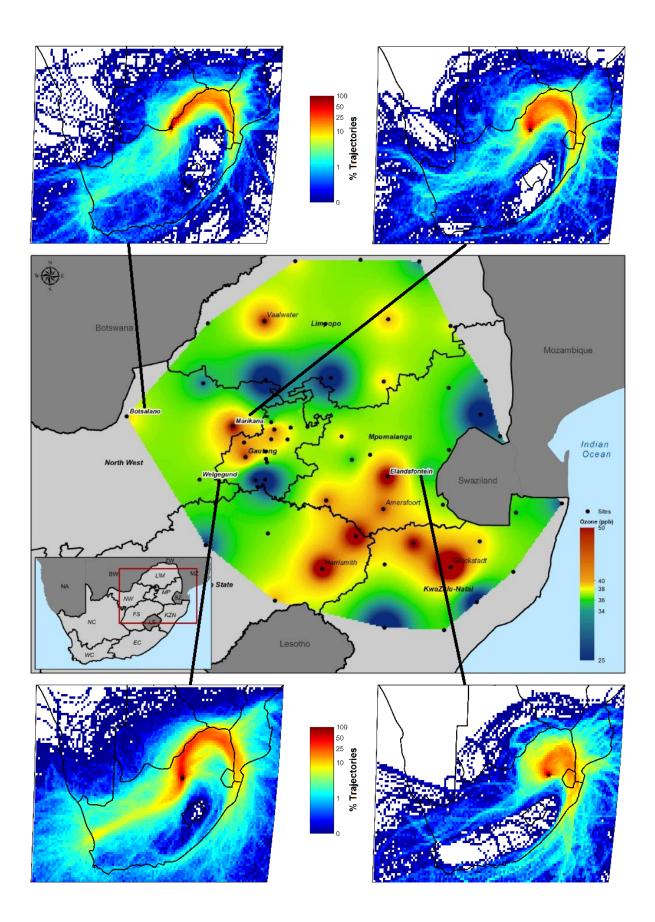
"It is, however, recommended that future studies investigate more detailed relationships between NO_x , CO, VOCs and O₃ through photochemical modelling analysis, while concurrent measurement of atmospheric VOCs and •OH would also contribute to the better understanding of surface O₃ in this region."

Other comments:

Section 2.2: it would be better to provide the detection limit and measurement accuracy of the individual measurements. The traditional NO2 measurements may be subject to positive interference from the catalytic conversion, especially in rural and remote areas. The authors need elaborate more about their NOx

30 measurements.

25


 NO_2 levels determined with the Teledyne 200AU NO/NO_x analyser (used at three of sites) were compared with NO_2 concentrations measured with a quantum cascade laser used for NO_2 flux measurements at Welgegund, which indicated very good comparison between these two instruments. Therefore we have a high level of confidence in the NO_x levels measured with the chemiluminescent measurement techniques at the four sites.

5

In view of our effort to shorten the paper and exclude basic information as suggested by Referee #2, we do not deem it necessary to elaborate more on the NOx measurements. In addition, the NOx measurements were used to as supportive date to assist in interpreting O_3 measurements. However, a sentence on the comparison with the QCL instrument could be included if requested by Referee #2.

10 Figure 2: it would be better to highlight the four measurement sites in the present study in the map, and indicate the prevailing wind directions.

The author agree. We have improved the map, by including smaller overlay back trajectory maps of the 4 four study sites, which indicates the air mass movement patterns towards the afore-mentioned sites. The four measurement sites in the present study were also highlighted. This map is indicated below:

Fig. 2. The main (central map) indicating spatial distribution of mean surface O_3 levels during springtime over the north-eastern interior of southern Africa ranging between 23.00° S and 29.03° S, and 25.74° E and 32.85° E. The data for all sites were averaged for years when the ENSO cycle was not present (by examining SST anomalies in the Niño 3.4 region). Black dots indicate the sampling sites. The smaller maps (top and bottom) indicate 96-hour overlay back trajectory maps for the four main study sites, over the corresponding springtime periods.

5

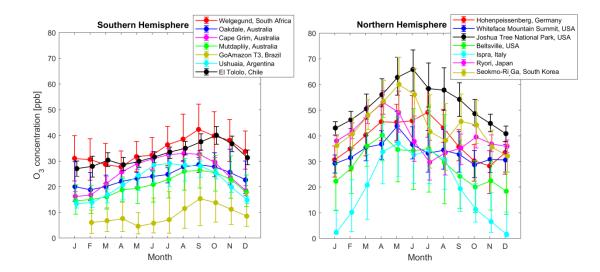
Page 13, Line 1: "Marikana" is a typo?

We thank Referee #2 for pointing out this typo, which was changed as follows:

"...during springtime (S-O-N), when O₃ is usually at a maximum as indicated above. The mean O₃
concentration over continental South Africa ranged from 20 ppb to 60 ppb during spring. From Fig. 3 it can be seen that O₃ concentrations at the industrial sites Marikana and Elandsfontein were higher than O₃ levels at Botsalano and Welgegund. As mentioned previously, Elandsfontein..."

Section 3.1.2 and Fig. 3: it would be much helpful if the measurement results in East Asia can be also compared to obtain a wider spatial coverage.

15 Section 3.1.2 and Fig. 3 (now Section 3.3 and Fig. 4) were improved in accordance with the above general comment on the writing of the paper. The seasonal patterns of additional South African sites were removed from Fig. 3 (now Fig. 4) and only Welgegund was used in the comparison to other Southern Hemisphere sites since it had the most extensive data record of all the sites reported on in this study. Therefore Fig. 3 (now Fig. 4) was separated into two figures presenting seasonal patterns for Southern- and Northern
20 Hemisphere sites. In addition, two East Asian sites, i.e. Ryori, Japan and Seokmo-Ri Ga, South Korea,


which could be obtained from the TOAR database, were included in the comparison.

Section 3.1.2 (now Section 3.3 and Fig. 4):

"In an effort to contextualise the O_3 levels measured in this study, the monthly O_3 concentrations measured at Welgegund were compared to monthly O_3 levels measured at monitoring sites in other parts of the world

- 25 (downloaded from the JOIN web interface <u>https://join.fz-juelich.de</u> (Schultz et al., 2017)) as indicated in Fig. 4. Welgegund was used in the comparison since it had the most extensive data record, while the measurement time period considered was from May 2010 to December 2014. The seasonal O₃ cycles observed at other sites in the Southern Hemisphere are comparable to the seasonal cycle at Welgegund with slight variations in the time of year when O₃ peaks as indicated in Fig. 4. Cape Grim, Australia; GoAmazon
- 30 T3 Manancapuru, Brazil; Ushuaia, Argentina; and El Tololo, Chile are regional background GAW (Global

Atmosphere Watch) stations with O_3 levels lower than the South African sites. However, the O_3 concentrations at El Tololo, Chile are comparable to Welgegund. Oakdale, Australia and Mutdapliiy, Australia are semi-rural and rural locations, which are influenced by urban and industrial pollution sources, which also had lower O_3 concentrations compared to Welgegund.

Fig. 4. Seasonal cycle of O_3 at rural sites in other parts of the world. The black dot indicate monthly median (50th percentile) and the upper and lower limits the 25th and 75th percentile, respectively for monthly O_3 concentrations. The data is averaged from May 2010 to December 2014, except in a few instances where 2014 data was not available.

- 10 The Northern Hemispheric O₃ peak over mid-latitude regions is similar to seasonal patterns in the Southern Hemisphere where a springtime O₃ maximum is observed (i.e. Whiteface Mountain Summit, Beltsville, Ispra, Ryori and Seokmo-Ri Ga). However, there are other sites in the Northern Hemisphere where a summer maximum is more evident (Vingarzan, 2004), i.e. Joshua Tree and Hohenpeissenberg. The discernible difference between the hemispheres is that the spring maximum in the Southern Hemisphere it refers to maximum O₃ concentrations in late winter and early spring, whilst in the Northern Hemisphere it refers to a late spring and early summer O₃ maximum (Cooper et al., 2014). The spring maximum in the Northern Hemisphere is associated with stratospheric intrusions (Zhang et al., 2014; Parrish et al., 2013), while the summer maximum is associated with photochemical O₃ production from anthropogenic emissions of O₃ precursors being at its highest (Logan, 1985; Chevalier et al., 2007). Maximum O₃ concentrations at
- 20 background sites in the United States and Europe are similar to values at Welgegund in spring with the exception of Joshua Tree National Park in the United States that had significant higher O₃ levels. This is most-likely due its high elevation and deep boundary layer (~4 km asl) during spring and summer allowing free tropospheric O₃ to be more effectively mixed down to the surface (Cooper et al., 2014). Maximum O₃

levels at the two sites in East Asia (Ryori and Seokmo-Ri Ga) were also generally higher than at Welgegund, especially at Seokmo-Ri Ga."

Section 3.2: on the interpretation of the late winter and early spring ozone maximum, what are the meteorological conditions (e.g. temperature, solar radiation, etc.) during this period?

5 We have included monthly averages of temperature, relative humidity, global radiation and wind speed, as well as total monthly rainfall, for the O₃ measurement period at Welgegund in the Appendix (Fig. A3) to indicate typical meteorological conditions for this part of South Africa. The following sentence was also added to Section 3.2 (now Section 3.1)

"In Fig. A3 monthly averages of meteorological parameters and total monthly rainfall for Welgegund arepresented to indicate typical seasonal meteorological patterns for continental South Africa."

Page 19, Lines 1-15: the authors attributed the lower ozone concentrations at Elandsfontein to the highstack emissions. However, the surface ozone in the industrialized areas can be also titrated by the freshly emitted NOx. It would be helpful for the authors to examine the Ox (Ox=O3+NO2) levels to exclude the effect of NO titration.

- We agree with Referee #2 that low-level freshly emitted NO_x could also contribute to O₃ titration at industrial sites. This was clearly shown for Marikana, where NO_x emissions were predominantly associated with low-level emissions as indicated by the bimodal diurnal NO_x peaks (Fig. A3, now Fig. A4), as well as the nighttime titration of O₃ (Fig. 4, now Fig. 2) as discussed in this section. However, the diurnal NO_x pattern at Elandsfontein clearly shows daytime NO_x peaks (Fig. A3, now Fig. A4) resulting from downward mixing of high-stack NO_x emissions as the predominant source of NO_x at Elandsfontein, while the nighttime titration of O₃ is also less significant compared to Marikana (Fig. 4, now Fig. 2). This was also indicated in by Collett et al., 2010 for Elandsfontein. Therefore, in our view the major contributing sources to O₃ titrations at these two industrial sites are adequately indicated by the O₃ (Fig. 4, now Fig. 2) and NO_x (Fig. A3, now Fig. A4) temporal patterns presented in the manuscript.
- 25 Page 28, Lines 11-13: from Fig. 11, most the data points fall in the NOx-limited regime zone. This doesn't support the statement that large part of the regional background of continental South Africa can be considered VOC-limited.

Most of the points on the graph do indeed lie in the NOx-limited regime. Since Welgegund is the only station for which VOCs have been measured in South Africa, we cannot directly compare O_3 production

30 with other sites. It would be likely that O₃ production at Welgegund may not be representative of regional

 O_3 production conditions across the country. However, ~ 40% of the data is found in the VOC-limited regime area, which would support the regional O_3 analysis conducted for continental South Africa in this study. In addition, O_3 production is mainly in the NOx limited regime at low NOx concentrations. Therefore, clean background air O_3 production is most-likely NO_x-limited, while large parts of the regional

5

background of continental South Africa can be considered VOC-limited. We also feel that this comparison truly highlights the need for further research to reconcile O_3 production at Welgegund and the positive correlations observed between O_3 and CO at most of our other sites that would indicate a rather VOClimited regime. Therefore Section 3.4.3 (now Section 3.5.3) on O_3 production rate was rewritten as follows:

"In Fig. 10 P(O₃) as a function of VOC reactivity calculated from the available VOC dataset for Welgegund (Section 2.4) and NO₂ concentrations is presented. O₃ production at Welgegund during two field campaigns, specifically at 11:00 LT, were found to range between 0 and 10 ppbv h⁻¹. The average P(O₃) over the 2011 to 2012 and the 2014 to 2015 campaigns combined were 3.0 ± 1.9 ppbv h⁻¹ and 3.2 ± 3.0 ppbv h⁻¹, respectively. The dashed black line in Fig. 10, called the ridge line, separates the NO_x- and VOC-limited regimes. To the left of the ridge line is the NO_x-limited regime, when O₃ production increases with

- 15 increasing NO_x concentrations. The VOC-limited regime is to the right of the ridge line, when O₃ production decreases with increasing NO_x. According to the O₃ production plot presented, approximately 40% of the data is found in the VOC-limited regime area, which would support the regional O₃ analysis conducted for continental South Africa in this study. However, the O₃ production plot for Welgegund transitions between NO_x- and VOC-limited regimes with Welgegund being in a NO_x-limited production regime the majority of
- the time, especially when NO_x concentrations are very low (<1 ppb). As indicated in Section 2.4, limitations to this analysis include limited VOC speciation data, as well as a single time-of-day grab sample. The O₃ production rates can therefore only be inferred at 11:00 am LT despite O₃ concentrations peaking during the afternoon at Welgegund. Therefore, clean background air O₃ production is most-likely NO_x-limited (Tiitta et al., 2014), while large parts of the regional background of continental South Africa can be considered VOC-limited."

Seasonal influences on surface ozone variability in continental South Africa and implications for air quality

Tracey Leah Laban¹, Pieter Gideon van Zyl^{1*}, Johan Paul Beukes¹, Ville Vakkari², Kerneels Jaars¹, Nadine Borduas-Dedekind³, Miroslav Josipovic¹, Anne Mee Thompson⁴, Markku

5 Kulmala⁵, and Lauri Laakso²

- 1 Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
- 2 Finnish Meteorological Institute, Helsinki, Finland
- 10 3 Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
 - 4 NASA/Goddard Space Flight Center, Greenbelt, Maryland, USA
 - 5 Department of Physics, University of Helsinki, Finland

*Correspondence to: P.G. van Zyl (pieter.vanzyl@nwu.ac.za)

15

Abstract

Although elevated surface ozone (O_3) concentrations are observed in many areas within southern Africa, few studies have investigated the regional atmospheric chemistry and dominant atmospheric processes driving surface O_3 formation in this region. Therefore, an assessment of

20 comprehensive continuous surface O₃ measurements performed at four sites in continental South Africa was conducted. The regional O_3 problem was evident, with O_3 concentrations regularly exceeding the South African air quality standard limit, while O₃ levels were higher compared to other background sites in the Southern Hemisphere. The temporal O_3 patterns observed at the 25 four sites resembled typical trends for O₃ in continental South Africa, with O₃ concentrations peaking in late winter and early spring. Increased O₃ concentrations in winter were indicative of increased emissions of O₃ precursors from household combustion and other low-level sources, while a spring maximum observed at all the sites was attributed to increased regional biomass burning. Source area maps of O_3 and CO indicated significantly higher O_3 and CO concentrations associated with air masses passing over a region with increased seasonal open biomass burning, 30 which indicated CO associated with open biomass burning as a major source of O₃ in continental South Africa. A strong correlation between O_3 on CO was observed, while O_3 levels remained relatively constant or decreased with increasing NOx, which supports a VOC-limited regime. The

instantaneous production rate of O_3 calculated at Welgegund indicated that ~40% of O_3 production occurred in the VOC-limited regime. The relationship between O_3 and precursor species suggests that continental South Africa can be considered VOC-limited, which can be attributed to high anthropogenic emissions of NO_x in the interior of South Africa. The study

- 5 indicated that the most effective emission control strategy to reduce O₃ levels in continental South Africa should be CO and VOC reduction, mainly associated with household combustion and regional open biomass burning. Although elevated ozone (O3) concentrations are observed in many areas within continental southern Africa, few studies have investigated the regional atmospheric chemistry and dominant atmospheric processes driving surface O₃ formation in this region. The aim of this study was to conduct an assessment of comprehensive continuous surface 10 O₃-measurements performed at four sites located in continental South Africa. These sites were representative of regional background (Welgegund and Botsalano) and industrial regions (Marikana and Elandsfontein) in the north-eastern interior in South Africa as indicated by comparison with other sites in this region. The regional O₃ problem was also shown with O₃ concentrations being higher than 40 ppb at many sites in the north-eastern interior, while the 15 South African air quality standard limit for O₃ was regularly exceeded at the four sites in this study. O₃-levels were generally lower at other background sites in the Southern Hemisphere compared to the South African sites, while similar seasonal patterns were observed. The temporal O₃ patterns observed at the four sites resembled typical trends for O₃ in continental South Africa, i.e.
- 20 O₃-concentration peaking in late winter and early spring, and daytime O₃-peaks associated with increased photochemical production. The seasonal O₃ trends observed in continental South Africa were mainly attributed to the seasonal changes in emissions of O₃ precursor species and changes in meteorological conditions. Increased O₃ concentrations in winter were indicative of increased emissions of O₃ precursors from household combustion for space heating and the
- 25 concentration of low-level pollutants near the surface. A spring maximum was observed at all the sites, which was attributed to increased regional biomass burning during this time. Source area maps of O₃ and CO indicated significantly higher O₃ and CO concentrations associated with air masses passing over a region where a large number of seasonal open biomass burning occurred in southern Africa, which indicated CO associated with open biomass burning as a major source
- 30 of O₃ in continental South Africa. The relationship between O₃, NO_x and CO indicated a strong dependence of O₃ on CO, while O₃ levels remained relatively constant or decreased with increasing NO_x. The seasonal changes in the relationship between O₃ and precursors species also reflected the seasonal changes in sources of precursors. The instantaneous production rate of O₃, P(O₃), calculated at Welgegund indicated that at least 40% of O₃ production occurred in

the VOC-limited regime. These relationships between O_3 concentrations and $P(O_3)$ with O_3 precursor species revealed that large parts of the regional background in continental South Africa can be considered CO- or VOC-limited, which can be attributed to high anthropogenic emissions of NO_x in the interior of South Africa. It was indicated that the appropriate emission control strategy should be CO (and VOC) reduction associated with household combustion and regional open biomass burning to effectively reduce O_3 pollution in continental South Africa.

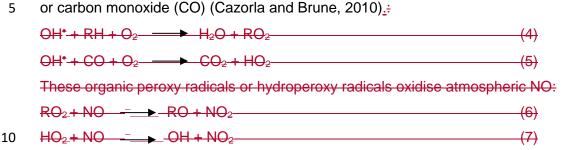
Keywords: ozone (O₃) production, NO_x-limited, VOC-limited, biomass burning, regional O₃, air quality

10

5

1. Introduction

Elevated levels of surface (lower troposphere) ozone (O₃) have been globally reported for several decades, especially, in North America and Europe, and more recently in Asia, which is generally attributed to increased fossil fuel combustion contributing to increased emissions of O₃ precursors (Jaffe and Ray, 2007). High surface O₃ concentrations are a serious environmental concern, due to its-their detrimental impacts on human health, crops and vegetation (National Research NRC, 1991). Photochemical smog, comprising O₃ as a constituent together with other atmospheric oxidants (e.g. nitrogen- and sulphur oxides), is a major air quality concern on an-urban and regional scales. Tropospheric O₃ is also a greenhouse gas that directly contributes to global warming (IPCC, 2013).


Tropospheric O₃ concentrations are regulated by three processes, i.e. chemical production/destruction, atmospheric transport, and losses to surface through dry deposition
(Monks et al., 2015). The photolysis of <u>nitrogen dioxide (NO₂)</u> in the presence of sunlight, followed by the addition of the O atom to O₂ is the only known way of producing O₃ in the troposphere (Logan, 1985). ÷

NO₂+hv —_►_O+NO	(1)
O₂+O+M <u>→</u> O₃+M	(2)

30 $O_3 \text{ can and recombine with nitric oxide (NO) recombine to regenerate NO₂, which will once again undergo photolysis to regenerate O₃ and NO_.:$ $<math>O_3 + NO = O_2 + NO_2$ (3)

This continuous process is known as the NO_x-dependent photostationary state (PSS) and results in no net production or consumption of ozone (null cycle). <u>However, Nn</u>et production of O_3 in the

<u>troposphere ('new ozone')</u> occurs outside the PSS when<u>an atmospheric pool of peroxy</u> radicals (HO₂ and RO₂) alters the PSS by <u>reacting withoxidising</u> NO <u>and to produceing 'new'</u> NO₂ (Cazorla and Brune, 2010), <u>resulting in net O₃ production</u>. The main source of <u>these</u> peroxy radicals <u>in the</u> <u>atmosphere</u> is the reaction of the hydroxyl radical (OH•) with volatile organic compounds (VOCs)

reducing the sink for O_3 (Atkinson, 2000), since the resultant NO₂-leads to the production of O_3 through reaction (1) and (2).

These <u>O₃</u> precursor species can be emitted from natural and anthropogenic sources.
Anthropogenic fFossil fuel combustion is considered to be the main source of NO_x in South Africa, which includes coal-fired power-generation, petrochemical operations, transportation and residential burning (Wells et al., 1996; Held et al., 1996; Held and Mphepya, 2000). Satellite observations indicate a well-known NO₂ hotspot over the South African Highveld (Lourens et al., 2012) attributed to industrial activity in the region. CO is produced from three major sources, i.e.

- fossil fuel combustion, biomass burning, as well as the oxidation of methane (CH₄) and VOCs (Novelli et al., 1992). Anthropogenic sources of VOCs are largely due to industrial and vehicular emissions (Jaars et al., 2014), while emissions from vegetation provide the biogenic source VOCs are also naturally emitted (Jaars et al., 2016).– Regional biomass burning, which includes household combustion for space heating and cooking, agricultural waste burning and open
- biomass burning (wild fires), is a significant source of CO, NO_x and VOCs (Macdonald et al., 2011; Crutzen and Andreae, 1990; Galanter et al., 2000; Simpson et al., 2011) in southern Africa. In addition, stratospheric intrusions of O₃-rich air to the free troposphere may also occur that can <u>also</u> lead to elevated tropospheric O₃ concentrations (Yorks et al., 2009; Lin et al., 2012<u>Diab et</u> <u>al., 1996; Diab et al, 2004</u>). The production of O₃ production from natural precursor sources, the long-range transport of O₃ and the injections from stratospheric O₃ contribute to background O₃
 - levels, which is beyond the control of regulators (Lin et al., 2012).

Knowledge of the O_3 production regime, which is generally classified as either VOC- or NO_{*} limited, is crucial in designing effective O_3 control policies for a given location. However, O_3 production has a complex and non-linear dependence on precursor emissions (e.g. National Research NRC, 1991), which makes its atmospheric levels difficult to control (Holloway and Wayne, 2010). The VOC/NO_x ratio has been widely used to categorise an environment as being either NO_x- or VOC-limited, since net O₃ production requires NO_x and VOCs to exist in specific ratios for the photochemical reaction to occur. O₃ formation is NO_x-limited when the VOC/NO_x ratio is high, while a low VOC/NO_x ratio indicates that O₃ formation is VOC-limited. In the NO_x-limited regime, O₃ concentrations increase with increasing NO_x and are insensitive to VOCs. Therefore NO_x reductions are most effective in reducing O₃ levels. Under VOC-limited conditions, O₃ concentrations increase with increasing VOCs and decrease with increasing NO_x. VOC reductions will therefore be most effective in reducing O₃, while NO_x controls may lead to O₃ increases. There exists a transitional region between the NO_x- and VOC-limited regimes where O₃ is equally sensitive to each species, and control of both VOC and NO_x might be preferred (National Research NRC, 1991). In general, it is considered that O₃ formation in urban areas, close to anthropogenic sources, is VOC-limited, while rural areas distant form source regions are NO_x-limited (Sillman, 1990).

5

10

15

Since O₃ concentrations are regulated in South Africa, O₃ monitoring is carried out across South Africa through a network of air quality monitoring stations established mainly by provincial governments, local municipalities and industries (<u>http://www.saaqis.org.za</u>). High O₃ 20 concentrations are observed in many areas within the interior of South Africa, which that exceed the South African standard O_3 limit, i.e. an seight-hour moving average of 61 ppb (e.g. Laakso et al., 2013), which These exceedances can be attributed to high anthropogenic emissions of NO_x and VOCs in dense urban and industrial areas (Jaars et al., 2014), regional biomass burning (Lourens et al., 2011), and O_3 conducive meteorological conditions (e.g. sunlight). Furthermore, Since O_3 is a secondary pollutant, high levels of O_3 can also be found in rural areas downwind 25 of city centres and industrial areas. In order for South Africa to develop an effective national/provincial management plan to reduce O₃ concentrations through by controlling NO_x and VOC emissions, it is important to determine whether a region is NO_x- or VOC-limited. However, O₃ production has a complex and non-linear dependence on precursor emissions (e.g. National Research NRC, 1991), which makes its atmospheric levels difficult to control (Holloway and 30 Wayne, 2010). Under VOC-limited conditions, O_3 concentrations increase with increasing VOCs, while a region is considered NO_x-limited when O_3 production increases with increasing NO_x concentrations. Results from a photochemical box model study in South Africa, for instance, revealed that the Johannesburg-Pretoria megacity is within a VOC-limited regime (Lourens et al.,

2016). VOC reductions would, therefore, be most effective in reducing O_{3} , while NO_x controls without VOC controls may lead to O_3 increases. In general, it is considered that O_3 formations in regions close to anthropogenic sources are VOC-limited, while rural areas distant form from source regions are NO_x -limited (Sillman, 1999).

5

10

Previous assessments of tropospheric O_3 over continental South Africa have focuesed on surface O_3 (Venter et al., 2012; Laakso et al., 2012; Lourens et al., 2011; Josipovic et al., 2010; Martine et al., 2007; Zunckel et al., 2004), as well as free tropospheric O_3 based on soundings and aircraft observations (Diab et al., 1996; Thompson, 1996; Swap et al., 2003; Diab et al., 2004). Two major field campaigns (SAFARI-92 and SAFARI 2000) were conducted to improve the understanding of the effects of regional biomass burning emissions on O_3 over southern Africa. These studies indicated a late winter_early spring (August and September) maximum over the region, which that was mainly attributed to increased regional open biomass burning (wild fires) during this period, while- Lourens et al. (2011) also attributed higher O_3 concentrations in spring in the Mpumalanga Highveld to increased regional open biomass burning. A more recent study demonstrated that NO_x strongly affects O_3 levels in the Highveld, especially in winter and spring (Balashov et al., 2014). A regional photochemical modelling study (Zunckel et al., 2006) have has attempted to explain surface O_3 variability, which found no dominant source/s on elevated O_3 levels.

20

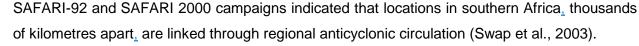
25

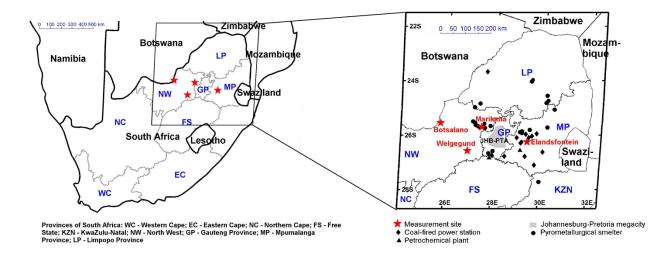
15

The aim of this the current study was is to provide an up-to-date assessment of the seasonal and diurnal variations in surface O_3 concentrations over continental South Africa, as well as to identify local and regional sources of precursors contributing to surface O_3 . Another significant objective was is to use available ambient data as a means of to qualitatively assessing whether O_3 formation is NO_x- or VOC-limited in different environments. An understanding of the key precursors that control surface O_3 production will assist in establishing the O_3 production regime, which is critical for the development of an effective O_3 control strategy.

2. Methodology

30


2.1 Study area and measurement stations


Continuous in-situ O_3 measurements obtained from four research stations in the north-eastern interior of South Africa, indicated in Fig. 1, which include Botsalano (25.54° S, 25.75° E, 1420 m

a.s.l.), Marikana (25.70° S, 27.48° E, 1170 m a.s.l.), Welgegund (26.57 ° S, 26.94° E, 1480 m a.s.l.) and Elandsfontein (26.25° S, 29.42° E, 1750 m a.s.l.), were analysed. This region is the largest industrial (indicated by major point sources in Fig. 1) area in South Africa, with substantial gaseous and particulate emissions from numerous industries, domestic fuel burning and vehicles

- 5 (Lourens et al., 2012; Lourens et al., 2011), while the Johannesburg-Pretoria megacity is also located in this area (Fig. 1). A combination of meteorology and anthropogenic activities has amplified the pollution levels within the region. The seasons in South Africa correspond to typical austral seasons, i.e. winter from June to August, spring from September to November, summer from December to February and autumn from March to May. The climate is semi-arid with an
- 10 annual average precipitation of <u>around_approximately_400-_to_500</u> mm (Klopper et al., 2006; Dyson et al., 2015), although there is considerable inter-annual variability associated with El Niño Southern Oscillation (ENSO) phenomena. Precipitation in the north-eastern interior occurs mostly during the austral summer, from October to March, whereas the region is characterised by a distinct cold and dry season from May to September, i.e. late autumn to mid-spring, during which
- 15 almost no precipitation occurs. During this period, the formation of several inversion layers are-is present in the region, which that limits the vertical dilution of air pollution, while more pronounced anticyclonic recirculation of air masses also occurs. This synoptic_—scale meteorological environment leads to an accumulation of pollutants in the lower troposphere in this region, which can be transported for several days (Tyson and Preston-Whyte, 2000; Garstang et al., 1996). The

20

25 Fig. 1. Location of the four measurement sites in South Africa-

2.1.1 Botsalano

The Botsalano measurement site was-is situated in a game reserve in the North West Pprovince 5 of South Africa, which is considered to be representative of regional background air. The surrounding vegetation is typical of a savannah biome, consisting of grasslands with scattered shrubs and trees (Laakso et al., 2008). The area is quite sparsely populated and has no local anthropogenic pollution sources (Laakso et al., 2008; Vakkari et al., 2013). The western Bushveld Igneous Complex, where numerous platinum, base metal, vanadium and chromium 10 mining/smelting industries are situated, is the largest regional anthropogenic pollution source. with the Rustenburg area located approximately 150 km to the east. Botsalano is also occasionally impacted by plumes passing over the industrialised Mpumalanga Highveld and the Johannesburg-Pretoria megacity (Laakso et al., 2008; Vakkari et al., 2011). In addition, the site is influenced by seasonal regional savannah wildfires during the dry period (Laakso et al., 2008; Vakkari et al., 2011; Mafusire et al., 2016). Measurements were conducted from 20 July 2006 15 until 5 February 2008 (Laakso et al., 2008; Vakkari et al., 2011; Vakkari et al., 2013).

2.1.2 Marikana

The Marikana measurement site was-is located within the western Bushveld Igneous Complex, which is a densely populated and highly industrialised region, where mining and smelting are the predominant industrial activities. Marikana is a small mining town located about approximately 30 km east of Rustenburg and about approximately 100 km northwest of Johannesburg. The measurement site was-is located in the midst of a residential area, comprising low-cost housing settlements and municipal buildings (Hirsikko et al., 2012; Venter et al., 2012). Anthropogenic emissions from household combustion, traffic and industry in the wider region have a strong influence on the measurement site (Venter et al., 2012). Data was collected for a period from 8 February 2008 to 16 May 2010 and has been previously used in other studies (Venter et al., 2012; Vakkari et al., 2013; Petäjä et al., 2013; Hirsikko et al., 2012; Hirsikko et al., 2013).

30

2.1.3 Welgegund

This measurement site is approximately 100 km west of Johannesburg and is located on a commercial arable and pastoral farm. The station is surrounded by grassland savannah (Jaars et

al., 2016). The station can be considered a regionally representative background site with few local anthropogenic sources. Air masses arriving at Welgegund from the west reflect a relatively clean regional background. However, the site is, similar to the Botsalano station, at times impacted by polluted air masses that are advected over major anthropogenic source regions in the interior of South Africa, which include the western Bushveld Igneous Complex, the Johannesburg-Pretoria megacity, the Mpumalanga Highveld and the Vaal Triangle (Tiitta et al., 2014; Jaars et al., 2016; Venter et al., 2017). In addition, Welgegund is also affected by regional savannah and grassland fires that are common in the dry season (Vakkari et al., 2014). The atmospheric measurement station has been operating at Welgegund since 20 May 2010, with data measured up until 31 December 2015 utilised in this study.

2.1.4 Elandsfontein

5

10

Elandsfontein is an ambient air quality monitoring station operated by Eskom, the national
electricity supply company, primarily for legislative compliance purposes. This station was upgraded and co-managed by researchers during the EUCAARI project (Laakso et al., 2012). The Elandsfontein station is located within the industrialized industrialised Mpumalanga Highveld at the top of a hill approximately 200 km east of Johannesburg and 45 km south-southeast of eMalahleni (previously known as Witbank), which is a coal mining area (Laakso et al., 2012). The site is influenced by several emission sources, such as coal mines, coal-fired power-generating stations, a large petrochemical plant and traffic emissions. Metallurgical smelters to the north also frequently impact the site (Laakso et al., 2012). The Elandsfontein data-set covers the period 11 February 2009 until 31 December 2010 during the EUCAARI campaign (Laakso et al., 2012).

25 2.2 Measurements

A comprehensive dataset of continuous measurements of surface aerosols, trace gases and meteorological parameters has been acquired through these four measurement sites (Laakso et al., 2008; Vakkari et al., 2011; Venter et al., 2012; Laakso et al., 2012; Vakkari et al., 2013; Petäjä et al., 2013). In particular, ozone (O₃, nitric oxide (NO), nitrogen dioxide (NO₂) and carbon monoxide (CO), as well as meteorological parameters, such as temperature (°C) and relative humidity (%) measurements were used in this study. Note that Botsalano, Marikana and Welgegund measurements were obtained with the same mobile station (first located at Botsalano, then relocated to Marikana and thereafter permanently positioned at Welgegund), whilst-while

43

Elandsfontein measurements were conducted with a routine monitoring station. O₃ concentrations at Welgegund, Botsalano and Marikana research stations were measured using the Environment SA 41M O₃ analyser, while a Monitor Europe ML9810B O₃ analyser was utilised at Elandsfontein. CO concentrations were determined at Welgegund, Botsalano and Marikana with a Horiba APMA-

- 5 360 analyser, while CO was not measured at Elandsfontein. NO_x (NO+NO₂) concentrations were determined with a Teledyne 200AU NO/NO_x analyser at Welgegund, Botsalano and Marikana, whereas a Thermo Electron 42i NOx analyser was used at Elandsfontein. Temperature and relative humidity were measured with a Rotronic MP 101A instrument at all the sites.
- Data quality at these four measurement sites were-was ensured through regular visits to the sites, during which instrument maintenance and calibrations were performed. The data collected from these four stations were-was subjected to detailed cleaning (e.g. excluding measurements recorded during power interruptions, electronic malfunctions, calibrations and maintenance) and the verification of data quality procedures (e.g. corrections were made to data according to in-situ calibrations and flow-checks). Therefore, the datasets collected at all four measurement sites are considered to represent high quality, high resolution measurements as indicated by other papers (Laakso et al., 2008; Petäjä et al., 2013; Venter et al., 2012; 2011; Laakso et al., 2012; Vakkari et al., 2013). Detailed descriptions of the data post-processing procedures were presented by Laakso et al. (2008) and Venter et al. (2012). The data was available as 15-minute averages and all plots using local time (LT) refer to local South African time, which is UTC+2.

In order to obtain a representative spatial coverage of continental South Africa, O₃ data from an additional 54 ambient monitoring sites was selected. These included O₃ measurements from 18 routine monitoring stations measurements (SAAQIS) for the period January 2012 --to December
 2014 (downloaded from the JOIN web interface https://join.fz-juelich.de (Schultz et al., 2017)) and 36 passive sampling sites located in the north-eastern interior of South Africa where monthly O₃ concentrations were determined for two years from 2006 to 2007 (Josipovic, 2009). Spatial analyseis were conducted with a geographical information system mapping tool (ArcGIS software), which used ordinary kriging to interpolate the O₃ concentrations measured at the 58
 sites in order to build the spatial distribution. The interpolation method involved making an 80/20% split of the data (80% for model development, 20% for evaluation), where 20% waswere used to calculate the root squared mean error (RSME = 0.2804331). Optimal model parameters were selected using an iterative process and evaluated on the basis of the best performance statistics obtained (reported in the ArcGIS kriging output), with particular emphasis on minimising the

<u>RSME. The extent of area was 23.00154974 (top), -29.03070026 (bottom), 25.74238974 (left)</u> and 32.85246366 (right).

2.3 Air mass history

5

Individual hourly four-day back trajectories for air masses arriving at an arrival height of 100 m above ground-level were calculated for the entire measurement period at each monitoring site, using HYSPLIT 4.8 (Hybrid Single-Particle Lagrangian Langrangian Integrated Trajectory model) (Stein et al., 2015; Draxler and Hess, 1998). The model was run with the GDAS meteorological 10 archive produced by the US National Weather Service's National Centre for Environmental Prediction (NCEP) and archived by ARL (Air Resources Laboratory, 2017). Overlay back trajectory maps were generated by superimposing individual back trajectories onto a southern African map divided into 0.5° X 0.5° grid cells. In addition, source maps were compiled by assigning each grid cell with a mean measured O₃ and CO concentration associated with trajectories passing over that cell, similarly to the simple approach applied in other papers where 15 concentrations of species were related to individual back trajectories previous methods (Vakkari et al., 2011; Vakkari et al., 2013; Tiitta et al., 2014), each grid cell was assigned the mean measured O₃-concentration associated with trajectories passing over that cell. A minimum of ten trajectories per cell was-were required for the statistical reliability.

20

2.4 Modelling instantaneous production rate of O₃

The only speciated VOC dataset available and published in South Africa exists for Welgegund (Jaars et al., 2016; Jaars et al., 2014), which could be used to model instantaneous O₃ production at this site. The concentration of these biogenic and anthropogenic VOCs werewas obtained from grab samples taken between 11:00 and 13:00 LT over the course of two extensive field campaigns conducted from February 2011 to February 2012 and from December 2013 to February 2015. During this time, €six trace gases, 19 biogenic VOCs and 20 anthropogenic VOCs, including 13 aromatic and 7seven aliphatic compounds were measured. The VOC reactivity werewas calculated from the respective rate coefficients of each VOC with *OH radicals obtained from chemical kinetic databases such as JPL, NIST and the MCM (e.g. Jaars et al., 2014), to estimate ozone production at 11:00 LT at Welgegund. Specifically, each VOC reactivity was then summed to obtain the total VOC reactivity for each measurement, i.e. VOC reactivity = ∑k₁/IVOCI/. The major contributors to VOC reactivity are depicted in Fig. A1 and include, in approximate order of

contribution, *o*-xylene, CO, styrene, *p*,*m*-xylene, toluene, ethylbenzene limonene, isoprene, α -pinene, β -pinene and hexane. Of note, key compounds such as methane are not included, which that could contribute to VOC reactivity, and thustherefore this VOC reactivity can only be a lower estimate. However, if a global ambient concentration of 1.85 ppm and a rate of oxidation by *****OH

5 radicals of 6.68×10^{-15} cm³ molec⁻¹ s⁻¹ is are assumed (Srinivasan et al., 2005), a VOC reactivity of 0.3 s⁻¹ would be obtained and would therefore account for a small increase in the VOC reactivity calculated in Fig. A1 and Fig. 10.

 A mathematical box-model was applied to model O₃ production as a function of VOC reactivity
 and NO₂ concentrations. This model involves three steps, i.e. (1) the estimation of HO_x (sum of •OH and HO₂• radicals) production, (2) the estimation of the •OH radical concentration, and (3) the calculation for O₃ production (Murphy et al., 2006; Geddes et al., 2009). The VOC concentrations are the limiting factor in the ability to model O₃ production at Welgegund, since only data for the 11:00 to 13:00 LT grab samples was available (Fig. A1). Therefore, the model

15 approach does not coincide with peak O₃ typically observed around 14:00 to 15:00 LT, and thustherefore likely represents a lower estimate.

The production rate of HO_x (P(HO_x)) depends on the photolysis rate of O₃ (J_{O3}), concentration of O₃ and vapour pressure of water (Jaegle et al., 2001). The photolysis rate proposed for the

20 Southern Hemisphere, i.e. $J_{O3} = 3 \times 10^{-5} \text{ s}^{-1}$ (Wilson, 2015), was used, from which P(HO_x) was calculated as follows:

 $P(HO_X) = 2J_{03}k_{03}[O_3][H_2O]$

and estimated to be 6.09 × 10⁶ molec cm⁻³ s⁻¹ or 0.89 ppbv h⁻¹ (calculated for a campaign O₃ average of 41 ppbv and a campaign RH average of 42 % at 11:00 LT each day) at STP. The P(HO_x) at Welgegund is approximately a factor of two lower compared to other reported urban P(HO_x) values (Geddes et al., 2009). A mathematical model developed by Murphy et al. (2006) and used in Geddes et al. (2009) was applied to calculate the *OH radical concentration at a
particular measurement time (Fig. A1). The production rate of HO_x (P(HO_x)) was required to calculate the *OH radical concentration, which was estimated to be 0.89 ppb/h (calculated for an O₃ average of 41 ppbv and RH of 42 % at 11:00 LT each day). The factors and reactions that

affect [•OH] include:

- linear dependency between •OH and NO_x due to the reaction NO + HO₂ → •OH + NO₂, until •OH begins to react with elevated NO₂ concentrations to form HNO₃ (OH + NO₂ + M→ HNO₃ + M);
- P(HO_x) is affected by solar irradiance, temperature, O₃ concentrations, humidity; and

• partitioning of HO_x between RO₂, HO₂, OH.

[•OH] was calculated at 11:00 LT each day as follows:

$$A = k_{5eff} \left(\frac{VOC \ reactivity}{k_{2eff}[NO]}\right)^{2}$$
$$B = k_{4}[NO_{2}] + \alpha * VOC \ reactivity$$
$$C = P(HO_{x})$$

$$[OH] = \frac{-B + \sqrt{B^2 + 24C * A}}{12 * A}$$

The instantaneous production rate of O₃, P(O₃) could then be calculated as a function of NO₂ levels and VOC reactivity. VOC reactivity was calculated from the product of the VOC concentration and its rate constant for the reaction with a *OH radical (Seinfeld and Pandis, 2006), which were then summed to obtain the total VOC reactivity for each measurement, i.e. VOC reactivity = $\sum k_{1,i} [VOC]_{i'}$ (Fig. A2). A set of reactions used to derive the equations that describe the dependence of the *OH, peroxy radicals (HO₂*+RO₂*) and P(O₃) on NO_x is given by Murphy et al. (2006), which presents the following equation to calculate P(O₃):

20

5

10

$$P(O_3) = k_{2eff}[HO_2 + RO_2][NO] = 2k_{\pm} * VOC Reactivity * [OH]$$

where k₁ is the rate constant of VOC oxidation by *OH; k₂eff is the effective rate constant of NO oxidation by peroxy radicals (chain propagation and -termination reactions in the production of O₃). The values of the rate constants and other parameters e.g. concentrations of peroxy radicals and the hydroxyl radical used as input parameters to solve the equation above; can be found in Murphy et al. (2006) and Geddes et al. (2009).

47

3. Results and discussion

3.1 Temporal variation of O₃

- 5 In Fig. 2, the monthly and diurnal variations for O_3 concentrations measured at the four sites in this study are presented (time series plotted in Fig. A2). Although there is some variability between the sites, monthly O_3 concentrations show a well-defined seasonal variation at all four sites, with maximum concentrations occurring in late winter and spring (August to November), which is expected for the South African interior as indicated above and previously reported (Zunckel et al., 2004; Diab et al., 2004). In Fig., A3 monthly averages of meteorological parameters and total 10 monthly rainfall for Welgegund are presented to indicate typical seasonal meteorological patterns for continental South Africa. These O_3 peaks in continental South Africa, generally points to two major contributors of O₃ precursors, i.e. open biomass burning (wild fires) (Vakkari et al., 2014), and increased low-level anthropogenic emissions, e.g. increased household combustion for space heating and cooking (Oltmans et al., 2013; Lourens et al., 2011). In addition to the seasonal 15 patterns of O_3 precursor species, during the dry winter months, synoptic scale recirculation is more predominant and inversion layers are more pronounced, while precipitation is minimal (e.g. Tyson and Preston-Whyte, 2000). These changes in meteorology results in the build-up of precursor species that reaches a maximum in August/September when photochemical activity 20 starts to increase. The diurnal concentration profiles of O_3 at the four locations follow the typical photochemical cycle, i.e. increasing during daytime in response to maximum photochemical production and decreasing during the night-time due to titration with NO. O3 levels peaked from midday to afternoon, with a maximum at approximately 15:00 (LT, UTC+2). From Fig. 2, it is also evident that night-time titration of O_3 at Marikana is more pronounced as indicated by the largest difference between daytime and night-time O_3 concentrations in comparison to the other sites, 25
- especially, compared to Elandsfontein where night-time concentrations of O_3 remain relatively high in winter.

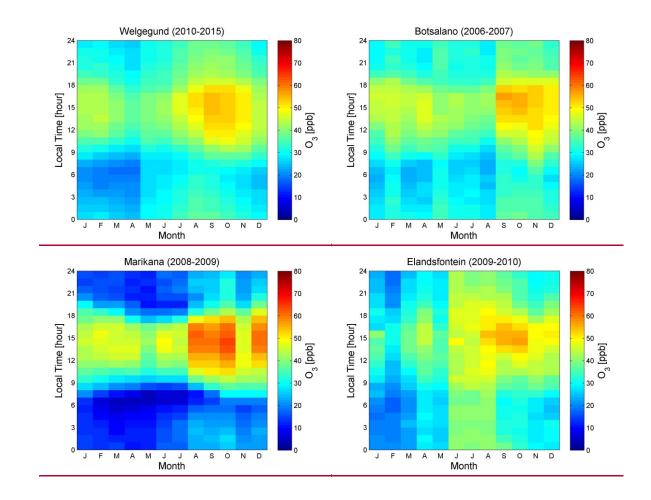
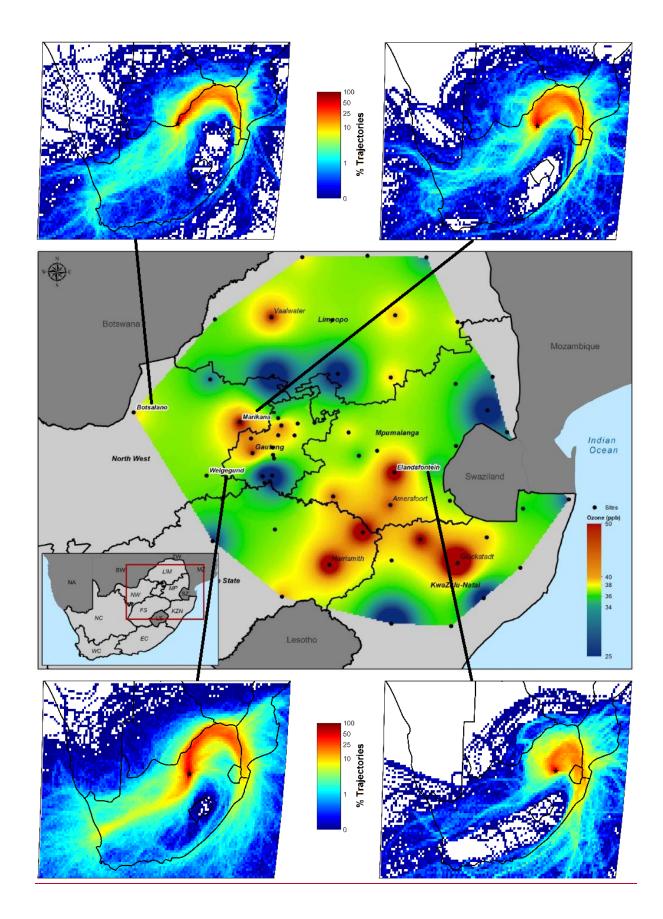


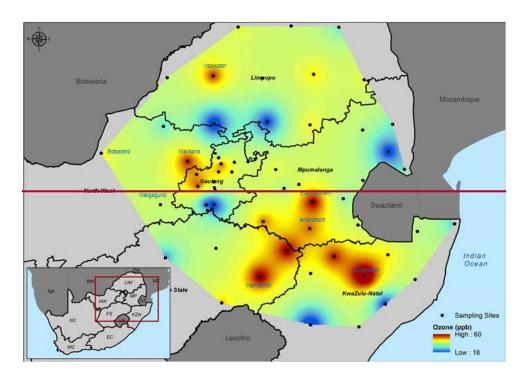
Fig. 2. Seasonal and diurnal variation of median O₃ concentrations at Welgegund, Botsalano,
 Marikana and Elandsfontein. The O₃ measurement periods varied among sites, which combined spanned a period from July 2006 to December 2015.

3.1 Contextualisation of O₃ levels


10

5

3.21.1 Spatial distribution of O₃ in continental South Africa


In order to contextualise the O₃ concentrations measured at the four sites in this study and to obtain a representative spatial coverage of continental South Africa, O₃ data from an additional
 54 ambient monitoring sites was selected. This included O₃ measurements from 18 routine monitoring stations measurements (SAAQIS) for the period Jan 2012 – Dec 2014 (downloaded from the JOIN web interface https://join.fz-juelich.de (Schultz et al., 2017)) and 36 passive

sampling sites located in the north-eastern interior of South Africa where monthly O₃ concentrations were determined for two years from 2006 to 2007 (Josipovic, 2009). Spatial analysis were conducted with a geographical information system mapping tool (ArcGIS software), which used ordinary kriging to interpolate the O₃ concentrations measured at the 58 sites in order 5 to build the spatial distribution. The interpolation method involved making an 80/20% split of the data (80% for model development, 20% for evaluation) where 20% was used to calculate the root mean squared error (RSME = 0.2804331). Optimal model parameters were selected using an iterative process and evaluated on the basis of the best performance statistics obtained (reported in the ArcGIS kriging output), with particular emphasis on minimising the RSME. The extent of area was 23.00154974 (top), -29.03070026 (bottom), 25.74238974 (left) and 32.85246366 (right). 10 Fig. ure 23 depicts the spatial pattern of mean surface O_3 concentrations over continental South Africa during springtime (S-O-N), when O_3 is usually at a maximum as indicated above. Also presented in Fig. 3, are 96-hour overlay back trajectory maps for the four main study sites, over the corresponding springtime periods. The mean O₃ concentration over continental South Africa ranged from 20 ppb to 60 ppb during spring. From Fig. 3, it can be seen that O₃ concentrations 15 at the industrial sites Marikana and Elandsfontein were higher than O₃ levels at Botsalano and Welgegund. As mentioned previously, Elandsfontein is located within the industrializsed Mpumalanga Highveld with numerous large point sources of O3 precursor species. It is also evident from Fig. 3 that rural measurement sites downwind from Elandsfontein, such as 20 Amersfoort, Harrismith and Glückstadt had significantly higher O₃ concentrations, which can be attributed to the formation of O_3 during the transport of precursor species from source regions. Lourens et al. (2011) indicated that higher O₃ concentrations were associated with sites positioned in more rural areas in the Mpumalanga Highveld. Venter et al. (2012) attributed high O3 concentrations at Marikana, which exceeded South African standard limits on a number of 25 occasions, to the influence of local household combustion for cooking and space heating, as well as to regional air masses with high O_3 precursor concentrations. Higher O_3 concentrations were also measured in the north-western parts of Gauteng, at sites situated within close proximity ofto the Johannesburg-Pretoria megacity, while the rural Vaalwater site in the north also has significantly higher O₃ levels. From Fig. 3, it is evident that O₃ can be considered a regional problem with O₃ concentrations being relatively high across continental South Africa during spring. 30 Fig. 3 also clearly indicates that the four research sites where surface O3 was assessed in this study are representative of continental South Africa.

Fig. 2. The main (central) map) indicating spatial distribution of mean surface O₃ levels during springtime over the north-eastern interior of southern Africa ranging between 23.00° S and 29.03 ° S, and 25.74° E and 32.85° E. The data for all sites werewas averaged for years when the ENSO cycle was not present (by examining SST anomalies in the Niño 3.4 region). Black dots indicate the sampling sites. The smaller maps (top and bottom) indicate 96-hour overlay back trajectory maps for the four main study sites, over the corresponding springtime periods.

5

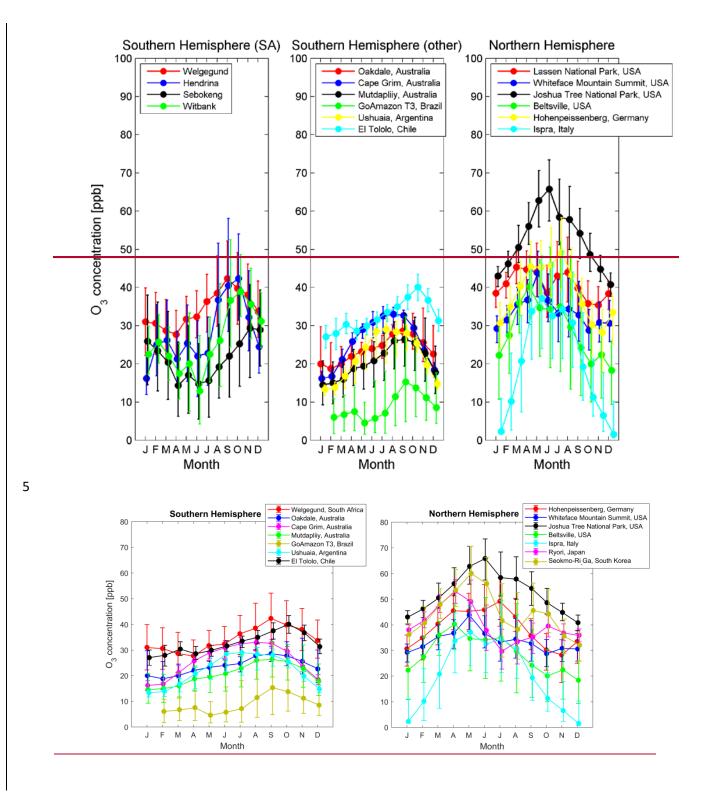
- 10 Fig. 2. Spatial distribution map of mean surface O₃ levels during springtime over the northeastern interior of southern Africa ranging between 23.00^{-o} S and 29.03^{-o} S, and 25.74^{-o} E and 32.85^{-o} E. The data for all sites were averaged for years when the ENSO cycle was not present (by examining SST anomalies in the Niño 3.4 region). Black dots indicate the sampling sites.
- 15 The mean O₃ concentration over continental South Africa ranged from 20 ppb to 60 ppb during spring. From Fig. 2 it can be seen that O₃ concentrations at the industrial sites Marikana and Elandsfontein were higher than O₃ levels at Botsalano and Marikana. As mentioned previously, Elandsfontein is located within the industrialized Mpumalanga Highveld with numerous large point sources of O₃ precursor species. It is also evident from Fig. 2 that rural measurement sites
 20 downwind from Elandsfontein, such as Amersfoort, Harrismith and Glückstadt had significantly higher O₃ concentrations, which can be attributed to the formation of O₃ during transport of

precursor species from source regions. Lourens et al. (2011) indicated that higher O_3 concentrations were associated with sites positioned in more rural areas in the Mpumalanga Highveld. Venter et al. (2012) attributed high O_3 concentrations at Marikana, which exceeded South African standard limits on a number of occasions, to the influence of local household combustion for cooking and space heating, as well as to regional air masses with high O_3

- precursor concentrations. Higher O₃ concentrations were also measured in the north-western parts of Gauteng at sites situated within close proximity of the Johannesburg-Pretoria megacity, while the rural Vaalwater site in the north also has significantly higher O₃ levels. From Fig. 2 it is evident that O₃ can be considered a regional problem with O₃ concentrations being higher than 40 ppb across continental South Africa during spring. Figure 2 also clearly indicates that the four
- research sites where surface O₃ was assessed in this study are representative of continental South Africa.

3.<u>3</u>1.2 Comparison with international sites

15


20

5

In an effort to contextualise O₃ concentrations measured at South African sites, tIn an effort to <u>contextualise the O₃ levels measured in this study, t</u>he monthly O₃ concentrations measured in <u>South Africaat Welgegund</u> were compared to monthly O₃ levels measured at monitoring sites in other parts of the world (downloaded from the JOIN web interface <u>https://join.fz-juelich.de</u> (Schultz et al., 2017)) as indicated in Fig. <u>43</u>. <u>Welgegund was used in the comparison since it had the most</u> extensive data record, while T the measurement time period considered was from May 2010 to

- December 2014. Of the four sites assessed in this paper, only Welgegund was used in the comparison since it had the most extensive data record, while three other South African routine monitoring stations influenced by local and regional pollution sources were included, i.e. Hendrina
- 25 (rural), Sebokeng (industrial, low-income housing) and Witbank (industrial) (SAAQIS). It is evident from Fig. 3 that the rural sites with few local sources (Welgegund, Hendrina) experience higher O₃ levels than Witbank and Sebokeng, which are situated in highly industrialised and densely populated urban areas. The seasonal O₃ cycles at Hendrina, Witbank and Sebokeng are similar to that observed at Welgegund. The seasonal O₃ cycles observed at other sites in the Southern
- 30 Hemisphere are comparable to the seasonal cycles at the South African sitesWelgegund, with slight variations in the time of year when O₃ peaks as indicated in Fig. <u>43</u>. Cape Grim, Australia; GoAmazon T3 Manancapuru, Brazil; Ushuaia, Argentina; and El Tololo, Chile are regional background GAW (Global Atmosphere Watch) stations with O₃ levels lower than the South African sites. However, the O₃ concentrations at El Tololo, Chile are comparable to Welgegund. Oakdale,

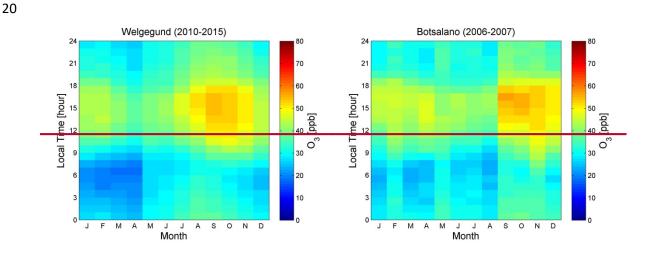
Australia and Mutdapliiy, Australia are semi-rural and rural locations, which are influenced by urban and industrial pollution sources, which also had lower O₃ concentrations compared to the South African sites Welgegund.

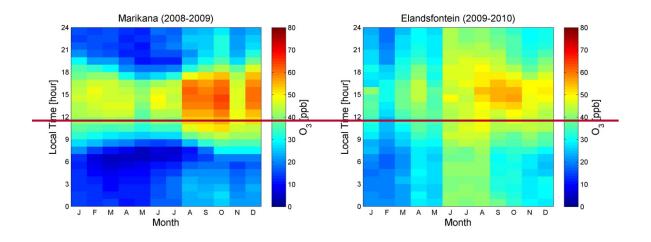
Fig. <u>43</u>. Seasonal cycle of O_3 at rural sites in other parts of the world. The <u>black</u> dots indicate monthly median (50th percentile) and the upper and lower limits the 25th and 75th percentile, respectively for monthly O_3 concentrations. The data is averaged from May 2010 to December 2014, except in a few instances where 2014 data was not available.

5

The Northern Hemispheric O₃ peak over mid-latitude regions is similar to seasonal patterns in the Southern Hemisphere where a springtime O₃ maximum is observed (e.g.i.e. Whiteface Mountain Summit, Beltsville, Ispra, Ryori and Seokmo-Ri Ga). althoughHowever, there are other sites in the Northern Hemisphere where a summer maximum is more evident (Vingarzan, 2004), such asi.e. Joshua Tree and and Beltsville Hohenpeissenberg. The discernible difference between the hemispheres is that the spring maximum in the Southern Hemisphere refers to maximum O₃ concentrations in late winter and early spring, whilst in the Northern Hemisphere, it refers to a late spring and early summer O₃ maximum (Cooper et al., 2014). The spring maximum in the Northern Hemisphere is associated with stratospheric intrusions (Zhang et al., 2014; Parrish et al., 2013), while the summer maximum is associated with photochemical O₃ production from anthropogenic emissions of O₃ precursors being at its highest (Logan, 1985; Chevalier et al., 2007). –Maximum O₃ concentrations at background sites in the United States and Europe are

similar to values at the South African sites Welgegund in spring- with the exception of The exceptions are Lassen National Park and Joshua Tree National Park in the United States, which,


- 20 which have that had higher values significantly higher O₃ levels. This is than the Southern Hemispheric sites most -likely due its high elevation and deep boundary layer (~4 km asl) during spring and summer allowing free tropospheric O₃ to be more effectively mixed down to the surface (Cooper et al., 2014). Note that Lassen National Park is at a slightly higher altitude than the South African sites and, generally, Maximum O₃ levels at the two sites in East Asia (Ryori and Seokmo-
- Ri Ga) were also generally higher than at Welgegund, especially at Seokmo-Ri Ga.O₃ concentrations increase with increasing elevation (Jaffe and Ray, 2007; Burley and Bytnerowicz, 2011) as is evident. Joshua Tree National Park shows the highest O₃ levels from all sites, reaching monthly means between 60 and 70 ppb during summer, most likely due to its high elevation and deep boundary layer (~4 km asl) during spring and summer allowing free tropospheric O₃ to be
 more effectively mixed down to the surface (Cooper et al., 2014). Similarly in Europe, there is either a spring maximum as observed at Hohenpeissenberg or a summer maximum as seen at Ispra. The latter has similar O₃ levels during spring and summer as the South African sites, but decreases significantly during the rest of the year. The discernible difference between the hemispheres is that the spring maximum in the Southern Hemisphere refers to maximum O₃


concentrations in late winter and early spring, whilst in the Northern Hemisphere it refers to a late spring and early summer O₃-maximum (Cooper et al., 2014).

3.2 Seasonal and diurnal variation of O₃

5

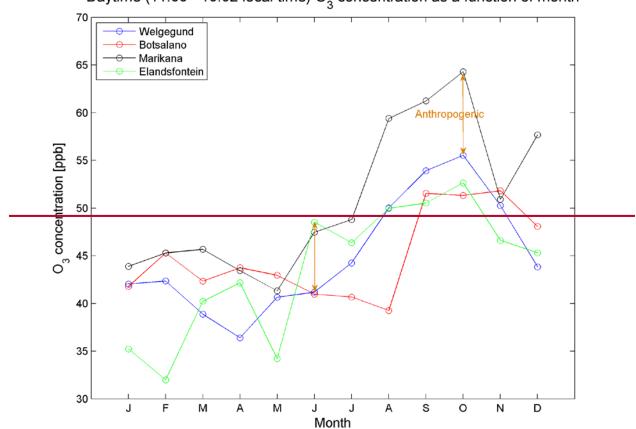
In Fig. 4 the monthly and diurnal variation for O₃ concentrations measured at the four research sites in this study are presented. Although there is some variability between the sites, monthly O₃ concentrations show a well-defined seasonal variation at all four sites, with maximum concentrations occurring in late winter and spring (August-November). This observed late winter and spring O₃ peak are expected for the South African interior as previously reported (Zunckel et 10 al., 2004; Diab et al., 2004; Combrink et al., 1995). These O₃ peaks in continental South Africa. generally points to two major contributors of O₃ precursors, i.e. open biomass burning (wild fires) (Fishman and Larsen, 1987; Vakkari et al., 2014) and increased low-level anthropogenic emissions (Oltmans et al., 2013; Lourens et al., 2011). In addition, not only are some O₃ precursor 15 sources seasonal, but during the dry winter months synoptic scale recirculation is more predominant and inversion layers are more pronounced, while precipitation is minimal (e.g. Tyson and Preston-Whyte, 2000). O₃ concentrations increase in the dry period due to the build-up of precursor species and reach a maximum in August/September when photochemical activity starts to increase. The influences of sources of O₃-precursors will be explored in Section 3.3.

Fig. 4. Seasonal and diurnal variation of median O₃ concentrations at Welgegund, Botsalano, Marikana and Elandsfontein. The O₃ measurement periods varied among sites, which combined spanned a period from July 2006 to December 2015.

5

The diurnal concentration profiles of O₃ at the four locations follow the photochemical cycle, i.e. decreasing during the nighttime and increasing during daytime. O₃ peaked from midday to afternoon, with a maximum at approximately 15:00 (LT, UTC+2), in response to maximum photochemical production (Seinfeld and Pandis, 1998; Crutzen et al., 1999). In the absence of solar radiation during nighttime, photochemical production of O₃ ceases and titration of O₃ occurs due to reaction with NO resulting in higher NO₂-(Eq. (3)) (Dueñas et al., 2002). In addition, O₃ is also removed through dry deposition at night. The lower O₃ levels are maintained throughout the night and early morning hours with a minimum just before sunrise at approximately 6:00 LT. After sunrise, the inversion layer gradually breaks up and the O₃ concentrations steadily start to increase due to the downward mixing of the residual layer and increasing sunshine. O₃ formation starts later in the day (around 7:00 LT) in autumn and winter due to the shift in local time of sunrise. From Fig. 4 is also evident that nighttime titration of O₃ at Marikana is more pronounced as indicated by the largest difference between daytime and nighttime O₃ concentrations in

20 comparison to the other sites, especially, compared to Elandsfontein where nighttime concentrations of O₃ remain relatively high in winter.


3.43 Sources contributing to surface O₃ in continental South Africa

As indicated above (sSection 3.1), the O₃ peaks in continental South Africa usually reflects increased concentrations of precursor species from anthropogenic sources during winter, as well

as the occurrence of regional open biomass burning in late winter and early spring. In addition, stratospheric O_3 intrusions during the spring (Lefohn et al., 2014) could also partially contribute to increased surface O_3 levels.

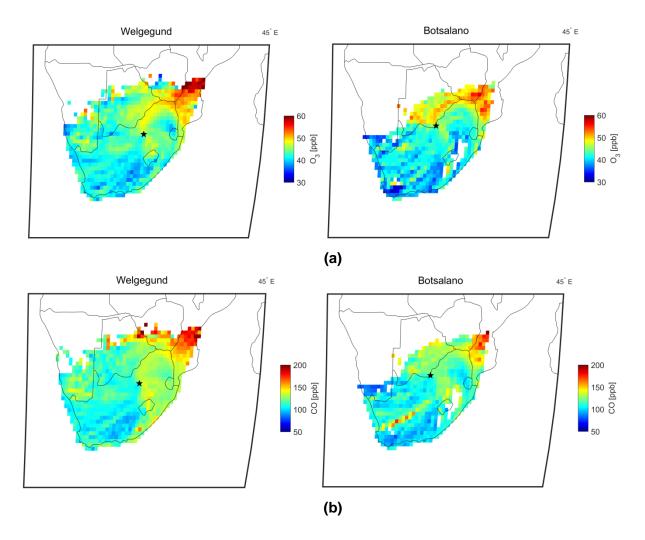
5 **3.34**.1 Anthropogenic and open biomass burning emissions

A ccomparison of the O₃ seasonal cycles at background and polluted locations is useful for source attribution. In Fig. 5 the monthly average daytime (11:00-17:00 LT) O3 concentrations at the four sites are compared. Daytime measurements were used, since the boundary layer height was high and well-mixed, while nighttime surface deposition did not occur (Cooper et al., 2012). 10 From Fig. 3,5 it is evident that daytime O_3 levels peaked at Elandsfontein, Marikana and Welgegund during late winter and spring (August to October), while O₃ levels at Botsalano peaked later in the year during spring (September to November). Therefore This suggests that Elandsfontein, Marikana and Welgegund were influenced by increased levels of O₃ precursors from anthropogenic and open biomass burning emissions (i.e. NO_x and CO indicated in Fig. A43 15 and Fig. A54, respectively - time series plotted in Fig. A7 and A8), while O3 levels at Botsalano were predominantly influenced by regional open biomass burning (Fig. A54). As mentioned previously, during winter an increase in concentration atmospheric pollutants occurs in continental South Africa due to increased household combustion for space heating, as well as the prevailing 20 meteorological conditions, i.e. more pronounced anticyclonic recirculation and inversion layers causing decreased vertical mixing. High O₃ levels in spring can also be related to increased local photochemical production of O₃ in conjunction with increased concentrations of precursors (Atlas et al., 2003; Carvalho et al., 2010). Although Welgegund and Botsalano are both background sites, Botsalano is more removed from anthropogenic source regions than Welgegund is (sSection 2.1.3), which is therefore not directly influenced by the increased concentrations of O_3 25 precursor species associated with anthropogenic emissions during winter. Daytime O_3 concentrations were the highest at Marikana throughout most of the year, which indicates the influence of local and regional sources of O_3 precursors at this site (Venter et al., 2012). In addition, a larger difference between O3 concentrations in summer and winter/spring is observed at Marikana compared to Welgegund and Botsalano, which can be attributed to local 30 anthropogenic emissions (mainly household combustion) of O₃ precursors at Marikana.

Daytime (11:00 - 16:52 local time) O₃ concentration as a function of month

Fig. 5. Monthly mean daytime (11:00 to 17:00 LT) O₃ levels at the four continental sites in South Africa. The O₃ measurement periods varied among sites, which combined spanned a period from July 2006 to December 2015.

5


10

15

 O_3 concentrations at Elandsfontein were lower compared to the other three sites throughout the year, with the exception of the winter months (June to August). Although major point sources impacting Elandsfontein are important sources of O_3 -precursors (e.g. NO_x emissions from coal-fired power stations), tThese major point sources at Elandsfontein include NO_x emissions from coal-fired power stations and are characteriszed by high-stack emissions, which are emitted above the low-level night_time inversion layers. During day_time_ downwards mixing of these emitted species occurs, which results in daytime peaks of NO_x (as indicated in Fig. A45 and by Collett et al., 2010) and subsequent O₃ titration. In contrast, Venter et al. (2012) indicated that_ at Marikana_ low-level emissions (below the nighttime inversion layer) associated with household combustion for space heating and cooking was-were a significant source of O₃ precursor species, i.e. NO_x and CO. The diurnal pattern of NO_x and CO (Fig. A34 and Fig. A54, respectively) at

Marikana was characterised by bimodal peaks during the morning and evening, which resulted in increased O₃ concentrations during daytime and night_time titration of O₃, especially during winter. Therefore, the observed differences in night_time titration at Marikana and Elandsfontein can be attributed to different sources of O₃ precursors, i.e. mainly low-level emissions (household combustion) at Marikana (Venter et al., 2012) compared to predominantly high-stack emissions

- 5 combustion) at Marikana (Venter et al., 2012) compared to predominantly high-stack emissions at Elandsfontein (Collette- et al., 2010). The higher O₃ concentrations at Elandsfontein during winter are most_-likely attributed to the regional increase in O₃ precursors.
- The influence of anthropogenic emissions on O₃ concentrations can also be illustrated by
 comparison of the monthly O₃ levels measured at the rural background and an industrial site.
 Comparison between O₃ concentrations at Welgegund and Marikana indicated small differences between the O₃ levels during the summer (January, February) and autumn (March to May) months. During June a ~10 ppb monthly O₃ concentration difference is observed, which increases to ~15 ppb during October. This baseline shift observed between Welgegund and Marikana can
 be attributed to local anthropogenic emissions (mainly household combustion) of O₃ precursors at Marikana. The baseline shift is smaller in winter due to increased O₃ titration associated with
 - increased NO_x emissions.
- The spring maximum O₃ concentrations can be attributed to increases in widespread regional biomass burning in this region during this period (Vakkari et al., 2014; Lourens et al., 2011). Biomass burning has strong seasonality in southern Africa, extending from June to September (Galanter et al., 2000), and is an important source of O₃ and its precursors during the dry season. In an effort to elucidate the influence of regional biomass burning on O₃ concentrations in continental South Africa, source area maps of O₃ were compiled by relating O₃ concentrations measured with air mass history, which are presented in Fig. 65 (a). Source area maps were only generated for the background sites Welgegund and Botsalano, since local sources at the industrial sites Elandsfontein and Marikana would obscure the influence of regional biomass burning. In addition, maps of spatial distribution of fires during 2007, 2010 and 2015 were compiled with the MODIS collection 5 burnt area product (Roy et al., 2008; Roy et al., 2005; Roy et al., 2002), which are presented in Fig. 67.

Fig. <u>56</u>. Source area maps of (a) O_3 concentrations and (b) CO concentrations for the background sites Welgegund and Botsalano. The black star represents the measurement site and the colour of each pixel represents the mean concentration of the respective gas species. At least ten observations per pixel are required.

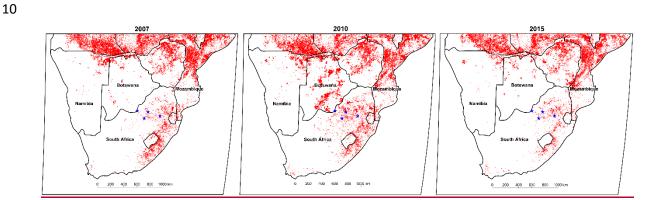
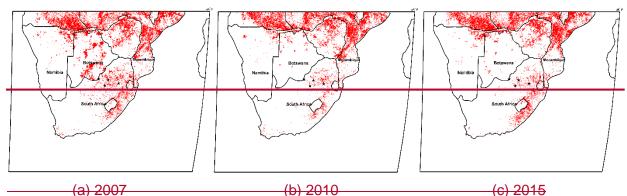
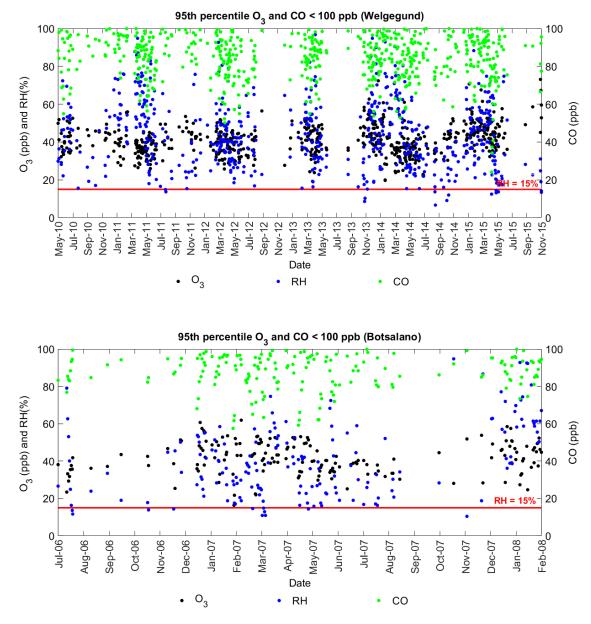
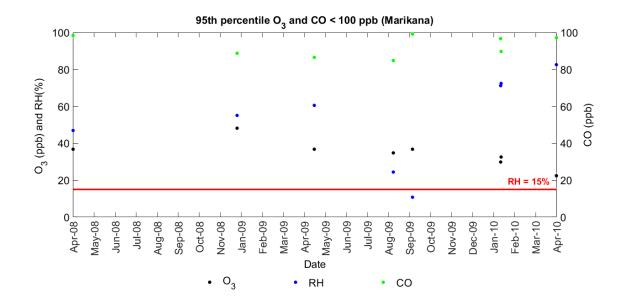



Fig. 7.Spatial distribution of fires in 2007, 2010 and 2015 from MODIS burnt area product.Blue stars indicate (from left to right) Botsalano, Welgegund, Marikana and Elandsfontein.

5 **Fig. 7.** Spatial distribution of fires in 2007, 2010 and 2015 from MODIS burnt area product. Black stars indicate (from left to right) Botsalano, Welgegund, Marikana and Elandsfontein.


The highest O₃ concentrations measured at Welgegund and Marikana were associated with air masses passing over a sector north to north-east of these sites, i.e. southern and central
Mozambique, southern Zimbabwe and south-eastern Botswana. O₃ concentrations associated with air masses passing over central and southern Mozambique were particularly high. In addition to O₃ source maps, CO source maps were also compiled for Welgegund and Botsalano, as indicated in Fig. 65 (b). It is evident that the CO source maps indicated a similar pattern than that observed for O₃ with the highest CO concentrations corresponding with the same regions where
O₃ levels are the highest. From the fire maps in Fig. 6.7 it can be observed that a large number of fires occur in the sector, associated with higher O₃ and CO concentrations, with the fire maps

- indicating, especially, <u>a</u> high fire frequency occurring in central Mozambique. During 2007, more fires occurred in Botswana compared to the other two years, which is also reflected in the higher O_3 levels measured at Botsalano during that year for air masses passing over this region. Open
- 20 biomass burning is known to emit more CO than NO_x, while CO also has a relatively long atmospheric lifetime (1 to 2 months, Kanakidou and Crutzen, 1999) compared to NO_x (6 to 24 hours, Beirle et al., 2003) and VOCs (few hours to a few weeks, Kanakidou and Crutzen, 1999) emitted from open biomass burning. Enhanced CO concentrations have been used previously to characterise the dispersion of biomass burning emissions over southern Africa (Mafusire et al., 2003)
- 25 2016). Therefore, the regional transport of CO and VOCs (and NO_x and VOCs to a lesser extent) associated with biomass burning occurring from June to September in southern Africa can be considered an important source of surface O_3 in continental South Africa (Fig. A<u>54</u>).

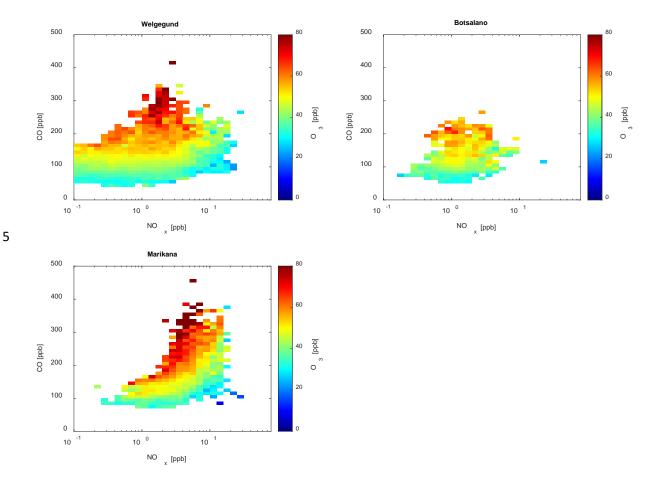

3.34.2 Stratospheric O₃

Elevated levels of tropospheric O_3 may also be caused by stratospheric intrusion of O_3 -rich air (Zhang et al., 2014; Parrish et al., 2013; Lin et al., 2012), especially on certain days during late 5 winter and spring when O_3 is the highest on the South African Highveld (Thompson et al., 2014). However, the importance of the stratospheric source over continental South Africa has not yet been specifically addressed. The Aassessment of meteorological fields and air quality data at high-elevation sites is required to determine the downward transport of stratospheric O₃. Alternatively, stratospheric O₃ intrusions can be estimated through concurrent in-situ 10 measurements of ground-level O_3 , CO and humidity, since stratospheric intrusions of O_3 into the troposphere are characterised by elevated levels of O₃, high potential vorticity, low levels of CO and low water vapour (Stauffer et al., 2017; Thompson et al., 2015; Thompson et al., 2014). Thompson et al. (2015) defined low CO as 80 to 110 ppby, whilst-while low relative humidity (RH) is considered <15 %. In Fig. 7.8 the 95th percentile O₃ levels (indicative of "high O₃") corresponding to low daily average CO concentrations (< 100 ppb) are presented together with the daily average 15 RH. Only daytime data from 07:00-to 18:00 (LT) were was considered in order to exclude the influence of night-time titration. From Fig. 7,8 it is evident that very few days complied with the criteria indicative of stratospheric O₃ intrusion, i.e. high O₃, low CO and low RH, which indicates a very small influence of stratospheric intrusion on surface O_3 levels. However, it must be noted 20 that the attempt in this study to related surface O₃ to stratospheric intrusions is a simplified qualitative assessment and more quantitative detection methods should be applied to understand

the influence of stratospheric intrusions on surface O₃ for this region.

Fig. <u>78</u>. Simultaneous measurements of O_3 (daily 95th percentile), CO (daily average ppb) and RH (daily average) from 07:00 to 18:00 LT at Welgegund, Botsalano and Marikana.

10


5 3.54 Insights into the O₃ production regime

In the absence of VOC data, t<u>T</u>he relationship between O₃, NO_x and CO was used as an indicator to infer the O₃ production regime at Welgegund, Botsalano and Marikana (no CO measurements were conducted at Elandsfontein as indicated above), since no continuous VOC measurements were conducted at each of these sites. However, as indicated in Section 2.4, A<u>a</u> two-year VOC dataset compiled during two sampling campaigns was available for Welgegund (Jaars et al., 2016; Jaars et al., 2014), which was used to calculate the instantaneous production rate of O₃ as a function of NO₂ levels and VOC reactivity (Geddes et al., 2009; Murphy et al., 2006).

15 3.45.1 The relationship between NO_x, CO and O₃

In Fig. 8.9 the correlations between O_3 , NO_x and CO concentrations at Welgegund, Botsalano and Marikana are presented, which clearly indicates higher O_3 concentrations associated with increased CO levels, while O_3 levels remain relatively constant (or decrease) with increasing NO_x .

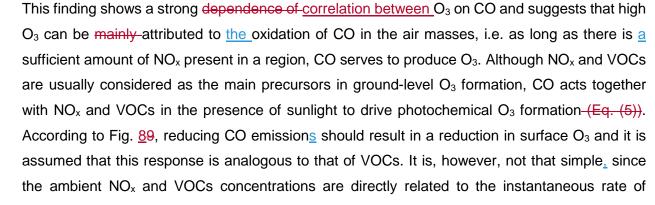

The highest O₃ concentrations occur for NO_x levels below 10 ppb, since the equilibrium between photochemical production of O₃ and chemical removal of O₃ shifts towards the former, i.e. greater O₃ formation. In general, there seems to exist a marginal negative correlation between O₃ and NO_x (Fig. A<u>6</u>5) at all four sites, which is a reflection of the photochemical production of O₃ from NO_2 (Eq. (1) and Eq. (2)) and the destruction of O_3 through NO_x titration (Eq. (3)). These correlations between NO_x , CO and O_3 indicate that O_3 production in continental South Africa is limited by CO (and VOCs) concentrations, i.e. VOC(CO)-limited.

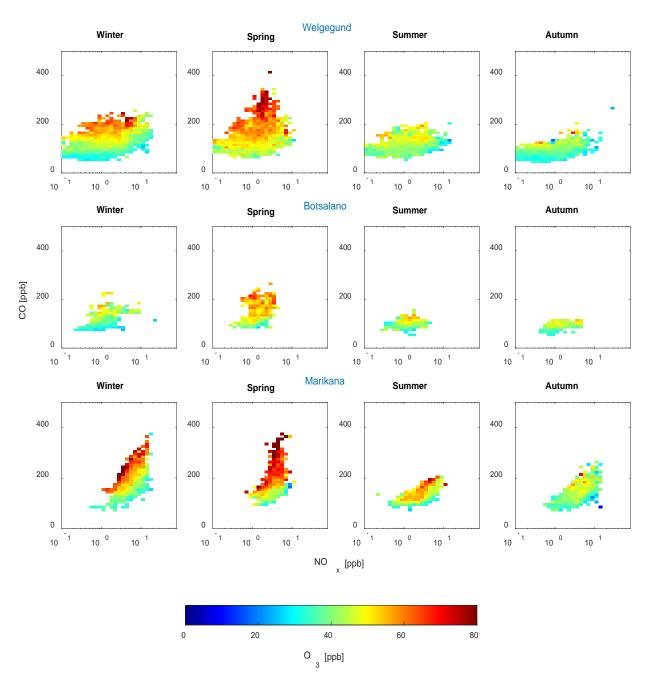
Fig. <u>89</u>. Mean O_3 concentration averaged for NO_x and CO bins. Measurements were only taken <u>during period</u> 11:00 to -17:00 LT when photochemical production of O_3 is at a maximum.

10

15

production of O_3 and not necessarily to the ambient O_3 concentration at a location, which is the result of chemistry, deposition and transport that <u>has_have_occurred</u> over several hours or a few days (Sillman, 1999). Notwithstanding the various factors contributing to increased surface O_3 levels, the correlation between ambient CO and O_3 is, especially, relevant given the low reactivity

5

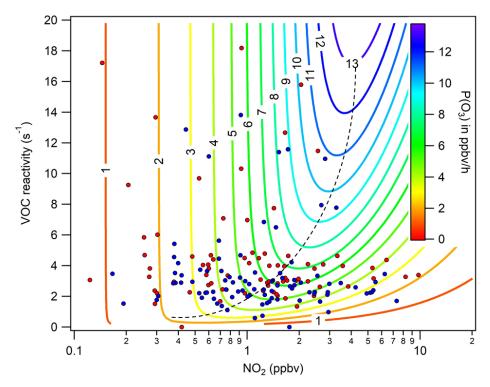

of CO with respect to •OH radicals compared to most VOCs, which implies that the oxidation of CO probably takes place over a timescale of several days. It seems that the role of CO is of major importance in tropospheric chemistry in this region, where sufficient NO_x is present across continental South Africa and biogenic VOCs are relatively less abundant (Jaars et al., 2016), to fuel the O_3 formation process.

10

3.4<u>5</u>.2 Seasonal change in O₃-precursors relationship

Seasonal changes in the relationship between O₃ and precursor species can be indicative of different sources of precursor species during different times of the year. In Fig. 409, the 15 correlations between O₃ levels with NO_x and CO are presented for the different seasons, which indicate seasonal changes in the dependence of elevated O_3 concentrations on these precursors. The very high CO concentrations relative to NO_{x-1} i.e. high CO to NO_x ratios, are associated with the highest O_3 concentrations, which is are most pronounced (highest CO/NO_x ratios) during winter and spring. This indicates that the winter and spring O_3 maximum is primarily driven by increased HO₂*peroxy radical production from CO and VOCs (Eq. (5)). The seasonal maximum 20 in O₃ concentration coincides with the maximum CO concentration at the background sites, whilst while the O_3 peak occurs just after June/July when CO peaked at the polluted site Marikana (Fig. A54). This observed seasonality in O_3 production signifies the importance of of CO to O_3 formation in continental South Africa, as well as that CO-precursor species emissions from open biomass 25 burning during winter and spring can be considered to be a major source of O_3 -in this region, while household combustion for space heating and cooking is also an important source of CO during winterO₃ precursors, as previously discussed. The strong diurnal CO concentration patterns observed during winter at Marikana (Fig. A54) substantiate the influence of household combustion on CO levels as indicated by Venter et al. (2012).

30


Fig. <u>9</u>10. Seasonal plots of the relationship between O_3 , NO_x and CO at Welgegund, Botsalano and Marikana.

5 3.54.3 O₃ production rate

In Fig. 10, $P(O_3)$ as a function of VOC reactivity calculated from the available VOC dataset for Welgegund (Section 2.4) and NO_2 concentrations is presented. O_3 production at Welgegund during two field campaigns, specifically at 11:00 LT, werewas found to range between 0 and 10

ppbv h⁻¹. The average P(O₃) over the 2011 to 2012 and the 2014 to 2015 campaigns combined were 3.0 ± 1.9 ppbv h⁻¹ and 3.2 ± 3.0 ppbv h⁻¹, respectively. The dashed black line in Fig. 10, called the ridge line, separates the NO_x- and VOC-limited regimes. To the left of the ridge line is the NO_x-limited regime, when O₃ production increases with increasing NO_x concentrations. The

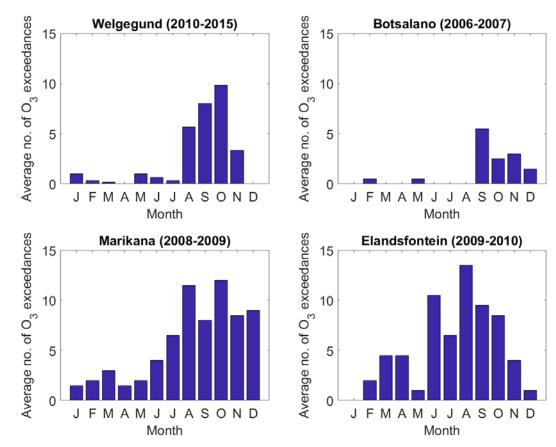
- 5 VOC-limited regime is to the right of the ridge line, when O₃ production decreases with increasing NO_x. According to the O₃ production plot presented, approximately 40% of the data is found in the VOC-limited regime area, which would support the regional O₃ analysis conducted for continental South Africa in this study. However, the O₃ production plot for Welgegund transitions between NO_x- and VOC-limited regimes, with Welgegund being in a NO_x-limited production
- 10 regime the majority of the time, especially when NO_x concentrations are very low (<1 ppb). As indicated in <u>s</u>Section 2.4, limitations to this analysis include limited VOC speciation data, as well as a single time-of-day grab sample. The O₃ production rates can therefore only be inferred at 11:00 am LT despite O₃ concentrations peaking during the afternoon at Welgegund. Therefore, clean background air O₃ production is most-likely NO_x-limited (Tiitta et al., 2014), while large parts
- 15 of the regional background of continental South Africa can be considered VOC-limited. A VOC dataset was available from two sampling campaigns conducted at Welgegund from 2014 to 2016 (Jaars et al., 2016), which was used to calculate VOC reactivity and P(O₃) as described in Section 2.4 at this site. The P(O₃) at Welgegund as a function of VOC reactivity and NO₂ concentrations is presented in Fig. 11. The dashed black line in Fig. 11, often called the ridge line, separates the
- 20 NO_x- and VOC-limited regimes. To the left of the ridge line is the NO_x-limited regime, i.e. O₃ concentrations decrease with decreasing NO_x and are insensitive to VOCs, while to the right of the ridge is the VOC-limited regime, i.e. O₃ concentrations decrease with decreasing VOCs and increase with decreasing NO_x. According to the O₃ production plot presented, at least 40% of the data is found in the VOC-limited regime area. However, the O₃ production plot for Welgegund
- 25 also indicates a NO_x-limited region at very low NO_x concentrations (<1 ppb). Therefore Welgegund transitions between NO_x- and VOC-limited regimes. This can be attributed to Welgegund being impacted by the major source regions in the north-eastern interior of South Africa, as well as a relatively clean background region (Tiitta et al., 2014). Therefore, for clean background air O₃ production is most-likely NO_x-limited, while large parts of the regional background of continental
- 30 South Africa can be considered VOC-limited.

Fig. 104. Contour plot of instantaneous O_3 production (P(O_3)) at Welgegund using daytime (11:00 LT) <u>grab sample surface</u> measurements of VOCs and NO₂ based on the model developed by Murphy et al. (2006). The blue dots represent the first campaign (2011-2012), and the red dots indicate the second campaign (2014-2015).

3.65 Implications for air quality management

3.<u>56</u>.1 Ozone exceedances

10


15

20

5

The South African National Ambient Air Quality Standard (NAAQS) for O₃ is an <u>8eight</u>-hour moving average limit of 61 ppbv with 11 exceedances allowed annually (Government Gazette Republic of South Africa, 2009). Fig<u>ure 112</u> shows the average number of days per month when this O₃ standard limit was exceeded at the four measurement sites. It is evident that the daily <u>8eight</u>-h-O₃-maximum concentrations regularly exceeded the NAAQS threshold for O₃ and the number of exceedances annually allowed at all the sites, including the most remote of the four sites, Botsalano. At the polluted locations of Marikana and Elandsfontein, the O₃ exceedances peak early on in the dry season (June onwards), <u>whilst_while</u> at the background locations of Welgegund and Botsalano, the highest numbers of exceedances occur later in the dry season (August to Nov<u>ember</u>). These relatively high numbers of O₃ exceedances at all the sites

(background and industrial) highlights the regional O_3 problem in South Africa, with background sites being impacted by the regional transport of O_3 precursors from anthropogenic and biomass burning source regions.

Fig. 1<u>1</u>2. Monthly number of exceedances of the daily 8-h-O₃-max (i.e. highest value of all available 8-hour moving averages in that day) above 61 ppbv at Welgegund, Botsalano, Marikana and Elandsfontein.

10

5

3.56.2 O3 control strategies

The inverse relationship between O₃ and NO_x at all four study sites (Fig. A5) is evidence that photochemical O₃ production is inhibited by high NO_x. In addition, the colour map of O₃
15 concentration as a function of NO_x and CO concentrations at Welgegund, Botsalano and Marikana (Fig. 9), shows that high O₃ depends strongly on high CO, while the contour plot of P(O₃) as a function of VOC reactivity and NO_x at Welgegund (Fig. 11) also indicated a relatively strong dependence on VOCs. Therefore, the As indicated above (sSections 3.4 and 3.5), O₃ formation in the regions where Welgegund, Botsalano and Marikana are located can be

considered VOC(CO)-limited, while the highly industrialised region with high NO_x emissions where - It can even be deducted that these sites are CO-limited, although this term "CO-limited" is not commonly used when referring to O₃ production regimes (Seinfeld and Pandis, 2006). In addition, since Elandsfontein_-is located in a highly industrialised region with high NO_x emission,

- 5 this area_-could also be considered VOC-limited.- Rural remote regions are generally considered to be NO_x-limited due to the availability of NO_x and the impact of BVOCs-and the availability of NO_x that limits photochemical O₃-formation (Sillman, 1999). However, Jaars et al. (2016) indicated that BVOC concentrations at a savannah-grassland were at least an order of magnitude lower compared to other regions in the world.- Therefore, very low BVOC concentrations, which together with high pathways and the world in the interiment of Occur and the interiment of Occur and the occur and the source of Occur and the occur and the occur and the world.- Therefore, very low BVOC concentrations are generally considered to other regions in the world.- Therefore, very low BVOC concentrations are solved.
- 10 with high anthropogenic emissions of NO_x in the interior of South Africa, result in VOC-limited conditions at background sites in continental South Africa and not only in industrialised areas. In addition, high CO and VOC emissions associated with biomass burning result in high O₃ production rates as indicated above.

15

Form the results and discussion presented above ilt is evident that reducing CO- and (as well as anthropogenic and biomass burning VOCs concentrations associated with anthropogenic emissions, e.g. household combustion, vehicular emissions and industries,) would be the most 20 efficient control strategy to reduce peak O₃ concentrations in the interior of South Africa. It is also imperative to consider the seasonal variation in the CO and VOC source strength -in managing O₃ pollution in continental southern Africa. Anthropogenic emissions of CO, which include emissions from increased household combustion for space heating and cooking during winter, as well as other low-level sources contributing to increased CO levels associated with the 25 concentration of pollutants during winter such as vehicular emissions, should be targeted to reduce CO emissions. It was also indicated in tThis study also revealed the significant contribution of biomass burning that open biomass burning is a significant source of to O₃ precursors in this region, which should also be considered when implementing O_3 control strategies. and it should therefore also be aimed to reduce the influence of regional biomass burning, which is a major source of CO (and VOC) emissions during late winter and early spring, on increased O₃ 30 concentrations. However, -since open biomass burning in southern Africa is of anthropogenic and natural origin, while O_3 concentrations in continental South Africa isare also influenced by the trans boundary transport of O_3 precursors from open biomass burning occurring in other countries in southern Africa (as indicated above), it is more difficult to control. Nevertheless, open biomass

burning caused by anthropogenic practices (e.g. crop residue, pasture maintenance fires, opening burning of garbage) can be addressed.

4. Conclusions

5

10

15

20

In this study continuous O₃-measurements were presented for four sites in the north-eastern interior in South Africa. A spatial distribution map of O3 levels in the interior of South Africa indicated Two of these sites, i.e. Welgegund and Botsalano are considered to be regional background sites, while the other two sites were in close proximity to anthropogenic sources, i.e. Marikana and Elandsfontein. Contextualisation of these four sites with other sites in the northeastern interior of South Africa, indicated that the sites in this study are representative of continental South African O₃-levels, while the regional problem of O₃ problem in continental South Africawas also shown, which was with O₃ concentrations being higher than 40 ppb at many of these sites. The regional problem of O₃ in continental South Africa was also signified by the regular exceedance of the 61 ppbv 8-hour moving average South African air quality standard limit at the four sites in this study - O3 levels were generally lower at other background sites in the Southern Hemisphere compared to the South African sites, while similar seasonal patterns were observed. The seasonal and diurnal O₃ patterns observed at the four sites in this study resembled typical trends for O₃ in continental South Africa, $\frac{1}{1.0}$, with O₃ concentrations peaking in late winter and early spring (cf. Zunckel et al., 2004), and while daytime O3 peaks associated corresponded withto increased photochemical production.

The seasonal O₃ trends observed in continental <u>South-southern</u> Africa <u>can_could</u> mainly be attributed to the seasonal changes in emissions of O₃ precursor species, <u>as well as and</u> changes in-local meteorological conditions <u>and synoptic scale circulation</u>. Increased O₃ concentrations in winter at Welgegund, Marikana and Elandsfontein <u>were indicative of reflected</u> increased emissions of O₃ precursors from household combustion for space heating and <u>the</u> the concentration trapping of low-level pollutants near the surface. Furthermore, seasonal and diurnal patterns of O₃ concentrations at Elandsfontein also reflected high-stack emissions associated with industries in the Mpumalanga Highveld, while temporal O₃ patterns at Marikana were indicative of low-level emissions of O₃ precursors. A spring maximum was observed at all the sites, which was attributed to increased regional <u>open</u> biomass burning during this time. Source area maps of O₃ indicated <u>s</u> ignificantly higher O₃ concentrations, which corresponded with increased CO concentrations, were associated with air masses passing over a region in southern Africa, where

a large number of open biomass burning occurred <u>from June to September</u>, i.e. southern and central Mozambique, southern Zimbabwe and south-eastern Botswana, while CO concentrations were also considerably higher in air masses passing over this region. These source maps indicated that the <u>Therefore</u>, the regional transport of CO associated with <u>open</u> biomass burning occurring from June to September in southern Africa iwas considered a significant source of

- 5 occurring from June to September in southern Africa iwas considered a significant source of surface O₃ in continental South South Africa. Furthermore, aA very small contribution from the stratospheric intrusion of O₃-rich air to surface O₃ levels measured at the four sites was indicated.
- In the absence of VOC data, tThe relationship between O₃, NO_x and CO at Welgegund, Botsalano and Marikana was investigated, which indicated a strong dependence of correlation between O₃ on CO, while O₃ levels remained relatively constant (or decreased) with increasing NO_x. Although NO_x and VOCs are usually considered as to be the main precursors in ground-level O₃ formation, CO can also acts together with NO_x and VOCs in the presence of sunlight to drive photochemical O₃ formation. In addition, tThe seasonal changes in the relationship between O₃ and precursors
- 15 species also reflected the seasonal changes in sources of precursors, i.e. higher CO emissions associated with increased household combustion in winter, and open biomass burning in late winter and spring. The calculation of the P(O₃) from a two-year VOC dataset at Welgegund, indicated that at least 40% of O₃ production occurred in the VOC-limited regime. These relationships between O₃ concentrations and P(O₃) with O₃ precursor species results indicated
- 20 that large parts of the regional background in continental South Africa can be considered COlimited or VOC-limited, which can be attributed to high anthropogenic emissions of NO_x in the interior of South Africathis region. It is, however, recommended that future studies should investigate more detailed relationships between NO_x, CO, VOCs and O₃ through photochemical modelling analysis, , while concurrent measurement of atmospheric VOCs and •OH would also increase-contribute to the better understanding of surface O₃ in this region.

In this paper, some new aspects on O₃ for the continental South African have been indicated, which must be taken into consideration when O₃ mitigation strategies are deployed. <u>Emissions of</u> O₃ precursor species associated with the concentrated location of industries in this area could be regulated, while These results help to identify the key sources and precursor species for O₃ formation, which also highlight the regional problem of O₃ pollution in southern Africa with notably high rural O₃ concentrations in areas far removed from pollution sources. It was indicated that CO and VOC emissions associated with household combustion and regional open biomass burning should also be targeted to reduce O₃ concentrations in the interior of South Africa. However, open biomass burning can also be of natural origin, while the influence of regional transport on O_3 precursors in continental South Africa was also evident. In general, the influence of long-range transport must be considered when designing O_3 control strategies. A contributing factor to O_3 exceedances observed in the north-eastern interior in South Africa is the concentrated location of

- 5 industries in this area, e.g. nine coal-fired power stations and a petrochemical plant located in this region. Emissions of O₃ precursor species could therefore be regulated in this region by enforcing mitigations strategies on these industries. However, eHowever, emissions of O₃ precursor species related to factors₁ such as regional biomass burning, as well as household combustion associated with poor socio-economic circumstances and long-range transport, provides a bigger aballance for regulators.
- 10 challenge for regulators.

Acknowledgements

of Excellence program (grant no. 272041).

References

The financial assistance of the National Research Foundation (NRF) towards this research is
hereby acknowledged. Opinions expressed and conclusions arrived at are those of the authors and are not necessarily to be attributed to the NRF. We thank the Tropospheric Ozone Assessment Report (TOAR) initiative for providing the surface ozone data used in this publication. The authors are also grateful to Eskom for supplying the Elandsfontein data. Thanks are also due to Dirk Cilliers from the NWU for the GIS assistance. V₇ Vakkari is a beneficiary of an AXA
Research Fund postdoctoral grant. This work was partly funded by the Academy of Finland Centre

5.

- Air Resources Laboratory: Gridded Meteorological Data Archives, available at: https://www.ready.noaa.gov/archives.php, 2017.
 - Atkinson, R.: Atmospheric chemistry of VOCs and NO_x, Atmospheric Environment, 34, 2063-2101, 2000.
 Atlas, E. L., Ridley, B. A., and Cantrell, C. A.: The Tropospheric Ozone Production about the Spring Equinox (TOPSE) Experiment: Introduction, Journal of Geophysical Research: Atmospheres, 108, n/a-n/a, doi:10.1029/2002JD003172, 2003.
- 30 Balashov, N. V., Thompson, A. M., Piketh, S. J., and Langerman, K. E.: Surface ozone variability and trends over the South African Highveld from 1990 to 2007, Journal of Geophysical Research: Atmospheres, 119, 4323-4342, doi:10.1002/2013JD020555, 2014.
 - Beirle, S., Platt, U., Wenig, M., and Wagner, T.: Weekly cycle of NO 2 by GOME measurements: A signature of anthropogenic sources, Atmospheric Chemistry and Physics, 3, 2225-2232, 2003.
- 35 Burley, J. D., and Bytnerowicz, A.: Surface ozone in the White Mountains of California, Atmospheric Environment, 45, 4591-4602, doi:http://dx.doi.org/10.1016/j.atmosenv.2011.05.062, 2011.
 - Carvalho, A., Monteiro, A., Ribeiro, I., Tchepel, O., Miranda, A. I., Borrego, C., Saavedra, S., Souto, J. A., and Casares, J. J.: High ozone levels in the northeast of Portugal: Analysis and characterization, Atmospheric Environment, 44, 1020-1031, doi:<u>http://dx.doi.org/10.1016/j.atmosenv.2009.12.020</u>, 2010.

Cazorla, M., and Brune, W. H.: Measurement of Ozone Production Sensor, Atmos. Meas. Tech., 3, 545-555, doi:10.5194/amt-3-545-2010, 2010.

Chevalier, A., Gheusi, F., Delmas, R., Ordóñez, C., Sarrat, C., Zbinden, R., Thouret, V., Athier, G., and Cousin, J. M.: Influence of altitude on ozone levels and variability in the lower troposphere: a ground-

based study for western Europe over the period 2001-2004, Atmos. Chem. Phys., 7, 4311-4326, doi:10.5194/acp-7-4311-2007, 2007.

5

50

- Collett, K. S., Piketh, S. J., and Ross, K. E.: An assessment of the atmospheric nitrogen budget on the South African Highveld, South African Journal of Science, doi:10.4102/sajs.v106i5/6.220, 2010.
- Combrink, J., Diab, R., Sokolic, F., and Brunke, E.: Relationship between surface, free tropospheric and total column ozone in two contrasting areas in South Africa, Atmospheric Environment, 29, 685-691, 1995.
 - Cooper, O. R., Gao, R. S., Tarasick, D., Leblanc, T., and Sweeney, C.: Long-term ozone trends at rural ozone monitoring sites across the United States, 1990–2010, Journal of Geophysical Research: Atmospheres, 117, 2012.
- 15 Cooper, O. R., Parrish, D., Ziemke, J., Balashov, N., Cupeiro, M., Galbally, I., Gilge, S., Horowitz, L., Jensen, N., and Lamarque, J.-F.: Global distribution and trends of tropospheric ozone: An observationbased review, Elementa: Science of the Anthropocene-Sci Anth, 2, 2014.
 - Crutzen, P. J., and Andreae, M. O.: Biomass Burning in the Tropics: Impact on Atmospheric Chemistry and Biogeochemical Cycles, Science, 250, 1669-1678, doi:10.1126/science.250.4988.1669, 1990.
- 20 Crutzen, P. J., Lawrence, M. G., and PÖSchl, U.: On the background photochemistry of tropospheric ozone, Tellus B, 51, 123-146, doi:10.1034/j.1600-0889.1999.00010.x, 1999.
 - Diab, R., Thompson, A., Mari, K., Ramsay, L., and Coetzee, G.: Tropospheric ozone climatology over Irene, South Africa, from 1990 to 1994 and 1998 to 2002, Journal of Geophysical Research: Atmospheres, 109, 2004.
- Diab, R. D., Thompson, A. M., Zunckel, M., Coetzee, G. J. R., Combrink, J., Bodeker, G. E., Fishman, J., Sokolic, F., McNamara, D. P., Archer, C. B., and Nganga, D.: Vertical ozone distribution over southern Africa and adjacent oceans during SAFARI-92, Journal of Geophysical Research: Atmospheres, 101, 23823-23833, doi:10.1029/96JD01267, 1996.
 - Draxler, R. R., and Hess, G. D.: An overview of the HYSPLIT_4 modeling system of trajectories, dispersion, and deposition, Aust. Meteor. MagAystralian Meteorological Magazine-, 47, 295-308, 1998.
- and deposition, Aust. Meteor. MagAystralian Meteorological Magazine-, 47, 295-308, 1998.
 Dueñas, C., Fernández, M. C., Cañete, S., Carretero, J., and Liger, E.: Assessment of ozone variations and meteorological effects in an urban area in the Mediterranean Coast, Science of The Total Environment, 299, 97-113, doi:https://doi.org/10.1016/S0048-9697(02)00251-6, 2002.
 - Dyson, L. L., Van Heerden, J., and Sumner, P. D.: A baseline climatology of sounding-derived parameters
 associated with heavy rainfall over Gauteng, South Africa, International Journal of Climatology, 35, 114-127, 2015.
 - Fishman, J., and Larsen, J. C.: Distribution of total ozone and stratospheric ozone in the tropics: Implications for the distribution of tropospheric ozone, Journal of Geophysical Research: Atmospheres, 92, 6627-6634, doi:10.1029/JD092iD06p06627, 1987.
 - 40 Galanter, M., Levy, H., and Carmichael, G. R.: Impacts of biomass burning on tropospheric CO, NO_x, and O₃, Journal of Geophysical Research: Atmospheres, 105, 6633-6653, 2000.
 - Garstang, M., Tyson, P. D., Swap, R., Edwards, M., Kållberg, P., and Lindesay, J. A.: Horizontal and vertical transport of air over southern Africa, Journal of Geophysical Research: Atmospheres, 101, 23721-23736, doi:10.1029/95JD00844, 1996.
 - 45 Geddes, J. A., Murphy, J. G., and Wang, D. K.: Long term changes in nitrogen oxides and volatile organic compounds in Toronto and the challenges facing local ozone control, Atmospheric Environment, 43, 3407-3415, doi:<u>https://doi.org/10.1016/j.atmosenv.2009.03.053</u>, 2009.
 - Held, G., Scheifinger, H., Snyman, G., Tosen, G., and Zunckel, M.: The climatology and meteorology of the Highveld, Air pollution and its impacts on the South African Highveld. Johannesburg: Environmental Scientific Association, 60-71, 1996.
 - Held, G., and Mphepya, J.: Wet and dry deposition in South Africa, Proceedings, XI Congresso Brasiliero de Meteorologia (CDROM), SBMET, Rio de Janeiro, 2000, 16-20,
 - Hirsikko, A., Vakkari, V., Tiitta, P., Manninen, H. E., Gagné, S., Laakso, H., Kulmala, M., Mirme, A., Mirme, S., Mabaso, D., Beukes, J. P., and Laakso, L.: Characterisation of sub-micron particle number concentrations and formation events in the western Bushveld Igneous Complex, South Africa,

Atmos<u>pheric Chemistry and Physics</u>. Chem. Phys., 12, 3951-3967, doi:10.5194/acp-12-3951-2012, 2012.

- Hirsikko, A., Vakkari, V., Tiitta, P., Hatakka, J., Kerminen, V. M., Sundström, A. M., Beukes, J. P., Manninen,
 H. E., Kulmala, M., and Laakso, L.: Multiple daytime nucleation events in semi-clean savannah and industrial environments in South Africa: analysis based on observations, Atmospheric Chemistry and
- Physics Atmos. Chem. Phys., 13, 5523-5532, doi:10.5194/acp-13-5523-2013, 2013.

5

15

25

30

- Holloway, A. M., and Wayne, R. P.: Atmospheric chemistry, Royal Society of Chemistry, Cambridge, xiii, 271 p. pp., 2010.
- IPCC: Climate change 2013: The physical science basis: contribution of Working Group I to the Fifth
 Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin,
 D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, B., and Midgley, B.,
 Cambridge University Press, 2013.
 - Jaars, K., Beukes, J. P., van Zyl, P. G., Venter, A. D., Josipovic, M., Pienaar, J. J., Vakkari, V., Aaltonen, H., Laakso, H., Kulmala, M., Tiitta, P., Guenther, A., Hellén, H., Laakso, L., and Hakola, H.: Ambient aromatic hydrocarbon measurements at Welgegund, South Africa, <u>Atmospheric Chemistry and</u>

<u>Physics</u>Atmos. Chem. Phys., 14, 7075-7089, doi:10.5194/acp-14-7075-2014, 2014.

- Jaars, K., van Zyl, P. G., Beukes, J. P., Hellén, H., Vakkari, V., Josipovic, M., Venter, A. D., Räsänen, M., Knoetze, L., Cilliers, D. P., Siebert, S. J., Kulmala, M., Rinne, J., Guenther, A., Laakso, L., and Hakola, H.: Measurements of biogenic volatile organic compounds at a grazed savannah grassland agricultural landscape in South Africa, Atmospheric Chemistry and PhysicsAtmos. Chem. Phys., 16, 15665-15688,
- 20 Iandscape in South Africa, <u>Atmospheric Chemistry and PhysicsAtmos. Chem. Phys.</u>, 16, 15665-15688, doi:10.5194/acp-16-15665-2016, 2016.
 - Jaeglé, L., Jacob, D.J., Brune, W.H., Wennberg, P.O., Chemistry of HO_x radicals in the upper troposphere, Atmospheric Environment, 35 (3), 469-489, https://doi.org/10.1016/S1352-2310(00)00376-9, 2001
 - Jaffe, D., and Ray, J.: Increase in surface ozone at rural sites in the western US, Atmospheric Environment, 41, 5452-5463, doi:<u>https://doi.org/10.1016/j.atmosenv.2007.02.034</u>, 2007.
 - Josipovic, M.: Acidic deposition emanating from the South African Highveld: <u>A</u> a critical levels and critical loads assessment (Ph-D- thesis), University of Johannesburg, 2009.
 - Josipovic, M., Annegarn, H. J., Kneen, M. A., Pienaar, J. J., and Piketh, S. J.: Concentrations, distributions and critical level exceedance assessment of SO₂, NO₂ and O₃ in South Africa, Environmental <u>M</u>monitoring and <u>Aassessment</u>, 171, 181-196, doi:10.1007/s10661-009-1270-5, 2010.
 - Kanakidou, M., and Crutzen, P. J.: The photochemical source of carbon monoxide: Importance, uncertainties and feedbacks, Chemosphere-Global Change Science, 1, 91-109, 1999.
 - Klopper, E., Vogel, C. H., and Landman, W. A.: Seasonal climate forecasts-potential agricultural-risk management tools?, Climatic Change, 76, 73-90, 2006.
- 35 Laakso, L., Laakso, H., Aalto, P. P., Keronen, P., Petäjä, T., Nieminen, T., Pohja, T., Siivola, E., Kulmala, M., Kgabi, N., Molefe, M., Mabaso, D., Phalatse, D., Pienaar, K., and Kerminen, V. M.: Basic characteristics of atmospheric particles, trace gases and meteorology in a relatively clean Southern African Savannah environment, <u>Atmospheric Chemistry and Physics</u><u>Atmos. Chem. Phys.</u>, 8, 4823-4839, doi:10.5194/acp-8-4823-2008, 2008.
- Laakso, L., Vakkari, V., Virkkula, A., Laakso, H., Backman, J., Kulmala, M., Beukes, J. P., van Zyl, P. G., Tiitta, P., Josipovic, M., Pienaar, J. J., Chiloane, K., Gilardoni, S., Vignati, E., Wiedensohler, A., Tuch, T., Birmili, W., Piketh, S., Collett, K., Fourie, G. D., Komppula, M., Lihavainen, H., de Leeuw, G., and Kerminen, V. M.: South African EUCAARI measurements: seasonal variation of trace gases and aerosol optical properties, <u>Atmospheric Chemistry and PhysicsAtmos. Chem. Phys.</u>, 12, 1847-1864, doi:10.5194/acp-12-1847-2012, 2012.
- Laakso, L., Beukes, J. P., Van Zyl, P. G., Pienaar, J. J., Josipovic, M., Venter, A. D., Jaars, K., Vakkari, V., Labuschagne, C., Chiloane, K., and Tuovinen, J.-P.: Ozone concentrations and their potential impacts on vegetation in southern Africa, in: Climate change, air pollution and global challenges understanding and perspectives from forest research, edited by: Matyssek, R., Clarke, N., Cudlin, P., Mikkelsen, T. N., Tuovinen, J.-P., Wieser, G., and Paoletti, E., 1 online resource (647 pages), 2013.
- Lefohn, A. S., Emery, C., Shadwick, D., Wernli, H., Jung, J., and Oltmans, S. J.: Estimates of background surface ozone concentrations in the United States based on model-derived source apportionment, Atmospheric Environment, 84, 275-288, doi:<u>https://doi.org/10.1016/j.atmosenv.2013.11.033</u>, 2014.
- Lin, M., Fiore, A. M., Cooper, O. R., Horowitz, L. W., Langford, A. O., Levy, H., Johnson, B. J., Naik, V., Oltmans, S. J., and Senff, C. J.: Springtime high surface ozone events over the western United States:

Quantifying the role of stratospheric intrusions, Journal of Geophysical Research: Atmospheres, 117, n/a-n/a, doi:10.1029/2012JD018151, 2012.

- Logan, J. A.: Tropospheric ozone: Seasonal behavior, trends, and anthropogenic influence, Journal of Geophysical Research: Atmospheres, 90, 10463-10482, doi:10.1029/JD090iD06p10463, 1985.
- 5 Lourens, A. S., Beukes, J. P., Van Zyl, P. G., Fourie, G. D., Burger, J. W., Pienaar, J. J., Read, C. E., and Jordaan, J. H.: Spatial and temporal assessment of gaseous pollutants in the Highveld of South Africa, South African Journal of Science, 107, 1-8, 2011.
 - Lourens, A. S. M., Butler, T. M., Beukes, J. P., Van Zyl, P. G., Beirle, S., Wagner, T. K., Heue, K.-P., Pienaar, J. J., Fourie, G. D., and Lawrence, M. G.: Re-evaluating the NO₂ hotspot over the South African Highveld, doi:10.4102/sajs.v108i11/12.1146, 2012.

10

20

30

- Lourens, A. S. M., Butler, T. M., Beukes, J. P., Van Zyl, P. G., Fourie, G. D., and Lawrence, M. G.: Investigating atmospheric photochemistry in the Johannesburg-Pretoria megacity using a box model, South African Journal of Science, 112, 1-11, doi:<u>http://dx.doi.org/10.17159/sajs.2016/2015-0169</u>, 2016.
 Macdonald, A. M., Anlauf, K. G., Leaitch, W. R., Chan, E., and Tarasick, D. W.: Interannual variability of
- Macdonaid, A. M., Anlaur, K. G., Leaitch, W. R., Chan, E., and Tarasick, D. W.: Interannual variability of ozone and carbon monoxide at the Whistler high elevation site: 2002–2006, <u>Atmospheric Chemistry</u> and <u>PhysicsAtmos. Chem. Phys.</u>, 11, 11431-11446, doi:10.5194/acp-11-11431-2011, 2011.
 - Mafusire, G., Annegarn, H. J., Vakkari, V., Beukes, J. P., Josipovic, M., Van Zyl, P. G., and Laakso, L.: Submicrometer aerosols and excess CO as tracers for biomass burning air mass transport over southern Africa, Journal of Geophysical Research: Atmospheres, 121, 10262-10282, doi:10.1002/2015JD023965, 2016.
- Martins, J. J., Dhammapala, R. S., Lachmann, G., Galy-Lacaux, C., and Pienaar, J. J.: Long-term measurements of sulphur dioxide, nitrogen dioxide, ammonia, nitric acid and ozone in southern Africa using passive samplers, South African Journal of Science, 103, 336-342, <u>http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S0038-23532007000400018&nrm=iso</u>, 25
 - Monks, P. S., Archibald, A. T., Colette, A., Cooper, O., Coyle, M., Derwent, R., Fowler, D., Granier, C., Law, K. S., Mills, G. E., Stevenson, D. S., Tarasova, O., Thouret, V., von Schneidemesser, E., Sommariva, R., Wild, O., and Williams, M. L.: Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer, <u>Atmospheric Chemistry and PhysicsAtmos. Chem.</u> Phys., 15, 8889-8973, doi:10.5194/acp-15-8889-2015, 2015.
 - Murphy, J. G., Day, D. A., Cleary, P. A., Wooldridge, P. J., Millet, D. B., Goldstein, A. H., and Cohen, R. C.: The weekend effect within and downwind of Sacramento: Part 2. Observational evidence for chemical and dynamical contributions, <u>Atmospheric Chemistry and Physics</u>, <u>Atmos. Chem. Phys.</u> Discuss., 2006, 11971-12019, doi:10.5194/acpd-6-11971-2006, 2006.
- 35 Novelli, P. C., Steele, L. P., and Tans, P. P.: Mixing ratios of carbon monoxide in the troposphere, Journal of Geophysical Research: Atmospheres, 97, 20731-20750, 1992.

NRC: Rethinking the Ozone Problem in Urban and Regional Air Pollution, The National Academies Press, Washington, DC, 524 pp., 1991.

- Oltmans, S. J., Lefohn, A. S., Shadwick, D., Harris, J. M., Scheel, H. E., Galbally, I., Tarasick, D. W.,
 Johnson, B. J., Brunke, E. G., Claude, H., Zeng, G., Nichol, S., Schmidlin, F., Davies, J., Cuevas, E.,
 Redondas, A., Naoe, H., Nakano, T., and Kawasato, T.: Recent tropospheric ozone changes A pattern
 dominated by slow or no growth, Atmospheric Environment, 67, 331-351,
 doi:<u>https://doi.org/10.1016/j.atmosenv.2012.10.057</u>, 2013.
- Parrish, D. D., Law, K. S., Staehelin, J., Derwent, R., Cooper, O. R., Tanimoto, H., Volz-Thomas, A., Gilge,
 S., Scheel, H. E., Steinbacher, M., and Chan, E.: Lower tropospheric ozone at northern midlatitudes:
- Changing seasonal cycle, Geophysical Research Letters, 40, 1631-1636, doi:10.1002/grl.50303, 2013.
 Petäjä, T., Vakkari, V., Pohja, T., Nieminen, T., Laakso, H., Aalto, P. P., Keronen, P., Siivola, E., Kerminen, V.-M., Kulmala, M., and Laakso, L.: Transportable Aerosol Characterization Trailer with Trace Gas Chemistry: Design, Instruments and Verification, Aerosol and Air Quality Research, 13, No. 2, 421-435, doi:10.4209/aaqr.2012.08.0207, 2013.
 - Roy, D., Lewis, P., and Justice, C.: Burned area mapping using multi-temporal moderate spatial resolution data: —A bi-directional reflectance model-based expectation approach, Remote Sensing of Environment, 83, 263-286, 2002.
- Roy, D., Frost, P., Justice, C., Landmann, T., Le Roux, J., Gumbo, K., Makungwa, S., Dunham, K., Du Toit,
 R., and Mhwandagara, K.: The Southern Africa Fire Network (SAFNet) regional burned-area productvalidation protocol, International Journal of Remote Sensing, 26, 4265-4292, 2005.

- Roy, D. P., Boschetti, L., Justice, C. O., and Ju, J.: The collection 5 MODIS burned area product.—Global evaluation by comparison with the MODIS active fire product, Remote Sensing of Environment, 112, 3690-3707, 2008.
- Schultz, M. G., Schröder, S., Lyapina, O., Cooper, O., Galbally, I., Petropavlovskikh, I., von Schneidemesser, E., Tanimoto, H., Elshorbany, Y., and Naja, M.: Tropospheric Ozone Assessment Report: Database and metrics data of global surface ozone observations, <u>Elementa: Science of the AnthropoceneElem Sci Anth</u>, 5, doi:http://doi.org/10.1525/elementa.244, 2017.

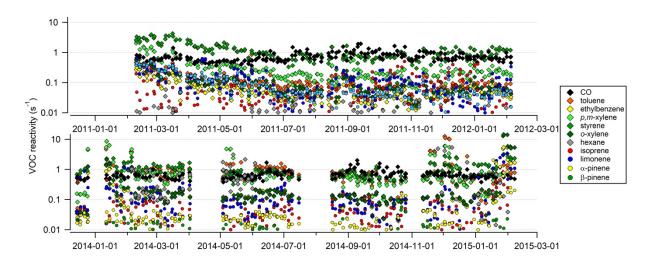
20

35

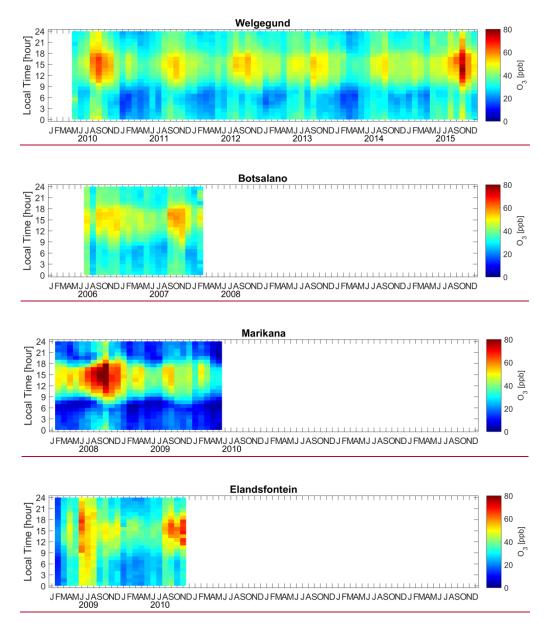
45

55

Seinfeld, J. H., and Pandis, S. N.: Atmospheric chemistry and physics : from air pollution to climate change, Wiley-Interscience, New York ; Chichester, xxvii, 1326 p. pp., 1998.

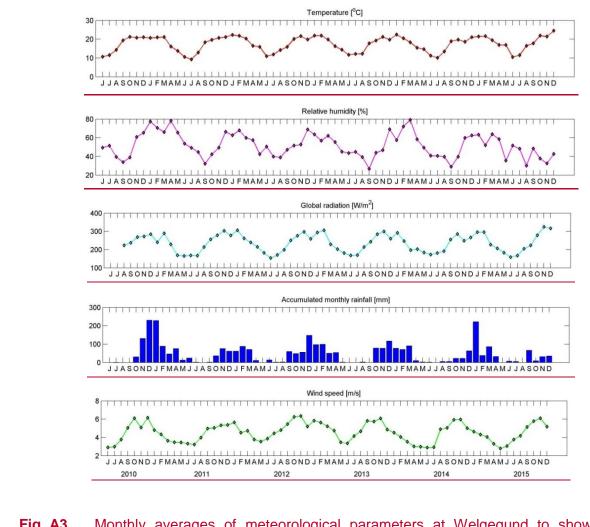
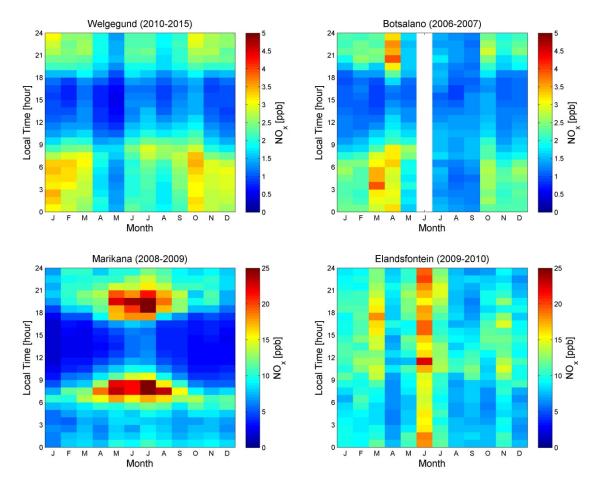
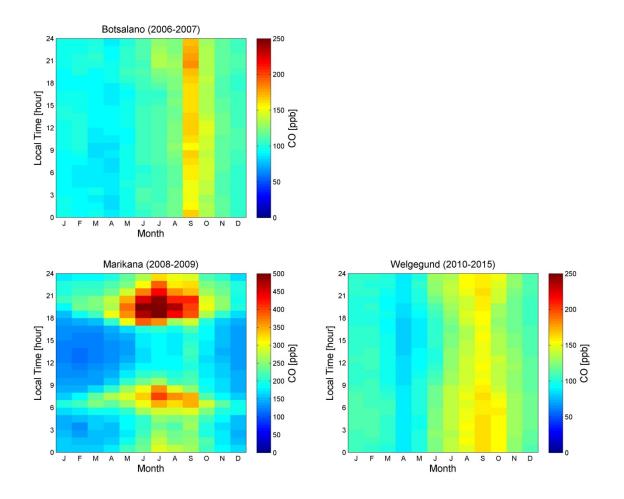

10 Seinfeld, J. H., and Pandis, S. N.: Atmospheric chemistry and physics : from air pollution to climate change, 2nd ed., Wiley, New York, xxviii, 1202 p. pp., 2006.

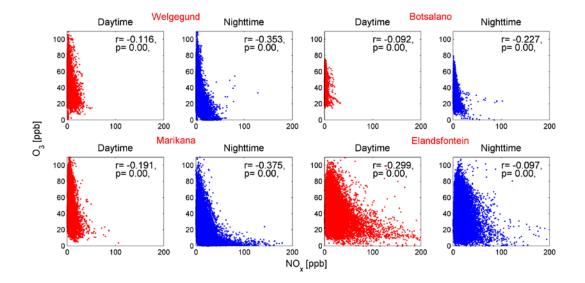
Sillman, S.: The relation between ozone, NOx and hydrocarbons in urban and polluted rural environments, Atmospheric Environment, 33, 1821-1845, doi:<u>http://dx.doi.org/10.1016/S1352-2310(98)00345-8</u>, 1999. Simpson, I. J., Akagi, S., Barletta, B., Blake, N., Choi, Y., Diskin, G., Fried, A., Fuelberg, H., Meinardi, S.,

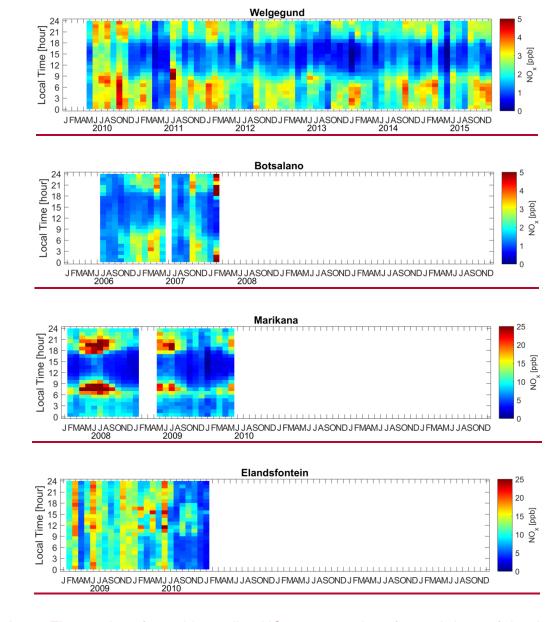

- and Rowland, F.: Boreal forest fire emissions in fresh Canadian smoke plumes: C1-C10 volatile organic compounds (VOCs), CO₂, CO, NO₂, NO, HCN and CH₃CN, Atmospheric Chemistry and Physics, 11, 6445-6463, 2011.
 - Srinivasan, N. K., Su, M.-C., Sutherland, J. W. and, and Michael, J. V., Reflected Shock Tube Studies of High-Temperature Rate Constants for OH + CH4 → CH3 + H2O and CH3 + NO2 → CH3O + NO, The Journal of Physical Chemistry A, 109 (9), 1857-1863, 2005, doi: 10.1021/jp040679j
 - Stauffer, R. M., Thompson, A. M., Oltmans, S. J., and Johnson, B. J.: Tropospheric ozonesonde profiles at long-term US monitoring sites: 2. Links between Trinidad Head, CA, profile clusters and inland surface ozone measurements, Journal of Geophysical Research: Atmospheres, 122, 1261-1280, 2017.
- Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J. B., Cohen, M. D., and Ngan, F.: NOAA's HYSPLIT
 Atmospheric Transport and Dispersion Modeling System, Bulletin of the American Meteorological Society, 96, 2059-2077, doi:10.1175/bams-d-14-00110.1, 2015.
 - Swap, R. J., Annegarn, H. J., Suttles, J. T., King, M. D., Platnick, S., Privette, J. L., and Scholes, R. J.: Africa burning: A thematic analysis of the Southern African Regional Science Initiative (SAFARI 2000), Journal of Geophysical Research: Atmospheres, 108, n/a-n/a, doi:10.1029/2003JD003747, 2003.
- 30 Thompson, A. M.: Biomass burning and the atmosphere: —accomplishments and research opportunities, Atmospheric Environment, 30, i-ii, doi:<u>https://doi.org/10.1016/S1352-2310(96)90021-7</u>, 1996.
 - Thompson, A. M., Balashov, N. V., Witte, J. C., Coetzee, J. G. R., Thouret, V., and Posny, F.: Tropospheric ozone increases over the southern Africa region: bellwether for rapid growth in Southern Hemisphere pollution?, <u>Atmospheric Chemistry and PhysicsAtmos. Chem. Phys.</u>, 14, 9855-9869, doi:10.5194/acp-14-9855-2014, 2014.
 - Thompson, A. M., Stauffer, R. M., Miller, S. K., Martins, D. K., Joseph, E., Weinheimer, A. J., and Diskin, G. S.: Ozone profiles in the Baltimore-Washington region (2006–2011): satellite comparisons and DISCOVER-AQ observations, Journal of atmospheric chemistry, 72, 393-422, 2015.
- Tiitta, P., Vakkari, V., Croteau, P., Beukes, J. P., van Zyl, P. G., Josipovic, M., Venter, A. D., Jaars, K.,
 Pienaar, J. J., Ng, N. L., Canagaratna, M. R., Jayne, J. T., Kerminen, V. M., Kokkola, H., Kulmala, M.,
 Laaksonen, A., Worsnop, D. R., and Laakso, L.: Chemical composition, main sources and temporal
 variability of PM₁ aerosols in southern African grassland, <u>Atmospheric Chemistry and PhysicsAtmos.</u>
 <u>Chem. Phys.</u>, 14, 1909-1927, doi:10.5194/acp-14-1909-2014, 2014.
 - Tyson, P. D., and Preston-Whyte, R. A.: The weather and climate of southern Africa, 2nd ed., xii, 396 pages pp., 2000.
 - Vakkari, V., Laakso, H., Kulmala, M., Laaksonen, A., Mabaso, D., Molefe, M., Kgabi, N., and Laakso, L.: New particle formation events in semi-clean South African savannah, <u>Atmospheric Chemistry and</u> <u>PhysicsAtmos. Chem. Phys.</u>, 11, 3333-3346, doi:10.5194/acp-11-3333-2011, 2011.
- Vakkari, V., Beukes, J. P., Laakso, H., Mabaso, D., Pienaar, J. J., Kulmala, M., and Laakso, L.: Long-term observations of aerosol size distributions in semi-clean and polluted savannah in South Africa, <u>Atmospheric Chemistry and PhysicsAtmos. Chem. Phys.</u>, 13, 1751-1770, doi:10.5194/acp-13-1751-2013, 2013.
 - Vakkari, V., Kerminen, V.-M., Beukes, J. P., Tiitta, P., van Zyl, P. G., Josipovic, M., Venter, A. D., Jaars, K., Worsnop, D. R., Kulmala, M., and Laakso, L.: Rapid changes in biomass burning aerosols by atmospheric oxidation, Geophysical Research Letters, 41, 2644-2651, doi:10.1002/2014GL059396, 2014.

- Venter, A. D., Vakkari, V., Beukes, J. P., Van Zyl, P. G., Laakso, H., Mabaso, D., Tiitta, P., Josipovic, M., Kulmala, M., Pienaar, J. J., and Laakso, L.: An air quality assessment in the industrialised western Bushveld Igneous Complex, South Africa, South African Journal of Science, doi:10.4102/sajs.v108i9/10.1059, 2012.
- 5 Venter, A. D., van Zyl, P. G., Beukes, J. P., Josipovic, M., Hendriks, J., Vakkari, V., and Laakso, L.: Atmospheric trace metals measured at a regional background site (Welgegund) in South Africa, <u>Atmospheric Chemistry and PhysicsAtmos. Chem. Phys.</u>, 17, 4251-4263, doi:10.5194/acp-17-4251-2017, 2017.
 - Vingarzan, R.: A review of surface ozone background levels and trends, Atmospheric Environment, 38, 3431-3442, doi:<u>https://doi.org/10.1016/j.atmosenv.2004.03.030</u>, 2004.
 - Wells, R., Lloyd, S., and Turner, C.: National air pollution source inventory, Air pollution and its impacts on the South African Highveld. Johannesburg: Environmental Scientific Association, 3-9, 1996.
 <u>Wilson, S. R.: Characterisation of J(O¹D) at Cape Grim 2000–2005, Atmospheric Chemistry and Physics,</u> 15, 7337-7349, https://doi.org/10.5194/acp-15-7337-2015, 2015
- 15 Yorks, J. E., Thompson, A. M., Joseph, E., and Miller, S. K.: The variability of free tropospheric ozone over Beltsville, Maryland (39N, 77W) in the summers 2004–2007, Atmospheric Environment, 43, 1827-1838, 2009.
 - Zhang, L., Jacob, D. J., Yue, X., Downey, N. V., Wood, D. A., and Blewitt, D.: Sources contributing to background surface ozone in the US Intermountain West, <u>Atmospheric Chemistry and PhysicsAtmos.</u> <u>Chem. Phys.</u>, 14, 5295-5309, doi:10.5194/acp-14-5295-2014, 2014.
- 20 Chem. Phys., 14, 5295-5309, doi:10.5194/acp-14-5295-2014, 2014. Zunckel, M., Venjonoka, K., Pienaar, J. J., Brunke, E. G., Pretorius, O., Koosialee, A., Raghunandan, A., and van Tienhoven, A. M.: Surface ozone over southern Africa: synthesis of monitoring results during the Cross border Air Pollution Impact Assessment project, Atmospheric Environment, 38, 6139-6147, doi:https://doi.org/10.1016/j.atmosenv.2004.07.029, 2004.
- 25 Zunckel, M., Koosailee, A., Yarwood, G., Maure, G., Venjonoka, K., van Tienhoven, A. M., and Otter, L.: Modelled surface ozone over southern Africa during the Cross Border Air Pollution Impact Assessment Project, Environmental Modelling & Software, 21, 911-924, doi:<u>https://doi.org/10.1016/j.envsoft.2005.04.004</u>, 2006.

Fig. A21. Individual VOC reactivity time series. In the calculation of instantaneous O_3 production (P(O_3)), CO was treated as a VOC.


Fig. A3. Monthly averages of meteorological parameters at Welgegund to show typical seasonal patterns in continental South Africa. In the case of rainfall, the total monthly rainfall values are shown.


Fig. A<u>4</u>**3.** Seasonal and diurnal variation of NO_x at Welgegund, Botsalano, Marikana and Elandsfontein (median values of NO_x concentration were used).

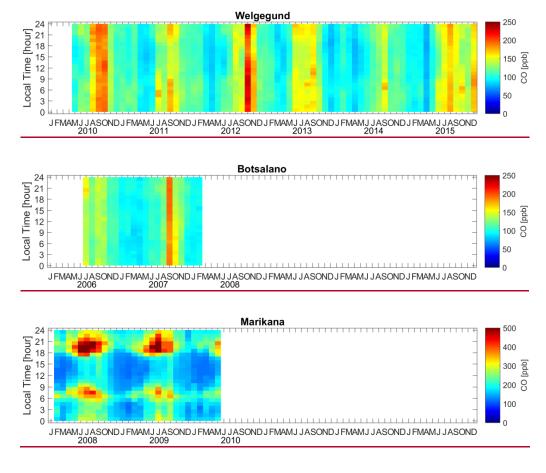

Fig. A<u>5</u>4. Seasonal and diurnal variation of CO at Welgegund, Botsalano and Marikana (median values of CO concentration were used). Note that CO was not measured at Elandsfontein.

Fig. A<u>6</u>5. Scatter plots of O₃ vs. NO_x for daytime (9:00 a.m. to 4:52 p.m.), and night_time (5:00 p.m. to 8:52 a.m.) at Welgegund, Botsalano and Marikana and Elandsfontein. The correlation coefficient (r) has a significance level of $p < 10^{-10}$, which means that r is statistically significant (p < 0.01).

Fig. A7. Time series of monthly median NO_x concentrations for each hour of the day at the four sites

Fig. A8. Time series of monthly median CO concentrations for each hour of the day at the four sites

5 <u>s</u>