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Anonymous	Referee	#1	
Received	and	published:	1	February	2018	
<General	Comments>	Satellite	observation	is	the	most	important	method	to	provide	
decade	long	and	global	data	of	anthropogenic	methane	emission.	In	2010s,	GOSAT	
is	the	only	satellite	to	provide	column	CH4	density	but	its	spatial	coverage	is	limited	
and	a	single	data	has	large	fluctuation.	Therefore,	statistical	analysis	is	important.	In	
addition,	selection	of	reference	point	together	with	emission	point	or	estimation	of	the	
background	is	critical	for	quantitative	analysis.	This	paper	proposed	and	described	new	
analytical	method	clearly.	The	trend	data	from	different	emission	source	by	this	work	is	
innovative.	It	is	worth	publication	after	minor	revision.	
	
<Specific	Comments>		
(1)	Page	3,	Line	1,	Proxy	method.	“The	proxy	method	uses	prior	
knowledge	of	carbon	dioxide”	Brief	description	of	prior	knowledge	is	needed.	Does	it	
include	seasonal	variation	plus	annual	growth	only	or	anomalies	such	as	caused	by	
heat	wave	in	2010	and	El	Nino?	
We	added	the	description.	
	
(2)	Page	3,	Line	21	“instrument	error”	Page	3	line	23	“instrument	noise”	Page	3	Line	
25	“Local	instrument	bias”	Supplemental	material,	Page	3,	Line	12,	“instrument	error”	
Supplemental	material,	Page	4,	Figure	S2	caption,	“instrument	noises”	
Do	these	terms	have	the	same	meaning?	TANSO-FTS	onboard	GOSAT	has	two	major	
random	error	sources	and	there	are	also	several	systematic	errors.	Detector	noise	
and	pointing	fluctuation	in	4	sec	to	acquire	single	interferogram	creates	random	noise.	
Radiometric	calibration	error	due	to	degradation	after	launch,	spectral	calibration	and	
spectral	line	shape	error,	radiative	transfer	calculation	error,	molecule	parameter	cause	
systematic	bias.	
Here	instrument	error/noise	means	random	error,	and	instrument	bias	means	systematic	error.	
We	updated	the	text	accordingly.	
	
(3)	Page	5,	Line	26,	Gulf	of	Mexico	observation	by	GOSAT	“are	not	directly	detectable	
by	GOSAT	because	the	nadir	measurements	are	only	over	land”	It	should	be	described	
more	accurately.	Over	ocean	including	Gulf	of	Mexico,	GOSAT	can	observe	column	
averaged	CH4	using	glint	mode	by	tracking	specular	reflection	point	but	the	data	are	
sparser.	
We	added	this	in	the	text:	“Glint	observations	are	available	over	the	ocean	but	are	much	sparser.”	
	
<Technical	Corrections>	(1)	Supplemental	material,	Page	7,	Figure	S5,	Description	of	
blue,	black	and	red	lines	in	the	figure	caption	will	help	readers’	understanding	even	
though	they	are	described	in	the	text.	
We	added	the	description	in	the	figure	caption.	
	



	
	
Anonymous	Referee	#2	
Received	and	published:	20	March	2018	
General	comments	———————	
This	paper	is	mostly	an	update	of	the	Turner	et	al.	paper	of	2016	aiming	at	estimating	trends	in	
methane	 emissions	 over	 North	 America	 as	 inferred	 from	 inversion	 of	 GOSAT	 satellite	
atmospheric	 weighted	 columns.	 Basically,	 two	 more	 years	 of	 data	 are	 assimilated	 and	 the	
method	to	estimate	the	background	is	revised.	The	methodology	used	here	has	been	criticized	
in	details	in	Bruhwiler	et	al	(JGR,	2017),	main	arguments	being	a	too	short	time	window	for	data	
assimilation	making	the	GOSAT	trends	sensitive	for	instance	to	changes	in	atmospheric	transport,	
seasonal	biases	in	GOSAT	data	towards	summer	months	(less	clouds	=	more	data),	and	influence	
of	the	choice	of	the	background.	In	this	paper,	the	authors	address	only	partly	these	criticisms	
and	add	an	original	sectorial	analysis	of	the	inferred	trend.	
	
My	main	concern	on	this	paper	is	that	it	does	not	fully	address	the	extensive	criticisms	made	in	
Bruhwiler	et	al.	A	window	of	6	years	is	still	very	short	to	make	a	robust	trend	analysis	for	a	species	
like	methane	with	a	9-year	lifetime	and	I	am	not	sure	that	adding	23	months	compared	to	Turner	
is	enough.	The	inferred	trend	is	very	noisy	(0.2	±	0.7	ppb	a-1)	and	moving	to	percentages	is	a	bit	
misleading	considering	the	very	 low	value	 inferred	especially	when	considering	the	remaining	
bias	of	GOSAT	data	of	4-6	ppb	(PVIR4	report	from	Buchwitz	et	al.,	2016).	Nothing	seems	to	be	
done	 for	 the	 seasonal	 bias	 and	 only	 the	 question	 of	 backgrounds	 is	 addressed	 in	 detail.	 The	
authors	 may	 consider	 looking	 at	 the	 Cressot	 et	 al	 paper	 (ACP	 2016)	 on	 the	 detectability	 of	
emissions	at	regional	scale	to	figure	that	trends	are	very	hard	to	detect	with	the	not-so-dense	
and	biased	GOSAT	data.	The	text	also	lack	precision	in	many	places	(see	specific	comments).	
Some	part	of	the	work	in	interesting	such	as	the	methodology	for	the	sectorial	analysis	but	I	think	
that	more	time	is	needed	to	extent	the	timeseries	and	be	able	to	use	this	approach	more	safely	
and	provide	a	reliable	update	of	the	Tuner	et	al.	paper	addressing	all	the	issues	raised	since	they	
published	it.	
	
Reviewer	#2	picks	up	on	the	criticisms	made	by	Bruhwiler	et	al.	(2017)	of	the	Turner	et	al.	(2016)	
paper.	Our	work	has	made	an	honest	attempt	 to	address	 these	criticisms	 (definition	of	 the	
background,	length	of	the	record,	 inconsistency	with	surface	network)	and	we	have	made	a	
good-faith	 effort	 to	 further	 address	 the	 reviewer’s	 concerns	 in	 revision.	 Point-by-point	
responses	are	below.	It	is	very	doubtful	that	we	can	fully	satisfy	the	reviewer	but	we	hope	that	
he/she	will	 let	 us	 “agree	 to	disagree”	 in	 an	open	 spirit	 and	 carry	out	 the	discussion	 in	 the	
literature.	In	answer	to	the	criticisms	above:	
	

• To	dismiss	the	paper	as	simply	an	update	to	Turner	et	al	with	two	more	years	of	data	
and	different	definition	of	background	seems	very	unfair.		This	paper	adds	(1)	sectoral	
breakdown,	(2)	Canada	and	Mexico,	(3)	validation	with	TCCON,	(4)	relations	of	trends	
to	activity	data,	(5)	examination	of	consistency	in	the	trend	with	surface	sites.		These	
are	important	advances.	In	addition,	we	have	extended	the	GOSAT	trend	analysis	till	



year	2016,	by	adding	an	additional	year	of	analysis	to	what	was	submitted	in	the	first	
version	to	ACPD.	
	

• Not	clear	why	lifetime	is	relevant	here.	The	9-year	lifetime	of	methane	is	not	relevant	
to	the	length	of	the	record	needed	to	diagnose	a	trend.	The	relevant	time	scale	for	a	
trend	in	enhancement	over	background	is	how	long	it	takes	for	the	enhancement	signal	
to	dilute	into	the	background	-	and	that	time	scale	is	a	few	weeks.		
	

• The	bias	in	GOSAT	data	is	not	relevant	since	there	is	no	reason	to	think	that	it	would	
affect	the	local	background	and	the	enhancement	differently	(we	now	make	that	point	
in	the	revised	manuscript).	
	

• Seasonal	bias	in	the	GOSAT	data	only	affects	Canada	as	stated	in	the	text.		This	doesn’t	
invalidate	 the	 trend	analysis;	 it	 just	means	 that	 (for	Canada)	 the	 trend	 is	more	of	 a	
summertime	one.	

	
We	expanded	our	discussion	to	address	criticisms	made	in	Bruhwiler	et	al.	(see	response	below	
and	in	Specific	comments).	
	
Regarding	the	length	of	the	GOSAT	record,	we	now	expand	our	analysis	to	2016	(latest	available	
GOSAT	data)	for	what	is	now	a	7-year	record.		The	addition	of	2016	supports	the	trend	previously	
observed	for	2010-2015.		We	think	that	a	window	of	7	years	is	reasonable	to	infer	methane	trends.	
Lifetime	 has	 little	 to	 do	 with	 it.	 Methane	 trend	 analysis	 has	 previously	 been	 done	 using	
SCIAMACHY	with	7	years	of	data,	e.g.,	Frankenberg	et	al.	(2011).	We	agree	a	longer	time	period	
would	lead	to	more	robust	results.	We	have	mentioned	this	limitation	in	the	conclusion.		
	
Frankenberg,	C.,	I.	Aben,	P.	Bergamaschi,	E.	J.	Dlugokencky,	R.	van	Hees,	S.	Houweling,	P.	van	der	Meer,	R.	
Snel,	and	P.	Tol	(2011),	Global	column-averaged	methane	mixing	ratios	from	2003	to	2009	as	derived	from	
SCIAMACHY:	Trends	and	variability,	J.	Geophys.	Res.,	116,	D04302,	doi:10.1029/2010JD014849.	
	
	
Regarding	the	inferred	trend	(0.25	±	0.48	ppb	a-1	with	the	addition	of	2016	data).	This	trend	is	
significant	but	it	is	indeed	noisy,	which	is	precisely	why	we	move	our	analysis	to	the	aggregated	
enhancement.	Our	conclusion	is	based	on	the	trends	in	the	aggregated	enhancement.	We	edited	
our	text	accordingly	(see	the	response	in	Specific	comment).	
	
The	bias	 in	GOSAT	data	 is	 removed	 in	our	 approach.	We	define	our	 local	 background	as	 low	
percentiles,	 and	 the	 resulting	 local	 enhancement	 is	 unbiased	 as	we	 stated	 in	 the	 text:	 “This	
approach	removes	any	local	instrument	bias	(systematic	error)	because	the	bias	is	expected	to	
similarly	affect	all	percentiles	of	the	methane	observations.”	
	
Regarding	GOSAT	seasonal	bias,	we	already	mentioned	this	in	the	text:	“GOSAT	observes	in	all	
seasons	 with	 near-uniform	 frequency	 south	 of	 45˚N	 (CONUS	 and	Mexico),	 but	 observations	
further	 north	 (Canada)	 are	 biased	 toward	 summer.	 The	 number	 of	 successful	 retrievals	 over	



Canada	 is	 2-3	 times	 less	 in	 winter	 than	 in	 summer	 (see	 Supplemental	 Material).”	 	 We	 now	
mention	this	explicitly	again	in	the	conclusion	“…	variations	in	wetland	areal	extent,	though	this	
trend	is	weighted	toward	summer	because	of	the	seasonal	bias	in	observation	frequency	(less	
observations	in	winter)”.	
	
Cressot	 et	 al.	 (2016)	 found	 GOSAT	 performed	 better	 than	 surface	 observations	 and	 IASI	 for	
detecting	methane	anomalies	at	global	and	regional	scales.	The	poor	rate	to	detect	the	methane	
anomalies	 at	 the	 regional	 scale	 as	 stated	by	Cressot	 et	 al.	may	be	due	 to	 that	 (1)	 they	were	
conservative	to	estimate	the	noise	(possibly	leading	to	its	overestimation);	(2)	the	time	period	of	
GOSAT	is	2009-2011,	a	time	period	with	relatively	flat	methane	signal	as	seen	in	our	trend	analysis.	
We	now	mention	Cressot	et	al.	in	the	text.	
	
We	 do	 not	 agree	 that	 our	 text	 lacks	 precision	 in	many	 places	 (there	 are	 5	 places	 in	 specific	
comments	related	to	precision,	which	are	all	minor).			
	
	
	
Specific	comments	———————-	
	
P2	-	L10:	you	may	also	mention	decreasing	BBG	and	quote	Worden	et	al	(2018)	paper	in	Nature	
Comm.	
We	have	added	this	in	the	text.	
	
P2	–	l14:	please	add	that,	contrary	to	surface	networks,	the	GOSAT	data	have	residual	biases	of	
4-6	ppb	as	stated	in	the	PVIR	reports	(Buchwitz	et	al).	Also,	the	spatial	coverage	is	enhanced	by	
GOSAT	but	 the	number	of	 clear-sky	 scenes	 is	 to	 so	huge,	 and	 temporal	 coverage	 is	probably	
smaller	than	continuous	surface	in-situ	measurements	
We	now	mention	the	bias	in	Methods:	
“The	 resulting	GOSAT	XCH4	data	have	been	validated	against	 the	ground-based	Total	Carbon	
Column	 Observing	 Network	 (TCCON),	 and	 found	 to	 be	 of	 high	 quality	 with	 a	 single-scene	
precision	of	0.7%	(random	error)	and	a	systematic	error	of	4-6	ppb	(Parker	et	al.,	2015;	Buchwitz	
et	al.,	2015,	2016).”		
	
We	have	deleted	the	text	about	spatial	coverage	being	enhanced	by	GOSAT.	
	
	
P2	–	l16-17:	there	are	other	reason	in	Bruhwiler’s	paper	to	be	added	here:	impact	variations	of	
atmospheric	transport	linked	to	short-term	window	of	assimilated	data	(6-	7	years	is	still	short	to	
me),	seasonal	bias	of	GOSAT	data.	You	cannot	only	pickup	what	arrange	you	and	have	to	address	
all	limitations	raised	by	previous	work.	
Here	we	updated	the	text	as		
“…been	biased	by	the	brevity	of	the	GOSAT	record,	atmospheric	transport	variability,	seasonal	
bias	in	GOSAT	sampling	frequency,	and	the	use	of	Pacific	data	as	background.”	



We	actually	addressed	all	the	limitations	later	in	the	text.	We	now	expand	these	discussions	(also	
see	response	below).	
	
	
P2	–	l19	:	This	is	not	precise	enough.	short-term	trend	may	depend	on	local	to	regional	conditions	
but	longer	trend	is	a	global	signal	and	one	station	is	enough	to	get	it.	
We	updated	 the	 text	as	“…local	or	 regional	 trend	detectability	 from	the	surface	data	may	be	
limited	by	their	sparsity”.	
	
	
P2	 –	 l20:	 lack	 of	 precision.	 which	 version	 of	 EDGAR	 ?	 4.2	 has	 too	 large	 emission	 and	 trend	
especially	 in	 Asia.	 EDGAR4.3.2	 partly	 corrects	 this	 issue.	 Please	 be	 more	 precise.	 Also,	 the	
dependency	 to	 prior	 assumption	 may	 be	 loose	 or	 tight	 depending	 on	 the	 associated	 error	
structure.	
Asia	is	not	relevant	here,	and	EDGAR4.3.2	has	its	own	problems,	but	we	deleted	that	text	as	non-
essential.	
	
	
P2	-	l22-23	:	Adding	2	years	compared	to	Turner	et	al.,	2016	does	not	convince	me	that	the	time	
period	will	be	long	enough	to	overcome	the	issues	raised	in	Bruhwiler	et	al	(2017).	10	years	(∼	
methane	 lifetime)	 would	 be	 a	minimum	 to	 start	 extracting	 reliable	 information	 on	methane	
trends	to	my	opinion.	
Not	clear	why	lifetime	is	relevant	here.	If	it	was	we	couldn’t	say	anything	about	trends	of	CO2	on	
decadal	scales…	
	
	
P3	–	l6	:	0.7%	is	12	ppb.	Are	you	talking	of	random	error	or	systematic	errors	?	please	be	more	
precise	as	systematic	errors	(estimated	at	4-6	ppb	from	PVIR	report	of	Buchwitz	et	al)	ultimately	
limit	the	use	of	GOSAT	to	estimate	emission	trends	of	a	few	ppb/yr	or	less.	
As	we	said	in	the	text,	it’s	instrument	precision	so	here	we	mean	random	error.	We	updated	the	
text	 as	 “…a	 single-scene	precision	of	 0.7%	 (random	error)	…”.	 Systematic	 errors	 (or	 bias)	 are	
irrelevant	for	methane	enhancement	in	our	approach.	We	have	already	discussed	this	in	the	text	
(see	P3,	L24-26):	“…	This	approach	removes	any	local	instrument	bias	because	the	bias	can	be	
expected	to	similarly	affect	all	percentiles	of	the	methane	observations.”	
	
P3	–	l9-10	:	the	opposite	is	clearly	shown	in	Bruhwiler’s	paper	whith	surface	emission	changes	
appear	only	weakly	sensitive	to	surface	emissions.	Please	rephrase.	
Replaced	“given	source	region”	by	“strong	source	region”	
	
	
P3	–	l16	:	“	the	low	(10th	-25th	)	percentiles	of	the	deseasonalized	GOSAT	methane	Observations”	
unclear	to	me.	Which	observations?	on	which	area?	how	 is	 it	specific	 to	the	0.5x0.5	 location.	
Please	rephrase	to	be	more	clear	and	explain	what	you	do	exactly.	
We	updated	the	text	as	



“Here	 we	 define	 local	 background	 methane	 for	 a	 given	 CONUS	 location	 (0.5˚x0.5˚	 grid	 cell,	
typically	including	a	single	repeated	GOSAT	measurement	location)	and	for	a	given	year	as	the	
low	 (10th-25th)	 percentiles	 of	 the	 deseasonalized	GOSAT	methane	 observations	 in	 the	 given	
0.5˚x0.5˚	grid	cell	and	year,	…”.	
	
	
P3	–	l20	:	how	did	you	choose	these	upper	bopund	25th	percentile	?	did	you	try	other	range	and	
how	sensitive	is	this	choice	on	your	results	?	
We	consider	values	below	25th	percentile	to	be	low	percentiles.	Results	are	only	weakly	sensitive	
to	the	choice	of	different	ranges	as	stated	in	the	text.	We	also	did	a	sensitivity	test	on	this	(see	
Fig.	S5	in	supplementary	material).	
	
P4	–	l3-4	:	the	trend	on	enhancements	does	not	seem	to	be	significant	considering	the	error	bars.	
Please	provide	more	quantitative	results	on	this.	
Here	significance	 for	a	 single	 site	 is	not	 relevant	because	we	only	 focused	on	 the	aggregated	
enhancement	trends.	We	updated	the	text	as	“…	although	the	error	standard	deviations	defined	
by	 the	 ranges	 of	 the	 10th-25th	 percentiles	 are	 large	 and	 the	 trends	 at	 this	 single	 site	 are	
significant	(p	=	0.07).	Below	we	will	use	enhancement	statistics	aggregated	over	a	large	number	
of	sites	in	order	to	reduce	that	uncertainty	and	quantify	trends.”	
	
	
P4-l8:	Is	EDGAR	4.3.2	very	different	than	4.2	over	North	and	central	America	?	
No.	 They	 are	 similar.	We	 added	 “Compared	 to	 EDGAR	 v4.2,	 the	more	 recent	 EDGAR	 v4.3.2	
(Janssens-Maenhout	et	al.,	2017)	has	similar	national	totals	and	spatial	patterns	for	non-oil/gas	
anthropogenic	methane	emissions.”	
	
P4	–	 l19-20:	did	you	try	not	doing	so	as	 it	reduces	 largely	the	number	of	wetland-	dominated	
pixels.	
Using	either	wetland	inventory	alone	would	bias	our	results	because	they	differ	significantly	in	
space	(see	Supplement	Material).	We	updated	the	text	as	
“Wetland-dominated	areas	determined	by	 the	WETCHIMP	mean	and	WetCHARTs	 inventories	
differ	significantly	(see	Supplemental	Material).	Using	either	of	the	two	inventories	alone	may	
bias	our	results,	and	thus	we	conservatively	require	wetland-dominated	areas	to	be	determined	
as	such	in	both	inventories.”	
	
P4	–	l24-25	:	what	about	atmospheric	transport	?	summing	only	columns	above	the	high	emitting	
pixels	does	not	account	for	transport	and	the	potential	plume	sampling	by	other	GOSAT	data.	It	
would	be	worth	mentioning	this	to	clarify	what	is	it	you	do	here.	
As	 we	 mentioned	 earlier,	 the	 local	 background	 range	 (10th-25th	 percentiles)	 accounts	 for	
atmospheric	transport.	We	updated	the	text	as:	
“To	account	for	background	variation	due	to	atmospheric	transport,	the	summation	in	Equation	
(1)	is	conducted	for	1000	Monte	Carlo	realizations	where	the	background	XCH4,b,i	for	each	grid	
cell	and	for	individual	years	is	obtained	by	random	sampling	of	percentiles	in	the	10th-25th	range.”	
	



	
	
P5	–	l15	:	are	they	all	supposed	independant	?	How	robust	is	this	significance	?	Although	tighter	
than	in	Tiuner	et	al.,	the	PDF	is	still	broad	with	a	sigma	of	0.66	
	
With	addition	of	2016	the	sigma	has	decreased	to	0.48.	Each	 local	enhancement	 is	calculated	
independently.	Significance	is	indicated	by	p-value	<0.01.	We	agree	the	sigma	is	broad,	but	that’s	
why	 we	 move	 our	 analysis	 to	 the	 aggregated	 enhancement	 that	 significantly	 reduced	 the	
uncertainty.	We	now	mention	that	in	the	text:		
“Below	we	will	use	the	aggregated	enhancement	(Equation	1)	to	infer	the	trends	and	reduce	the	
uncertainty.”	
	
	
P5	–	l16-17	:	10.8	ppb	enhancement	might	be	due	to	other	causes	as	stated	in	Bruhwiler	et	al.	
Please	mention	that	this	is	a	maximum	and	which	of	the	causes	raised	in	Bruhwiler’s	paper	may	
still	apply	here.	I	strongly	recommend	to	add	in	the	following	that	inferred	numbers	are	maximum	
number,	potentially	smaller	because	of	limitations	raised	in	Bruhwiler’s	paper.	
We	 do	 not	 think	 that	 10.8	 ppb	 is	 a	 maximum.	 As	 we	 discussed	 earlier,	 local	 background	 is	
statistically	not	affected	by	random	error,	and	should	account	for	transport	variability	to	some	
extent.		Janardanan	et	al.	(2017)	found	a	large	number	of	observed	and	simulated	enhancements	
in	the	range	of	10	to	20	ppb	in	North	America	using	GOSAT	observations	and	a	Lagrangian	particle	
dispersion	model.	We	updated	the	text	accordingly.	“The	mean	2010	methane	enhancement	for	
high-emitting	grid	cells	 in	CONUS	relative	to	local	background	is	10.8	ppb,	comparable	to	that	
found	by	Janardanan	et	al.	(2017).”	
	
Figure	3	:	just	ot	be	sure	:	the	grey	bars	for	wetwhimp	and	Bloom	do	reflect	the	totals	for	the	
common	pixels	?	if	not	please	correct.	
No,	those	are	national	totals	as	stated	in	the	figure	title	and	caption,	but	we	now	add	the	totals	
for	common	pixels.	
	
P5	–	l29	:	what	about	pixerls	emitting	a	lot	but	with	a	balanced	share	of	emissions	(ivestock	&	
oil&gas)	?	Yopur	method	should	discard	them.	How	does	it	influence	your	results	?	
Here	 for	 national	 trends	we	do	 not	 discard	 those	 pixels.	We	only	 discard	 them	when	we	do	
sectoral	trend	analysis.	So	it	does	not	influence	national	trends.	For	sectoral	analysis,	it	does	not	
make	sense	to	use	grid	cells	that	are	not	dominated	by	any	source	sector.	We	updated	the	text	
as		
“Here	the	trends	are	calculated	for	the	summed	enhancement	∆	in	Equation	(1)	calculated	for	
individual	years	and	for	high-emitting	grid	cells	in	individual	countries	or	high-emitting	sectors.”	
	
P6	–	l1	:	replace	ambiguous	“interannual”	by	“year-to-year”	or	equivalent	
We	replaced	it	by	“year-to-year”.	
	



P6	 –	 l14-15	 :	 US	 oil&gas	 activity	 (figure	 5)	 show	 stalled	 variations	 in	 2014-15	 whereas	 your	
analysis	find	a	fast	increase	from	10	to	20%	(figure	4).	Isn’t	that	contradictory	?	Please	comment	
in	the	main	text.	
No,	that’s	not	contradictory.	In	the	text,	we	have	already	mentioned	that	“…,	though	production	
rate	is	not	necessarily	a	predictor	of	emissions	(Peischl	et	al.,	2015).”	
	
P6	–	l20-22	:	how	do	emission	factors	for	swine	and	cattle	compare	?		it	would	be	worth	to	add	
the	cattle	number	in	comparison	with	the	swine	emission	factor	range	given.	Is	this	increase	really	
significant	for	methane	emissions	(uncertain	range	of	small	emissions	of	0.01-0.2	Tg/yr)?	
We	don’t	think	it’s	worth	to	compare	cattle	population	with	swine	emission	factors	as	it	will	not	
convey	 any	 new	 information.	 We	 already	 provided	 emissions	 in	 Midwest	 from	 enteric	
fermentation	(cattle)	and	manure	management	(swine):	“These	grid	cells	emit	0.95	Tg	CH4	a−1	
from	 enteric	 fermentation	 (cattle)	 and	 0.55	 Tg	 CH4	 a−1	 from	 manure	 management	 (swine)	
according	to	the	gridded	EPA	inventory	(Maasakkers	et	al.,	2016).”	
	
This	increase	is	significant	and	not	small	for	Midwest	as	we	stated	in	the	text	that	the	trend	largely	
reflects	Midwest.	The	uncertainty	range	here	is	due	to	the	choice	of	emission	factors.	
We	added	“A	larger	value	of	the	emission	factors	is	more	likely.	The	emission	may	increase	…”	
	
	
P6	–	l28	:	interannual	→	year-to-year	or	equivalent	
We	replaced	“interannual”	by	“year-to-year”.	
	
P6	–	l30	:	“	wetland	areal	extent“	:	this	is	very	controversial	ads	there	is	no	consensus	of	wetland	
extent	and	their	evolution	(see	Poulter	et	al.,	2017	also).	Please	mention	this	controversy	here.	
We	updated	the	text	as	
“…,	though	the	definition	of	wetland	areal	extent	may	vary	significantly	 (Poulter	et	al.,	2017).	
Here	the	WetCHARTs	extended	ensemble	used	GLOBCOVER	land	cover	data	(Bontemps	et	al.,	
2011)	and	the	Global	Lakes	and	Wetlands	Database	(GLWD	Lehner	and	Dölla,	2004)	to	represent	
spatial	wetland	extent,	and	ERA-interim	precipitation	to	account	 for	 temporal	wetland	extent	
(Bloom	et	al.,	2017).”					
	
P6	–	l33	:	please	note	in	the	text	that	the	“trend”	you	infer	for	CONUS	is	mostly	after	2012	(“total”	
line	on	figure	4).	The	inversions	reported	in	Bruhwiler	2017	stop	in	2012.	Please	mention	these	
two	elements	in	the	main	text.	Again,	waiting	more	time	to	get	longer	time	series	would	avoid	
limitations	in	trend	analysis.	.	.	
We	removed	Bruhwiler	et	al.	(2017)	here.	It’s	irrelevant	for	our	residual	test.	We	updated	the	
text	accordingly.	
	
P7	–	l1	:	Are	the	stations	shown	on	figure	7	used	in	the	CT	inversion?	please	precise.	Do	some	
other	surface	stations	not	shown	here	show	some	trend?	If	not	please	mention	it	at	it	reinforce	
your	point.	
Yes,	they	are	used	in	the	CTL	inversion.	We	updated	the	text	accordingly.	
	



P7	–	l8-9	:	But	this	does	not	discard	the	possibility	that	the	trend	found	in	your	paper	is	not	due	
to	emissions	but	to	other	factors	as	stated	in	bruhwiler’s	paper.	Please	mention	this	here	as	well.	
The	detected	trends	have	already	accounted	for	the	factors	as	stated	in	Bruhwiler’s	paper.		
	
	
P7-l12	:	I	recommend	to	change	“	significant	increase	in	US	methane	emissions“	into	“significant	
increase	in	total	US	methane	emissions	after	2012”	
We	changed	the	text	accordingly.	
	
Conclusion	:	please	develop	more	the	main	limitations	of	your	study	either	at	the	end	of	result	
section	or	in	the	conclusion.	
We	added	limitations	of	our	study	in	the	text	accordingly.	
	
What	about	OH	changes	in	your	method	?	you	do	not	mention	your	assumptions	on	OH.	Please	
specify	them	somewhere	in	the	text.	
OH	 is	 irrelevant	 here	 as	 we	 already	 discussed	 in	 the	 text	 (P3,	 L28-30):	 “Any	 trends	 in	 OH	
concentrations	would	also	not	affect	the	enhancement	because	the	lifetime	of	methane	against	
oxidation	 is	9-10	years	(Prather	et	al.,	2012;	Kirschke	et	al.,	2013),	very	 long	compared	to	the	
timescale	for	ventilation	from	the	source	region.”	
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Abstract. We use six years (2010-2015
::::
seven

:::::
years

::::::::::
(2010-2016) of methane column observations from the Greenhouse Gases

Observing Satellite (GOSAT) to examine trends in atmospheric methane concentrations over North America and infer trends

in emissions. Local methane enhancements above background are diagnosed in the GOSAT data on a 0.5◦ × 0.5◦ grid by

estimating the local background as the low (10th-25th) percentiles of the deseasonalized frequency distributions of the data for

individual years. Trends in methane enhancements on the 0.5◦ × 0.5◦ grid are then aggregated nationally and for individual5

source sectors, using information from state-of-science bottom-up inventories, to increase statistical power. Our results suggest

:
.
:::
We

::::
find that US methane emissions increased by 2.1± 1.4%

:::::::::
2.5± 1.4%

:
a−1 (mean ± one standard deviation) over the

six-year
::::::::
seven-year

:
period, with contributions from both oil/gas systems (possibly unconventional oil/gas production) and from

livestock in the Midwest (possibly swine manure management). Mexican emissions show a decrease that can be attributed to a

decreasing cattle population. Canadian emissions show interannual
:::::::::
year-to-year

:
variability driven by wetlands emissions and10

correlated with wetland areal extent. The US emission trends inferred from the GOSAT data account for about 20% of the

observed increase in global methane over the 2010-2014 periodbut may be too small to be detectable with surface observations

from the North American Carbon Program (NACP) network
:::::::::
2010-2016

:::::
period.

1



1 Introduction

Methane is an important greenhouse gas with a calculated climate impact as important as carbon dioxide over a 10-year

time horizon (Myhre et al., 2013; Etminan et al., 2016). Livestock, oil/gas, and waste are the leading anthropogenic sources.

Wetlands are the dominant natural source. Contributions from different source sectors and regions remain poorly quantified

(Kirschke et al., 2013; Saunois et al., 2016). Atmospheric methane concentrations leveled off in the 1990s but have been5

increasing again since 2007 (Dlugokencky et al., 2009). Interpretations of atmospheric observations from surface networks

have reached conflicting conclusions as to the cause of the renewed increase, with attributions to
::
(1)

:
natural gas production

based on correlation with ethane (Franco et al., 2016; Hausmann et al., 2016; Helmig et al., 2016),
:::
(2) agriculture/wetlands

based on isotopic information (Nisbet et al., 2016; Schaefer et al., 2016), and
::
(3)

:::::::
reduced

::::::::
biomass

::::::
burning

:::
to

::::::::
reconcile

:::
the

:::::
ethane

::::
and

:::::::
isotopic

:::::::::
constraints

::::::::::::::::::
(Worden et al., 2017),

::::
and

:::
(4) declining concentrations of the OH radical which is

:
(the main10

methane sink)
:::::
based

:::
on

:::
the

:::::::::::::::
methylchloroform

:::::
proxy (Rigby et al., 2017; Turner et al., 2017).

Satellite-based observations of atmospheric methane columns have been available from the TANSO-FTS instrument aboard

the Greenhouse Gases Observing Satellite (GOSAT) continuously since May 2009 (Kuze et al., 2016). These satellite data,

although still relatively sparse, increase considerably the spatial coverage of methane observations compared to the surface

network
:::::::::::::::::::::
Cressot et al. (2016) found

::::
that

:::
the

:::::::
GOSAT

::::
data

::::
had

:::::::
limited

::::::
success

:::
in

::::::::
detecting

:::::::
regional

:::::::::::
year-to-year

::::::
trends

:::
for15

:::::::::
2009-2011. Turner et al. (2016) used GOSAT data from January 2010 to January 2014 to infer a 2.8% a−1 increase in methane

emissions from the contiguous United States (CONUS), based on the trend in the CONUS enhancement of methane rela-

tive to the Pacific Ocean taken as background. Bruhwiler et al. (2017) showed
::::::
argued

:
that this trend inference could have

been biased by the brevity of the GOSAT recordand by
:
,
::::::::::
atmospheric

::::::::
transport

:::::::::
variability,

:::::::
seasonal

::::
bias

::
in

:::::::
GOSAT

::::::::
sampling

::::::::
frequency,

::::
and

:
the use of Pacific data as background. They pointed out that global inversions of the surface network data20

for 2000-2014
:::::::::
2000-2012

:
from the North American Carbon Program (NACP) reveal no significant CONUS emission trend.

However, trend detectability from the surface data may be limited by their sparsity. In addition, the inversions rely on prior

knowledge of US source patterns from the EDGAR inventory (European Commission, 2011), which is known to have large

errors (Maasakkers et al., 2016).

Here we reexamine the trend in CONUS emissions implied by the GOSAT data by using a longer record (January 201025

- December 2015
::::
2016), an improved definition of the background

:::
that

::::::::
accounts

:::
for

:::::::::::
atmospheric

::::::::
transport

:::::::::
variability, and

sectoral source information from a new gridded version of the US Environmental Protection Agency (EPA) Greenhouse Gas

Inventory (Maasakkers et al., 2016). We evaluate the trends for
:::::
relate

::
the

:::::::
inferred

::::::
trends

::
to

:::::
trends

::
in

:::
the

::::::::::
underlying

::::::::
activities,

:::
and

:::::::
evaluate consistency with trends in the surface network data. We also extend the trend analysis to Canada and Mexico.

2 Methods30

GOSAT was launched in January 2009 in a Sun-synchronous low Earth orbit, and after 7 years in space it still provides

consistent retrieval accuracy (Kuze et al., 2016) of column-integrated methane concentrations. It detects the .
::
It
::::::::
retrieves

:::
the

::::::::::
atmospheric

:
methane column by nadir measurements of solar back-scatter (1.65 µm absorption band).

:::::
There

:::
has

:::::
been

:::
no

2



:::::::::
degradation

:::
of

:::::::
retrieval

:::::::
accuracy

:::::
since

:::
the

::::::::
beginning

:::
of

:::
the

:::::
record

::::::::::::::::
(Kuze et al., 2016).

:
Observations in the standard mode are

made at three circular pixels of 10 km diameter across the orbit track 260 km apart, separated by 260 km along the track. The

same locations are sampled every 3 days, making for a temporally dense data set at those locations. The observations often

switch from the standard mode to focus on targets and this affects the regularity of the sampling.

Here we use the version 7.0 proxy nadir retrievals of GOSAT methane data from Parker et al. (2011, 2015). The proxy method5

uses prior knowledge of carbon dioxide columns
:::::
(based

::
on

:::
the

::::::::
MACC-II

::::::::
inversion

::::::
product

:::::::::::::::::::::::::::::::::::::
(v13r2; Chevallier F. et al., 2010) accounting

::
for

::::::::
seasonal

:::
and

:::::::::
interannual

:::::::::
variations)

:
to infer methane column average dry mole fractionsXCH4 (in ppb) from the ratio of re-

trieved methane and carbon dioxide columns. This
::::
The

:::::
proxy

::::::
method takes advantage of the much larger variability in methane

than in carbon dioxide mixing ratios (Frankenberg et al., 2006; Parker et al., 2015). The resulting GOSAT XCH4 data have

been validated against the ground-based Total Carbon Column Observing Network (TCCON), and found to be of high quality10

with a single-scene precision of 0.7% (Buchwitz et al., 2015; Parker et al., 2015)
:::::::
(random

:::::
error)

:::
and

::
a
:::::::::
systematic

::::
error

::
of
::::

4-6

:::
ppb

::::::::::::::::::::::::::::::::::::::::
(Parker et al., 2015; Buchwitz et al., 2015, 2016). GOSAT observes in all seasons with near-uniform frequency south of

45◦N (CONUS and Mexico), but observations further north (Canada) are biased toward summer. The number of successful

retrievals over Canada is 2-3 times less in winter than in summer (see Supplemental Material).

From a simple mass balance perspective, enhancements of column methane above the surrounding background in a given15

:::::
strong

:
source region can be linearly related to the emissions in that region (Jacob et al., 2016; Buchwitz et al., 2017). Turner

et al. (2016) estimated the CONUS background by using glint mode retrievals from GOSAT over the Pacific Ocean for the

corresponding latitudes. Bruhwiler et al. (2017) pointed out that
::::::
changes

::
in

:
large-scale meridional transport could alias trends

in this background estimate onto trends in the emissions.

Here we define
::::
local background methane for a given CONUS location (0.5◦ × 0.5◦ grid cell, typically including a single20

repeated GOSAT measurement location) and for a given year as the low (10th-25th) percentiles of the deseasonalized GOSAT

methane observations
:::::
within

:::
the

:::::
given

::::::::::
0.5◦ × 0.5◦

::::
grid

::::
cell, with seasonality removed using the seasonal-trend loess (STL)

decomposition method (Cleveland et al., 1990). This approach assumes that the low percentiles of concentrations reflect me-

teorological conditions where local sources have relatively little effect on methane concentrations due to rapid ventilation. It

allows definition of local enhancements relative to a regional background and this will be important for our sectoral attribution25

that follows. Low percentiles are a standard approach for estimating the regional background at a measurement location (Gold-

stein et al., 1995). By choosing the 10th-25th percentile rather than a lower extreme we guard against the effect of instrument

error or anomalous flow conditions (such as incursions of tropical air
::::::::::
measurement

:::::
noise

:::::::
(random

:::::
error). A permutation resam-

pling test shows that GOSAT observations across North America are sufficiently precise that ≥10th percentiles are not affected

by instrument
::::::::::
measurement

:
noise (see Supplemental Material). We use the range defined by the 10th-25th percentile range as a30

measure of uncertainty in the background for purpose of determining the enhancement. This approach also removes any local

instrument bias

:::::::::
Systematic

:::::
errors

::
of

:::
4-6

::::
ppb

::
in

:::::::
GOSAT

::::::::::
observations

:::::::::::::::::::::
(Buchwitz et al., 2016) do

:::
not

:::::
affect

:::
the

:::::::::::
enhancement

:
because the bias

can be expected to similarly affect all percentiles of the methane observations. Local enhancements are inversely proportional

to wind speed (Jacob et al., 2016), but we find no significant trends in wind speeds over the 2010-2015
:::::::::
2010-2016

:
period35

3



that would contribute to our aggregated trends in methane enhancements (see Supplemental Material). Any trends in OH

concentrations would also not affect the enhancement because the lifetime of methane against oxidation is 9-10 years (Prather

et al., 2012; Kirschke et al., 2013), very long compared to the timescale for ventilation from the source region.

We examined the validity of our approach by comparing frequency distributions of GOSAT methane columns and related

trends to continuous ground-based column observations available from the TCCON (Wunch et al., 2011) network site at5

Lamont, Oklahoma (36.6◦N, 97.4◦W). Figure 1 shows the frequency distributions of the deseasonalized GOSAT and TCCON

observations at Lamont. The GOSAT background defined by the 10th-25th percentiles is consistent with TCCON; we see that

the repeated observation strategy of GOSAT at its discrete sampling locations makes for a sufficiently dense data set for defining

the 10th-25th percentiles with little effect from instrument noise. The local annual mean background increases between 2010

and 2015 in a consistent way in the GOSAT and TCCON data sets, reflecting the global increase in the methane background.10

The enhancements above background also show comparable 2010-2015
:::::::::
2010-2016 trends between the two data sets, although

the error standard deviations defined by the ranges of the 10th-25th percentiles are large . Here
:::
and

:::
the

::::::
trends

::
at

:::
this

::::::
single

:::
site

:::
are

:::::::::
marginally

:::::::::
significant

:::::::::
(p= 0.07).

::::::
Below we will use enhancement statistics aggregated over a large number of sites in

order to reduce that error
:::::::::
uncertainty

:
and quantify trends.

To aggregate trends in methane enhancements over different
:::
for

::::::::
individual

:
source sectors, we use bottom-up annual mean15

sectoral information with 0.1◦ × 0.1◦ spatial resolution from the gridded 2012 US EPA inventory of Maasakkers et al. (2016),

the 2013 Canadian and 2010 Mexican oil/gas emission inventories of Sheng et al. (2017), and the EDGAR v4.2 global inventory

for 2008 (European Commission, 2011) for other Canadian and Mexican sources.
::::::::
Compared

::
to

:::::::
EDGAR

:::::
v4.2,

:::
the

::::
more

::::::
recent

:::::::
EDGAR

:::::
v4.3.2

::::::::::::::::::::::::::::::
(Janssens-Maenhout et al., 2017) has

:::::::
similar

:::::::
national

::::
totals

::::
and

::::::
spatial

::::::
patterns

:::
for

::::::::::
non-oil/gas

::::::::::::
anthropogenic

:::::::
methane

::::::::
emissions

::
in

:::::
North

::::::::
America.

:
For wetlands, we use multiyear annual mean values from two climatological inventories20

with 0.5◦ × 0.5◦ spatial resolution: (1) the mean of inventories contributing to the Wetland CH4 Inter-Comparison Of Models

Project (WETCHIMP) (Melton et al., 2013), and (2) the 2010-2015 mean of the WetCHARTs extended ensemble wetland

methane emissions inventory by Bloom et al. (2017). From these inventories we select high-emitting grid cells at 0.5◦ × 0.5◦

resolution (equivalently about 55 by 45 km resolution in the central Oklahoma) dominated by a particular source sector. The

high-emitting grid cells are defined as having emissions larger than 0.5 tons h−1, encompassing 80-90% of anthropogenic25

and wetland emissions in all three countries. A high-emitting grid cell is identified as dominated by a given source sector if

that source sector accounts for more than 70% of the total emissions in the cell. This allows us to define grid cells dominated

specifically by oil/gas, livestock, waste, and wetlands emissions. Contributions from other sectors (up to 30%) may lead to

some smoothing of results. Wetland-dominated areas determined by the WETCHIMP mean and WetCHARTs inventories

differ significantly (see Supplemental Material), and here
:
.
:::::
Using

:::::
either

:::
of

::
the

::::
two

:::::::::
inventories

:::::
alone

::::
may

::::
bias

:::
our

::::::
results,

::::
and30

:::
thus

:
we conservatively require wetland-dominated areas to be determined as such in both inventories.

We define a total methane enhancement ∆ for a given year, source sector, and country as

∆ =
∑
i

(
X̄CH4,i −XCH4,b,i

)
, (1)
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where X̄CH4,i is the annual mean value of the deseasonalized column average dry mole fractions in 0.5◦ × 0.5◦ grid cell i

for the given year, XCH4,b,i is the corresponding local background value, and the summation is over all high-emitting grid

cells for that sector and country. We require grid cells to have at least eight valid retrievals for a given year, and about 70% of

grid cells meet this requirement. The
::
To

:::::::
account

:::
for

:::::
local

::::::::::
background

:::::::
variation

::::
due

::
to

::::::::::
atmospheric

::::::::
transport,

:::
the

:
summation

in Equation (1) is conducted for 1000 Monte Carlo realizations where the background XCH4,b,i for each grid cell
:::
and

:::
for5

::::::::
individual

:::::
years is obtained by random sampling of percentiles in the 10th-25th range. Results are only weakly sensitive to the

choice of that range (see Supplemental Material). The resulting summation statistics define the probability density function of

the total enhancement ∆, and this is used in what follows to test the statistical significance of year-to-year trends in ∆.

3 Results and discussion

Figure 2 (upper panel) shows the spatial distribution of GOSAT methane trends in local enhancements over North America at10

0.5◦×0.5◦ spatial resolution from January 2010 to December 2015 (six
::::
2016

::::::
(seven years of data). The 0.5◦×0.5◦ trends are

inferred from ordinary least-square linear regression of the enhancements for individual years. The trends are not statistically

significant at that resolution. We will aggregate grid cells in what follows to increase statistical significance. Some areas are

sparsely sampled, such as California, while the central US is more densely observed due to a more regular schedule of standard

measurements. Spatial averaging to 4◦×4◦ as in Turner et al. (2016) does not improve significance (see Supplemental Material)15

because methane emissions are not correlated on that scale. A major reason for the weaker statistical significance of our results

relative to Turner et al. (2016) is the choice of background. Enhancements defined relative to the Pacific background, as in

Turner et al. (2016), integrate emission influences over a broader spatial footprint
::
are

::::::
larger than in our approach where the

background is defined locally.

We improve the statistical significance of the CONUS enhancement trends by taking national statistics over all 0.5◦ × 0.5◦20

grid cells. This is shown in the lower panels of Figure 2 with the CONUS frequency distribution of trends in mean methane,

local background, and the enhancements computed by difference. The mean 2010-2015
:::::::::
2010-2016

:
trend in methane enhance-

ments over CONUS is 0.21± 0.66
::::::::::
0.25± 0.48 ppb a−1 (mean ± one standard deviation), which is statistically significant

(sample size n= 254
:::::::
n= 241

:
and p-value < 0.01). The mean 2010 methane enhancement

::
for

::::::::::::
high-emitting

::::
grid

::::
cells

:
in

CONUS relative to
::::
local background is 10.8 ppb

:
,
:::::::::
comparable

::
to
::::
that

:::::
found

:::
by

:::::::::::::::::::
Janardanan et al. (2017). If this mean enhance-25

ment is taken as a measure of CONUS emissions, then a 0.21
::::::::::
0.25± 0.48 ppb a−1 trend implies a 1.9%

::::::
2.3±4%

:
a−1 increase in

emissions for 2010-2015
:::::::::
2010-2016. The Turner et al. frequency distributions, shown in the lower left panel, are much broader

than ours because they did not use annual averaging of the data. Their Pacific background distribution is similarly broader

and is also lower than our local background, which is appropriately elevated by continental influences.
:::::
Below

:::
we

::::
will

:::
use

:::
the

:::::::::
aggregated

::::::::::::
enhancements

::
by

::::::
source

::::::
sectors

::::::::
(Equation

::
1)

::
to
:::::
infer

:::
the

:::::
trends

:::
and

::::::
reduce

:::
the

::::::::::
uncertainty.

:
30

Figure 3 shows the locations of high-emitting 0.5◦ × 0.5◦ grid cells dominated by different sectors as identified by the

bottom-up inventories of Section 2. Also shown are national emission totals from these inventories. Wetland-dominated areas

in Figure 3 are those identified by both the WETCHIMP mean and Bloom et al. (2017) inventories in order to avoid false
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positives. There is clear separation of grid cells dominated by wetlands, oil/gas, and livestock source sectors. Waste emissions

dominate in urban areas but are more localized. Offshore oil/gas emissions over the Gulf of Mexico account for more than 50%

of Mexican oil/gas total (Sheng et al., 2017), but are not directly detectable by GOSAT because the nadir measurements are

only
::::
nadir

::::::::::::
measurements

:
over land.

::::
Glint

:::::::::::
observations

:::
are

:::::::
available

::::
over

:::
the

:::::
ocean

:::
but

:::
are

:::::
much

:::::::
sparser.

Figure 4 shows GOSAT methane enhancement trends for 2010-2015
:::::::::
2010-2016 (expressed as percent change since 2010)5

over Canada, CONUS, and Mexico, along with contributions from the sector-resolved high-emitting grid cells. Here the trends

are calculated for the summed enhancement ∆ in Equation (1) calculated for individual years and for
:::::::::::
high-emitting

::::
grid

::::
cells

::
of individual countries or high-emitting sectors. Inferring significant trends for a given source sector generally requires ∼50

contributing 0.5◦×0.5◦ grid cells. The largest source of uncertainty is the selection of the local background within the 10th-25th

percentile range, and this is reflected by the error bars in the figure.10

The Canadian methane emissions show no significant six-year
:::::::::
seven-year trend but large interannual

::::::::::
year-to-year

:
variability

driven by wetlands. The 2014 maximum can be explained by a maximum of wetland areal extent (Bloom et al., 2017) (See

Fig. S6 in Supplemental Material). Observations in the oil/gas dominated region of Canada (mainly natural gas in Alberta) are

too sparse for inferring a significant oil/gas emission trend and are not shown here.

Mexican national emissions (excluding oil/gas offshore emissions) show a 5-10% decrease over the 2010 to 2015
::::
201615

period that appears to be largely driven by livestock. The decrease of livestock emissions (4.0±1.6% a−1) is consistent with

the 17% decrease in the Mexican cattle population over that period as reported by the Foreign Agriculture Service of the US

Department of Agriculture (2015) and shown in Figure 5. The slight increase in Mexican emissions from 2012 on suggests an

increasing source to compensate for the declining livestock emissions but GOSAT observations are too sparse to identify that

source.20

The CONUS data imply a significant increase in methane emissions from 2010 to 2015
::::
2016, with a trend of 2.1

::
2.5±1.4%

a−1 derived from linear regression that is consistent with our previously calculated mean trend of 1.9
:::
2.3% a−1 averaged over

the 0.5◦ × 0.5◦ gridded trends in Figure 2. Breakdown by sector suggests that US oil/gas emissions increased at a marginally

significant level (3.1
:::
2.9% a−1, p= 0.08

:::::::
p= 0.03) from 2010 to 2015. Oil and unconventional (hydraulic fracturing) gas pro-

duction grew by 15% a−1 and 19% a−1, respectively during that period (Figure 5), though production rate is not necessarily a25

predictor of emissions (Peischl et al., 2015).

The US livestock emissions show a 3.6± 2.3%
:::::::::
3.5± 1.8% a−1 increase in our analysis, largely reflecting the agricultural

Midwest where high-emitting grid cells are concentrated (Figure 3). These grid cells emit 0.95 Tg CH4 a−1 from enteric fer-

mentation
::::::
(cattle) and 0.55 Tg CH4 a−1 from manure management

::::::
(swine) according to the gridded EPA inventory(Maasakkers

et al., 2016). The cattle population in that region does not show a significant trend (Figure 5), but swine population in Iowa30

(accounting for most of the swine population in the Midwest) increased by two million heads from 2010 to 2015
::::
2016(USDA

National Agricultural Statistics Service, 2015b; Iowa Department of Natural Resources, 2017) (Figure 5). This would increase

swine manure management emissions by 0.02-0.1 Tg CH4 a−1 over the 2010-2015
::::::::
2010-2016

:
period assuming the IPCC

(2006) emission factor of 10-45 kg CH4 head−1 a−1.
::::
Here

:
a
:::::
larger

:::::
value

::
of

:::
the

::::::::
emission

:::::
factor

::
is
:::::
more

:::::
likely.

:
The emission

factor may also have increased during that time due to an increase in swine body weight and a 30% rise in concentrated animal35
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feeding operations (CAFOs) with more than 1,000 animal units (Iowa Department of Natural Resources, 2017). Those CAFOs

tend to use liquid manure storage (US EPA, 2016) and have extended manure storage time (Iowa Department of Natural Re-

sources, 2011), which lead to greater methane emissions. A recent bottom-up study from Wolf et al. (2017) found a steady

increasing trend since the 1990s in US methane emissions from manure management.

US wetlands emissions do not show a significant trend over 2010-2015 but large interannual
::::::::
2010-2016

:::
but

:::::
large

::::::::::
year-to-year5

variability, which contributes in part to the total national trend after 2012. Correlation with driving variables in the WetCHARTs

yearly ensemble
::
of

::::::::::::::::
Bloom et al. (2017) suggests that this interannual

::::::::::
year-to-year variability is related to wetland areal ex-

tent, same as for Canada (See Fig. S6 in Supplemental Material). ,
::::::
though

:::
the

:::::::::
definition

::
of

:::::::
wetland

:::::
areal

:::::
extent

:::::
may

::::
vary

::::::::::
significantly

:::::::::::::::::
(Poulter et al., 2017).

:::::
Here

::
the

:::::::::::
WetCHARTs

::::::::
extended

::::::::
ensemble

::::
used

::::::::::::
GLOBCOVER

::::
land

:::::
cover

::::
data

::::::::::::::::::::::
(Bontemps et al., 2011) and

::
the

::::::
Global

:::::
Lakes

::::
and

:::::::
Wetlands

::::::::
Database

::::::::::::::::::::::::::::::
(GLWD; Lehner and Dölla, 2004) to

::::::::
represent

:::::
spatial

:::::::
wetland

::::::
extent,

:::
and

:::::::::::
ERA-interim10

::::::::::
precipitation

::
to

:::::::
account

:::
for

:::::::
temporal

:::::::
wetland

::::::
extent

:::::::::::::::::
(Bloom et al., 2017).

Inverse analyses of methane concentrations in surface air measured as part of the North American Carbon Program (NACP;

Wofsy and Harris, 2002) for 2010-2014 reveal no significant trends in US emissions over that period (Benmergui et al., 2015; Bruhwiler et al., 2017)
::::::::::::::::::::
(Benmergui et al., 2015).

We examined whether the trends inferred from this work
:::::::::
(significant

::::::
trends

::::
after

:::::
2012) are consistent with the information pro-

vided by NACP surface data. For this purpose, we examined the residuals (observed minus simulated methane concentrations)15

of the CarbonTracker-Lagrange (CT-L) methane transport model (Benmergui et al., 2015) driven with two sets of emissions (1)

the CT-L posterior emissions for 2010-2014 that are optimized to match
::
all

:
NACP data and show no significant trend, and (2)

a scaled version of the CT-L posterior emissions that matches the sector-resolved trends derived in this work. Figure 7 shows

annual statistics and trends of the residuals for both simulations at three NACP sites
:::::::
included

::
in

:::
the

:::::
CT-L

:::::::
inversion: LEF (Park

Falls, Wisconsin, 45.9◦N, 90.3◦W), WBI (West Branch, Iowa, 41.7◦N, 91.4◦W), and WKT (Moody, Texas, 31.3◦N, 97.3◦W).20

These sites are strongly influenced by large livestock/wetlands, livestockand, ,
::::
and oil/gas sources, respectively (Benmergui et

al., 2015). There is no significant trend in the residuals of the CT-L simulation driven by either our GOSAT-inferred emission

trends or CT-L posterior emissions, and the two sets of residuals are statistically indistinguishable.
::
We

::::
find

::::::
similar

::::::
results

:::
for

::::
other

::::::
NACP

::::
sites

:::
that

:::
are

::::
less

::::::::
sensitive

::
to

:::::
source

:::::::
regions.

:
This implies that the trends found in this work are compatible with

the constraints provided by NACP data. This also suggests that the surface data may be spatially too sparse to adequately infer25

trends of the magnitude as detected by GOSAT.

4 Conclusions

In conclusion, analysis of six years (2010-2015
:::::
seven

::::
years

::::::::::
(2010-2016) of GOSAT methane trends over Canada, the contiguous

US (CONUS), and Mexico suggests a significant increase in
::::
total US methane emissions

::::
after

::::
2012

:
and decrease in Mexican

emissions. The Mexican decreasing trend appears to be due to a declining cattle population. Canada shows no significant long-30

term trend but large interannual
::::::::::
year-to-year variability associated with wetlands and correlated with variations in wetland areal

extent,
::::::
though

::::
this

::::
trend

::
is

::::::::
weighted

::::::
toward

::::::
summer

:::::::
because

::
of

:::
the

:::::::
seasonal

::::
bias

::
in

::::::::::
observation

::::::::
frequency

::::
(less

:::::::::::
observations

::
in

::::::
winter). The US trend is +2.1± 1.4%

:::::::::::
+2.5± 1.4% a−1 for the period and appears to reflect contributions from both oil/gas and
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livestock. Assuming 38-53
::::
38-55

:
Tg CH4 a−1 for the CONUS emissions(European Commission, 2011; Melton et al., 2013; Turner et al., 2015; Bloom et al., 2017; Maasakkers et al., 2016) ,

this implies ,
::::::::
including

:::::
29-40

:::
Tg

::::
CH4

:::
a−1

::::
from

::::::::::::
anthropogenic

:::::::
sources

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Miller et al., 2013; Wecht et al., 2014; Turner et al., 2015; Maasakkers et al., 2016) and

::::
9-15

::
Tg

:::::
CH4

:::
a−1

:::::
from

:::::::
wetlands

::::::::::::::::::::::::::::::::::
(Melton et al., 2013; Bloom et al., 2017),

:::
we

::::::
deduce an increasing emission trend of 0.8-1.1

::::::
0.9-1.3 Tg CH4 a−1 over the 2010-2014

:::::::::
2010-2016 period, which would account for about 20% of the global increase in atmo-

spheric methane (Rigby et al., 2017). Our
:::::::
analysis

:
is
:::::::
mainly

::::::
limited

::
by

:::
the

::::::
length

::
of

:::::::
GOSAT

::::::
record,

::::
and

:
a
::::::
longer

:::::
record

::::
can5

::::::
provide

:::::
more

::::::
reliable

:::::::
results.

:::
The

:::::::::
definition

::
of

::::
local

::::::::::
background

::::
may

::::
also

:::
not

:::::
fully

:::::::
account

:::
for

:::
the

:::::::
variation

::
in

:::::::::::
atmospheric

::::::::
transport.

:::
Our

:
trend analysis should be compared to trends inferred from inverse modeling (Bruhwiler et al., 2017), which bet-

ter account for the role of atmospheric transport but have their own errors notably in the prior assumptions of emission patterns

(Maasakkers et al., 2016). Better
:::::
Future

:::::::::
inversions

:::::::::
combining

:::::::
GOSAT

::::
and

::::::
surface

:::::::
network

::::
data

::::
with

:::::::::
improved bottom-up

understanding of the factors driving methane emissions and the implications for trends is ultimately needed
::::::::
estimates

:::
are10

::::::
needed

::
to

::::::
provide

:::::
more

:::::
robust

:::::
trend

:::::::
analyses.
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Figure 1. Frequency distributions and 2010-2015
:::::::
2010-2016

:
trends of methane column average dry mole fractions XCH4 at Lamont,

Oklahoma (36.6◦N, 97.4◦W) as measured by TCCON and GOSAT. The upper panels show the deseasonalized 2015 frequency distributions

from TCCON and GOSAT. The percentiles are plotted on a normal probability scale such that a normal distribution would plot as a straight

line. The local background is defined by the 10th-25th percentile range and the mean annual local enhancement relative to this background is

defined by the difference with the mean of the distribution. Lower panels compare TCCON and GOSAT backgrounds and enhancements for

2010-2015
::::::::
2010-2016, with error standard deviations on the enhancements as described in the text.
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Figure 2. 2010-2015
::::::::
2010-2016 trends in GOSAT methane enhancements over North America. Upper panel: ordinary least-square linear

regression trends for 0.5◦ × 0.5◦ grid cells with sufficient GOSAT observations, where the deseasonalized annual mean methane enhance-

ments are defined relative to a local low-percentile background as described in the text. The trends are not statistically significant at that

resolution (see text). Lower panels: spatial frequency distributions for the 0.5◦×0.5◦ grid cells over the contiguous United States (CONUS)

of mean methane and local background (at left), and local methane enhancements computed by difference (at right). The dashed black line

in the lower right panel indicates the mean trend in CONUS enhancements. Also shown in the lower left panel are the 2010-2013 trend

distributions from Turner et al. (2016).
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Figure 3. Methane emissions in North America and contributions from different source sectors. The left panel shows 0.5◦ × 0.5◦ grid cells

with high emissions dominated by a particular sector as identified by the bottom-up inventories (see text for details). High-emitting wetland

areas are those identified by both the WETCHIMP mean inventory and the Bloom et al. (2017) mean inventory. Livestock includes enteric

fermentation and manure management. Oil/gas includes the complete systems from production to distribution. Waste includes landfills and

wastewater plants. The right panel shows national emissions for 2008-2013 from the bottom-up inventories. “Other” includes smaller sources

from coal, rice, combustion, petrochemical production, ferroalloy production, and biomass burning.
::::
Total

:::::::
emissions

::
in
:::

the
:::::::::::

high-emitting

::::::
wetland

::::
areas

::
are

::::::::
indicated

::
by

::::::
gridded

::::
areas.
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Figure 4. National trends in methane emissions since 2010 inferred from GOSAT, and contributions from specific source sectors where

sufficient data are available. The trends are defined by relative year-to-year changes in the summed methane enhancements ∆ relative to the

local backgrounds as computed from Equation (1), and vertical bars are standard deviations derived from uncertainty in the local background

(see text).

12



Figure 5. 2010-2015
::::::::
2010-2016 changes in methane emitting activities. Upper panel: monthly oil and natural gas production in CONUS

(Drillinginfo, 2016). Middle panel: cattle population in Iowa, Kansas, Missouri, and Nebraska (USDA National Agricultural Statistics Ser-

vice, 2015a), and animal units of swine in Iowa (Iowa Department of Natural Resources, 2017). One animal unit accounts for 3-5 heads

of swine depending on body weight(USDA National Agricultural Statistics Service, 1995). Lower panel: total cattle population in Mexico

(USDA Foreign Agricultural Service, 2015).
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Figure 6. Time series of the residuals (observed minus simulated methane concentrations) of the CarbonTracker-Lagrange (CT-L) CH4

transport model simulations driven by posterior emissions optimized for NACP data (green) and scaled to GOSAT-inferred emission trends

(purple) for three surface sites particularly sensitive to emissions from different sectors: LEF (45.9◦N, 90.3◦W), WBI (41.7◦N, 91.4◦W),

and WKT (31.3◦N, 97.3◦W). Solid lines show the medians of NACP and GOSAT trends, and shaded areas show the 25th-75th percentile

envelope.
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