Supplement of

Characterization of aerosol hygroscopicity, mixing state, and CCN activity at a suburban site in the central North China Plain

Yuying Wang¹, Zhanqing Li¹, Yingjie Zhang², Wei Du^{2,3}, Fang Zhang¹, Haobo Tan⁴, Hanbing Xu⁵, Xiaoai Jin¹, Xinxin Fan¹, Zipeng Dong¹, Qiuyan Wang⁶, Yele Sun^{2,3}

¹College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China

²State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
³College of Earth Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
⁴Key Laboratory of Regional Numerical Weather Prediction, Institute of Tropical and Marine
Meteorology, China Meteorological Administration, Guangzhou 510080, China
⁵Shared Experimental Education Center, Sun Yat-sen University, Guangzhou 510275, China
⁶Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing
University of Information Science and Technology, Nanjing, 210044, China

*Correspondence to: Zhanqing Li (zli@atmos.umd.edu)

Table S1. Gravimetric densities (ρ) and hygroscopicity parameters (κ) used in this study.

Species	NH ₄ NO ₃	(NH ₄) ₂ SO ₄	NH ₄ HSO ₄	H_2SO_4	POA	SOA	BC
ρ (kg m ⁻³)	1720	1769	1780	1830	1000	1400	1700
κ	0.67	0.61	0.61	0.9	0	0.1	0

Figure S1. Time series of different meteorological variables measured at the site: wind direction (WD), wind speed (WS), ambient temperature (T), relative humidity (RH), and the amount of precipitation.

Figure S2. Wind rose diagram summarizing wind directions (WD) and wind speeds

0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 Hygroscopicity Parameter (*) 20 22 0.8 0.8 -110nn 0.6 0.4 0.2 18 20 22 Hour of day 0.8 0.6 0.4 0.2 20 22 Hour of day

(WS) during the measurement period.

Figure S3. Diurnal variations in the probability density functions of κ_{gf} (κ -PDF) for different particle sizes.

Figure S3 shows the diurnal variations in κ -PDF for different particle sizes. Unimodal distributions are seen. Two or three modes occasionally appear at night. This is likely because photochemical reactions are weak then and the newly effluent hydrophobic species (such BC and organics) cannot quickly mix with inorganic salts.

Figure S4. Diurnal variations in mean SO₂ and O₃ concentrations.

Figure S4 shows the diurnal variations in mean SO₂ and O₃ concentrations. Affected by the mountain-valley wind, prevailing winds shift from the northwest to the southeast in the early morning. There are more industrial emissions to the southeast of the measurement site than to the northwest of the site. Therefore, the SO₂ concentration increases sharply in the morning after the wind shift. The O₃ concentration increases gradually after sunrise when photochemical reactions begin to occur and strengthen during the day. This likely explains the frequent occurrence of NPF events and the increase in sulfate during the day at XT.

Figure S5. Estimated versus measured CCN number concentrations at SS = 0.75 % (Fig. 9-a4). The N_{CCN} is estimated based on κ -Köhler theory, using the real-time κ_{chem} . Here, the critical value of $N_{\text{CCN}} = 5500 \text{ cm}^{-3}$ is used to separate the points into two groups. A separate linear regression analysis is done on each group. The slopes, correlation coefficients (R²), and relative deviations (RD) are shown in the figure.

Figure S5 shows that the linear regression is better when $N_{\rm CCN} < 5500 \text{ cm}^{-3}$. The slope and RD for $N_{\rm CCN} < 5500 \text{ cm}^{-3}$ are much lower than the values calculated using all $N_{\rm CCN}$ data (section 4.4 in the paper), while the values for $N_{\rm CCN} > 5500 \text{ cm}^{-3}$ are higher. This suggests that the CCN deviations are mainly caused by the overestimation of $N_{\rm CCN}$ due to measurement uncertainties (section 4.4).

Figure S6. Sensitivity of N_{CCN} estimates to κ_{chem} as a function of time at (a) SS = 0.13 % and (b) SS = 0.40 %. More information about the plot can be found in the Fig. 10 caption.