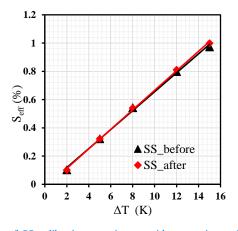
Thanks two reviewers for further reviewing our manuscript. We done 1

some changes in this paper according to their comments. We also 2

improved English language in the new version of this paper. 3

4

5


Reply to Report #1. 6

- 7 It appears that the authors has addressed most of my concerns during the initial manuscript review.
- 8 While the study did not measure size-resolved CCN data which makes it difficult to compare k
- 9 values derived from side-by-side HTDMA and CCN measurements, it is still the first report about
- 10 the aerosol CCN properties in a region that was not previously studied. As a result, I recommend
- the revised manuscript published in the journal Atmospheric Chemistry and Physics. 11
- 12 The other reviewer provided highly detailed comments to further improve the manuscript and the
- 13 authors have addressed most of them. However, the response table for comment on L267 should
- be incorporated into the supplementary documents. 14
- 15 Re: Good suggestion, we have added the corresponding table in the supplementary documents.
- 16

Reply to Report #2. 17

- 18 For the response to general comment 2: I did not say that there is no connection between HTDMA
- 19 and CCN measurements. What I suggested is to make a smoother transition from the HTDMA part 20 (4.1 to 4.3.2) to CCN part (4.3.3 and 4.4).
- 21 Re: Good suggestion. We done some improvement, such as adding the sentence "It is reasonable
- 22 to assume that aerosols are internally mixed when estimating N_{CCN} because H-TDMA data showed 23 that this was the case at XT." at beginning of section 4.4.
- 24
- 25 For the response to specific comments L156 and L164: I suggest the authors also add this
- 26 information to the main text to help audience better understand your measurements.
- 27 Re: Thanks for the suggestion. We have added the corresponding sentences in the manuscript. 28
- 29 For the response to specific comment L181: from the information provided in the main text and 30 this response, what I understand is: Calibration of flow and SS was "conducted before this
- 31
- campaign and the corresponding parameters were applied in the system". Then, "Five SS levels, 32 i.e., 0.07, 0.1, 0.2, 0.4, and 0.8 %, were set in the CCNC". Another SS calibration was done after
- 33 the campaign and "The calibrated SS used in this paper was from the mean SS of two calibration
- 34 results". "The corrected SS levels were 0.11, 0.13, 0.22, 0.40, and 0.75 %, respectively". It means
- that with the five deltT (calculated internally in CCN according to the calibration parameters from 35
- 36 first calibration), the actual SS changed from the original values (0.07, 0.1, 0.2, 0.4, and 0.8 %)

- before the campaign to 0.15%, 0.16%, 0.24%, 0.4% and 0.7% at the end of the campaign. But this
- 38 is not what I saw in the calibration curves shown in the response.
- 39 This is also why I suggested another "major revisions". I think the authors should clarify this
- 40 before the manuscript can be considered for final publication.
- 41 Re: We are sorry that the response to specific comment L181 confused the reviewer. Actually, the
- 42 flow and temperature sensors were calibrated before this campaign and their corresponding
- 43 parameters were used in the system. The SS calibration is different from these calibrations, as SS
- 44 is related with the temperature gradient (ΔT) in the cloud chamber, not a certain temperature. We
- didn't change the corresponding parameters to SS although we calibrated it before the campaign.
- 46 Figure 1 in this reply shows the results of two SS calibrations, suggesting a very limited change of 47 the relationship between SS and ΔT before and after the campaign. This verifies that our CCN
- 48 counter performed steadily during this campaign.
- 49

50

Figure 1. The results of SS calibration experiments with ammonium sulfate: CCN efficiency spectra measured at 5 different temperature gradient (Δ T). SS_before and SS_after are the

- 53 calibration results before and after the campaign respectively.
- 54
- 55 For the response to specific comment L183 and L387: with measured PNSD and CCN total

56 number concentration, critical diameter can be calculated as the diameter above which the

- 57 integration of PNSD equals to the CCN number concentration. This treatment has been used in
- 58 several studies (e.g. Deng et al., 2013). The advantage is it excludes the influence of the variation
- 59 of PNSD in the inferred CCN activities, compared with AR.

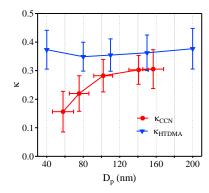
 $\label{eq:constraint} 60 \qquad \mbox{Re: The reviewer suggests an alternative method to calculate the critical diameter (D_c), so that the } \end{tabular}$

61 corresponding hygroscopicity parameter (κ_{CCN}) can be calculated. However, the shortage of the

 $\label{eq:constraint} 62 \qquad \text{method lies in that the } D_c \text{ won't be accurate if the CCN number concentrations } (N_{CCN}) \text{ have biases}.$

 $63 \qquad A \text{ minor change of } D_c \text{ will result in a significant change of } \kappa_{CCN} \text{ because of the strong sensibility}$

64 $(\kappa_{CCN} \sim D_c^{-3})$. Figure 2 in this reply shows the κ values from SMPS-CCNc data using the


recommended method and HTDMA data in this campaign. It's obvious that κ_{CCN} is larger than κ_{HTDMA} , likely due to the CCNc measurement uncertainties as stated in the manscript. Lower

66 $\kappa_{\rm HTDMA}$, likely due to the CCNc measurement uncertainties as stated in the manscript. Lower 67 measured N_{CCN} than its actual value in this polluted environment leads to the overestimation of D_e, 68 \hfill then will make a underestimation of $\kappa_{CCN}.$ This influence is stronger for higher SS (lower $D_c)$ due

- 100 to higher biases in N_{CCN}, which is also reflected in Fig. 2. In a word, this method maybe not suitable in our data.
- 70 suitable in our data.

71 Note that our main objective in in L387 is to infer the influence of PBL on the aerosol 72 activation ability. The influence includes the impact of PBL on PNSD, so we think it's appropriate

- 73 to use AR in this paper.
- 74

75

76 Figure 2. The comparison of hygroscopicity parameter (κ) retrieved from SMPS-CCNc or 77 HTDMA data.

78

79 For the response to specific comment L407: I think deleting the sentence will not change the

- reality that "PM1 composition differ greatly from 40-200 nm particles" as reflected in fig 6.
- 81 Re: Yes, it's a good suggestion, we have deleted the corresponding sentence.

82 For the response to specific comment L434: What I want to point out is, here you can not really

prove that 0.31 is a good proxy for the calculation of Nccn. Because as shown in fig. 6, PM1

composition differ greatly from 40-200 nm particles. Probably a kappa of 0.25 or 0.35 can bring
 similar results just because Nccn is not sensitive on kappa.

86 Re: Agree, but here we only want to provide a reference value for people who need to calculate the

87 CCN concentration in this region in their models. We have corrected the sentence as " $\kappa = 0.31$

- 88 which is a good reference value to model the CCN number concentration in this region".
- 89 For the response to specific comment L437: I was not against this statement. I fully agree with it.

90 What I wanted to say is you should not put it in your conclusion since you did not prove it in this 91 section.

- 92 Re: Agree. The corresponding sentence about mixing state in the conclusion has been deleted.
- 93
- 94
- 95
- 96
- 97

98	Characterization of aerosol hygroscopicity, mixing state, and		带格式的: 字体	颜色: 文字 1	
99	CCN activity at a suburban site in the central North China Plain				
100					
101	Yuying Wang ¹ , Zhanqing Li ¹ , Yingjie Zhang ² , Wei Du ^{2,3} , Fang Zhang ¹ , Haobo Tan ⁴ ,				
102	Hanbing Xu ⁵ , Tianyi Fan ¹ , Xiaoai Jin ¹ , Xinxin Fan ¹ , Zipeng Dong ¹ , Qiuyan Wang ⁶ , Yele				
103	Sun ^{2,3}				
104					
105					
106	¹ College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875,				
107	China				
108	² State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry,				
109	Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China				
110	³ College of Earth Sciences, University of Chinese Academy of Sciences, Beijing 100049, China				
111	⁴ Key Laboratory of Regional Numerical Weather Prediction, Institute of Tropical and Marine				
112	Meteorology, China Meteorological Administration, Guangzhou 510080, China				
113	⁵ Shared Experimental Education Center, Sun Yat-sen University, Guangzhou 510275, China				
114	⁶ Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing				
115	University of Information Science and Technology, Nanjing, 210044, China				
116					
117 118	*Correspondence to: Zhanqing Li (zli@atmos.umd.edu)	_	(带格式的:字体) (带格式的:字体)		

120

This study investigates aerosol hygroscopicity, mixing state, and cloud condensation 121 122 nucleation-(CCN) activity as a part of the Atmosphere-Aerosol-Boundary Layer-Cloud (A²BC) Interaction Joint Experiment carried outdone in the summer of 123 2016 at Xingtai (XT), a suburban site located in the center of the North China Plain 124 125 (NCP). In general, the probability density function (PDF) of the hygroscopicity 126 parameter (κ -PDF) for 40–200-nm particles had a unimodal distribution, and mean 127 κ -PDF patterns for different sizes were similar, suggesting that the particles were highly aged and internally mixed because of strong photochemical reactions. The κ 128 129 calculated from the hygroscopic growth factor in the daytime and at nighttime showed suggests that photochemical reactions largely enhanced the aerosol hygroscopicity. 130 131 and the This effect became weaker as the particle size increased. In addition, the aerosol hygroscopicity was much larger at XT than those observed at other sites of in 132 133 the NCP. -This is because new particle formation takes place much more frequently 134 in the central NCP, which is heavily polluted from industrial activities, than elsewhere in the regionfor being a center of industrial pollution in China where new particle 135 136 formation takes place much more frequently than other places. The evolution of the planetary boundary layer played a dominant role in dictating aerosol mass 137 138 concentration. Particle size was the most important factor influencing the ability of 139 aerosols to activate, whereas the effect of chemical composition is-was secondary, especially when supersaturation is was high. Using a fixed value of $\kappa = 0.31$ The 140 141 hygroscopicity parameter of a fixed value ($\kappa = 0.31$) is sufficient to calculate the

带格式的:字体:非倾斜,字体颜色:文字1

142 <u>cloud condensation nuclei number concentration</u> *N*_{CCN} in this region <u>suffices</u>.

带格式的:字体颜色:文字1

143 1. Introduction

Aerosols, defined as the mixture of solid and liquid particles suspended in air, are 144 ubiquitously present in the atmosphere because of direct emissions from biogenic and 145 146 anthropogenic sources, and the secondary transformation from gas precursors. Aerosol particles play an important role in climate changes through direct and indirect effects 147 (e.g., Ramanathan et al., 2001; Daniel-Rosenfeld et al., 2008; Li et al., 2016), 148 However, the impact of aerosols on climate change is difficult to simulate because of 149 the highly variable physical and chemical properties of aerosols, and complex 150 151 aerosol-cloud interactions (IPCC, 2013; Lebo et al., 2017),

152 The hygroscopic growth and mixing state of aerosol particles are important for 153 estimating the direct climate-radiative effect of aerosols on eEarth's climate. This is because the growth and mixing can change the particle size and optical properties of 154 aerosol particles which, directly influencesing the terrestrial solar radiation budget and 155 156 degrading the atmospheric visibility. (e.g. Covert et al., 1972; Stock et al., 2011; Peng et al., 2016; Z. Li et al., 2017a), In addition, aerosol particles can be activated as cloud 157 158 condensation nuclei (CCN) under supersaturation (SS) conditions. The variability in CCN number concentration (N_{CCN}) can modify both cloud microphysical properties 159 (Twomey, 1974; Albrecht, 1989) and morphonology (Rosenfeld et al., 2008; Li et al. 160 161 2011), and can lead to a broad impact on a wide range of meteorological variables

162 thereby causing an indirect including severe weather events (Li et al., 2017a)radiative

6

(带格式的: 字体颜色: 文字 1
 (带格式的: 字体颜色: 文字 1

带格式的: 字体颜色: 文字 1 **带格式的:** 字体颜色: 文字 1

带格式的:字体颜色:文字1

1	带格式的: 字体颜色:文字1
-(带格式的: 字体颜色:文字1

163	forcing (7	Guomou	1074.	Albrooht	1000)
103	HUICHING L	womey,	17/1.1	Albicent,	17071

-Previous studies have addressed three main aerosol properties influencing the CCN activation, namely, particle size, chemical composition, and mixing state. However, their relative importance is different <u>in-under</u> different environmentals <u>conditions (e.g., Dusek et al., 2006; Ervens et al., 2007; Cubison et al., 2008; Deng et</u> al., 2011; Zhang et al., 2014; Schmale et al., 2018).

169 Ambient aerosols are composed of different species, including inorganic ions, 170 organic components, black carbon (BC), and mineral dust. Inorganics mainly contain sulfate, nitrate, and ammonium, while organic aerosols (OA) consist of thousands of 171 chemicals (Jacobson et al., 2000). The hygroscopicity and CCN activity of a single 172 component can be characterized according to laboratory studies (e.g., Petters and 173 174 Kreidenweis, 2007), but the properties of their mixtures are hard to estimate because 175 of the different chemical species and mixing states of particles in the atmosphere. 176 Therefore, aerosol hygroscopicity and CCN activity are very different in different 177 regions due to different chemical compositions. Comprehensive field measurements 178 of aerosol properties in different areas regions are thus necessary to improve models. 179 China, especially the North China Plain (NCP), has been sufferinged from severe air pollution over the last couple of decades due to rapid industrialization and 180

<u>urbanization</u>since its rapid industrialization and urbanization in the last couple of decades.₅ where dDiverse sources and aging processes make aerosol properties particularly diverse and complex in this part of the world. As such, the region has drawn much attention in studyingregarding the aerosol mixing state, hygroscopicity,

带格式的: 字体颜色: 文字 1 **带格式的:** 字体颜色: 文字 1

/	带格式的: 字体颜色:文字1
_	带格式的: 字体颜色: 文字 1

Ι	带格式的: 字体颜色: 文字 1
	带格式的: 字体颜色:文字1
/	带格式的: 字体颜色:文字1

185	and CCN activity (Deng et al., 2011; Liu et al., 2011; Zhang et al., 2014; F. Zhang et	
186	al., 2016; S.L. Zhang et al., 2016; Wu et al., 2016; Y. Wang et al., 2017). Liu et al.	
187	(2011) and Y. Wang et al. (2017) have suggested that ambient particles are mostly an	
188	external mixture with different hygroscopicities. Deng et al. (2011) has have shown	
189	that the aerosol number size distribution is critical in the prediction of $N_{\rm CCN}$ while	
190	Zhang et al. (2014, 2017) have highlighted the importance of chemical composition in	
191	determining particle activation properties. However, all-these studies were done using	
192	data from the northern part of the NCP. Few studies have focused on the central	
193	region of the NCP. Compared to the northern part of the NCP, the central part of the	
194	NCP is more affected by industrial emissions where because a dense cluster of	
195	China's heavy industries exists there (Fu et al., 2014), Measurements of aerosol	
196	properties in the central part of the NCP are thus critically needed to investigate the	
197	impact of air pollution on the environment and climate changes.	
198	Xingtai (XT), a city located in the central areacenter of the NCP, is considered	
199	one of the mostoften ranks in the top of polluted cities in China. Local industrial and	
200	domestic sources of pollution are the greatest contributors to severe haze events in	
201	that region (Wang et al., 2014), A field experiment called the	
202	Atmosphere-Aerosol-Boundary Layer-Cloud (A2BC) Interaction Joint Experiment	
203	was <u>carried_outdone</u> at a suburban site in <u>Xingtai_XT</u> in the summer of 2016.	
204	Differences in aerosol properties at this site and at sites in the northern part of the	
205	NCP were found-in this study.	
206	The paper is organized as follows. Sections 2 and 3 describe the measurement	

带格式的:字体颜色:文字1 域代码已更改 带格式的:字体颜色:文字1 域代码已更改

1	域代码已更改
-(带格式的: 字体颜色:文字1
1	带格式的: 字体颜色: 文字 1

带格式的: 字体颜色: 文字 1	
带格式的: 字体颜色: 文字 1	

\bigwedge	带格式的: 字体颜色:文字1	J
-(带格式的: 字体颜色:文字1	J

1	带格式的: 字体颜色:文字1
-(

method and data analysis theory. Section 4 presents and discusses the measurement
results, which includes the data time series, aerosol mixing state, hygroscopicity, CCN
prediction and its sensitivity to chemical composition. A summary and conclusions are
given in section 5.

211 2. Measurements

212 2.1. Sampling site and meteorology

The A²BC experiment was carried outdone at the National Meteorological Basic 213 214 Station located in XT (37.18°N, 114.37°E, 180 m ASLabove sea level) from 1 May to 15 June of 2016. This suburban site is situated ~-17 km northwest of Xingtai the XT 215 urban area in southern Heibei Province, which is located in the central part of the NCP 216 217 and to the east of the Taihang Mountains (Fig. 1a). This region is heavily populated, 218 urbanized, and industrialized. The mMajor industrial manufacturers include 219 coal-based power plants, steel and iron works, glassworks, and cement mills. The wWeak diffusion conditions and heavy industrial emissions lead to exceptionally high 220 221 concentrations of particulate matter (PM) with diameters less than 10 µm (PM10) and 2.5 µm (PM2.5), as well as gas pollutants such as sulfur dioxide (SO2), volatile organic 222 compounds (VOCs), and nitrogen oxides (NO_x) during the frequently occurring haze 223 224 episodes in this region (Wang et al., 2014; Fu et al., 2014), Figure 1b shows the mean distribution of SO2 concentrations from May of 2012 to 2016, which confirmsing that 225 226 the measurement site is located in one of the pollution centers in this region. The A detailed analysis of gas precursors and aerosol chemical species shows that this 227

9

(带格式的: 字体颜色: 文字 1
 (带格式的: 字体颜色: 文字 1

228 station is a good representative site in this region (Zhang et al., 2018). Time series of meteorological variables measured at this meteorological station 229 are shown in Fig. S1. This site is heavily strongly affected by the mountain-valley 230 231 winds., Southeasterly winds prevail during the day and at night northwesterly winds 232 prevailshowing a prevailing southeasterly wind during the day and a northwesterly 233 wind at night (Fig. S1 and Fig. S2). There was almost no precipitation during the 234 study period. The ambient temperature (T) and relative humidity (RH) time series show opposing trends. Campaign-mean values of T and RH are 21.9-°C and 51.6-%, 235 236 respectively.

237 **2.2. Instrumentation and operation**

238 2.2.1. Aerosol hygroscopicity measurements

The custom-built hygroscopicity tandem differential mobility analyzer (H-TDMA) 239 240 used in this study has been described in detail by others (Tan et al., 2013; Y. Wang et al., 2017), Briefly, ambient aerosols are first dried and neutralized by a Nafion dryer 241 and a soft X-ray charger. A differential mobility analyzer (DMA1, model 3081L, TSI 242 Inc.) is used to select monodispersed particles of a certain diameter (D_{p0}) . The 243 244 monodisperseds particles are then passed through a nation-Nation humidifier with a controlled higher RH and are humidified. A second DMA (DMA2, same model as the 245 DMA1) and a water-based condensation particle counter (WCPC, model 3787, TSI 246 Inc.) are used to measure the number size distribution of the humidified particles. The 247 DMA1 and WCPC can also be connected directly to measure the 10-400-nm particle 248

带格式的: 字体颜色: 文字 1

number size distribution (PNSD). In this study, the dry diameters selected by the
DMA₁ are-were 40, 80, 110, 150, and 200 nm, and -t-The humidified RH is-was set to
85-%_{2.7} the-The RH calibration with ammonium sulfate for the H_TDMA is shown in
Fig. S3-in the supplement.

The hygroscopic growth factor (GF) is defined as the ratio of the humidified diameter at a given RH to the dry diameter:

$$GF = \frac{D_p(RH)}{D_{p0}},$$
(1)

where $D_{p}(RH)$ is the particle diameter at the given RH and D_{p0} is the dry diameter selected by the DMA₁. The measured distribution function versus GF-(GF-MDF) can be calculated with WCPC data downstream from the DMA₁ and DMA₂. The GF probability density function-(GF-PDF) is then retrieved using the TDMAFIT algorithm (Stolzenburg and McMurry, 1988, 2008).

261 2.2.2. Aerosol chemical composition measurements

255

262	An Aerosol Chemical Speciation Monitor (ACSM) was deployed used to measure
263	the non-refractory submicron aerosol-(NR-PM ₁) species (sulfate, nitrate, ammonium,
264	chloride, and organics) in real-time. A PM _{2.5} URG cyclone (model URG-2000-30ED)
265	was installed in the front of the sampling inlet to remove coarse particles (> 2.5 μm in
266	diameter). Before sampling into the ACSM, aerosol particles were dried (below 40-%
267	RH) by a silica gel diffusion dryer. In addition, tThe ACSM was calibrated routinely
268	with pure ammonium nitrate to determine its ionization efficiency. More detailed
269	descriptions about the ACSM are given by Ng et al.; (2011) and Sun et al.; (2012), A

Χ	带格式的: 字体颜色: 文字 1
-	带格式的: 字体颜色: 文字 1
	带格式的: 字体颜色: 文字 1
\sum	带格式的: 字体颜色: 文字 1
$\langle \rangle$	带格式的: 字体颜色: 文字 1
$\langle \rangle$	带格式的: 字体颜色: 文字 1
())	带格式的: 字体颜色: 文字 1
	带格式的: 字体颜色: 文字 1
(())	带格式的: 字体颜色: 文字 1
	带格式的: 字体颜色: 文字 1
	带格式的: 字体颜色: 文字 1
	带格式的: 字体颜色: 文字 1
-	带格式的: 字体颜色: 文字 1
\mathbb{Z}	带格式的: 字体颜色: 文字 1

1	带格式的: 字体颜色:文字1
-1	带格式的: 字体颜色:文字1
$ \top $	带格式的: 字体颜色:文字1
Y	带格式的: 字体颜色:文字1

positive matrix factor analysis is-was_used to analyze the organic spectral matrices
according to Ulbrich et al., (2009). Three factors, i.e., hydrocarbon-like OA (HOA),
cooking OA (COA), and oxygenated OA (OOA), are chosen as the ACSM dataset.
HOA and COA are both primary organic aerosols (POA) while OOA is the secondary
organic aerosol (SOA).

The ACSM does not detect refractory material such as BC, so a seven-wavelength aethalometer (AE-33, Magee Scientific Corp.) with a <u>PM with diameters less than 1</u> μ m (PM₁) cyclone was used to measure the BC mass concentration of BC particles with diameters < 1.0 μ m (BC PM₁). Mineral dust and sea salt are the other refractory species, but they typically exist in the coarse mode and <u>contribute negligibly</u>make negligible contributions to PM₁ (Juranyi et al., 2010; Meng et al., 2014).

281 **2.2.3.** Aerosol size distribution and CCN measurements

The aerosol particle number size distribution (15-685 nm) was measured by a 282 283 scanning mobility particle sizer (SMPS) that was equipped with a long DMA (model 3081L, TSI Inc.) and a condensation particle counter (CPC, model 3775, TSI Inc.). A 284 single-column continuous-flow thermal-gradient cloud condensation nuclei counter 285 (model_CCNC-100, DMT Inc.) was applied-used to measure the bulk CCN number 286 concentration. Five SS levels, i.e., 0.07, 0.1, 0.2, 0.4, and 0.8-%, were set in the 287 288 CCNC and the running time was 10 min for each SS level. The SS levels in the CCNC were calibrated with pure ammonium sulfate (Rose et al., 2008) before and 289 after the measurement campaign. The corrected SS levels were 0.11, 0.13, 0.22, 0.40, 290

-	带格式的: 字体颜色:文字1
-	带格式的: 字体颜色: 文字 1

Ι	带格式的: 字体颜色:文字1
	带格式的: 非上标/ 下标
	带格式的: 字体颜色·文字 1

1	域代码已更改
-(带格式的: 字体颜色: 文字 1

带格式的:字体颜色:文字1

带格式的:字体颜色:文字1 **带格式的:**字体颜色:文字1 and 0.75-%, respectively.

The aerosol activation ratio (AR) at a certain SS is calculated as N_{CCN} divided by 292 the total particle number concentration in the 15–685_-nm range ($N_{15-685 \text{ nm}}$), i.e., AR = 293 N_{CCN} / N_{15-685 nm}. The <u>SMPS does not measure particle number concentrations</u> below 294 295 15 nm. Since the activation critical diameter is always larger than 15 nm at these SS levels (Zhang et al., 2014), this does not affect the calculated N_{CCN}- is not measured 296 297 by the SMPS, but this does not affect the calculated N_{CCN} because the activation 298 critical diameter is always larger than 15 nm at these SS levels (Zhang et al., 2014), 299 Aerosol particles with diameters larger-greater than 685 nm are also not detected by the SMPS. These larger particles will always act as CCN due to their larger dry sizes. 300 However, Note that the number concentration above 685 nm in the atmosphere is 301 always negligible (Juranyi et al., 2010). 302

 (带格式的: 字体颜色: 文字 1

 (带格式的: 字体颜色: 文字 1

(带格式的: 字体颜色: 文字 1
 (带格式的: 字体颜色: 文字 1

303 2.2.4. Other measurements

304 In this study, a micro-pulse lidar (MPL-4B, Sigmaspace Corp.) was used to study the evolution of the planetary boundary layer (PBL) which plays a crucial role in 305 modulating surface air quality (Z. Li et al., 2017b). The pulse repetition rate of the 306 MPL was 2.5 kHz at a visible wavelength of 532 nm. The peak value of the optical 307 energy of the laser beam was 8 µJ. The pulse duration ranged from 10 to 100 ns, and 308 309 the pulse interval was set to 200 ns, corresponding to a spatial resolution of 30 m. The MPL-retrieved PBL height is the altitude where a sudden decrease in the scattering 310 311 coefficient occurs (Brooks, 2003; Quan et al., 2013). Trace gas analyzers **带格式的:**字体颜色:文字1 **带格式的:**字体颜色:文字1

Λ	带格式的: 字体颜色: 文字 1
	带格式的: 字体颜色: 文字 1

312	(manufactured by ECOTECH) were used to measure the gaseous species of $\underline{ozone}\Theta_3$,	带格式的	
313	SO ₂ , NO ₂ , NO ₂ and CO <u>carbon monoxide</u> . More detailed descriptions about the	带格式的	
314	analyzers are given by Zhu et al. , (2016),		
315	Two containers at ground level housed all sampling instruments. During this		
316	campaign, all sampling instruments were placed in two containers at ground level and		
317	<u>T</u> two air conditioners were used to maintained the temperature at 20–25-°C inside the		
318	containers. All stainless tube inlets were \sim -1.5 m above the top of <u>the</u> containers.		
319	3. Theory		
320	3.1. Hygroscopicity parameter		
321	To link hygroscopicity measurements below and above the water vapor saturation,		
322	the Köhler theory (Köhler, 1936) is parameterized using the hygroscopicity parameter	带格式的	
323	κ (Petters and Kreidenweis, 2007). This is known as the κ -Köhler theory. According	带格式的	
324	to the theory, the equilibrium equation $\frac{1}{10000000000000000000000000000000000$		
325	S(D) is	带格式的	
326	$S(D) = \frac{D^3 - D_d^3}{D^3 - D_d^3(1-\kappa)} \exp\left(\frac{4\sigma_{s/a}M_w}{RT_{0w}D}\right) , \tag{2}$	带格式的	
327	where D and D_d are the wet and dry droplet diameters, respectively, $\sigma_{s/a}$ is the	带格式的 带格式的	
328	surface tension coefficient, $M_{\rm M}$ is the mole mass of water, R is the universal gas	带格式的	
329	constant, T is the temperature, and $\rho_{\rm av_{A}}$ is the density of water.	带格式的	
330	Below the water vapor saturation, $S(D)$ is RH, D is $D_{p}(RH)$, and D_{d} is D_{p0} .	带格式的 带格式的	
331	$\frac{1}{1000}$ in-from Eq. (1). The κ parameter is then calculated using H-TDMA data according to	带格式的	(
		带格式的	
332	Eq. (1) and Eq. (2):		

333 $\kappa_{pf} = (GF^3 - 1) \cdot \left[\frac{1}{\mu H} \exp\left(\frac{Av_{pr}M_{qr}}{V(2a_{pr}M_{qr})} - 1\right]$. (3) (3) 334 For a multicomponent particle, the Zdanovskii–Stokes–Robinson (ZSR) mixing 335 rule fStokes and Robinson, 1966) can also estimate κ using chemical composition 336 ata: 337 Kehem, = $\sum_{k \in K'_{kr}}$ (4) 338 where f_{k} and f_{k} are the volume fraction and gloggeoscopicity parameter for the ith 339 where f_{k} and f_{k} are the volume fraction and gloggeoscopicity parameter for the ith 340 inorganic ions and organics. A simplified ion-pairing scheme such as that described by 341 Gysel et al. (2007) is applied to convert ion mass concentrations of 344 supersaturated conditions. In the following discussions, K_{gf} and K_{phom} denote the 345 hygroscopicity parameters derived from H-TDMA measurements and estimated using 346 the zRm mixing rule, respectively. 347 32. CCN estimation 348 The critical supersaturation ($s_e, s_e = S_e - 1$) for a-dry-diameter (the D_e) of a particle 349 the system, κ is calculated from the maximum of the κ -Köhler curve (Eq. 349 the system, κ is calculated from the maximum of the κ -Köhler curve (Eq. 3416 the system, κ is known, κ				
334 For a multicomponent particle, the Zdanovskii–Stokes–Robinson (ZSR) mixing 335 rule (Stokes and Robinson, 1966) can also estimate x using chemical composition 336 data: 337 $K_{chem} = \sum_{k} \xi_{k} \xi_{k}$ (4) 338 where ξ_{k} and K_{k} are the volume fraction and <i>ghygroscopicity parameter</i> for the 1th 988.x69 339 where ξ_{k} and K_{k} are the volume fraction and <i>ghygroscopicity parameter</i> for the 1th 988.x69 330 inorganic ions and organics. A simplified ion-pairing scheme such as that described by 341 Gysel et al. (2007) is applied to convert ion mass concentrations to mass 342 concentrations of their corresponding inorganic salts (see Table S1 in the supplement). 343 Table S1 also lists χ and the gravimetric density of each individual component under 344 supersaturated conditions. In the following discussions, K_{pfk} and K_{phem} , denote the 345 hygroscopicity parameters derived from H-TDMA measurements and estimated using 346 the ZSR mixing rule, respectively. 347 32. CCN estimation 348 the critical supersaturation ($s_{c}, s_{c} = S_{c}-1$) for π -dry diameter (the D_{c}) of a particle 349 with hygroscopicity κ is calculated from the maximum of the κ -Köhler curve (Eq. 349	333	$\kappa_{\rm gf} = (\rm GF^3 - 1) \cdot \left[\frac{1}{\rm BH} \exp\left(\frac{4\sigma_{\rm S/a}M_{\rm W}}{RT_{\rm clau}D_{\rm c}d\rm GF}\right) - 1\right] . \tag{3}$	/	
335 rule (Stokes and Robinson, 1966) can also estimate x using chemical composition ##±xin 336 data: $K_{chem_n} = \sum_{k \in K_{k_n}} (4)$ ##±xin is it is it is it is the volume fraction and phygresseepisity parameter for the <i>i</i> th 338 where f_{k_n} and K_{k_n} are the volume fraction and phygresseepisity parameter for the <i>i</i> th ##±xin is it is it is it is it is a simplified ion-pairing scheme such as that described by 340 inorganic ions and organics. A simplified ion-pairing scheme such as that described by ##±xin 341 Gysel et al. (2007) is applied to convert ion mass concentrations to mass ###±xin 342 concentrations of their corresponding inorganic salts (see Table S1 in the supplement). ###±xin 343 rable S1 also lists g and the gravimetric density of each individual component under ###±xin 344 supersaturated conditions. In the following discussions, K_{gf_n} and K_{phem_n} denote the ###±xin 345 hygroscopicity parameters derived from H-TDMA measurements and estimated using ###±xin 346 the ZSR mixing rule, respectively. 33 347 LCN estimation ###±xin 348 the critical supersaturation ($s_{e}, s_{e} = S_{e}-1$) for a dry-diameter ($the D_{d}$) of a particle ###±xin 349 the set when κ is kn	334	For a multicomponent particle, the Zdanovskii–Stokes–Robinson (ZSR) mixing		
336data:37 $K_{chem_n} = \sum_{k} E_k E_k$ (4) $\mathbb{R}^{k} \underline{x} \underline{x} \underline{b}_{k} k \neq k \oplus $				带格式的
337 $\kappa_{\text{them}} = \sum_{k \in K_k}$ (4) What S_k and κ_k are the volume fraction and $r_k^{\text{phygroscopicity parameters}}$ for the ith mhat \mathfrak{M} is what \mathfrak{M} What \mathfrak{M} what \mathfrak{M} 338where ε_k and κ_k are the volume fraction and $r_k^{\text{phygroscopicity parameters}}$ for the ith chemical component, respectively. The ACSM provides the mass concentrations of inorganic ions and organics. A simplified ion-pairing scheme such as that described by \mathfrak{M} what \mathfrak{M} \mathfrak{W} 	335	rule (Stokes and Robinson, 1966) can also estimate κ using chemical composition		
Return $z = LEBS_{z}$ (4)###xift338where ξ_{L} and K_{L} are the volume fraction and χ_{d} are specifiedly parameter for the <i>i</i> th###xift339chemical component, respectively. The ACSM provides the mass concentrations of###340inorganic ions and organics. A simplified ion-pairing scheme such as that described by###341Gysel et al. (2007) is applied to convert ion mass concentrations to mass###342concentrations of their corresponding inorganic salts (see Table S1 in the supplement).###343Table S1 also lists χ and the gravimetric density of each individual component under###344supersaturated conditions. In the following discussions, K_{EL} and K_{chem} denote the###345hygroscopicity parameters derived from H-TDMA measurements and estimated using###346the ZSR mixing rule, respectively.32347 3.2. CCN estimation 348The critical supersaturation ($s_{c}, s_c = S_c - 1$) for a dry-diameter (the D_c) of a particle349with hygroscopicity κ is calculated from the maximum of the κ -Köhler curve (Eq.340 2_{c}^{1} effetters and Kreidenweis, 2007). The D_d is also the critical diameter corresponding351to the s_c when κ is known, σ eo-Tihe s_c - D_d relationship can thus be established.352According to this relationship, the critical diameter (D_{D_ccrit}) can be calculated using351the estimated K_{chem} (Eq. 4) at a given SS. All particles larger than D_{D_ccrit} , will353the estimated K_{chem} (Eq. 4) at a given SS. All particles larger than	336	data:		
 where ε_L and κ_L are the volume fraction and Advector parameter for the <i>i</i>th ##±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±	337	$\kappa_{\rm chem} = \sum_{i} \varepsilon_{i} \kappa_{ie} \tag{4}$	_	带格式的: 字体颜色: 文字 1
chemical component, respectively. The ACSM provides the mass concentrations of inorganic ions and organics. A simplified ion-pairing scheme such as that described by Gysel et al. (2007) is applied to convert ion mass concentrations to mass concentrations of their corresponding inorganic salts (see Table S1 in the supplement). Table S1 also lists κ and the gravimetric density of each individual component under supersaturated conditions. In the following discussions, κ_{gf} and κ_{chem} denote the ###.xth hygroscopicity parameters derived from H-TDMA measurements and estimated using the ZSR mixing rule, respectively. 347 3.2. CCN estimation The critical supersaturation (s_e , $s_e = S_e$ -1) for a dry diameter (the D_{df}) of a particle with hygroscopicity κ is calculated from the maximum of the κ -Köhler curve (Eq. 2_{ab}^{ab} /Petters and Kreidenweis, 2007), The D_d is also the critical diameter corresponding to the s_e when κ is known _a _a se- <u>T</u> the s_e - D_d relationship can thus be established. According to this relationship, the critical diameter ($D_{D,crit}$) can be calculated using the estimated κ_{chem} (Eq. 4) at a given SS. All particles larger than $D_{0,crit}$, will ###.xth	338	where ε_i and κ_i are the volume fraction and $\kappa_{\text{hveroscopicity parameter}}$ for the <i>i</i> th		
 inorganic ions and organics. A simplified ion-pairing scheme such as that described by Gysel et al. (2007), is applied to convert ion mass concentrations to mass concentrations of their corresponding inorganic salts (see Table S1 in the supplement). Table S1 also lists κ and the gravimetric density of each individual component under supersaturated conditions. In the following discussions, Kgf, and Kghem, denote the ###:xiii hygroscopicity parameters derived from H-TDMA measurements and estimated using the ZSR mixing rule, respectively. 32. CCN estimation The critical supersaturation (se, se = Se-1) for a dry-diameter (the Dd) of a particle with hygroscopicity κ is calculated from the maximum of the κ-Köhler curve (Eq. 2³/₂) fPetters and Kreidenweis, 2007)_k The Dd is also the critical diameter corresponding to the se when κ is known_{x³} se-Tihe se-Dd relationship can thus be established. According to this relationship, the critical diameter (Dp.crit) can be calculated using the estimated Kghem, (Eq. 4) at a given SS. All particles larger than Dp.crit, will 	000		<	
 Gysel et al. (2007), is applied to convert ion mass concentrations to mass Gysel et al. (2007), is applied to convert ion mass concentrations to mass concentrations of their corresponding inorganic salts (see Table S1 in the supplement). Table S1 also lists κ and the gravimetric density of each individual component under supersaturated conditions. In the following discussions, κ_{gf} and κ_{chem}, denote the what signaturated conditions. In the following discussions, κ_{gf} and κ_{chem}, denote the what signaturated conditions. In the following discussions, κ_{gf} and κ_{chem}, denote the what signaturated conditions. In the following discussions, κ_{gf} and κ_{chem}, denote the what signaturated conditions. In the following discussions, κ_{gf} and κ_{chem}, denote the what signaturated conditions. In the following discussions, κ_{gf} and κ_{chem}, denote the what signaturated conditions. In the following discussions, κ_{gf} and κ_{chem}, denote the what signaturated conditions. In the following discussions, κ_{gf} and κ_{chem}, denote the what signaturated conditions. In the following discussions, κ_{gf} and κ_{chem}, denote the what signaturated conditions. In the following discussions, κ_{gf} and κ_{chem}, denote the what signaturated conditions. In the following discussions, κ_{gf} and κ_{chem}, denote the what signaturated conditions. In the following discussions, κ_{gf} and κ_{chem}, denote the what signaturated conditions. In the following discussions, κ_{gf} and κ_{chem}, denote the with hygroscopicity parameters derived from H-TDMA measurements and estimated using to the s_c when κ is known_{gf} the -T be s_c-D_d relationship can thus be established. According to this relationship, the critical diameter (D_{p,crit}) can be calculated using the estimated κ_{chem}, (Eq. 4) at a given SS. All particles larger than D_{p,crit}, will 	339	chemical component, respectively. The ACSM provides the mass concentrations of		带格式的
 Gysel et al. (2007), is applied to convert ion mass concentrations to mass concentrations of their corresponding inorganic salts (see Table S1 in the supplement). Table S1 also lists κ and the gravimetric density of each individual component under supersaturated conditions. In the following discussions, κ_{gf} and κ_{chem} denote the ###±0 	340	inorganic ions and organics. A simplified ion-pairing scheme such as that described by		
 Gysel et al. (2007) is applied to convert ion mass concentrations to mass concentrations of their corresponding inorganic salts (see Table S1 in the supplement). Table S1 also lists κ and the gravimetric density of each individual component under supersaturated conditions. In the following discussions, κ_{gf} and κ_{chem} denote the hygroscopicity parameters derived from H-TDMA measurements and estimated using the ZSR mixing rule, respectively. 32. CCN estimation The critical supersaturation (s_c, s_c = S_c-1) for a dry diameter (the D_d) of a particle with hygroscopicity κ is calculated from the maximum of the κ-Köhler curve (Eq. 2_c) fPetters and Kreidenweis, 2007), The D_d is also the critical diameter corresponding to the s_c when κ is known_{c²} so-Tithe s_c-D_d relationship can thus be established. According to this relationship, the critical diameter (D_{p.crit}) can be calculated using the estimated κ_{cthem} (Eq. 4) at a given SS. All particles larger than D_{p.crit}, will 				带格式的
343Table S1 also lists κ and the gravimetric density of each individual component under###xi0344supersaturated conditions. In the following discussions, κ_{gf} and κ_{chem} denote the###xi0345hygroscopicity parameters derived from H-TDMA measurements and estimated using346the ZSR mixing rule, respectively.347 3.2. CCN estimation348The critical supersaturation (s_c , $s_c = S_c$ -1) for a dry diameter (the D_d) of a particle349with hygroscopicity κ is calculated from the maximum of the κ -Köhler curve (Eq.350 2_{s}) (Petters and Kreidenweis, 2007), The D_d is also the critical diameter corresponding351to the s_c when κ is known, σ so-Tthe s_c - D_d relationship can thus be established.352According to this relationship, the critical diameter ($D_{D,crit}$) can be calculated using353the estimated κ_{chem_a} (Eq. 4) at a given SS. All particles larger than $D_{0,crit_a}$ will	341	Gysel et al. (2007) is applied to convert ion mass concentrations to mass		
 Table S1 also lists κ and the gravimetric density of each individual component under supersaturated conditions. In the following discussions, κ_{gf} and κ_{chem} denote the whath hygroscopicity parameters derived from H-TDMA measurements and estimated using the ZSR mixing rule, respectively. 32. CCN estimation The critical supersaturation (s_c, s_c = S_c-1) for a dry diameter (the D_d) of a particle with hygroscopicity κ is calculated from the maximum of the κ-Köhler curve (Eq. 2_z) fPetters and Kreidenweis, 2007, The D_d is also the critical diameter corresponding to the s_c when κ is known_{z²} so-Tthe s_c-D_d relationship can thus be established. According to this relationship, the critical diameter (D_{D,crit}) can be calculated using the estimated κ_{chem} (Eq. 4) at a given SS. All particles larger than P_{D,crit} will 	342	concentrations of their corresponding inorganic salts (see Table S1 in the supplement).		
 supersaturated conditions. In the following discussions, κ_{gf} and κ_{chem} denote the ##axin hygroscopicity parameters derived from H-TDMA measurements and estimated using the ZSR mixing rule, respectively. 3.2. CCN estimation The critical supersaturation (s_c, s_c = S_c-1) for a dry diameter (the D_d) of a particle with hygroscopicity κ is calculated from the maximum of the κ-Köhler curve (Eq. 2₂) (Petters and Kreidenweis, 2007), The D_d is also the critical diameter corresponding to the s_c when κ is known_{z⁷} so-Tthe s_c-D_d relationship can thus be established. According to this relationship, the critical diameter (D_{D,crit}) can be calculated using the estimated κ_{chem} (Eq. 4) at a given SS. All particles larger than P_{D,crit} will 	343	Table S1 also lists κ and the gravimetric density of each individual component under	Λ	带格式的
 supersaturated conditions. In the following discussions, K_{gf} and K_{chem}, denote the #hatin hygroscopicity parameters derived from H-TDMA measurements and estimated using the ZSR mixing rule, respectively. 32. CCN estimation The critical supersaturation (s_c, s_c = S_c-1) for a dry diameter (the Dd) of a particle with hygroscopicity κ is calculated from the maximum of the κ-Köhler curve (Eq. 2_a) (Petters and Kreidenweis, 2007), The Dd is also the critical diameter corresponding to the s_c when κ is known₂₅ so-<u>T</u>the s_c-Dd relationship can thus be established. According to this relationship, the critical diameter (D_{D,crit}) can be calculated using the estimated κ_{chem} (Eq. 4) at a given SS. All particles larger than D_{D,crit} will #hatin 	0.0			带格式的
346 the ZSR mixing rule, respectively. 347 3.2. CCN estimation 348 The critical supersaturation (s_c , $s_c = S_c$ -1) for a dry diameter (the D_d) of a particle 349 with hygroscopicity κ is calculated from the maximum of the κ -Köhler curve (Eq. 350 2_i) fPetters and Kreidenweis, 2007), The D_d is also the critical diameter corresponding ###xth 351 to the s_c when κ is known ₂₇ so- <u>T</u> the s_c - D_d relationship can thus be established. ###xth 352 According to this relationship, the critical diameter ($D_{D,crit}$) can be calculated using ###xth 353 the estimated κ_{chem_a} (Eq. 4) at a given SS. All particles larger than $D_{D,crit_a}$ will ###xth	344	supersaturated conditions. In the following discussions, κ_{gf} and κ_{chem} denote the	\square	
 347 3.2. CCN estimation 348 The critical supersaturation (s_c, s_c = S_c-1) for a dry diameter (the D_d) of a particle 349 with hygroscopicity κ is calculated from the maximum of the κ-Köhler curve (Eq. 350 2₃) (Petters and Kreidenweis, 2007), The D_d is also the critical diameter corresponding 351 to the s_c when κ is known₂, so-<u>T</u>the s_c-D_d relationship can thus be established. 352 According to this relationship, the critical diameter (D_{p,crit}) can be calculated using 353 the estimated κ_{chem} (Eq. 4) at a given SS. All particles larger than D_{p,crit}, will #4x.th) 	345	hygroscopicity parameters derived from H-TDMA measurements and estimated using		
 347 3.2. CCN estimation 348 The critical supersaturation (s_c, s_c = S_c-1) for a dry diameter (the D_d) of a particle 349 with hygroscopicity κ is calculated from the maximum of the κ-Köhler curve (Eq. 350 2₃) (Petters and Kreidenweis, 2007), The D_d is also the critical diameter corresponding 351 to the s_c when κ is known₂, so-<u>T</u>the s_c-D_d relationship can thus be established. 352 According to this relationship, the critical diameter (D_{p,crit}) can be calculated using 353 the estimated κ_{chem} (Eq. 4) at a given SS. All particles larger than D_{p,crit}, will #4x.th) 	246	the ZSP mixing rule respectively		
348The critical supersaturation (s_c , $s_c = S_c$ -1) for a dry diameter (the D_d) of a particle349with hygroscopicity κ is calculated from the maximum of the κ -Köhler curve (Eq.350 2_{z}) (Petters and Kreidenweis, 2007), The D_d is also the critical diameter corresponding351to the s_c when κ is known ₂₇ so-T the s_c - D_d relationship can thus be established.352According to this relationship, the critical diameter ($D_{\rho,crit}$) can be calculated using353the estimated κ_{chem_a} (Eq. 4) at a given SS. All particles larger than $D_{\rho,crit}$ will	540	the 25K mixing full, respectively.		
with hygroscopicity κ is calculated from the maximum of the κ -Köhler curve (Eq. 2;) (Petters and Kreidenweis, 2007), The D_d is also the critical diameter corresponding to the s_c when κ is known. ₅ so <u>T</u> the s_c - D_d relationship can <u>thus</u> be established. According to this relationship, the critical diameter ($D_{\rho,crit}$) can be calculated using the estimated κ_{chem_s} (Eq. 4) at a given SS. All particles larger than $D_{\rho,crit}$, will $\frac{\# Karm}{\# Karm}$	347	3.2. CCN estimation		
with hygroscopicity κ is calculated from the maximum of the κ -Köhler curve (Eq. 2;) (Petters and Kreidenweis, 2007), The D_d is also the critical diameter corresponding to the s_c when κ is known. ₅ so <u>T</u> the s_c - D_d relationship can <u>thus</u> be established. According to this relationship, the critical diameter ($D_{\rho,crit}$) can be calculated using the estimated κ_{chem_a} (Eq. 4) at a given SS. All particles larger than $D_{\rho,crit}$ will $\frac{\# Karth}{\# Karth}$				
350 2;) (Petters and Kreidenweis, 2007), The D_d is also the critical diameter corresponding 351 to the s_c when κ is known ₂₅ so— <u>T</u> the s_c - D_d relationship can <u>thus</u> be established. 352 According to this relationship, the critical diameter ($D_{\rho,crit}$) can be calculated using 353 the estimated κ_{chem_s} (Eq. 4) at a given SS. All particles larger than $D_{\rho,crit}$ will 带格式的 354 带格式的	348	The critical supersaturation (s_c , $s_c = S_c$ -1) for a dry diameter (the D_d) of a particle		
350 2_{s}) (Petters and Kreidenweis, 2007), The D_d is also the critical diameter corresponding 351 to the s_c when κ is known. ₂₅ so- <u>T</u> the s_c - D_d relationship can thus be established. 352 According to this relationship, the critical diameter ($p_{\rho,crit}$) can be calculated using 353 the estimated κ_{chem_s} (Eq. 4) at a given SS. All particles larger than $p_{\rho,crit_s}$ will ##Attin	349	with hygroscopicity κ is calculated from the maximum of the κ -Köhler curve (Eq.		
350 2_{s}) (Petters and Kreidenweis, 2007), The D_d is also the critical diameter corresponding 351 to the s_c when κ is known. ₂₅ so- <u>T</u> the s_c - D_d relationship can thus be established. 352 According to this relationship, the critical diameter ($p_{\rho,crit}$) can be calculated using 353 the estimated κ_{chem_s} (Eq. 4) at a given SS. All particles larger than $p_{\rho,crit_s}$ will ##Attin				带格式的
According to this relationship, the critical diameter $(D_{0,crit})$ can be calculated using 352 the estimated κ_{chem} (Eq. 4) at a given SS. All particles larger than $D_{0,crit}$ will $\frac{\# \text{Kash}}{\# \text{Kash}}$	350	$2_{\underline{i}}$ (Petters and Kreidenweis, 2007), The D_d is also the critical diameter corresponding		
According to this relationship, the critical diameter $(D_{\rho,crit})$ can be calculated using the estimated κ_{chem} (Eq. 4) at a given SS. All particles larger than $D_{\rho,crit}$ will #44.50 #44.50	351	to the s_c when κ is known ₂₇ so- <u>T</u> the s_c -D _d relationship can thus be established.		
353 the estimated $\kappa_{chem_{a}}$ (Eq. 4) at a given SS. All particles larger than $D_{\rho,crit_{a}}$ will 带格式的	050	A second second stand stand to add the state of the state of Decond second second second second second second s		带格式的
the estimated κ_{chem} (Eq. 4) at a given SS. All particles larger than $D_{0,crit}$ will #Add #Add #Add #Add #Add #Add #Add #A	352	According to this relationship, the critical diameter $(p_{p,crit})$ can be calculated using		
	353	the estimated $\kappa_{chem_{A}}$ (Eq. 4) at a given SS. All particles larger than $D_{\Omega,crit}$ will	/	
activate as CCN, assuming that aerosols are internally mixed. Then the CCN number				נאא או או
	354	activate as CCN, assuming that aerosols are internally mixed. Then the CCN number		

带格式的 … 带格式的 …

带格式的	[.	
	· · · · · · · · · · · · · · · · · · ·	_

....

....

....

....

....

....

356 provided by the SMPS from $D_{0,crit}$ to the maximum measured size (D_{max}) following 357 Eq. (5): $N_{\rm CCN}(\rm SS) = \int_{D_0, \rm crit(SS)}^{D_{\rm max}} \frac{dN(D)}{d\log(D)} d\log(D) \ .$ 358 (5) 359 $N_{\rm CCN}(SS)$ can then be compared to the number of CCN at the same SS measured by 360 the CCNC (i.e. a closure study). **Results and discussion** 361 4. 362 4.1. Overview Figures 2 and 3 show the time series of the main aerosol properties measured 363 during the this-field_campaign. The PNSD changes dramatically (Fig. 2a) and the 364 365 aerosol number concentration in the 15–50 nm range ($N_{15-50 \text{ nm}}$) increases sharply in the morning almost every day (Fig. 2b). The time series of the mean diameter (D_m) of 366 367 particles also shows that a growth process occurs after the sharp increase in $N_{15-50 \text{ nm}}$. All these phenomena suggest that new particle formation (NPF) events-occurred 368 369 frequently occurred at XT during the field experiment (Kulmala et al., 2012; Y. Li et al., 2017), This is likely related to the high concentration of gas precursors-mainly 370 371 from mainly local emissions. High emissions of SO2 and volatile organic compounds 372 (VOCs) associated with the high oxidation capacity in a polluted atmosphere make NPF events occur more frequently in northern China (Z. Wang et al., 2017), 373 374 Figure 2c-d shows the time series of the probability density functions (PDFs) of

concentration can be estimated from the integral of the aerosol size distribution

355

375 $\kappa_{gf_{\star}}$ (κ -PDF) for 40₋-nm and 150₋-nm particles, respectively. In general, mono-modal

(带格式的:字体颜色:文字1
带格式的: 字体颜色:文字1
带格式的: 字体颜色: 文字 1

🛛 带格式的: 字位	本 颜色: 文字 1

	带格式的: 字体颜色:文字1
(带格式的: 字体颜色:文字1

1	带格式的: 字体颜色: 文字 1
-	带格式的: 字体颜色: 文字 1
\neg	带格式的: 字体颜色: 文字 1

376 κ -PDFs were observed. This is different from κ -PDFs at other sites in China where bi- and tri-modal distributions are dominantdominate (Liu et al., 2011; Ye et al., 2013; 377 Jiang et al., 2016; S. L. Zhang et al., 2016; Y. Wang et al., 2017), Differences in the 378 aerosol mixing state explain this (see section 4.2). This is due to differences in the 379 380 aerosol mixing state, which will be discussed in section 4.2. Figure 3a shows the bulk mass concentrations of organics, sulfate, nitrate, 381 382 ammonium, and chloride measured by the ACSM are shown in Fig. 3a, along withand 383 the BC mass concentration measured with-by the AE-33. Organics and sulfate were 384 the dominant chemical species with mass fractions in PM1 of 39.1-% and 24.7-%, respectively. Figure 3b-c shows the volume fractions of paired chemical compositions 385 and the hygroscopicity parameter (kchem) derived from chemical compositions, 386 respectively. The volume fraction 387 average of inorganics 388 ((NH₄)₂SO₄+NH₄HSO₄+H₂SO₄+NH₄NO₄) was similar to that of organics 389 (POA+SOA), but their volume fractions changed diurnally. In general, the volume 390 fraction of inorganics increased during daytime while the volume fraction of organics decreased. In addition, SOA was the dominant contributor to OA, accounting for ~69-% 391 392 of the organics volume. This shows that photochemical reactions were strong at XT during theis field campaign (Huang et al., 2014). The mean κ_{chem} in Fig. 3c was 393 0.31 with values ranging from 0.20 to 0.40. The trend in $\kappa_{chem_{h}}$ was similar to that of 394 the volume fraction of inorganics.7 This suggestsing that inorganics playeds a key role 395 396 when it comes to in κ_{cheme} , T this is consistent with the study of by Wu et al. (2016).

带格式的:	字体颜色:	文字	1
-------	-------	----	---

X	带格式的: 字体颜色: 文字 1
λ	带格式的: 字体颜色: 文字 1
-	带格式的: 字体颜色:文字1
-	带格式的: 字体颜色: 文字 1
Υ	带格式的: 字体颜色:文字1
-	带格式的: 字体颜色:文字1
Ľ	带格式的: 字体颜色:文字1
Y	带格式的: 字体颜色:文字1
1	带格式的: 字体颜色:文字1
-(带格式的: 字体颜色:文字1
Ľ	带格式的: 字体颜色:文字1
$\langle \rangle$	带格式的: 字体颜色:文字1
Y	带格式的: 字体颜色:文字1

4.2. Aerosol mixing state and hygroscopicity

398	The average probability density functions of κ_{gf} (Figure 4 shows mean κ -PDFs)	/
399	for different particle sizes derived from H-TDMA data are shown in Fig. 4. For all	
400	particle sizes considered, $\kappa_{gf_{\star}}$ ranged from 0 to 0.8 _a and the κ -PDF patterns were	/
401	similar.3 This suggestsing that the hygroscopic compounds in different particle size	
402	modes were similar at XT. In general, κ -PDF patterns show only one hydrophilic	
403	mode with the <u>a</u> weak hydrophobic mode occasionally appearing at night when	
404	photochemical reactions are weak (Fig. S4). The κ -PDF patterns always show bi- or	
405	tri-modal distributions This is different from what has been reported at other sites in	
406	China (Liu et al., 2011; Ye et al., 2013; Jiang et al., 2016; Zhang et al., 2016; Y.	/
407	Wang et al., 2017), where the κ -PDF patterns always show bi or tri-modal	/
408	distributions. Based on previous studies (Liu et al., 2011; Y. Wang et al., 2017),	_
409	ambient aerosols can be classified into three groups according to their κ_{gf_k} values:	_
410	— nearly hydrophobic (NH): $\kappa_{gf} < 0.1$	
411	- less hygroscopic (LH): $0.1 \leq \kappa_{gf} < 0.2$	
412	— more hygroscopic (MH): $0.2 \leq \kappa_{gf}$	
413	Table 1 gives the number fractions of each group for different particle sizes. The MH	
414	group dominated all particle sizes. The number fractions of the NH and LH groups	
415	were both less than 6.0-%-each. However, the volume fractions of hydrophobic BC	
416	and low-hygroscopic organics (where κ_{BC} is approximately zero and $\kappa_{organic}$ is	_
417	typically less than 0.1) were ~10.1-% and 47.4-%, respectively, according to chemical	11/
418	composition measurements (Fig. 3b). This suggests that the particles were highly aged	
1		

1	带格式的: 字体颜色:文字1
-(带格式的: 字体颜色:文字1
-{	带格式的: 字体颜色: 文字 1

Ι	带格式的: 字体颜色:文字1
	带格式的: 字体颜色: 文字 1
1	带格式的:字体颜色:文字1

	带格式的: 字体颜色:文字1
	带格式的: 字体颜色:文字1
	带格式的: 字体颜色: 文字 1
	带格式的: 字体颜色:文字1
	带格式的: 字体颜色: 文字 1
	带格式的: 字体颜色:文字1
	带格式的: 字体颜色:文字1
	带格式的: 字体颜色:文字1
\neg	带格式的: 字体颜色:文字1
	带格式的: 字体颜色:文字1
	带格式的: 字体颜色:文字1
$\langle \rangle$	带格式的: 字体颜色:文字1
	带格式的: 字体颜色:文字1
$\langle \rangle$	带格式的: 字体颜色:文字1
$\langle \rangle$	带格式的: 字体颜色:文字1
	带格式的: 字体颜色:文字1

	带格式的: 字体颜色:文字1
	带格式的: 字体颜色:文字1
$\overline{)}$	带格式的: 字体颜色:文字1
$\langle \rangle$	带格式的: 字体颜色:文字1
$\langle \rangle$	带格式的: 字体颜色: 文字 1
	带格式的: 字体颜色: 文字 1

419	and internally mixed at XT during their field campaign. The cCoating of sulfates and
420	secondary organics during the aging process changes the structure of BC and makes it
421	these particles grow, which can significantly enhance the hygroscopicities of
422	particles (e.g., Zhang et al., 2008; Jimenez et al., 2009; Tritscher et al., 2011; Guo et
423	al., 2016) <u>. In addition, tThe observed unimodal distribution of κ-PDF also suggests</u>
424	the internal mixing state of the particles (Swietlicki et al., 2008),

Figure 5 shows the average size-resolved $\kappa_{gf_{a}}$ derived from H-TDMA data at XT and at-other sites in China. At XT, $\kappa_{gf_{a}}$ for different particle sizes were larger in the daytime than at night_a and the difference between daytime and nighttime decreased with increasing particle size. This suggests that the impact of photochemical reactions on aerosol hygroscopicity is strong. and that tThe effect is weaker with increasing particle size because most of the larger particles are always well aged.

431 The magnitude of κ_{gf} was larger at XT than at other sites of <u>in</u> China. In 432 particular, the magnitude of κ_{gf} was much larger at XT than at sites in the northern 433 part of the NCP, i.e., Beijing, Wuqing, and Xianghe. The lower κ_{gf} in the Beijing 434 urban area-of Beijing is likely related to the more severe traffic emissions there (Ye et al., 2013; Wu et al., 2016), Wuqing and Xianghe are located in the suburban area 435 436 between the two megacities of Beijing and Tianjin and are simultaneously affected by 437 traffic and industrial emissions. -The magnitudes of κ_{gf} at these two sites are higher 438 than at Beijing but lower than at XT. Although distant from these megacities, XT is situated in the industrial center of the NCP, so particles there are more internally 439 440 mixed and highly aged due to the higher concentrations of precursors and strong

Ι	带格式的: 字体颜色:文字1
Ι	带格式的: 字体颜色:文字1
Ι	带格式的: 字体颜色:文字1
	带格式的: 字体颜色: 文字 1
Ι	带格式的: 字体颜色:文字1
	带格式的: 字体颜色:文字1
Ν	带格式的: 字体颜色:文字1
-	带格式的: 字体颜色:文字1
\mathbb{T}	带格式的: 字体颜色: 文字 1
1	带格式的: 字体颜色:文字1

Λ	带格式的: 字体颜色:文字1
	带格式的: 字体颜色:文字1
\neg	带格式的: 字体颜色:文字1
-{	带格式的: 字体颜色:文字1
\square	带格式的: 字体颜色:文字1
Y	带格式的: 字体颜色:文字1
$ \top $	带格式的: 字体颜色: 文字 1
$\backslash \uparrow$	带格式的: 字体颜色:文字1
<u> </u>	带格式的: 字体颜色: 文字 1
Y	带格式的: 字体颜色: 文字 1
\neg	带格式的: 字体颜色:文字1

1	带格式的: 字体颜色:文字1
-{	带格式的: 字体颜色:文字1
1	带格式的: 字体颜色:文字1

441 photochemical reactions. Although XT is located far away from these megacities, it is situated in the industrial center of the NCP, so the higher concentrations of precursors 442 443 and strong photo chemical reactions make the particles more internally mixed and highly aged. This is why κ_{gf} in at XT is larger than at other sites. This suggests that 444 445 the hygroscopicitiesy of particles from different emissions and chemical processes 446 differ in the NCP. In addition, 40Forty nm particles were always more hygroscopic 447 than 80--nm particles at XT, especially in the daytime.7 This differed from other 448 sites which was also different from other sites. This is likely because the coating effect of sulfates and secondary organics is more significant on-for smaller particles 449 (Tritscher et al., 2011; Guo et al., 2016). Furthermore, since the field measurements 450 took place in a locality with heavy industrial activities, it is possible that amine 451 452 contributeds significantly to the hygroscopicity of 40-nm particles. Several studies 453 have shown that amine compounds in aerosol phase can be hygroscopic, sometimes at 454 even low RH (e.g., Qiu and Zhang, 2012; Chu et al., 2015; Gomez-Hernandez et al., 455 2016).

456 4.3. Diurnal variations in aerosol properties

457 **4.3.1.** Diurnal variations in aerosol number and mass concentrations

Figure 6a shows the diurnal variation in MPL-derived PBL height. <u>The PBL</u> height <u>can be determined atis</u> the altitude where a sudden decrease in the <u>MPL-measured scattering coefficient occurs from the MPL data</u> (Cohn and Angevine, 2000; Brooks, 2003), Note that the retrieved PBL height is only valid from 07:00 local

Λ	带格式的: 字体颜色:文字1
-(带格式的: 字体颜色: 文字 1
1	带格式的:字体颜色:文字1

带格式的: 字体颜色: 文字 1

1		
462	time (LT) to 19:00 LT (Quan et al., 2013). The retrieved PBL height at night is not	_
463	accurate because of the likely influence of residual aerosols within the nocturnal PBL.	
464	The evolution of PBL height from 07:00 LT to 19:00 LT is sufficient to analyze its	
465	link with the change in aerosol number and mass concentrations during the daytime.	
466	Figure 6b shows diurnal variations in aerosol number and mass concentrations in the	
467	15–685 nm range ($N_{15-685 \text{ nm}}$ and PM _{15-685 nm} , respectively). Variations in the $N_{15-685 \text{ nm}}$	
468	and $PM_{15-685 nm}$ trended oppose opposite from each other. From 08:00 LT to 14:00 LT,	
469	the PBL height lifted from ~0.5 km to ~0.6 km, while $PM_{15-685 nm}$ generally decreased	
470	from ~24 $\mu g~m^{\text{-3}}$ to ~19 $\mu g~m^{\text{-3}}$ although there was a slight increase at the beginning of	
471	the period. This suggests the important effect of PBL evolution on $PM_{\rm 15-685\ nm}.$	
472	However, $N_{15-685 \text{ nm}}$ sharply increased from ~7600 cm ⁻³ at 07÷00 LT to ~13,000 cm ⁻³ at	
473	13:00 LT. This is related to the sudden burst of small Aitkenmode particles (< 50 nm)	
474	when <u>during</u> NPF events occurred. Newly formed fine particles contribute little to	
475	$PM_{15-685 nm}$. In the evening, $PM_{15-685 nm}$ increased gradually while $N_{15-685 nm}$ decreased.	
476	This is attributed to tThe declining trend indecline of the nocturnal PBL and particle	
477	coagulation and growth explains this. In other words, the evolution of the PBL played	
478	a dominant role on influenced the aerosol mass concentration, while particle formation	
479	and growth had a greater influence on the variation in aerosol number concentration.	/
480	4.3.2. Diurnal variation in aerosol hygroscopicity	
481	Figure 6c shows diurnal variations in κ_{gf} and κ_{chem} . Values of κ_{gf} for different	

带格式的:字体颜色:文字1 **带格式的:**字体颜色:文字1

1	带格式的: 字体颜色: 文字 1
ĥ	带格式的:
//	带格式的: 字体颜色: 文字 1
//	带格式的: 字体颜色: 文字 1
//	带格式的: 字体颜色: 文字 1
Ά	带格式的: 字体颜色: 文字 1
-{	带格式的: 字体颜色: 文字 1
\neg	带格式的: 字体颜色: 文字 1
$\langle \rangle$	带格式的: 字体颜色: 文字 1
$\backslash \rangle$	带格式的: 字体颜色: 文字 1
Ì	带格式的: 字体颜色: 文字 1

particle sizes increased in the morning when the NPF event started. The increase was

482

1	
483	sharpest for 40-nm particles. All sized κ_{gf} increased beginning from the NPF event,
484	especially for the 40 nm particles. The increase of in κ_{gf} in the morning was
485	synchron <u>izedous</u> with the particle number concentration ($N_{15-685 \text{ nm}}$) but not with the
486	PBL height, further suggesting the impact of photochemical reactions on aerosol
487	hygroscopicity. The κ_{gf} for 40nm particles increased from ~0.32 at 07+00 LT to ~0.44
488	at 15:00 LT ₇ and approached the κ value of pure ammonium sulfate_7 This also
489	suggestsing that a large amount of hygroscopic compounds were produced during
490	NPF events. Fig. S5 in the supplement shows the sharply increased concentrations of
491	SO_2 and VOCs in the morning and the enhanced atmospheric oxidation capacity
492	under high RH and low T conditions. The production of sulfate and SOAs
493	resulted.made plenty of sulfate and SOA produced. This is why aerosol
494	hygroscopicity and the occurrence of NPF events increased. This is the reason in the
495	increase of aerosol hygroscopicity and the frequent occurrence of NPF events. Zhang
496	et al. (2018) characterized the aerosol chemistry during NPF events in this field
497	campaign. Detailed characterization of aerosol chemistry during NPF events in this
498	campaign has been studied in Zhang et al. (2018). The diurnal variation-pattern in κ_{gf}
499	for 80–200 nm particles differs from that of 40 ₋ -nm particles. The differences in κ_{gf}
500	between-for 80-200 nm particles in the early morning were large but gradually
501	decreased as the sun <u>roserises</u> . After 11:00 LT, tThe κ_{gf} for 80–200-nm particles were
502	similar but lower than that of for 40-nm particles after 1100 LT. The condensation of
503	sulfates and secondary organics likely caused the enhanced hygroscopicity of the 40-
504	200-nm particles, especially of 40-nm particles (Fig. 6d). All these suggests the

\square	带格式的: 字体颜色: 文字 1
-(带格式的: 字体颜色:文字1
\neg	带格式的: 字体颜色: 文字 1
-(带格式的: 字体颜色:文字1
\square	带格式的: 字体颜色: 文字 1
\mathcal{A}	带格式的: 字体颜色: 文字 1

1	带格式的: 字体颜色:文字1)
-(带格式的:字体颜色:文字1)

 带格式的: 字体: 非倾斜, 字体颜色: 文字 1

 带格式的: 字体颜色: 文字 1

505 enhanced hygroscopicity in the 40 200 nm particles was likely caused by the 506 condensation of sulfates and secondary organics (Fig. 6d) and the effect was more

507 significant for 40 nm particles.

508 Figure 6c also shows that the κ_{chem} for PM₁ was lower than the κ_{gf} for 40-200-nm particles and had a weaker diurnal variation. This feature was stronger at 509 510 noon when atmospheric oxidation and the aging process were more rapid. The simple 511 ZSR mixing rule is responsible for this. The difference was mainly induced by the 512 simple ZSR mixing rule. During the daytime, the condensation of sulfuric acid on 513 organics or BC greatly enhances their hygroscopicitiesy (Zhang et al., 2008; Zhang et al., 2017), The ZSR model cannot accurately represent tThis phenomenon-can't be 514 described accurately by the ZSR model. Cruz and Pandis (2000) have shown that the 515 measured κ_{gf} of internally mixed (NH₄)₂SO₄-organic aerosols is larger than the 516 517 predicted κ_{chem} based on the ZSR model. 518 In summary, the ample supply of effluent-SO2 and VOCs provided sufficient 519 precursors for the strong photochemical reactions at XT during this field campaign, and the productione and condensation of sulfate and SOAs greatly enhanced aerosol 520 521 hygroscopicity-largely, especially during the daytime. The oxidation of precursors likely induced the observed frequent NPF events. This also suggests that the observed 522 frequent NPF events were mainly induced by the oxidation of precursors. 523

524 **4.3.3.** Diurnal variation in CCN number concentration and activation ratio

525 Figure 7a shows the diurnal variations in $N_{\rm CCN}$ and AR at different SS. In the

1	带格式的: 字体颜色: 文字 1
	带格式的: 字体颜色:文字1
Η	带格式的: 字体颜色:文字1
\int	带格式的: 字体颜色:文字1
$\langle \rangle$	带格式的: 字体颜色:文字1
$\langle \rangle$	带格式的: 字体颜色:文字1
	带格式的: 字体颜色: 文字 1

1	带格式的: 字体颜色:文字1
1	带格式的: 字体颜色: 文字 1
1	域代码已更改
-(带格式的: 字体颜色:文字1
1	带格式的: 字体颜色:文字1
-{	带格式的: 字体颜色:文字1
\neg	带格式的: 字体颜色:文字1
Υ	带格式的: 字体颜色:文字1
\neg	带格式的: 字体颜色: 文字 1
\int	带格式的: 字体颜色:文字1
Y	带格式的: 字体颜色: 文字 1

526	morning, $N_{\rm CCN}$ first decreased then increased while AR showed the opposite trend.
527	This is related to the evolution of the PBL and NPF events. At the initial stage of an
528	NPF event, the newly formed particles were less than 15 nm in size, which was below
529	the detection limit of the SMPS. As a result, $N_{15-685 \text{ nm}}$ decreased (Fig. 6b) as the PBL
530	lift <u>eds</u> , and $N_{\rm CCN}$ also decreased. However, the mixing of aged particles within the
531	PBL made the particle size (Fig. 7b) and AR increase slightly. Condensation and the
532	growth of new particles caused the number of fine particles detected by the SMPS to
533	increase rapidly. However, because of their smaller sizes, some of these particles were
534	not activated. With condensation and the growth of new particles, the number of fine
535	particles detected by the SMPS increased rapidly but a portion of them cannot be
536	activated because their smaller size. Therefore, $N_{\rm CCN}$ increased, but AR decreased
537	from 08:00 LT to 14:00 LT. In the afternoon and evening, $N_{\rm CCN}$ and AR increased
538	slightly with the increase inas particle sizes increased (Fig. 7b). However, tThese
539	trends became weakerweakened as SS decreased, this is because the critical diameter
540	is larger at low SS and the influence of aerosol size distribution on $N_{\rm CCN}$ and AR is
541	relatively weaker. This demonstrates that the pParticle size was the most important
542	factor influencing the aerosol activation ability and the CCN number concentrations,
543	especially at larger SS-levels. Figure 6S shows the results from a The sensitivity test of
544	particle size in <u>a CCN</u> closure study similar with to that in done by Dusek et al. (2006)
545	was shown in Fig. S6.

546 4.4. CCN estimation from chemical composition data 547 This section presents a CCN closure study and a discussion of the impact of 548 chemical composition on N_{CCN}. In this section, a CCN closure study is conducted and 549 the impact of chemical composition on N_{CCN} is discussed. It is reasonable to assume that aerosols are internally mixed when estimating N_{CCN} because H-TDMA data 550 551 showed that this was the case at XTHTDMA data has showed particles were highly internally mixed at XT, so the assumption that aerosols are internally mixed when 552 estimating N_{CCN} is reasonable. —Figure 8a shows estimated N_{CCN} as a function of 553 measured N_{CCN} using real-time κ_{chem} . The estimated N_{CCN} correlates well with 554 measurements ($R^2 \ge 0.85$), but is generally overestimated. The slope of each linearly 555 556 fitted line is greater than 1.10 and increases with increasing SS. In addition, tThe relative deviation (RD) increases from 16.2-% to 25.2-% as SS increases from 0.13-% 557 558 to 0.75-%, suggesting that estimates become worse at larger SS. The large measurement uncertainties of CCNC mainly cause the overestimation of N_{CCN}The 559 overestimation of N_{CCN} is mainly caused by large measurement uncertainties of CCNC: 560 (1) Tthe temperature or high flow rates in the CCNC may not allow enough time for 561 particles to reach sizes large enough to be counted by the OPC optical particle counter 562 563 at the exit of the CCN chamber (Lance et al., 2006; Cubison et al., 2008), and (2) in high particle number concentration environments, water depletion in the CCNC may 564 reduce the counting rate of the CCNC (Deng et al., 2011). These uncertainties make 565 measured N_{CCN} lower than the actual N_{CCN}. At larger SS, those activated aerosols in 566 the cloud chamber of the CCNC are greater in number and smaller in size, so the 567

带格式的:字体:倾斜,字体颜色:文字1
 带格式的:字体颜色:文字1,下标
 带格式的:字体颜色:文字1

(带格式的: 字体颜色: 文字 1

Ι	带格式的: 字体颜色: 文字 1
	带格式的: 字体颜色: 文字 1

Ι	带格式的: 字体颜色:文字1
	带格式的: 字体颜色:文字1

568	impact of these uncertainties is greater. Figure S7 shows results from the N_{CCN} closure	
569	study for separated N _{CCN} The separated N _{CCN} closure study is shown in Fig. S7. Figure	\langle
570	S7 suggests tThe CCN closure is very good <u>reasonable</u> when $N_{\rm CCN} < 5500 \text{ cm}^{-3}$;	
571	reflecting the validation of the CCN closure method in this study.	

572	Figure 8b shows estimated $N_{\rm CCN}$ using the mean value for $\kappa_{\rm chem}$ ($\kappa_{\rm chem} = 0.31$).
573	Compared with results using real-time values for κ_{chem_e} the fit parameters and RD
574	change slightly, suggesting that the effect of chemical composition on $N_{\rm CCN}$ is weaker
575	relative to the particle size. Figure 9 shows the sensitivity of estimated NCCN to the
576	variability in chemical composition. The sensitivity of estimated N _{CCN} to the
577	variability in chemical composition (Kchem) is further investigated (Fig. 9). In this
578	figure, tThe variability of in the equipotential lines in of RD suggests that the
579	sensitivity of $N_{\rm CCN}$ is strongly time dependent. This is attributed to the variability of
580	the shape of the aerosol size distribution (Juranyi et al., 2010), which further
581	demonstrates, further verifying the importance of particle size to $N_{\rm CCN}$. The sensitivity
582	of $N_{\rm CCN}$ to chemical composition ($\kappa_{\rm chem}$) becomes weaker with increasing SS,
583	suggesting that chemical composition becomes less important in $N_{\rm CCN}$ estimates at
584	larger SS. In addition, the RD is always less than 10-% when estimating $N_{\rm CCN}$ using
585	the mean value of $\kappa_{chem_{c^{2}}}$ suggesting that The value $\kappa = 0.31$ is thus a good
586	reference value to model the CCN number concentration N _{CCN} in this region
587	In summary, the particle size is the most important factor influencing the aerosol

1	带格式的: 字体: 倾斜
-(带格式的: 下标
1	带格式的: 字体: 倾斜
-(带格式的: 下标
1	带格式的: 字体颜色: 文字 1
-(带格式的: 字体颜色:文字1

1	带格式的: 字体颜色: 文字 1
	带格式的: 字体颜色: 文字 1
H	带格式的: 字体颜色:文字1
Ľ	带格式的: 字体颜色:文字1
$\langle \rangle$	带格式的: 字体颜色: 文字 1
$\langle \rangle$	带格式的: 字体颜色:文字1
$\langle \rangle$	带格式的: 字体颜色:文字1
$\langle \rangle$	带格式的: 字体颜色: 文字 1
	带格式的: 字体颜色:文字1
$\langle \rangle$	带格式的: 字体颜色:文字1
$\langle \rangle$	带格式的: 字体: 倾斜, 字体颜色: 文字 1
$\langle \rangle$	带格式的:字体颜色:文字 1,下标
	带格式的: 字体颜色:文字1
Ľ	带格式的: 字体颜色: 文字 1
$\langle \rangle$	带格式的: 字体颜色:文字1
Y	带格式的: 字体颜色:文字1
1	带格式的: 字体颜色: 文字 1

-(带格式的:字体颜色:文字 1

1	带格式的: 字体颜色:文字1
-(带格式的: 字体颜色:文字1
1	带格式的: 字体颜色:文字1

Ι	带格式的: 字体颜色:文字1
	带格式的: 字体颜色: 文字 1
Υ	带格式的: 字体颜色: 文字 1
	带格式的: 字体: 倾斜, 字体颜色: 文字 1
\mathbb{Z}	带格式的: 字体颜色: 文字 1, 下标
	带格式的: 字体颜色: 文字 1

26	

activation-ability at XT, especially at larger SS-levels. The chemical composition was

not as important when estimating $N_{\rm CCN}$ because the particles were highly aged and

588

589

internally mixed at XT₂₇ aerosol <u>Aerosol</u> hygroscopicity was not sensitive to estimates
 of N_{CCN}.

592 5. Summary and conclusions

597

Xingtai (XT) were investigated in this study.

593 The Atmosphere-Aerosol-Boundary Layer-Cloud (A²BC) Interaction Joint 594 Experiment was <u>carried outdone</u> at a suburban site <u>(Xingtai, or XT)</u> located in the 595 central North China Plain (NCP) from 1 May to 15 June of 2016. The <u>study</u> 596 <u>investigated aerosol hygroscopicity, the mixing state</u> and CCN activity at the site

In general, the probability density function (PDF) of the hygroscopicity parameter 598 599 κ_{κ} (κ -PDF) for 40–200-nm particles was a unimodal distribution, which is different from distributions at other sites in China. Particles of all sizes covered a large range of 600 κ_{gf} (the mean hygroscopicity parameter derived from H-TDMA measurements; 601 mostly from 0 to 0.8) and showed similar *k*-PDF patterns, suggesting that the 602 hygroscopic compounds in these particles from 40 nm to 200 nm were similar at XT. 603 604 The κ -PDF patterns also suggests that the particles were highly aged and internally mixed at XT during the this field campaign. This is likely related to strong 605 606 photochemical reactions.

607 The mean_ $-\kappa_{ef}\kappa_{ef}$ for different particle sizes were larger in the daytime than at 608 night. Daytime and nighttime κ_{ef} differences decreased with increasing particle size. 609 This illustrates that tThe impact of photochemical reactions on aerosol hygroscopicity 610 was strong, and that the effect became weaker as particle sizes increaseds. The coating 带格式的:字体:小四,非加粗,字体颜色:文字1

\bigwedge	带格式的: 字体颜色:文字1
-(带格式的: 字体颜色:文字1
	带格式的: 字体颜色:文字1

Ι	带格式的: 字体颜色: 文字 1
	带格式的: 字体颜色:文字1
$\overline{)}$	带格式的: 字体颜色:文字1
$\langle \rangle$	带格式的: 字体颜色:文字1
	带格式的: 字体颜色: 文字 1
\sum	带格式的: 字体颜色:文字1
$\langle \rangle$	带格式的: 字体颜色:文字1
	带格式的: 字体颜色:文字1

611 <u>of sulfates or secondary organics likely</u> enhanced <u>the hygroscopicities</u> of 40–200<u>-</u> 612 nm particles<u>was likely caused by the coating of sulfates or secondary organics</u> and 613 <u>*Thise</u> effect was more significant for 40<u>-</u>-nm particles. Compared with other sites in 614 China, the aerosol hygroscopicity was much larger at XT because of the sufficient 615 <u>amount of precursors and strong atmospheric oxidation-capacity</u>. The comparison also 616 shows that the hygroscopicit<u>ies</u> of particles from different emissions and chemical 617 processes differed <u>largelygreatly</u>.

618 New particle formation events occurred frequently at XT during this field campaign. The evolution of the planetary boundary layer (PBL) played a dominant 619 role oninfluenced the aerosol mass concentration, while particle formation and growth 620 had a greater influence on the variation in the aerosol number concentration. Particle 621 622 size was the most important factor influencing the aerosol activation ability and the 623 CCN number concentration (N_{CCN}) at XT-during the field experiment, especially at 624 larger supersaturations (SS). Although the estimated $N_{\rm CCN}$ correlateds well with 625 measurements ($R^2 \ge 0.85$), N_{CCN} was is overestimated because of measurement uncertainties. The effect of chemical composition on N_{CCN} is was weaker relative to 626 627 the particle size. Sensitivity tests show that the impact of chemical composition on N_{CCN} becomes became weaker as SS increaseds, suggesting that the effect of chemical 628 composition on the estimation of N_{CCN} estimates is less important at larger SS. The 629 value $\kappa = 0.31$ is a good proxy for <u>N_{CCN}ehemical composition when estimating N_{CCN}</u> 630

631 <u>usefor</u> the model atin this region XT.

632 Our results show that aerosol properties in the middle of the NCP differ from those in

带格式的: 字体: 倾斜, 字体颜色: 文字 1
带格式的: 字体颜色: 文字 1, 下标
带格式的: 字体颜色: 文字 1

带格式的: 缩进: 首行缩进: 0 厘米

 the northern part of the NCP and other regions in China. This is because XT is located in the most polluted region in China. XT is the top most polluted region in China. The multitude of factories in the region generates strong emissions where there are more plentiful of factories of strong emissionsindustrial emissions in the central NCP. The plentitude of gas precursors and strong photochemical reactions at XT make acrosol properties—<u>there_unique</u>there_different_from_those_at_sites_under_other_polluted conditions. More field measurements on gas-particle transformation and aerosol properties in this region are needed, which would be meaningful for studying the haze formation mechanismg and climate_<u>effects</u> ehange in the NCP. Data availability. The dData used in the study are available from the first author upon request (wang.yuying@mail.bnu.edu.cn). Competing interests. The authors declare that they have no conflict of interest. Author contribution. Z_L_ and Y_W. designed the experiment;: Y.W., Y.Z., and W_D. carried in out and analyzed the data; other co-authors participated in science discussions and suggested analyses. Y_W. prepared the manuscript with contributions from all co-authors. Acknowledgements. This work was funded by the-National Natural Science Foundation of China (NSFC) research projects (grant no. 9154217, 41675141, 41705125), the National Basic Research Program of China "973" (grant no. 2013 (2055801), and the China Scholarship Council (award no. 201706040194). We
 multitude of factories in the region generates strong emissionswhere there are more plentiful of factories of strong emissionsindustrial emissions in the central NCP. The plentiful of gas precursors and strong photochemical reactions at XT make aerosol properties—<u>there_uniquethere_different_from_those_at_sites_under_other_polluted</u> conditions. More field measurements on gas-particle transformation and aerosol properties in this region are needed, which would be meaningful for studying the-haze formation mechanisms and climate <u>effects_change in the NCP</u>. Data availability. The 4Data used in the study are available from the first author upon request (wang yuying@mail.bnu.edu.en). <i>Competing interests.</i> The authors declare that they have no conflict of interest. Author contribution. Z. L. and Y. W. designed the experiment; Y. W., Y. Z., and W. D. carried it out and analyzed the data; other co-authors participated in science discussions and suggested analyses. Y. W. prepared the manuscript with contributions from all co-authors. <i>Acknowledgements.</i> This work was funded by the-National Natural Science Foundation of China (NSFC) research projects (grant no. 91544217, 41675141, 41705125), the National Basic Research Program of China "973" (grant no.
636 plentiful of factories of strong emissions industrial emissions in the central NCP. The 637 plentitude of gas precursors and strong photochemical reactions at XT make aerosol 638 properties – there uniquethere different from those at sites under other polluted 639 eonditions. More field measurements on gas-particle transformation and aerosol 640 properties in this region are needed, which would be meaningful for studying the-haze 641 formation mechanisms and climate <u>effects change in the NCP</u> . 642 Data availability. The dData used in the study are available from the first author upon 644 request (wang.yuying@mail.bnu.edu.cn). 645 Competing interests. The authors declare that they have no conflict of interest. 646 Author contribution. Z. L. and Y. W. designed the experiment; Y. W., Y. Z., and W. D. 647 carried it out and analyzed the data;; other co-authors participated in science discussions 653 acknowledgements. This work was funded by the-National Natural Science 653 Foundation of China (NSFC) research progents (grant no. 91544217, 41675141, 41705125), the National Basic Research Program of China "973" (grant no.
 plenitude of gas precursors and strong photochemical reactions at XT make aerosol properties—<u>there_uniquethere_different_from_those_at_sites_under_other_polluted</u> conditions. More field measurements on gas-particle transformation and aerosol properties in this region are needed, which would be meaningful for studying the haze formation mechanisms and climate <u>effects change in the NCP</u>. Data availability. The 4Data used in the study are available from the first author upon request (wang.yuying@mail.bnu.edu.cn). <i>Competing interests.</i> The authors declare that they have no conflict of interest. Author contribution. Z. L. and Y. W. designed the experiment. Y. W., Y. Z., and W. D. carried it out and analyzed the data: other co-authors participated in science discussions and suggested analyses. Y. W. prepared the manuscript with contributions from all co-authors. <i>Acknowledgements.</i> This work was funded by the National Natural Science Foundation of China (NSFC) research projects (grant no. 91544217, 41675141, 41705125), the National Basic Research Program of China "973" (grant no.
 properties—<u>there_uniquethere_different_from_those_at_sites_under_other_polluted</u> conditions. More field measurements on gas-particle transformation and aerosol properties in this region are needed, which would be meaningful for studying the haze formation mechanisms and climate <u>effects</u>-change in the NCP. Data availability. The dD ata used in the study are available from the first author upon request (wang.yuying@mail.bnu.edu.cn). <i>Competing interests.</i> The authors declare that they have no conflict of interest. <i>Author contribution.</i> Z. L. and Y. W. designed the experiment₂; Y. W., Y. Z., and W. D. carried it out and analyzed the data; other co-authors participated in science discussions and suggested analyses. Y. W. prepared the manuscript with contributions from all co-authors. <i>Acknowledgements.</i> This work was funded by the-National Natural Science Foundation of China (NSFC) research projects (grant no. 91544217, 41675141, 41705125), the National Basic Research Program of China "973" (grant no.
 conditions. More field measurements on gas-particle transformation and aerosol properties in this region are needed, which would be meaningful for studying the haze formation mechanisms and climate <u>effects</u>-change in the NCP. Data availability. The dData used in the study are available from the first author upon request (wang.yuying@mail.bnu.edu.cn). <i>Competing interests.</i> The authors declare that they have no conflict of interest. <i>Author contribution.</i> Z. L. and Y. W. designed the experiment₁: Y. W., Y. Z., and W. D. carried it out and analyzed the data₂: other co-authors participated in science discussions and suggested analyses. Y. W. prepared the manuscript with contributions from all co-authors. <i>Acknowledgements.</i> This work was funded by the National Natural Science Foundation of China (NSFC) research projects (grant no. 91544217, 41675141, 41705125), the National Basic Research Program of China "973" (grant no.
 properties in this region are needed, which would be meaningful for studying the haze formation mechanisms and climate <u>effects change in the NCP</u>. <i>Data availability</i>. The dData used in the study are available from the first author upon request (wang.yuying@mail.bnu.edu.cn). <i>Competing interests</i>. The authors declare that they have no conflict of interest. <i>Author contribution</i>. Z. L. and Y. W. designed the experiment; Y. W., Y. Z., and W. D. carried it out and analyzed the data; other co-authors participated in science discussions and suggested analyses. Y. W. prepared the manuscript with contributions from all co-authors. <i>Acknowledgements</i>. This work was funded by the National Natural Science Foundation of China (NSFC) research projects (grant no. 91544217, 41675141, 41705125), the National Basic Research Program of China "973" (grant no.
 formation mechanisms and climate <u>effects change in the NCP</u>. Data availability. The dData used in the study are available from the first author upon request (wang.yuying@mail.bnu.edu.cn). <i>Competing interests</i>. The authors declare that they have no conflict of interest. <i>Competing interests</i>. The authors declare that they have no conflict of interest. <i>Author contribution</i>. Z.,L. and Y.,W. designed the experiment_x; Y.,W., Y.Z., and W.,D. carried it out and analyzed the data_x; other co-authors participated in science discussions and suggested analyses. Y.,W. prepared the manuscript with contributions from all co-authors. <i>Acknowledgements</i>. This work was funded by the National Natural Science Foundation of China (NSFC) research projects (grant no. 91544217, 41675141, 41705125), the National Basic Research Program of China "973" (grant no.
 <i>Data availability</i>. The dData used in the study are available from the first author upon request (wang.yuying@mail.bnu.edu.cn). <i>Competing interests</i>. The authors declare that they have no conflict of interest. <i>Competing interests</i>. The authors declare that they have no conflict of interest. <i>Author contribution</i>. Z. L. and Y. W. designed the experiment¹/₂, Y. W., Y. Z., and W. D. carried it out and analyzed the data¹/₂, other co-authors participated in science discussions and suggested analyses. Y. W. prepared the manuscript with contributions from all co-authors. <i>Acknowledgements</i>. This work was funded by the National Natural Science Foundation of China (NSFC) research projects (grant no. 91544217, 41675141, 41705125), the National Basic Research Program of China "973" (grant no.
643 Data availability. The dData used in the study are available from the first author upon 644 request (wang.yuying@mail.bnu.edu.cn). 645 Competing interests. The authors declare that they have no conflict of interest. 647 Competing interests. The authors declare that they have no conflict of interest. 648 Author contribution. ZL. and YW. designed the experiment 25 YW., YZ., and WD. 649 carried it out and analyzed the data; other co-authors participated in science discussions 650 and suggested analyses. YW. prepared the manuscript with contributions from all 651 co-authors. 652 Foundation of China (NSFC) research projects (grant no. 91544217, 41675141, 655 41705125), the National Basic Research Program of China "973" (grant no.
643 Data availability. The dData used in the study are available from the first author upon 644 request (wang.yuying@mail.bnu.edu.cn). 645 Competing interests. The authors declare that they have no conflict of interest. 647 Competing interests. The authors declare that they have no conflict of interest. 648 Author contribution. ZL. and YW. designed the experiment 25 YW., YZ., and WD. 649 carried it out and analyzed the data; other co-authors participated in science discussions 650 and suggested analyses. YW. prepared the manuscript with contributions from all 651 co-authors. 652 Foundation of China (NSFC) research projects (grant no. 91544217, 41675141, 655 41705125), the National Basic Research Program of China "973" (grant no.
 request (wang.yuying@mail.bnu.edu.cn). <i>Competing interests.</i> The authors declare that they have no conflict of interest. <i>Competing interests.</i> The authors declare that they have no conflict of interest. <i>Author contribution.</i> ZL. and YW. designed the experiment₂; YW., YZ., and WD. carried it out and analyzed the data₂; other co-authors participated in science discussions and suggested analyses. YW. prepared the manuscript with contributions from all co-authors. <i>Acknowledgements.</i> This work was funded by the National Natural Science Foundation of China (NSFC) research projects (grant no. 91544217, 41675141, 41705125), the National Basic Research Program of China "973" (grant no.
 645 646 Competing interests. The authors declare that they have no conflict of interest. 647 648 Author contribution. Z. L. and Y. W. designed the experiment: Y. W., Y. Z., and W. D. 649 carried it out and analyzed the data; other co-authors participated in science discussions 650 and suggested analyses. Y. W. prepared the manuscript with contributions from all 651 co-authors. 652 653 Acknowledgements. This work was funded by the National Natural Science 654 Foundation of China (NSFC) research projects (grant no. 91544217, 41675141, 655 41705125), the National Basic Research Program of China "973" (grant no.
 <i>Competing interests.</i> The authors declare that they have no conflict of interest. <i>Author contribution.</i> ZL. and YW. designed the experiment₁₇ YW., YZ., and WD. carried it out and analyzed the data₁₇ other co-authors participated in science discussions and suggested analyses. YW. prepared the manuscript with contributions from all co-authors. <i>Acknowledgements.</i> This work was funded by the-National Natural Science Foundation of China (NSFC) research projects (grant no. 91544217, 41675141, 41705125), the National Basic Research Program of China "973" (grant no.
 Author contribution. Z. L. and Y. W. designed the experiment Y. W., Y. Z., and W. D. carried it out and analyzed the data; other co-authors participated in science discussions and suggested analyses. Y. W. prepared the manuscript with contributions from all co-authors. <i>Acknowledgements.</i> This work was funded by the National Natural Science Foundation of China (NSFC) research projects (grant no. 91544217, 41675141, 41705125), the National Basic Research Program of China "973" (grant no.
 carried it out and analyzed the data_i, other co-authors participated in science discussions and suggested analyses. Y. W. prepared the manuscript with contributions from all co-authors. <i>Acknowledgements.</i> This work was funded by the National Natural Science Foundation of China (NSFC) research projects (grant no. 91544217, 41675141, 41705125), the National Basic Research Program of China "973" (grant no.
 and suggested analyses. YW. prepared the manuscript with contributions from all co-authors. <i>Acknowledgements</i>. This work was funded by the-National Natural Science Foundation of China (NSFC) research projects (grant no. 91544217, 41675141, 41705125), the National Basic Research Program of China "973" (grant no.
 651 co-authors. 652 653 Acknowledgements. This work was funded by the National Natural Science 654 Foundation of China (NSFC) research projects (grant no. 91544217, 41675141, 655 41705125), the National Basic Research Program of China "973" (grant no.
 <i>Acknowledgements.</i> This work was funded by the National Natural Science <i>Foundation of China (NSFC) research projects (grant no. 91544217, 41675141, 41705125), the National Basic Research Program of China "973" (grant no. 91544217, 41675141, 973)</i>
 <i>Acknowledgements.</i> This work was funded by the National Natural Science Foundation of China (NSFC) research projects (grant no. 91544217, 41675141, 41705125), the National Basic Research Program of China "973" (grant no.
 Foundation of China (NSFC) research projects (grant no. 91544217, 41675141, 41705125), the National Basic Research Program of China "973" (grant no.
655 41705125), the National Basic Research Program of China "973" (grant no.
656 2013CB955801), and the China Scholarship Council (award no. 201706040194). We
657 also thank all participants in the field campaign for their tireless work and
658 cooperation. 带格式的: 字体颜色: 文字 1
659
660 References
661 Albrecht, B. A.: Aerosols, cloud microphysics, and fractional cloudiness, Science, 245, 带格式的: 行距: 单倍行距
662 <u>1227–1230, https://doi.org/10.1126/science.245.4923.1227, 1989.</u>
663 Albrecht B.A.: Aerosols, Cloud Microphysics, and Fractional Cloudiness, Science, 245, 1227–30, 1989.
664 Brooks, I. M.: Finding boundary layer top: application of a wavelet covariance ⁴ 带格式的: 行距: 单倍行距
665 transform to lidar backscatter profiles, J. Atmos. Ocean. Tech., 20, 1092–1105,

666	https://doi.org/10.1175/1520-0426(2003)020<1092:FBLTAO>2.0.CO;2, 2003.	
667	Brooks I.M.: Finding boundary layer top: Application of a wavelet covariance transform to lidar	
668	backscatter profiles, J. Atmos. Ocean. Tech., 20, 1092-1105, 2003.	
669	Chu, Y., Sauerwein, M., and Chan, C. K.: Hygroscopic and phase transition properties	
670	of alkyl aminium sulfates at low relative humidities, Phys. Chem. Chem. Phys., 17,	
671	19,78919,796, https://doi.org/10.1039/c5cp02404h, 2015.	
672	Cohn, S. A., and Angevine. W. M.: Boundary layer height and entrainment zone	
673	thickness measured by lidars and wind-profiling radars, J.ournal-of Appl.ied	
674	Meteorol. ogy , 39, 1233–1247, —https://doi.org/	
675	10.1175/1520-0450(2000)039<1233:BLHAEZ>2.0.CO;2,2000.	
676	Covert, D. S., Charlson, R. J., and Ahlquist, N. C.: A study of the relationship of	
677	chemical composition and humidity to light scattering by aerosols, Journal of	
678	Appl_ied Meteorol_ogy, 11, 968_976,	
679	https://doi.org/10.1175/1520_0450(1972)011<0968:ASOTRO>2.0.CO;2,1972.	
680	Cruz, C. N., and Pandis, S. N.: Deliquescence and hygroscopic growth of mixed	带格式的: 行距:多倍行距 1.15 字行
681	inorganic–organic atmospheric aerosol, Environ. Sci. Technol., 34, 4313–4319,	
682	https://doi.org/10.1021/es9907109, 2000.	
683	Cruz C.N. and Pandis S.N.: Deliquescence and hygroscopic growth of mixed inorganic-organic	
684	atmospheric aerosol, Environ. Sci. Technol., 34, 4313-4319, https://doi.org/10.1021/es9907109,	
685	2000.	
686	Cubison, M. J., Ervens, B., Feingold, G., Docherty, K. S., Ulbrich, I. M., Shields, L.,	
687	Prather, K., Hering, S., and Jimenez, J. L.: The influence of chemical composition	
688	and mixing state of Los Angeles urban aerosol on CCN number and cloud	
689	properties, Atmos. Chem. Phys., 8, 5649–5667,	
690	https://doi.org/10.5194/acp-8-5649-2008, 2008.Cubison M.J., Ervens B., Feingold G.,	
691	Docherty K.S., Ulbrich I.M., Shields L., Prather K., Hering S. and Jimenez J.L.: The influence of	
692	chemical composition and mixing state of Los Angeles urban aerosol on CCN number and cloud	
693	properties, Atmos. Chem. Phys., 8, 5649-5667, https://doi.org/10.5194/acp-8-5649-2008, 2008.	
694	Daniel R., Ulrike L., Raga G.B., O'Dowd C.D., Markku K., Sandro F., Anni R. and Andreae M.O.:	
695	Flood or drought: how do aerosols affect precipitation?, Science, 321, 1309-1313,	
696	https://doi.org/10.1126/science.1160606, 2008.	
697	Deng, Z. Z., Ma, N., Liu, P. F., Xu, W. Y., Zhao, C. S., Ran, L., Chen, J., Liang, Z.,	带格式的:行距:单倍行距
698	Liang, S., and Huang, M. Y .: Size-resolved and bulk activation properties of	
699	aerosols in the North China Plain, Atmos. Chem. Phys., 11, 3835-3846,	
700	https://doi.org/10.5194/acp-11-3835-2011, 2011.	
701	Deng Z.Z., Ma N., Liu P.F., Xu W.Y., Zhao C.S., Ran L., Chen J., Liang Z., Liang S. and Huang M.Y.:	
702	Size resolved and bulk activation properties of aerosols in the North China Plain, Atmos. Chem.	
703	Phys., 11, 3835-3846, https://doi.org/10.5194/acp-11-3835-2011, 2011.	
704	Dusek, U., Frank, G.P., Hildebrandt, L., Curtius, J., Schneider, J., Walter, S., Chand,	
705	D., Drewnick ₁ F., Hings ₁ S. ₁ and Jung D.: Size matters more than chemistry for	
706	cloud-nucleating ability of aerosol particles, Science, 312, 1375-1378,	
707	https://doi.org/10.1126/science.1125261, 2006.	
708	Eichler, H., Cheng, Y. F., Birmili, W., Nowak, A., Wiedensohler, A., Brüggemann, E.,	

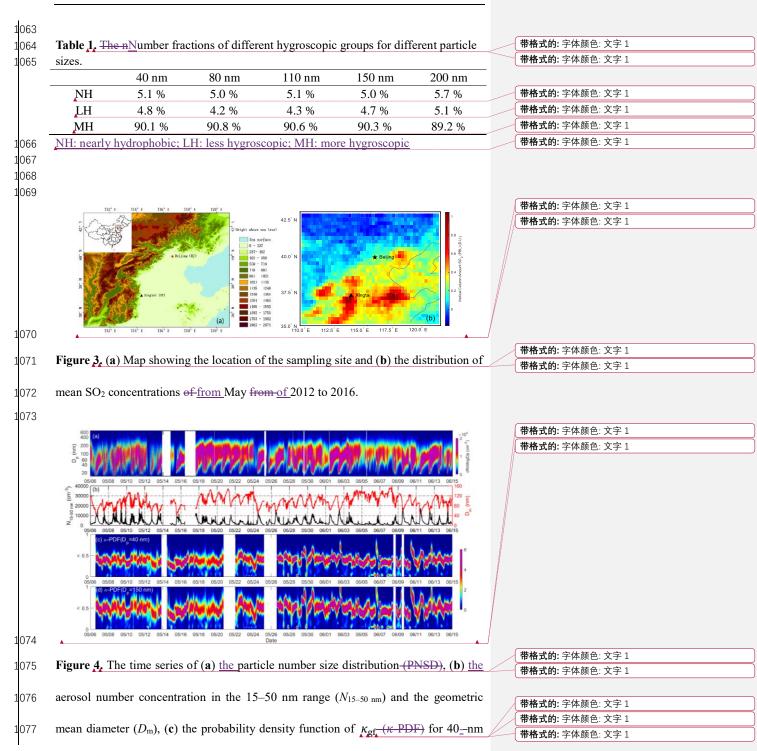
Eichler, H., Cheng, Y. F., Birmili, W., Nowak, A., Wiedensohler, A., Brüggemann, E.,
 Gnauk, T., Herrmann, H., Althausen, D., and Ansmann, A.: Hygroscopic properties
 and extinction of aerosol particles at ambient relative humidity in South-Eastern

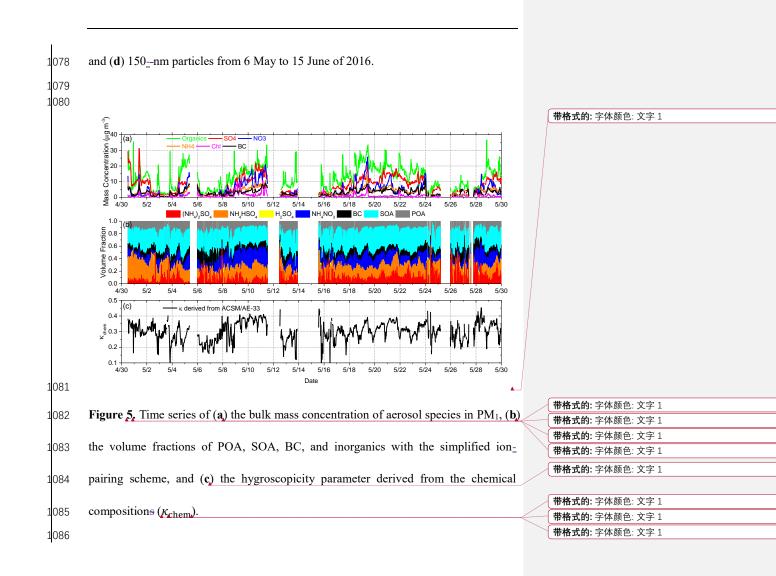
711	China, Atmos Environ, 42, 6321–_6334,	
712	https://doi.org/10.1016/j.atmosenv.2008.05.007, 2008.	
713	Ervens, B., Cubison, M., Andrews, E., Feingold, G., Ogren, J. A., Jimenez, J. L.,	
714	DeCarlo, P., and Nenes, A.: Prediction of cloud condensation nucleus number	
715	concentration using measurements of aerosol size distributions and composition and	
716	light scattering enhancement due to humidity, J. Geophys. ResAtmos., 112,	
717	https://doi.org/10.1029/2006JD007426, 2007.	
718	Fu, G. Q., Xu, W. Y., Yang, R. F., Li, J. B., and Zhao, C. S.: The distribution and	带格式的: 行距: 单倍行距
719	trends of fog and haze in the North China Plain over the past 30 years, Atmos.	
720	Chem. Phys., 14, 11949–11958, https://doi.org/10.5194/acp-14-11949-2014, 2014.	
721	Fu G.Q., Xu W.Y., Yang R.F., Li J.B. and Zhao C.S.: The distribution and trends of fog and haze in the	
722	North China Plain over the past 30 years, Atmos. Chem. Phys., 14, 11949-11958,	
723	https://doi.org/10.5194/acp-14-11949-2014, 2014.	
724	Gomez-Hernandez, M., McKeown, M., Secrest, J., Marrero-Ortiz, W., Lavi, A.,	
725	Rudich, Y., Collins, DR., and Zhang, R.: Hygroscopic Characteristics	
726	characteristics of Alkylaminium alkylaminium Carboxylate carboxylate	
727	Aerosolsaerosols, Environ. Sci. Technol., 50, 2292-2300,	
728	https://dx.doi.org/10.1021/acs.est.5b04691, 2016.	
729	Guo, S., Hu, M., Lin, Y., Gomez-Hernandez, M., Zamora, M. L., Peng, J., Collins, D.	
730	R., and Zhang, R.: OH-Initiated Oxidation oxidation of m-Xylene xylene on Black	
731	black Carbon carbon Agingaging, Environ. Sci. Technol., 50, 8605-8612,	
732	https://dx.doi.org/10.1021/acs.est.6b01272, 2016.	
733	Gysel, M., Crosier, J., Topping, D. O., Whitehead, J. D., Bower, K. N., Cubison, M. J.	带格式的:行距:单倍行距
733 734	Gysel, M., Crosier, J., Topping, D. O., Whitehead, J. D., Bower, K. N., Cubison, M. J., Williams, P. I., Flynn, M. J., McFiggans, G. B., and Coe, H.: Closure study between	带格式的: 行距: 单倍行距
		带格式的: 行距: 单倍行距
734	Williams, P. I., Flynn, M. J., McFiggans, G. B., and Coe, H.: Closure study between	带格式的: 行距: 单倍行距
734 735	Williams, P. I., Flynn, M. J., McFiggans, G. B., and Coe, H.: Closure study between chemical composition and hygroscopic growth of aerosol particles during TORCH2,	—— (带格式的: 行距: 单倍行距
734 735 736	 Williams, P. I., Flynn, M. J., McFiggans, G. B., and Coe, H.: Closure study between chemical composition and hygroscopic growth of aerosol particles during TORCH2, Atmos. Chem. Phys., 7, 6131–6144, https://doi.org/10.5194/acp-7-6131-2007, 	—— (带格式的: 行距: 单倍行距
734 735 736 737	 Williams, P. I., Flynn, M. J., McFiggans, G. B., and Coe, H.: Closure study between chemical composition and hygroscopic growth of aerosol particles during TORCH2, Atmos. Chem. Phys., 7, 6131–6144, https://doi.org/10.5194/acp-7-6131-2007, 2007. 	—— 带格式的: 行距: 单倍行距
734 735 736 737 738	 Williams, P. I., Flynn, M. J., McFiggans, G. B., and Coe, H.: Closure study between chemical composition and hygroscopic growth of aerosol particles during TORCH2, Atmos. Chem. Phys., 7, 6131–6144, https://doi.org/10.5194/acp-7-6131-2007, 2007. Gysel M., Crosier J., Topping D.O., Whitehead J.D., Bower K.N., Cubison M.J., Williams P.I., Flynn 	带格式的: 行距: 单倍行距
734 735 736 737 738 739	 Williams, P. I., Flynn, M. J., McFiggans, G. B., and Coe, H.: Closure study between chemical composition and hygroscopic growth of aerosol particles during TORCH2, Atmos. Chem. Phys., 7, 6131–6144, https://doi.org/10.5194/acp-7-6131-2007, 2007. Gysel M., Crosier J., Topping D.O., Whitehead J.D., Bower K.N., Cubison M.J., Williams P.I., Flynn M.J., McFiggans G.B. and Coe H.: Closure study between chemical composition and hygroscopic 	—— 带格式的: 行距: 单倍行距
734 735 736 737 738 739 740	 Williams, P. I., Flynn, M. J., McFiggans, G. B., and Coe, H.: Closure study between chemical composition and hygroscopic growth of aerosol particles during TORCH2, Atmos. Chem. Phys., 7, 6131–6144, https://doi.org/10.5194/acp-7-6131-2007, 2007. Gysel M., Crosier J., Topping D.O., Whitehead J.D., Bower K.N., Cubison M.J., Williams P.I., Flynn M.J., McFiggans G.B. and Coe H.: Closure study between chemical composition and hygroscopic growth of aerosol particles during TORCH2, Atmos. Chem. Phys., 7, 6131–6144, 	带格式的:行距:单倍行距 带格式的:行距:单倍行距
734 735 736 737 738 739 740 741	 Williams, P. I., Flynn, M. J., McFiggans, G. B., and Coe, H.: Closure study between chemical composition and hygroscopic growth of aerosol particles during TORCH2, Atmos. Chem. Phys., 7, 6131–6144, https://doi.org/10.5194/acp-7-6131-2007, 2007. Gysel M., Crosier J., Topping D.O., Whitehead J.D., Bower K.N., Cubison M.J., Williams P.I., Flynn M.J., McFiggans G.B. and Coe H.: Closure study between chemical composition and hygroscopic growth of aerosol particles during TORCH2, Atmos. Chem. Phys., 7, 6131-6144, https://doi.org/10.5194/acp-7-6131-2007, 2007. 	
734 735 736 737 738 739 740 741 742	 Williams, P. I., Flynn, M. J., McFiggans, G. B., and Coe, H.: Closure study between chemical composition and hygroscopic growth of aerosol particles during TORCH2, Atmos. Chem. Phys., 7, 6131–6144, https://doi.org/10.5194/acp-7-6131-2007, 2007. Gysel M., Crosier J., Topping D.O., Whitehead J.D., Bower K.N., Cubison M.J., Williams P.I., Flynn M.J., McFiggans G.B. and Coe H.: Closure study between chemical composition and hygroscopic growth of aerosol particles during TORCH2, Atmos. Chem. Phys., 7, 6131–6144, https://doi.org/10.5194/acp-7-6131-2007, 2007. Huang, R., Zhang, Y., Bozzetti, C., Ho, K., Cao, J., Han, Y., Daellenbach, K. R., * 	
734 735 736 737 738 739 740 741 742 743	 Williams, P. I., Flynn, M. J., McFiggans, G. B., and Coe, H.: Closure study between chemical composition and hygroscopic growth of aerosol particles during TORCH2, Atmos. Chem. Phys., 7, 6131–6144, https://doi.org/10.5194/acp-7-6131-2007, 2007. Gysel M., Crosier J., Topping D.O., Whitehead J.D., Bower K.N., Cubison M.J., Williams P.I., Flynn M.J., McFiggans G.B. and Coe H.: Closure study between chemical composition and hygroscopic growth of aerosol particles during TORCH2, Atmos. Chem. Phys., 7, 6131-6144, https://doi.org/10.5194/acp-7.6131-2007, 2007. Huang, R., Zhang, Y., Bozzetti, C., Ho, K., Cao, J., Han, Y., Daellenbach, K. R., Slowik, J. G., Platt, S. M., Canonaco, F., Zotter, P., Wolf, R., Pieber, S. M., Bruns, 	
734 735 736 737 738 739 740 741 742 743 744	 Williams, P. I., Flynn, M. J., McFiggans, G. B., and Coe, H.: Closure study between chemical composition and hygroscopic growth of aerosol particles during TORCH2, Atmos. Chem. Phys., 7, 6131–6144, https://doi.org/10.5194/acp-7-6131-2007, 2007. Gysel M., Crosier J., Topping D.O., Whitehead J.D., Bower K.N., Cubison M.J., Williams P.I., Flynn M.J., McFiggans G.B. and Coe H.: Closure study between chemical composition and hygroscopic growth of aerosol particles during TORCH2, Atmos. Chem. Phys., 7, 6131-6144, https://doi.org/10.5194/acp-7.6131-2007, 2007. Huang, R., Zhang, Y., Bozzetti, C., Ho, K., Cao, J., Han, Y., Daellenbach, K. R., Slowik, J. G., Platt, S. M., Canonaco, F., Zotter, P., Wolf, R., Pieber, S. M., Bruns, E. A., Crippa, M., Ciarelli, G., Piazzalunga, A., Schwikowski, M., Abbaszade, G., 	
734 735 736 737 738 739 740 741 742 743 744 745	 Williams, P. I., Flynn, M. J., McFiggans, G. B., and Coe, H.: Closure study between chemical composition and hygroscopic growth of aerosol particles during TORCH2, Atmos. Chem. Phys., 7, 6131–6144, https://doi.org/10.5194/acp-7-6131-2007, 2007. Gysel M., Crosier J., Topping D.O., Whitehead J.D., Bower K.N., Cubison M.J., Williams P.I., Flynn M.J., McFiggans G.B. and Coe H.: Closure study between chemical composition and hygroscopic growth of aerosol particles during TORCH2, Atmos. Chem. Phys., 7, 6131-6144, https://doi.org/10.5194/acp-7-6131-2007, 2007. Huang, R., Zhang, Y., Bozzetti, C., Ho, K., Cao, J., Han, Y., Daellenbach, K. R., Slowik, J. G., Platt, S. M., Canonaco, F., Zotter, P., Wolf, R., Pieber, S. M., Bruns, E. A., Crippa, M., Ciarelli, G., Piazzalunga, A., Schwikowski, M., Abbaszade, G., Schnelle-Kreis, J., Zimmermann, R., An, Z., Szidat, S., Baltensperger, U., Haddad, I. E., and Prévôt, A. S. H.: High secondary aerosol contribution to particulate pollution during haze events in China, Nature, 514, 218–222, 	
734 735 736 737 738 739 740 741 742 743 744 745 746	 Williams, P. I., Flynn, M. J., McFiggans, G. B., and Coe, H.: Closure study between chemical composition and hygroscopic growth of aerosol particles during TORCH2, Atmos. Chem. Phys., 7, 6131–6144, https://doi.org/10.5194/acp-7-6131-2007, 2007. Gysel M., Crosier J., Topping D.O., Whitehead J.D., Bower K.N., Cubison M.J., Williams P.I., Flynn M.J., McFiggans G.B. and Coe H.: Closure study between chemical composition and hygroscopic growth of aerosol particles during TORCH2, Atmos. Chem. Phys., 7, 6131-6144, https://doi.org/10.5194/acp-7-6131-2007, 2007. Huang, R., Zhang, Y., Bozzetti, C., Ho, K., Cao, J., Han, Y., Daellenbach, K. R., Slowik, J. G., Platt, S. M., Canonaco, F., Zotter, P., Wolf, R., Pieber, S. M., Bruns, E. A., Crippa, M., Ciarelli, G., Piazzalunga, A., Schwikowski, M., Abbaszade, G., Schnelle-Kreis, J., Zimmermann, R., An, Z., Szidat, S., Baltensperger, U., Haddad, I. E., and Prévôt, A. S. H.: High secondary aerosol contribution to particulate pollution during haze events in China, Nature, 514, 218–222, https://doi.org/10.1038/nature13774, 2014. 	
734 735 736 737 738 739 740 741 742 743 744 745 746 747	 Williams, P. I., Flynn, M. J., McFiggans, G. B., and Coe, H.: Closure study between chemical composition and hygroscopic growth of aerosol particles during TORCH2, Atmos. Chem. Phys., 7, 6131–6144, https://doi.org/10.5194/acp-7-6131-2007, 2007. Gysel M., Crosier J., Topping D.O., Whitehead J.D., Bower K.N., Cubison M.J., Williams P.I., Flynn M.J., McFiggans G.B. and Coe H.: Closure study between chemical composition and hygroscopic growth of aerosol particles during TORCH2, Atmos. Chem. Phys., 7, 6131-6144, https://doi.org/10.5194/acp-7-6131-2007, 2007. Huang, R., Zhang, Y., Bozzetti, C., Ho, K., Cao, J., Han, Y., Daellenbach, K. R., Slowik, J. G., Platt, S. M., Canonaco, F., Zotter, P., Wolf, R., Pieber, S. M., Bruns, E. A., Crippa, M., Ciarelli, G., Piazzalunga, A., Schwikowski, M., Abbaszade, G., Schnelle-Kreis, J., Zimmermann, R., An, Z., Szidat, S., Baltensperger, U., Haddad, I. E., and Prévôt, A. S. H.: High secondary aerosol contribution to particulate pollution during haze events in China, Nature, 514, 218–222, 	
734 735 736 737 738 739 740 741 742 743 744 745 746 747 748	 Williams, P. I., Flynn, M. J., McFiggans, G. B., and Coe, H.: Closure study between chemical composition and hygroscopic growth of aerosol particles during TORCH2, Atmos. Chem. Phys., 7, 6131–6144, https://doi.org/10.5194/acp-7-6131-2007, 2007. Gysel M., Crosier J., Topping D.O., Whitehead J.D., Bower K.N., Cubison M.J., Williams P.I., Flynn M.J., McFiggans G.B. and Coe H.: Closure study between chemical composition and hygroscopic growth of aerosol particles during TORCH2, Atmos. Chem. Phys., 7, 6131-6144, https://doi.org/10.5194/acp-7-6131-2007, 2007. Huang, R., Zhang, Y., Bozzetti, C., Ho, K., Cao, J., Han, Y., Daellenbach, K. R., Slowik, J. G., Platt, S. M., Canonaco, F., Zotter, P., Wolf, R., Pieber, S. M., Bruns, E. A., Crippa, M., Ciarelli, G., Piazzalunga, A., Schwikowski, M., Abbaszade, G., Schnelle-Kreis, J., Zimmermann, R., An, Z., Szidat, S., Baltensperger, U., Haddad, I. E., and Prévôt, A. S. H.: High secondary aerosol contribution to particulate pollution during haze events in China, Nature, 514, 218–222, https://doi.org/10.1038/nature13774, 2014. 	
734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751	 Williams, P. I., Flynn, M. J., McFiggans, G. B., and Coe, H.: Closure study between chemical composition and hygroscopic growth of aerosol particles during TORCH2, Atmos. Chem. Phys., 7, 6131–6144, https://doi.org/10.5194/acp-7-6131-2007, 2007. Gysel M., Crosier J., Topping D.O., Whitehead J.D., Bower K.N., Cubison M.J., Williams P.I., Flynn M.J., McFiggans G.B. and Coe H.: Closure study between chemical composition and hygroscopic growth of aerosol particles during TORCH2, Atmos. Chem. Phys., 7, 6131-6144, https://doi.org/10.5194/acp-7-6131-2007, 2007. Huang, R., Zhang, Y., Bozzetti, C., Ho, K., Cao, J., Han, Y., Daellenbach, K. R., Slowik, J. G., Platt, S. M., Canonaco, F., Zotter, P., Wolf, R., Pieber, S. M., Bruns, E. A., Crippa, M., Ciarelli, G., Piazzalunga, A., Schwikowski, M., Abbaszade, G., Schnelle-Kreis, J., Zimmermann, R., An, Z., Szidat, S., Baltensperger, U., Haddad, I. E., and Prévôt, A. S. H.: High secondary aerosol contribution to particulate pollution during haze events in China, Nature, 514, 218–222, https://doi.org/10.1038/nature13774, 2014. Huang R., Zhang Y., Bozzetti C., Ho K., Cao J., Han Y., Daellenbach K.R., Slowik J.G., Platt S.M., Canonaco F., Zotter J., Ciarelli G., Piazzalunga A., Schwikowski M., Abbaszade G., Schnelle-Kreis in China, Nature, 514, 218–222, https://doi.org/10.1038/nature13774, 2014. 	
734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752	 Williams, P. I., Flynn, M. J., McFiggans, G. B., and Coe, H.: Closure study between chemical composition and hygroscopic growth of aerosol particles during TORCH2, Atmos. Chem. Phys., 7, 6131–6144, https://doi.org/10.5194/acp-7-6131-2007, 2007. Gysel M., Crosier J., Topping D.O., Whitehead J.D., Bower K.N., Cubison M.J., Williams P.I., Flynn M.J., McFiggans G.B. and Coe H.: Closure study between chemical composition and hygroscopic growth of aerosol particles during TORCH2, Atmos. Chem. Phys., 7, 6131-6144, https://doi.org/10.5194/acp-7-6131-2007, 2007. Huang, R., Zhang, Y., Bozzetti, C., Ho, K., Cao, J., Han, Y., Daellenbach, K. R., Slowik, J. G., Platt, S. M., Canonaco, F., Zotter, P., Wolf, R., Pieber, S. M., Bruns, E. A., Crippa, M., Ciarelli, G., Piazzalunga, A., Schwikowski, M., Abbaszade, G., Schnelle-Kreis, J., Zimmermann, R., An, Z., Szidat, S., Baltensperger, U., Haddad, I. E., and Prévôt, A. S. H.: High secondary aerosol contribution to particulate pollution during haze events in China, Nature, 514, 218–222, https://doi.org/10.1038/nature13774, 2014. Huang R., Zhang Y., Bozzetti C., Ho K., Cao J., Han Y., Daellenbach K.R., Slowik J.G., Platt S.M., Canonaco F., Zotter P., Wolf, R., Slowik J.G., Platt S.M., Canonaco F., Zotter P., Wolf R., Pieber S.M., Bruns E.A., Crippa M., Ciarelli G., Piazzalunga A., 	
734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751	 Williams, P. I., Flynn, M. J., McFiggans, G. B., and Coe, H.: Closure study between chemical composition and hygroscopic growth of aerosol particles during TORCH2, Atmos. Chem. Phys., 7, 6131–6144, https://doi.org/10.5194/acp-7-6131-2007, 2007. Gysel M., Crosier J., Topping D.O., Whitehead J.D., Bower K.N., Cubison M.J., Williams P.I., Flynn M.J., McFiggans G.B. and Coe H.: Closure study between chemical composition and hygroscopic growth of aerosol particles during TORCH2, Atmos. Chem. Phys., 7, 6131-6144, https://doi.org/10.5194/acp-7-6131-2007, 2007. Huang, R., Zhang, Y., Bozzetti, C., Ho, K., Cao, J., Han, Y., Daellenbach, K. R., Slowik, J. G., Platt, S. M., Canonaco, F., Zotter, P., Wolf, R., Pieber, S. M., Bruns, E. A., Crippa, M., Ciarelli, G., Piazzalunga, A., Schwikowski, M., Abbaszade, G., Schnelle-Kreis, J., Zimmermann, R., An, Z., Szidat, S., Baltensperger, U., Haddad, I. E., and Prévôt, A. S. H.: High secondary aerosol contribution to particulate pollution during haze events in China, Nature, 514, 218–222, https://doi.org/10.1038/nature13774, 2014. Huang R., Zhang Y., Bozzetti C., Ho K., Cao J., Han Y., Daellenbach K.R., Slowik J.G., Platt S.M., Canonaco F., Zotter J., Ciarelli G., Piazzalunga A., Schwikowski M., Abbaszade G., Schnelle-Kreis in China, Nature, 514, 218–222, https://doi.org/10.1038/nature13774, 2014. 	

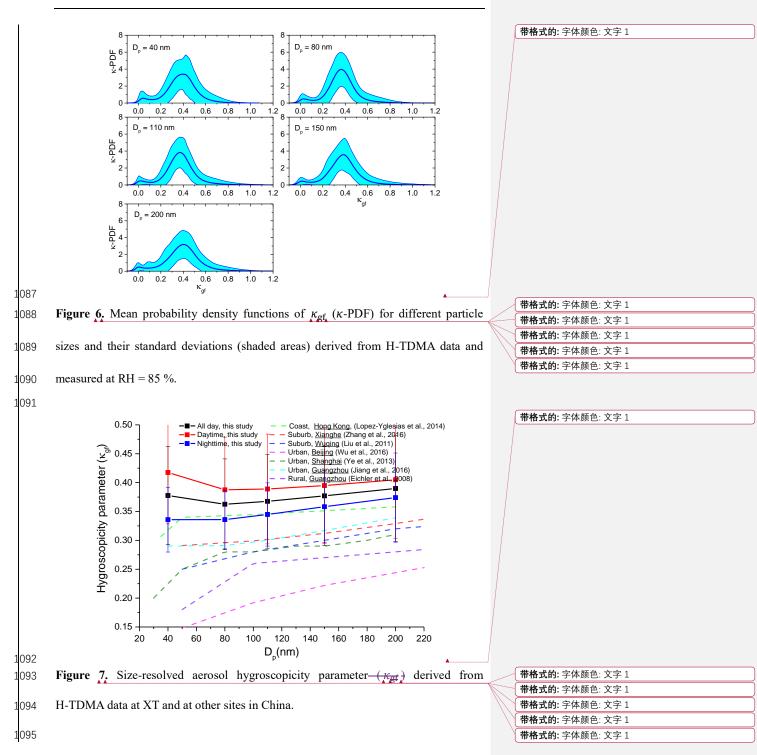
i		
755	Inter-governmental Panel on Climate Change, Cambridge University Press, 2013.	
756	Jacobson, M. C., Hansson, H. C., Noone, K. J., and Charlson, R. J.: Organic*	带格式的: 行距: 单倍行距
757	atmospheric aerosols: review and state of the science, Rev. Geophys., 38, 267-294,	
758	https://doi.org/10.1029/1998RG000045, 2000.	
759	Jacobson M.C., Hansson H.C., Noone K.J. and Charlson R.J.: Organic atmospheric aerosols: Review	
760	and state of the science, Rev. Geophys., 38, 267-294, https://doi.org/10.1029/1998RG000045, 2000.	
761	Jiang, R. X., Tan, H. B., Tang, L. L., Cai, M. F., Yin, Y., Li, F., Liu, L., Xu, H. B.,	带格式的: 行距:单倍行距
762	Chan, P. W., Deng, X. J., and Wu, D.: Comparison of aerosol hygroscopicity and	
763	mixing state between winter and summer seasons in Pearl River Delta region, China,	
764	Atmos. Res., 169, 160-170, https://doi.org/10.1016/j.atmosres.2015.09.031, 2016.	
765	Jiang R.X., Tan H.B., Tang L.L., Cai M.F., Yin Y., Li F., Liu L., Xu H.B., Chan P.W., Deng X.J. and	
766	Wu D.: Comparison of aerosol hygroscopicity and mixing state between winter and summer seasons	
767	in Pearl River Delta region, China, Atmos. Res., 169, 160-170,	
768	https://doi.org/10.1016/j.atmosres.2015.09.031, 2016.	
769	Jimenez, J. L., Canagaratna, M. R., Donahue, N. M., Prevot, A., Zhang, Q., Kroll, J.	(带格式的: 行距: 单倍行距
770	H., DeCarlo, P. F., Allan, J. D., Coe, H., and Ng, N. L.: Evolution of organic	
771	aerosols in the atmosphere, Science, 326, 1525-1529,	
772	https://doi.org/10.1126/science.1180353, 2009.	
773	Jimenez J.L., Canagaratna M.R., Donahue N.M., Prevot A., Zhang Q., Kroll J.H., DeCarlo P.F., Allan	
774	J.D., Coe H. and Ng N.L.: Evolution of organic aerosols in the atmosphere, Science, 326, 1525-1529,	
775	https://doi.org/10.1126/science.1180353, 2009.	
776	Juranyi, Z., Gysel, M., Weingartner, E., DeCarlo, P. F., Kammermann, L., and-	(带格式的: 行距:单倍行距
777	Baltensperger, U.: Measured and modelled cloud condensation nuclei number	
778	concentration at the high alpine site Jungfraujoch, Atmos. Chem. Phys., 10, 7891-	
779	7906, https://doi.org/10.5194/acp-10-7891-2010, 2010.	
780	Juranyi Z., Gysel M., Weingartner E., DeCarlo P.F., Kammermann L. and Baltensperger U.: Measured	
781	and modelled cloud condensation nuclei number concentration at the high alpine site Jungfraujoch,	
782	Atmos. Chem. Phys., 10, 7891-7906, https://doi.org/10.5194/acp-10-7891-2010, 2010.	
783	Köhler, H.: The nucleus in and the growth of hygroscopic droplets, T. Faraday Soc., 4	带格式的: 行距: 单倍行距
784	32, 1152-1161, https://doi.org/10.1039/TF9363201152, 1936.	
785	Köhler H .: The nucleus in and the growth of hygroscopic droplets, Transactions of the Faraday Society,	
786	32, 1152-1161, 1936.	
787	Kulmala, M., Petäjä, T., Nieminen, T., Sipilä, M., Manninen, H. E., Lehtipalo, K., Dal-	(带格式的: 行距: 单倍行距
788	Maso, M., Aalto, P. P., Junninen, H., and Paasonen, P.: Measurement of the	
789	nucleation of atmospheric aerosol particles, Nat. Protoc., 7, 1651-1667,	
790	https://doi.org/10.1038/nprot.2012.091, 2012.	
791	Kulmala M., Petäjä T., Nieminen T., Sipilä M., Manninen H.E., Lehtipalo K., Dal Maso M., Aalto P.P.,	
792	Junninen H. and Paasonen P .: Measurement of the nucleation of atmospheric aerosol particles, Nat.	
793	Protoc., 7, 1651-1667, https://doi.org/10.1038/nprot.2012.091,2012.	
794	Lance, S., Nenes, A., Medina, J., and Smith, J. N.: Mapping the operation of the DMT	带格式的:行距:单倍行距
795	continuous flow CCN counter, Aerosol Sci. Tech., 40, 242-254,	
796	http://dx.doi.org/10.1080/02786820500543290, 2006.	
797	Lance S., Nenes A., Medina J. and Smith J.N.: Mapping the operation of the DMT continuous flow	
798	CCN counter, Aerosol Sci. Tech., 40, 242-254, http://dx.doi.org/10.1080/02786820500543290,	

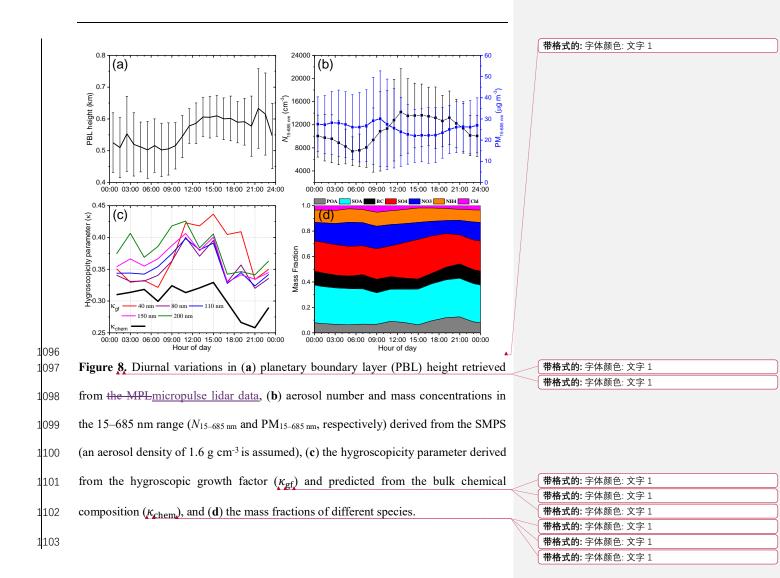
799	2006.	
800	Lebo, Z.J., Shipway, B.J., Fan, J., Geresdi, I., Hill, A., Miltenberger, A., Morrison,	
801	H., Rosenberg, P., Varble, A., and Xue, L.: Challenges for cloud modeling in the	
802	context of aerosol-cloud-precipitation interactions, B. Am. Meteorol. Soc.,	
803	https://doi.org/10.1175/BAMS-D-16-0291.1, 2017.	
804	<u>Li et al. 2011</u>	
805	Li, Y., Zhang, F., Li, Z., Sun, L., Wang, Z., Li, P., Sun, Y., Ren, J., Wang, Y., Cribb,	带格式的: 行距: 单倍行距
806	M., and Yuan, C.: Influences of aerosol physiochemical properties and new particle	
807	formation on CCN activity from observation at a suburban site of China, Atmos.	
808	Res., 188, 80-89, https://doi.org/10.1016/j.atmosres.2017.01.009, 2017.	
809	Li Y., Zhang F., Li Z., Sun L., Wang Z., Li P., Sun Y., Ren J., Wang Y. and Cribb M.: Influences of	
810	aerosol physiochemical properties and new particle formation on CCN activity from observation at a	
811	suburban site of China, Atmos. Res., 188, 80-89, https://doi.org/10.1016/j.atmosres.2017.01.009,	
812	2017.	
813	Li, Z., Lau, W. KM., Ramanathan, V., Wu, G., Ding, Y., Manoj, M. G., Liu, J., Qian,	带格式的:行距:单倍行距
814	Y., Li, J., Zhou T., Fan, J., Rosenfeld, D., Ming, Y., Wang, Y., Huang, J., Wang, B.,	
815	Xu, X., Lee, SS., Cribb, M., Zhang, F., Yang, X., Zhao, C., Takemura, T., Wang,	
816	K., Xia, X., Yin, Y., Zhang, H., Guo, J., Zhai, P. M., Sugimoto, N., Babu, S. S., and	
817	Brasseur, G. P.: Aerosol and monsoon climate interactions over Asia, Rev.	
818	Geophys., 54, 866–929, https://doi.org/10.1002/2015RG000500, 2016.	
819	Li Z., Lau W.M., Ramanathan V., Wu G., Ding Y., Manoj M.G., Liu J., Qian Y., Li J. and Zhou T.:	
820	Aerosol and monsoon climate interactions over Asia, Rev. Geophys.,	
821	https://doi.org/10.1002/2015RG000500, 2016.	
822	Li, Z., Daniel, R., and Fan, JW.: Aerosols and Their-their Impact-impact on	
823	Radiationradiation, Cloudsclouds, Precipitationprecipitation, and Severe-severe	
824	Weather weather Events oxford Research Encyclopedias: Environmental	
825	scienceScience, https://doi.org/10.1093/acrefore/9780199389414.013.126, 2017a.	
826	Li, Z., Li, Z. <u>Guo,</u> J. Guo , A. Ding, <u>a.,</u> H. Liao, <u>h.,</u> J. Liu, <u>J.,</u> Y. Sun, <u>Y.,</u> T. Wang, <u>T.</u> ,	
827	HXue, H., HZhang, H., and BZhu, B.2017: Aerosols and boundary-layer	
828	interactions and impact on air quality, Natl. Sci. Rev., 4, 810833,	
829	doi:10.1093/nsr/nwx117, 2017b.	
830	Liu, P. F., Zhao, C. S., Bel, T. G., Hallbauer, E., Nowak, A., Ran, L., Xu, W. Y.,	带格式的: 行距:单倍行距
831	Deng, Z. Z., Ma, N., Mildenberger, K., Henning, S., Stratmann, F., and	
832	Wiedensohler, A.: Hygroscopic properties of aerosol particles at high relative	
833	humidity and their diurnal variations in the North China Plain, Atmos. Chem. Phys.,	
834	<u>11, 3479–3494, https://doi.org/10.5194/acp-11-3479-2011, 2011.</u>	
835	Liu P.F., Zhao C.S., Bel T.G., Hallbauer E., Nowak A., Ran L., Xu W.Y., Deng Z.Z., Ma N.,	
836	Mildenberger K., Henning S., Stratmann F. and Wiedensohler A.: Hygroscopic properties of aerosol	
837	particles at high relative humidity and their diurnal variations in the North China Plain, Atmos.	
838	Chem. Phys., https://doi.org/10.5194/acp-11-3479-2011, 2011.	
839	Lopez-Yglesias, XF., Yeung, MC., Dey, SE., Brechtel, FJ., and Chan, CK.:	
840	Performance Evaluation evaluation of the Brechtel Mfg. Humidified Tandem	

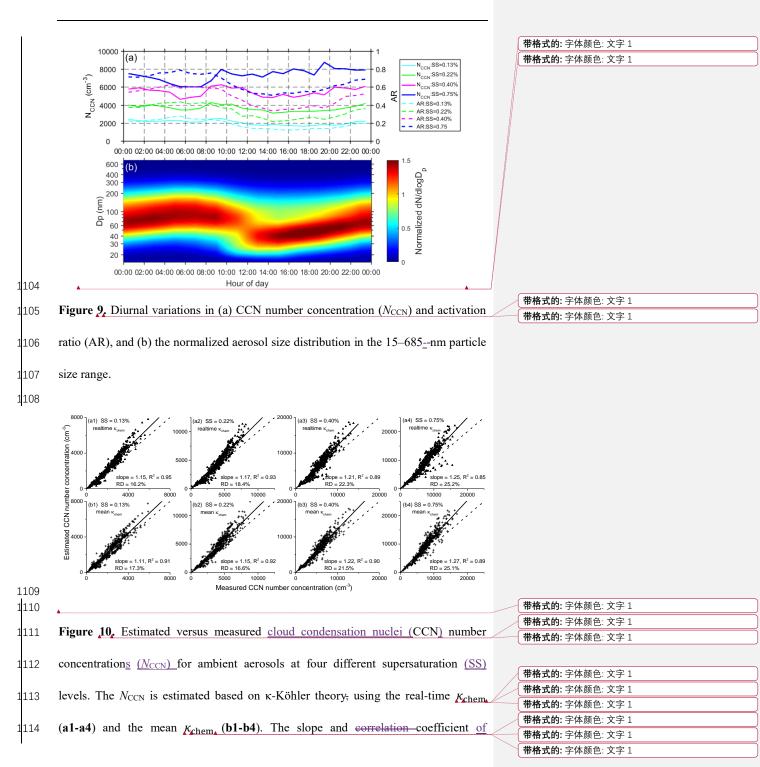
Differential Mobility Analyzer (BMI HTDMA) for <u>Studying_studying_Hygroscopic</u> <u>hygroscopic p</u>Properties of <u>a</u>Aerosol <u>p</u>Particles, Aerosol Sci. Tech., 48, 969–980, 842

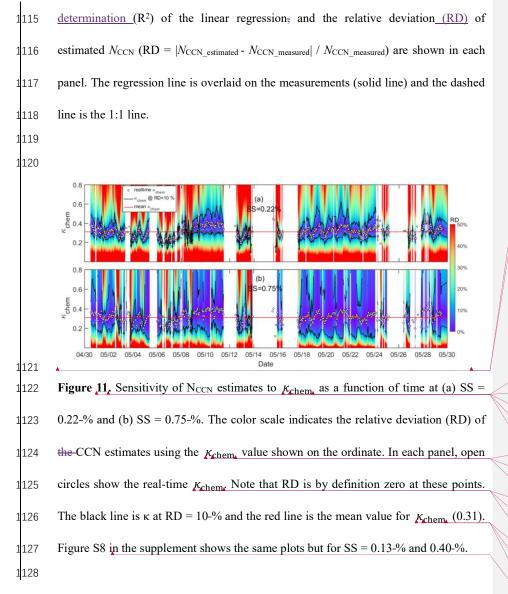

843	http://dx.doi.org/10.1080/02786826.2014.952366, 2014.	
844	Meng, J. W., Yeung, M. C., Li, Y. J., Lee, B. Y. L., and Chan, C. K.: Size-resolved	带格式的:行距:单倍行距
845	cloud condensation nuclei (CCN) activity and closure analysis at the HKUST	
846	Supersite in Hong Kong, Atmos. Chem. Phys., 14, 10267-10282,	
847	https://doi.org/10.5194/acp-14-10267-2014, 2014.	
848		带格式的: 行距:单倍行距
849	Meng J.W., Yeung M.C., Li Y.J., Lee B.Y.L. and Chan C.K.: Size-resolved cloud condensation nuclei	
850	(CCN) activity and closure analysis at the HKUST Supersite in Hong Kong, Atmos. Chem. Phys., 14,	
851	10267-10282, https://doi.org/10.5194/acp-14-10267-2014, 2014.	
852	Ng, N. L., Herndon, S. C., Trimborn, A., Canagaratna, M. R., Croteau, P. L., Onasch,	
853	T. B., Sueper, D., Worsnop, D. R., Zhang, Q., and Sun, Y. L.: An Aerosol Chemical	
854	Speciation Monitor (ACSM) for routine monitoring of the composition and mass	
855	concentrations of ambient aerosol, Aerosol Sci. Tech., 45, 780-794,	
856	http://dx.doi.org/10.1080/02786826.2011.560211, 2011.Ng N.L., Herndon S.C.,	
857	Trimborn A., Canagaratna M.R., Croteau P.L., Onasch T.B., Sueper D., Worsnop D.R., Zhang Q.	
858	and Sun Y.L.: An Aerosol Chemical Speciation Monitor (ACSM) for routine monitoring of the	
859	composition and mass concentrations of ambient aerosol, Aerosol Sci. Tech., 45, 780-794,	
860	http://dx.doi.org/10.1080/02786826.2011.560211, 2011.	
861	Peng, J., Hu, M., Guo, S., Du, Z., Zheng, J., Shang, D., Zamora, M. L., Zeng, L., Shaot	带格式的:行距:单倍行距
862	M., and Wu, Y.: Markedly enhanced absorption and direct radiative forcing of black	
863	carbon under polluted urban environments, P. Natl. Acad. Sci. USA, 113, 4266-	
864	4271, https://doi.org/10.1073/pnas.1602310113, 2016.	
865	Peng J., Hu M., Guo S., Du Z., Zheng J., Shang D., Zamora M.L., Zeng L., Shao M. and Wu Y.:	
866	Markedly enhanced absorption and direct radiative forcing of black carbon under polluted urban	
867	environments, Proceedings of the National Academy of Sciences, 113, 4266-4271,	
868	https://doi.org/10.1073/pnas.1602310113, 2016.	
869	Petters, M. D., and Kreidenweis, S. M.: A single parameter representation of	带格式的: 缩进: 悬挂缩进: 2 字符, 行距: 单倍行距
870	hygroscopic growth and cloud condensation nucleus activity, Atmos. Chem. Phys.,	
871	7, 1961-1971, https://doi.org/10.5194/acp-7-1961-2007, 2007.	
872	Petters M.D. and Kreidenweis S.M.: A single parameter representation of hygroscopic growth and	
873	cloud condensation nucleus activity, Atmos. Chem. Phys., 7, 1961-1971,	
874	https://doi.org/10.5194/acp-7-1961-2007, 2007.	
875	Qiu, C., and Zhang, R.: Physiochemical peroperties of aAlkylaminium sulfates:	
876	hHygroscopicity, thermostability, and depensity, Environ. Sci. Technol., 46,	
877	44744480, https://dx.doi.org/10.1021/es3004377, 2012.	
878	Quan, J., Gao, Y., Zhang, Q., Tie, X., Cao, J., Han, S., Meng, J., Chen, P., and Zhao, 4	带格式的: 行距:单倍行距
879	D.: Evolution of planetary boundary layer under different weather conditions, and	
880	its impact on aerosol concentrations, Particuology, 11, 34-40,	
881	https://doi.org/10.1016/j.partic.2012.04.005, 2013.	
882	Quan J., Gao Y., Zhang Q., Tie X., Cao J., Han S., Meng J., Chen P. and Zhao D.: Evolution of	
883	planetary boundary layer under different weather conditions, and its impact on aerosol	
884	concentrations, Particuology, 11, 34-40, https://doi.org/10.1016/j.partic.2012.04.005, 2013.	
885	Ramanathan, V., Crutzen, P.J., Kiehl, J.T., and Rosenfeld, D.: Aerosols, climate, and	
886	the hydrological cycle, Science, 294, 2119–2124,	


887	https://doi.org/10.1126/science.1064034, 2001.	
888	Rose, D., Gunthe, S. S., Mikhailov, E., Frank, G. P., Dusek, U., Andreae, M. O., and	带格式的:行距:单倍行距
889	Pöschl, U.: Calibration and measurement uncertainties of a continuous-flow cloud	
890	condensation nuclei counter (DMT-CCNC): CCN activation of ammonium sulfate	
891	and sodium chloride aerosol particles in theory and experiment, Atmos. Chem.	
892	Phys., 8, 1153–1179, https://doi.org/10.5194/acp-8-1153-2008, 2008.	
893	Rose D., Gunthe S.S., Mikhailov E., Frank G.P., Dusek U., Andreae M.O. and Pöschl U.: Calibration	带格式的: 正文, 左, 缩进: 左侧: 0 厘米, 首行缩进: 0 厘米, 定义网格后不调整右缩进, 不调整西文与中文之间的空格,
894	and measurement uncertainties of a continuous-flow cloud condensation nuclei counter (DMT-CCNC):	定义网格后个调整石缩进,个调整西义与中义之间的空格, 不调整中文和数字之间的空格
895	CCN activation of ammonium sulfate and sodium chloride aerosol particles in theory and experiment,	
896	Atmos. Chem. Phys., 8, 1153-1179, https://doi.org/10.5194/aep 8-1153-2008, 2008.	
897		
898	Rosenfeld, D., U. Lohmann, G. B. Raga, C. D. O'Dowd, M. Kulmala, S. Fuzzi, A.	带格式的:正文,左,缩进:左侧:0厘米,悬挂缩进:2字符,
899	Reissell, and M. O. Andreae, Flood or drought: How do aerosols affect	定义网格后不调整右缩进,不调整西文与中文之间的空格, 不调整中文和数字之间的空格
900	precipitation?, Science, 321, doi:10.1126/science.1160606, 2008.	
901	Schmale, J., Henning, S., Decesari, S., Henzing, B., Keskinen, H., Sellegri, K.,	
902	Ovadnevaite, J., Pöhlker, M. L., Brito, J., Bougiatioti, A., Kristensson, A., Kalivitis,	
903	N., Stavroulas, I., Carbone, S., Jefferson, A., Park, M., Schlag, P., Iwamoto, Y.,	
904	Aalto, P., Äijälä, M., Bukowiecki, N., Ehn, M., Frank, G., Fröhlich, R., Frumau, A.,	
905	Herrmann, E., Herrmann, H., Holzinger, R., Kos, G., Kulmala, M., Mihalopoulos,	
906	N., Nenes, A., O'Dowd, C., Petäjä, T., Picard, D., Pöhlker, C., Pöschl, U., Poulain,	
907	L., Prévôt, A.S.H., Swietlicki "E., Andreae, M.O., Artaxo, P., Wiedensohler, A.,	
908	Ogren, J., Matsuki, A., Yum, S.S., Stratmann, F., Baltensperger, U., and Gysel, M.:	
909	Long-term cloud condensation nuclei number concentration, particle number size	
910	distribution and chemical composition measurements at regionally representative	
911	observatories, Atmos Chem Phys, 18, 2853–2881,	
912	https://doi.org/10.5194/acp-18-2853-2018, 2018.	
913	Stock, M., Cheng, YF., Birmili, W., Massling, A., Wehner, B., Müller, T., Leinert,	
914	S., Kalivitis, N., Mihalopoulos, N., and Wiedensohler, A.: Hygroscopic properties	
915	of atmospheric aerosol particles over the Eastern Mediterranean: implications for	
916	regional direct radiative forcing under clean and polluted conditions, Atmos. Chem.	
917	Phys., 11, 4251_4271, https://doi.org/10.5194/acp-11-4251-2011, 2011.	
918	Stokes, R. H., and Robinson, R. A.: Interactions in aqueous nonelectrolyte solutions. I	带格式的: 行距: 单倍行距
919	Solute-solvent equilibria, J. Phys. Chem., 70, 2126–2131,	
920	https://doi.org/10.1021/j100879a010, 1966.	
921	Stokes R.H. and Robinson R.A.: Interactions in aqueous nonelectrolyte solutions. I. Solute solvent	
922	equilibria, The Journal of Physical Chemistry, 70, 2126-2131, 1966.	
923	Stolzenburg, M. R., and McMurry, P. H.: Equations governing single and tandem	
924	DMA configurations and a new lognormal approximation to the transfer function,	
925	Aerosol Sci. Tech., 42, 421432, http://dx.doi.org/10.1080/02786820802157823,	
926	2008.	
927	Stolzenburg, M. R., and McMurry, P. H.: TDMAFIT user's manual, University of	带格式的: 行距:单倍行距
928	Minnesota, Department of Mechanical Engineering, Particle Technology	
929	Laboratory, Minneapolis, 1–61, 1988.	
930	Stolzenburg M.R. and McMurry P.H.: TDMAFIT user's manual. University of Minnesota. Department	


931	of Mechanical Engineering, Particle Technology Laboratory, Minneapolis, 1–61, 1988.	
932	Sun, Y., Wang, Z., Dong, H., Yang, T., Li, J., Pan, X., Chen, P., and Jayne, J. T.:	带格式的: 行距: 单倍行距
933	Characterization of summer organic and inorganic aerosols in Beijing, China with	
934	an Aerosol Chemical Speciation Monitor, Atmos. Environ., 51, 250-259,	
935	https://doi.org/10.1016/j.atmosenv.2012.01.013, 2012.	
936	Sun Y., Wang Z., Dong H., Yang T., Li J., Pan X., Chen P. and Jayne J.T.: Characterization of summer	
937	organic and inorganic aerosols in Beijing, China with an Aerosol Chemical Speciation Monitor,	
938	Atmos. Environ., 51, 250-259, https://doi.org/10.1016/j.atmosenv.2012.01.013, 2012.	
939	Swietlicki, E., Hansson, H. C., Hämeri, K., Svenningsson, B., Massling, A.,	带格式的: 行距:单倍行距
940	McFiggans, G., McMurry, P. H., Petäjä, T., Tunved, P., Gysel, M., Topping, D.,	
941	Weingartner, E., Baltensperger, U., Rissler, J., Wiedensohler, A., and Kulmala, M.:	
942	Hygroscopic properties of submicrometer atmospheric aerosol particles measured	
943	with H-TDMA instruments in various environments-a review, Tellus B, 60, 432-	
944	469, https://doi.org/10.1111/j.1600-0889.2008.00350.x, 2008.	
945	Swietlicki E., Hansson H.C., HÄMeri K., Svenningsson B., Massling A., McFiggans G., McMurry	
946	P.H., PetÄJÄ T., Tunved P., Gysel M., Topping D., Weingartner E., Baltensperger U., Rissler J.,	
947	Wiedensohler A. and Kulmala M .: Hygroscopic properties of submicrometer atmospheric aerosol	
948	particles measured with H-TDMA instruments in various environments a review, Tellus B, 60,	
949	432 469, https://doi.org/10.1111/j.1600 0889.2008.00350.x, 2008.	
950	Tan, H., Xu, H., Wan, Q., Li, F., Deng, X., Chan, P. W., Xia, D., and Yin, Y.: Design-	带格式的: 行距:单倍行距
951	and application of an unattended multifunctional H-TDMA system, J. Atmos.	
952	Ocean. Tech., 30, 1136–1148, https://doi.org/10.1175/JTECH-D-12-00129.1, 2013.	
953	Tan H., Xu H., Wan Q., Li F., Deng X., Chan P.W., Xia D. and Yin Y.: Design and application of an	
954	unattended multifunctional H-TDMA system, J. Atmos. Ocean. Tech., 30, 1136-1148,	
955	https://doi.org/10.1175/JTECH D 12 00129.1, 2013.	
956	Tritscher, T., Juranyi, Z., Martin, M., Chirico, R., Gysel, M., Heringa, M.F., DeCarlo,	
957	PF., Sierau, B., PrévôtPrevot, ASH., Weingartner, E., and Baltensperger, U.:	
958	Changes of hygroscopicity and morphology during ageing of diesel soot, Environ.	
959	Res. Lett., 6, https://doi.org/10.1088/1748-9326/6/3/034026, 2011.	
960	Twomey, S.: Pollution and the planetary albedo, Atmos. Environ., 8, 1251-1256,	带格式的: 行距: 单倍行距
961	https://doi.org/10.1016/0004-6981(74)90004-3, 1974.	
962	Twomey S.: Pollution and the planetary albedo, Atmos. Environ., 8, 1251-1256, 1974.	
963	Ulbrich, I. M., Canagaratna, M. R., Zhang, Q., Worsnop, D. R., and Jimenez, J. L .: -	带格式的: 行距:单倍行距
964	Interpretation of organic components from Positive Matrix Factorization of aerosol	
965	mass spectrometric data, Atmos. Chem. Phys., 9, 2891-2918,	
966	https://doi.org/10.5194/acp-9-2891-2009, 2009.	
967	Ulbrich I.M., Canagaratna M.R., Zhang Q., Worsnop D.R. and Jimenez J.L.: Interpretation of organic	
968	components from Positive Matrix Factorization of aerosol mass spectrometric data, Atmos. Chem.	
969	Phys., 9, 2891-2918, https://doi.org/10.5194/acp-9-2891-2009, 2009.	
970	Wang, L. T., Wei, Z., Yang, J., Zhang, Y., Zhang, F. F., Su, J., Meng, C. C., and	带格式的:行距:单倍行距
971	Zhang, Q.: The 2013 severe haze over the southern Hebei, China: model evaluation,	
972	source apportionment, and policy implications, Atmos. Chem. Phys. Disc., 13,	
973	3151-3173, https://doi.org/10.5194/acp-14-3151-2014, 2014.	
974	Wang L.T., Wei Z., Yang J., Zhang Y., Zhang F.F., Su J., Mong C.C. and Zhang Q .: The 2013 severe	


075	have over earthern Habei. Chines model evolution, course approximate and policy inclinations	
975 976	haze over southern Hebei, China: model evaluation, source apportionment, and policy implications, Atmos. Chem. Phys., 14, 3151–3173, https://doi.org/10.5194/acp_14_3151_2014, 2014.	
	Wang, Y., Zhang, F., Li, Z., Tan, H., Xu, H., Ren, J., Zhao, J., Du, W., and Sun, Y.:	带格式的: 行距: 单倍行距
977 978	<u>wang, T., Zhang, F., Li, Z., Tan, H., Xu, H., Ken, J., Zhao, J., Du, W., and Sun, T.,</u> Enhanced hydrophobicity and volatility of submicron aerosols under severe	שווחיי אוג או איי
978 979	emission control conditions in Beijing, Atmos. Chem. Phys., 17, 5239–5251,	
	https://doi.org/10.5194/acp-17-5239-2017, 2017.	
980 981	Wang Y., Zhang F., Li Z., Tan H., Xu H., Ren J., Zhao J., Du W. and Sun Y.: Enhanced	
982	hydrophobicity and volatility of submicron aerosols under severe emission control conditions in	
902 983	Beijing, Atmos. Chem. Phys., 17, 5239-5251, https://doi.org/10.5194/acp-17-5239-2017, 2017.	
984	Wang, Z., Wu, Z., Yue, D., Shang, D., Guo, S., Sun, J., Ding, A., Wang, L., Jiang, J., ←	带格式的: 行距: 单倍行距
985	and Guo, H.: New particle formation in China: current knowledge and further	
986	directions, Sci. Total Environ., 577, 258–266,	
987	https://doi.org/10.1016/j.scitotenv.2016.10.177, 2017.	
988	Wang Z., Wu Z., Yue D., Shang D., Guo S., Sun J., Ding A., Wang L., Jiang J. and Guo H.: New	
989	particle formation in China: Current knowledge and further directions, Sci. Total Environ., 577,	
990	258-266, https://doi.org/10.1016/j.scitotenv.2016.10.177, 2017.	
991	Wu, Z. J., Zheng, J., Shang, D. J., Du, Z. F., Wu, Y. S., Zeng, L. M., Wiedensohler,	带格式的: 行距: 单倍行距
992	A., and Hu, M.: Particle hygroscopicity and its link to chemical composition in the	
993	urban atmosphere of Beijing, China, during summertime, Atmos. Chem. Phys., 16,	
994	1123–1138, https://doi.org/10.5194/acp-16-1123-2016, 2016.	
995	Wu Z.J., Zheng J., Shang D.J., Du Z.F., Wu Y.S., Zeng L.M., Wiedenschler A. and Hu M.: Particle	
996	hygroscopicity and its link to chemical composition in the urban atmosphere of Beijing, China,	
997	during summertime, Atmos. Chem. Phys., 16, 1123-1138, https://doi.org/10.5194/acp-16-1123-2016,	
998	2016.	
999	Ye, X., Tang, C., Yin, Z., Chen, J., Ma, Z., Kong, L., Yang, X., Gao, W., and Geng,	带格式的: 行距: 单倍行距
1000	F.: Hygroscopic growth of urban aerosol particles during the 2009 Mirage-Shanghai	
1001	Campaign, Atmos. Environ., 64, 263–269,	
1002	https://doi.org/10.1016/j.atmosenv.2012.09.064, 2013.	
1003	Ye X., Tang C., Yin Z., Chen J., Ma Z., Kong L., Yang X., Gao W. and Geng F.: Hygroscopic growth	
1004	of urban aerosol particles during the 2009 Mirage-Shanghai Campaign, Atmos. Environ., 64,	
1005	263-269, https://doi.org/10.1016/j.atmosenv.2012.09.064, 2013.	
1006	Zhang, F., Li, Y., Li, Z., Sun, L., Li, R., Zhao, C., Wang, P., Sun, Y., Liu, X., Li, J.,	带格式的: 行距: 单倍行距
1007	Li, P., Ren, G., and Fan, T.: Aerosol hygroscopicity and cloud condensation nuclei	
1008	activity during the AC3Exp campaign: implications for cloud condensation nuclei	
1009	parameterization, Atmos. Chem. Phys., 14, 13423-13437,	
1010	https://doi.org/10.5194/acp-14-13423-2014, 2014.	
1011	Zhang F., Li Y., Li Z., Sun L., Li R., Zhao C., Wang P., Sun Y., Liu X., Li J., Li P., Ren G. and Fan T.:	
1012	Aerosol hygroscopicity and cloud condensation nuclei activity during the AC3Exp campaign:	
1013	implications for cloud condensation nuclei parameterization, Atmos. Chem. Phys., 14, 13423-13437,	
1014	https://doi.org/10.5194/acp-14-13423-2014, 2014.	
1015	Zhang, F., Li, Z., Li, Y., Sun, Y., Wang, Z., Li, P., Sun, L., Wang, P., Cribb, M., Zhao,	带格式的: 行距: 单倍行距
1016	C., Fan, T., Yang, X., and Wang, Q.: Impacts of organic aerosols and its oxidation	
1017	level on CCN activity from measurement at a suburban site in China, Atmos. Chem.	
1018	Phys., 16, 5413-5425, https://doi.org/10.5194/acp-16-5413-2016, 2016.	


1019	Zhang F., Li Z., Li Y., Sun Y., Wang Z., Li P., Sun L., Wang P., Cribb M., Zhao C., Fan T., Yang X.	
1020	and Wang Q .: Impacts of organic acrosols and its oxidation level on CCN activity from measurement	
1021	at a suburban site in China, Atmos. Chem. Phys., 16, 5413-5425,	
1022	https://doi.org/10.5194/acp 16 5413 2016, 2016.	
1023	Zhang, F., Wang, Y., Peng, J., Ren, J., Collins, D., Zhang, R., Sun, Y., Yang, X., and	
1024	Li, Z.: Uncertainty in predicting CCN activity of aged and primary aerosols, J.	
1025	Geophys. ResAtmos., 122, https://doi.org/10.1002/2017JD027058, 2017.	
1026	Zhang, R., Khalizov, A. F., Pagels, J., Zhang, D., Xue, H., and McMurry, P. H.:	带格式的: 行距: 单倍行距
1027	Variability in morphology, hygroscopicity, and optical properties of soot aerosols	
1028	during atmospheric processing, P. Natl. Acad. Sci. USA, 105, 10291–10296,	
1029	https://doi.org/10.1073/pnas.0804860105, 2008.	
1030	Zhang, R., Wang, L., Khalizov, A. F., Zhao, J., Zheng, J., McGraw, R. L., and Molina,	
1031	L. T.: Formation of nanoparticles of blue haze enhanced by anthropogenic pollution,	
1032	P. Natl. Acad. Sci. USA, 106, 17650-17654,	
1033	https://doi.org/10.1073/pnas.0910125106, 2009.	
1034	Zhang, S. L., Ma, N., Kecorius, S., Wang, P. C., Hu, M., Wang, Z. B., Größ, J., Wu, Z.	
1035	J., and Wiedensohler, A.: Mixing state of atmospheric particles over the North	
1036	China Plain, Atmos. Environ., 125, Part A, 152–164,	
1037	https://doi.org/10.1016/j.atmosenv.2015.10.053, 2016.	
1038	Zhang, Y., Du, W., Wang, Y., Wang, Q., Wang, H., Zhang, H., Zhang, F., Shi, H.,	
1039	Bian, Y., Han, Y., Fu, P., Canonaco, F., Prévôt, A. S. H., Zhu, T., Wang, P., Li, Z.,	
1040	and Sun, Y.: Aerosol chemistry and particle growth events at an urban downwind	
1041	site in the North China Plain, Atmos. Chem. Phys. Discuss., 2018, 1–29,	
1042	https://doi.org/10.5194/acp-2017-889, 2018.	
1043	Zhang R., Khalizov A.F., Pagels J., Zhang D., Xue H. and McMurry P.H.: Variability in morphology,	
1044	hygroscopicity, and optical properties of soot aerosols during atmospheric processing, Proceedings	
1045	of the National Academy of Sciences, 105, 10291-10296,	
1046	https://doi.org/10.1073/pnas.0804860105,2008.	
1047	Zhang R., Wang L., Khalizov A.F., Zhao J., Zheng J., McGraw R.L. and Molina L.T.: Formation of	
1048	nanoparticles of blue haze enhanced by anthropogenic pollution, Proceedings of the National	
1049	Academy of Sciences, 106, 17650-17654, https://doi.org/10.1073/pnas.0910125106, 2009.	
1050	Zhang S.L., Ma N., Kecorius S., Wang P.C., Hu M., Wang Z.B., Größ J., Wu Z.J. and Wiedensohler A.:	
1051	Mixing state of atmospheric particles over the North China Plain, Atmos. Environ., 125, Part A,	
1052	152-164, https://doi.org/10.1016/j.atmosenv.2015.10.053, 2016.	
1053	Zhu, Y., Zhang, J., Wang, J., Chen, W., Han, Y., Ye, C., Li, Y., Liu, J., Zeng, L., Wu,	带格式的: 行距: 单倍行距
1054	Y., Wang, X., Wang, W., Chen, J., and Zhu, T.: Distribution and sources of air	
1055	pollutants in the North China Plain based on on-road mobile measurements, Atmos.	
1056	Chem. Phys., 16, 12551–12565, https://doi.org/10.5194/acp-16-12551-2016, 2016.	
1057	Zhu Y., Zhang J., Wang J., Chen W., Han Y., Ye C., Li Y., Liu J., Zeng L., Wu Y., Wang X., Wang W.,	
1058	Chen J. and Zhu T .: Distribution and sources of air pollutants in the North China Plain based on	
1059	on road mobile measurements, Atmos. Chem. Phys., 16, 12551-12565,	
1060	https://doi.org/10.5194/acp 16 12551 2016, 2016.	
1061		
		带格式的: 字体颜色:文字1
1062	۸	



带格式的: 字体颜色:文字1	
带格式的:字体颜色:文字1	

Ι	带格式的: 字体颜色: 文字 1
	带格式的: 字体颜色:文字1
$\overline{)}$	带格式的: 字体颜色: 文字 1
$\langle \rangle$	带格式的: 字体颜色:文字1
	带格式的: 字体颜色: 文字 1
	带格式的: 字体颜色:文字1
\neg	带格式的: 字体颜色:文字1
	带格式的: 字体颜色:文字1
\neg	带格式的: 字体颜色:文字1
$\langle \rangle$	带格式的: 字体颜色:文字1
Ì	带格式的: 字体颜色:文字1
\square	带格式的: 字体颜色:文字1
$\langle \rangle$	带格式的: 字体颜色:文字1
$\langle \rangle$	带格式的: 字体颜色:文字1
	带格式的: 字体颜色:文字1