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Abstract  31	

Severe haze events in Southeast Asia caused	by	particulate	pollution	have	become	32	

more	intense	and	frequent	in	recent	years.	 Widespread biomass burning occurrences and 33	

particulate pollutants from human activities other than biomass burning both play important 34	

roles in degrading air quality in Southeast Asia.  In this study, numerical simulations have 35	

been conducted using the Weather Research and Forecasting (WRF) model coupled with a 36	

chemistry component (WRF-Chem) to quantitatively examine the contributions of aerosols 37	

emitted from fire (i.e., biomass burning) versus non-fire (including fossil fuel combustion, 38	

and road dust, etc.) sources to the degradation of air quality and visibility over Southeast 39	

Asia.  These simulations cover a time period from 2002 to 2008 and are respectively driven 40	

by emissions from: (a) fossil fuel burning only, (b) biomass burning only, and (c) both fossil 41	

fuel and biomass burning.  The model results reveal that 39% of observed low visibility days 42	

can be explained by either fossil fuel burning or biomass burning emissions alone, a further 43	

20% by fossil fuel burning alone, a further 8% by biomass burning alone, and a further 5% 44	

by a combination of fossil fuel burning and biomass burning.  Analysis of 24-h PM2.5 Air 45	

Quality Index (AQI) indicates that the case with coexisting fire and non-fire PM2.5 can 46	

substantially increase the chance of AQI being in the moderate or unhealthy pollution level 47	

from 23% to 34%.  The premature mortality among major Southeast Asian cities due to 48	

degradation of air quality by particulate pollutants is estimated to increase from ~4110 per 49	

year in 2002 to ~6540 per year in 2008.  In addition, we demonstrate the importance of 50	

certain missing non-fire anthropogenic aerosol sources including anthropogenic fugitive and 51	

industrial dusts in causing urban air quality degradation.  An experiment of using machine 52	

learning algorithms to forecast the occurrence of haze events in Singapore is also explored 53	

in this study.  All these results suggest that besides minimizing biomass burning activities, 54	
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an effective air pollution mitigation policy for Southeast Asia needs to consider controlling 55	

emissions from non-fire anthropogenic sources.   56	

1 Introduction 57	

Severe haze in Southeast Asia has attracted the attention of governments and the 58	

general public in recent years due to its impact on local economy, air quality, and public 59	

health (Miettinen et al., 2011; Kunii et al., 2002; Frankenberg et al., 2005; Crippa et al., 60	

2016).  Widespread biomass burning activities are one of the major sources of haze events in 61	

Southeast Asia.  Our previous study demonstrated that biomass burning aerosols contributed 62	

to up to 40-60% of haze events in the major cities of Southeast Asia during 2003-2014 (Lee 63	

et al., 2017).  On the other hand, biomass burning in Southeast Asia could impact climate 64	

through emissions of both carbon dioxide (CO2) (van der Werf et al., 2009) and particulate 65	

matter – the latter has a substantial impact specifically on regional climate features including 66	

the spatiotemporal distribution of precipitation and energy budgets (Wang, 2004, 2007).  67	

Regarding the impact of biomass burning aerosols on public health, a recent study based 68	

on the health model in the United States (U.S.) has estimated the number of deaths resulting 69	

from black carbon (BC) to be more than 13,500 in 2010 (Li et al., 2016).  Considering that 70	

both the ambient concentration of particulate matter and overall population in Southeast 71	

Asia are higher than those of the U.S., a worse scenario in the region could thus be 72	

foreseeable.  In fact, a few studies quantifying the consequences of aerosols on human 73	

health in Southeast Asia have already suggested taking necessary measures to reduce 74	

biomass burning and deforestation in order to prevent related public health issues (Marlier et 75	

al., 2013).  However, as important as biomass burning pollution may be, it is not the only 76	

source of particulate pollution in Southeast Asia.  Indeed, aerosols emitted from fossil fuel 77	
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burning alongside other non-biomass burning human activities, as indicated in our previous 78	

study (Lee et al., 2017),	also contribute significantly to air quality degradation.  79	

Particulate pollutants from human activities other than biomass burning in Southeast 80	

Asia include species both locally produced and brought in from neighboring regions by 81	

long-range transport.  Fossil fuel emissions in Southeast Asia have increased significantly in 82	

recent years, especially in areas where energy demands are growing rapidly in response to 83	

economic expansion and demographic trends (IEA, 2015).  Therefore, advancing our 84	

understanding of the respective contributions of aerosols from fire (i.e., biomass burning) 85	

versus non-fire (including fossil fuel combustion, road and industrial dust, land use, and land 86	

change, etc.) activities to air quality and visibility degradation has become an urgent task for 87	

developing effective air pollution mitigation policies in Southeast Asia.   88	

In this study, we aim to examine and quantify the impacts of fire and non-fire aerosols 89	

on air quality and visibility degradation over Southeast Asia.  Three numerical simulations 90	

have been conducted using the Weather Research and Forecasting (WRF) model coupled 91	

with a chemistry component (WRF-Chem), which is a sophisticated regional weather-92	

chemistry model, driven respectively by aerosol emissions from: (a) fossil fuel burning only, 93	

(b) biomass burning only, and (c) both fossil fuel and biomass burning.  By comparing the 94	

results of these experiments, we examine the corresponding impacts of fossil fuel and 95	

biomass burning emissions, both separately and combined, on the air quality and visibility 96	

of the region.  We also use available is-situ measurements to evaluate and correct model 97	

results for providing a better base for further improvement of particularly emissions over the 98	

region.  Beyond the traditional process models such as WRF-Chem, we also experiment 99	

using machine learning algorithms to identify suitable conditions for haze based on 100	
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historical data and hence to forecast the likelihood of the occurrence of such events in this 101	

study. 102	

We firstly describe methodologies adopted in the study, followed by the results and 103	

findings from our assessment of the relative contributions of fire and non-fire aerosols in 104	

degrading air quality and visibility over Southeast Asia.  We then discuss the uncertainty of 105	

current emission inventories alongside the results from an exploratory experiment of using 106	

machine learning algorithms to forecast the occurrence of haze events in several major cities 107	

in Southeast Asia.  The last section summarizes and concludes our work.  108	

2 Methodology 109	

2.1 Observational data 110	

2.1.1 Surface visibility 111	

The observational data of surface visibility from the Global Surface Summary of the 112	

Day (GSOD) (Smith et al., 2011) are used in our study to identify the days with low 113	

visibility due to particulate pollution, i.e., haze events.  The GSOD is derived from the 114	

Integrated Surface Hourly (ISH) dataset and archived at the U.S. National Climatic Data 115	

Center (NCDC).  The daily visibility data are available from 1973 onward.  116	

2.1.2 Particulate matter (PM10) 117	

The surface concentrations of particulate matter with sizes smaller than 10 µm (PM10; 118	

measured in µg m-3) in Malaysia are derived from the Air Quality Index (AQI; named Air 119	

Pollutant Index or API in Malaysia) records obtained from the website of Ministry of 120	

Natural Resources and Environment, Department of Environment, Malaysia 121	

(http://apims.doe.gov.my/public_v2/home.html).  When PM10 is reported as the primary 122	

pollutant with a maximum pollutant index, the 24-h PM10 concentrations are calculated from 123	
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AQI based on the equations in Table S1 (Malaysia, 2000).  Data from 51 AQI observation 124	

stations are available in Malaysia from October 2005 onward.  AQI number is reported 125	

twice daily (11 AM and 5 PM local time), and the data reported at 11 AM are used in this 126	

study.   127	

2.1.3 Carbon monoxide (CO) and ozone (O3)  128	

Surface mole fractions of CO and O3 are measured by the World Meteorological 129	

Organization (WMO) Global Atmosphere Watch (GAW) station in Bukit Kototabang, 130	

which is located on the island of Sumatra, Indonesia.  Hourly data are archived at the World 131	

Data Center for Greenhouse Gases (WDCGG) under the GAW program 132	

(http://ds.data.jma.go.jp/gmd/wdcgg/). 133	

2.1.4 Crustal matter and residual matter 134	

The Surface PARTiculate mAtter Network (SPARTAN) is a network of ground-based 135	

measurements of fine particle concentrations (http://spartan-network.weebly.com/) 136	

(Snider et al., 2016; Snider et al., 2015).  Available data in the SPARTAN network include 137	

hourly PM2.5 concentrations and certain compositional features (Table S2).  Crustal matters 138	

and residual matters, which are mainly organic components, from filtered PM2.5 samples are 139	

used in this study to fill the gap in modeled PM2.5 created by the missing anthropogenic 140	

aerosol in emission inventory (Philip et al., 2017).  The four operational SPARTAN sites in 141	

Southeast Asia are Bandung (Indonesia), Hanoi (Vietnam), Manila (Philippines), and 142	

Singapore (Singapore).  The chemical components of PM2.5 in each city are presented in Fig. 143	

S1.  144	
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2.2 The model 145	

WRF-Chem version 3.6.1 is used in this study to simulate trace gases and particulates 146	

interactively with the meteorological fields using several treatments for photochemistry and 147	

aerosols (Grell et al., 2005).  We selected the Regional Acid Deposition Model version 2 148	

(RADM2) photochemical mechanism (Stockwell et al., 1997) coupled with the Modal 149	

Aerosol Dynamics Model for Europe (MADE), which includes the Secondary Organic 150	

Aerosol Model (SORGAM) (Ackermann et al., 1998; Schell et al., 2001), to simulate 151	

anthropogenic aerosols evolution in Southeast Asia.  MADE/SORGAM uses a modal 152	

approach (including Aiken, accumulation, and coarse modes) to represent the aerosol size 153	

distribution, and predicts mass and number for each aerosol mode.  The numerical 154	

simulations are employed within a model domain with a horizontal resolution of 36 km, 155	

including 432 × 148 horizontal grid points (Fig. 1), and 31 vertically staggered layers based 156	

on a terrain-following pressure coordinate system.  The Mellor-Yamada-Nakanishi-Niino 157	

level 2.5 (MYNN) (Nakanishi and Niino, 2009) is chosen as the planetary boundary scheme 158	

in this study.  By using a vertical coordinate that is stretched to have higher resolutions 159	

inside the planetary boundary layer, the model has about 4-5 vertical layers inside the 160	

planetary boundary layer with a vertical resolution of ~30 m near the surface.  The domain 161	

covers an area from the Indian Ocean to the Western Pacific Ocean in order to capture the 162	

Madden-Julian Oscillation (MJO) pattern.  The time step is 180 seconds for advection and 163	

physics calculation.  The physics schemes in the simulations include Morrison (2 moments) 164	

microphysics scheme (Morrison et al., 2009), RRTMG longwave and shortwave radiation 165	

schemes (Mlawer et al., 1997; Iacono et al., 2008), Unified Noah land-surface scheme 166	

(Tewari et al., 2004), and Grell-Freitas ensemble cumulus scheme (Grell and Freitas, 2014).  167	

The initial and boundary meteorological conditions are taken from the U.S. National Center 168	
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for Environment Prediction FiNaL (NCEP-FNL) reanalysis data (National Centers for 169	

Environmental Prediction, 2000), which has a spatial resolution of 1 degree and a temporal 170	

resolution of 6 hours.  Sea surface temperatures are updated every 6 hours in NCEP-FNL.  171	

All simulations used a four-dimensional data assimilation (FDDA) method to nudge NCEP-172	

FNL temperature, water vapor, and zonal as well as meridional wind speeds above the 173	

planetary boundary layer.  174	

2.3 Emission inventories 175	

The Regional Emission inventory in ASia (REAS) version 2.1 (Kurokawa et al., 2013) 176	

is a regional emission inventory for Asia, including monthly emissions of most major air 177	

pollutants, e.g., black carbon (BC), organic carbon (OC), sulfur dioxide (SO2), nitrogen 178	

dioxide (NO2), and greenhouse gases between 2000 and 2008.  The spatial resolution of 179	

REAS is 0.25 × 0.25 degrees, covering East, Southeast, South, and Central Asia and the 180	

Asian part of Russia (Russian Far East, Eastern and Western Siberia, and the Ural).  The 181	

area coverage of REAS is from 60°E to 160°E in longitude and from 10°S to 50°N in 182	

latitude, which is smaller than our domain configuration.  For this reason, we use the 183	

Emissions Database for Global Atmospheric Research (EDGAR) version 3.2 (the year 2000 184	

emission) (Olivier et al., 2005) and version 4.2 (the year 2005 emission) 185	

(http://edgar.jrc.ec.europa.eu) to complement the emissions over areas outside REAS 186	

coverage.  The emission coverage of REAS and EDGAR in our simulated domain is 187	

presented in Fig. 1.  We have compared the modeled results using REAS versus EDGAR 188	

emission inventories in a set of one-year paired simulations: the differences between these 189	

two model runs are rather limited regarding aerosol-related variables (Table S3).  After 190	

considering high spatiotemporal resolution of REAS emission inventory and the comparison 191	

results, we decided to use REAS in this study.  In addition, a detailed comparison of REAS 192	
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with other emission inventories in Southeast Asia was also presented by Kurokawa et al. 193	

(2013). 194	

The Fire INventory from U.S. National Center for Atmospheric Research (NCAR) 195	

version 1.5 (FINNv1.5) (Wiedinmyer et al., 2011) is also used in the study to provide fire-196	

based emissions.  FINNv1.5 classifies burnings of extratropical forest, topical forest 197	

(including peatland), savanna, and grassland.  The daily data are available from 2002 to 198	

2014 with a 1 km spatiotemporal resolution.  FINNv1.5 emission inventory also includes the 199	

major chemical species (e.g., BC, OC, SO2, CO, and NO2) from biomass burning.  A 200	

modified plume rise algorithm in WRF-Chem, specifically for tropical peat fire, is described 201	

in Lee et al. (2017).   202	

Compared with fossil fuel emissions, biomass burning emissions vary in space and time 203	

(Fig. S2).  However, regarding long-term impact, both emissions are important to regional 204	

air quality in Southeast Asia (Table 1).  BC from biomass burning emissions, for example, 205	

has significant inter-annual and inter-seasonal variabilities due to the Southeast Asia 206	

monsoon and the El Niño-Southern Oscillation (ENSO) (Lee et al., 2017; Reid et al., 2012), 207	

but total BC emissions are equally contributed by fossil fuel and biomass burning sources 208	

(Table 1).  209	

2.4 Numerical experiment design  210	

Three numerical simulations are proposed to investigate the impacts of fire and non-fire 211	

aerosols on regional air quality and visibility in Southeast Asia.  Among these three runs, the 212	

fossil fuel emissions only (FF) simulation and the biomass burning emissions only (BB) 213	

simulation are designed to assess the impact of stand-alone non-fire and fire aerosols, 214	

respectively.  The simulation combining both fossil fuel and biomass burning emissions 215	

(FFBB) is to demonstrate the impacts of both types of aerosols; it is also closer to real world 216	
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case than the two other runs.  Based on available years of emission inventories, each of these 217	

runs lasts 7 years (i.e., from 2002 to 2008).  218	

2.5 Deriving “Low Visibility Day” (LVD) caused by particulate pollution 219	

According to Visscher (2013), a visibility reading lower than 10 km is considered a 220	

moderate to heavy air pollution event by particulate matter.  As in Lee et al. (2017),	 we	221	

define a “low visibility day (LVD)” when the daily-mean surface visibility is lower or equal 222	

to 10 km, not including misty and fog days.  The modeled visibility is calculated based on 223	

the extinction coefficient of the externally mixed aerosols, including BC, OC, sulfate (SO4
2-) 224	

and nitrate (NO3
-), as a function of particle size, by assuming a log-normal size distribution 225	

of Aitken and accumulation modes.  Note that all these calculations are computed for the 226	

wavelength of 550 nm.  To make the calculated visibility based on modeled aerosols better 227	

match the reality, we also consider the hygroscopic growth of OC, sulfate, and nitrate in the 228	

calculation based on the modeled relative humidity (Kiehl et al., 2000; Lee et al., 2017).   229	

Our focus in this study is to first identify LVDs and then to determine whether fire or 230	

non-fire aerosols alone, or in combination, could cause the occurrence of these LVDs.  As a 231	

reference, the observed low visibility days are identified and the annual frequency in every 232	

year for a given city are also derived by using the GSOD visibility data.  Then, the modeled 233	

low visibility days are derived following the same procedure.  Using these results and based 234	

on the logical chart in Fig. 2, the major particulate source (FF, BB or FFBB) that caused the 235	

occurrence of observed LVDs are determined.  Here, Type 1 LVD represents the cases 236	

where either fire or non-fire aerosols alone can cause the observed LVD to occur.  Type 2 237	

means that non-fire aerosols are the major contributor to the observed LVD.  Type 3 means 238	

that fire aerosols are the major contributor to the observed LVD.  Type 4 represents the 239	
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cases where the observed LVD is induced by coexisting fire and non-fire aerosols.  The 240	

observed LVDs that the model cannot capture are classified as Type 5.     241	

2.6 Air Quality Index (AQI) 242	

The Air Quality Index is established mainly for the purpose to provide easily 243	

understandable information about air pollution to the public.  The original derivation of AQI 244	

in the U.S. is based on six pollutants: particulate matter (PM10), fine particulate matter 245	

(PM2.5), sulfur dioxide (SO2), carbon monoxide (CO), ozone (O3), and nitrogen dioxide 246	

(NO2).  Each pollutant is scored on a scale extending from 0 through 500 based on the 247	

corresponding breakpoints, and then the highest AQI value is reported to the public.  In this 248	

study, we focus on the AQI derived from modeled 24-h PM2.5 and 9-h O3.  Note that the 249	

original AQI is derived by using 8-h O3.  Due to the 3-h output interval of simulated O3, we 250	

use the 9-h O3 level instead in this study.  An index Ip for pollutant p is calculated by using a 251	

segmented linear function that relates pollutant concentration, Cp:  252	

!! = !!"!!!"
!!"!!!"

!! − !!" +  !!",                                                   (1)          253	

where BHi is the upper breakpoint of Cp set category and BLo is the bottom breakpoint of Cp 254	

sat category in Table S4.  IHi and ILo are the AQI values corresponding to BHi and BLo, 255	

respectively.  For example, when the 24-h PM2.5 concentration is 20 µg m-3, BHi, BLo, IHi, and 256	

ILo are 12,1, 35.4, 51 and 100, respectively.  Then, we selected 24-h PM2.5 and the maximum 257	

9-h O3 AQI value in one day to represent daily AQI for PM2.5 (AQI(PM2.5)) and O3 (AQI(O3)), 258	

respectively.  259	

2.7 Health Impact Assessment (HIA)  260	

Previous observations have revealed significantly higher PM2.5 concentrations in the 261	

cities of Southeast Asia than those in America and Europe (WHO, 2016), implying that the 262	
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concentration-response functions (CRFs) derived from the latter places may not be directly 263	

applicable to Southeast Asia.  In this study, we adapt CRFs in Gu and Yim (2016) to 264	

estimate the annual number of premature mortalities due to ambient PM2.5 concentration in 265	

the corresponding region.  The relative risk (RR) of four causes of death, including chronic 266	

obstructive pulmonary disease, ischemic heart disease, lung cancer, and stroke, when 267	

compared with annual incident rate, have been assessed separately.  Such risks are described 268	

by a log-linear relationship with the corresponding PM2.5 concentration level (Burnett et al., 269	

2014).  The basic form of RR formulas is provided as follows: 270	

!! = 1+� ∙ 1− exp −� !! − !!
�

,                                      (2) 271	

where !! and !! are the particulate pollutant concentrations (µg m-3) in the target cities and 272	

the threshold value below which no additional risk is assumed to exist, respectively.  Here 273	

we present the uncertainty range of threshold value between 5.8 µg m-3 and 8.8 µg m-3 in a 274	

triangular distribution, as suggested by the GBD 2010 project (Lim et al., 2013).  275	

Epidemiological results are not always available in Southeast Asia.  To capture both 276	

climbing and flattening out phases of CRFs curves suitable for Southeast Asia region, we fit 277	

parameters α, β, and δ in CRFs by the epidemiological samples in the East Asian cities 278	

based on Gu and Yim (2016) for China, where PM2.5 concentration has a comparable level 279	

to that in Southeast Asia.  280	

The form of integrated CRF is calculated by the following formula:  281	

! = (!!! − 1)/!!! ∙ !! ∙ !!! ,                                                  (3) 282	

where ! refers to the population in the researched cities from 2002 to 2008, retrieved from 283	

statistics in their respective countries (DSM, 2010; NSCB, 2009; NSOT, 2010; CSOM, 284	
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2010; GSOV, 2009; DSS, 2008, 2016; NISC, 2013; BPS, 2009).  ! denotes the baseline 285	

incident rate above 30 years of age (WHO, 2017). 286	

3 Results  287	

3.1 Model evaluation   288	

Multiple ground-based observations are used in this study to evaluate the model’s 289	

performance particularly in simulating aerosol and major gaseous chemical species such as 290	

ozone and carbon monoxide.  PM2.5 observations in Southeast Asia are very limited.  Even 291	

in Singapore, observed PM2.5 data are only available after 2014 for the general public and 292	

research community to access.  Therefore, PM10 concentrations derived from AQI in Kuala 293	

Lumpur (Malaysia) are used to present the variation of particulate matter during haze and 294	

non-haze seasons.  Comparing with the observations, the model accurately predicted PM10 295	

concentration, especially during haze seasons (July to October) (Fig. 3a); however, it 296	

produced a systematic negative bias of 20 µg m-3 in background PM10 concentration during 297	

non-haze periods.  This discrepancy between modeled and observed background PM10 298	

concentration could come from either the relatively coarse resolution of the model or the 299	

underestimation of primary aerosol/ aerosol precursor emissions, or both.  Philip et al. (2017) 300	

indicated that most global emission inventories do not include anthropogenic fugitive, 301	

combustion, and industrial dust (AFCID) from urban sources, typically including fly ash 302	

from coal combustion and industrial processes (e.g. iron and steel production, cement 303	

production), resuspension from paved and unpaved roads, mining, quarrying, and 304	

agricultural operations, and road-residential-commercial construction.  In their study, they 305	

estimated a 2 - 16 µg m-3 increase in fine particulate matter (PM2.5) concentration across 306	

East and South Asia simply by including AFCID emission.  We also find that the major 307	

component of PM2.5 particles from the filtered samples of SPARAN observational network 308	
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is residual materials, which are mainly organic matters (Snider et al., 2016) (Fig. S1).  All of 309	

these analyses show the incompletion in the current emission inventories.  In addition to 310	

PM10 data, we have also used observed surface visibility to evaluate model performance.  As 311	

mentioned in Sect. 2.5, the modeled visibility values are derived from the extinction 312	

coefficient of the externally mixed aerosols and simulated fine particulate concentrations.  313	

As shown in Fig. 4, the model correctly predicted about 40% observed low-visibility events 314	

during the fire seasons, while 60% miss-captured low-visibility events are mainly due to the 315	

missing AFCID.  The details of this are discussed in Sect. 4.  Additional uncertainty analysis 316	

of modeled LVDs by using a method for dichotomous (yes or no LVDs) cases is presented 317	

in Sect. S1 of the supplementary material.  On the other hand, the model has overestimated 318	

the visibility range for many cases with observed visibility lower than 7 km.  Such a result is 319	

likely due to the 36-km model resolution used in the study, which could be too coarse to 320	

resolve the typical size of air plumes containing high concentration of fine particulate 321	

matters.  The detailed discussion of potential uncertainty factors of modeled visibility, 322	

including meteorological	datasets,	 fire	emission	inventories,	and	the	model	resolution	323	

can	be	found in Lee et al. (2017).   324	

The observed CO and O3 levels from the only WMO GAW station in the region, Bukit 325	

Kototabang, Indonesia (West Sumatra) are used to evaluate the model performance in 326	

simulating gas phase chemistry.  Fossil fuel and biomass combustions and biogenic 327	

emissions are among the major sources of CO in the region, while O3 production is mainly 328	

from photochemical reactions of precursors such as nitrogen oxides, volatile organic 329	

compounds, and CO, largely from anthropogenic emissions.  Due to the geographic location, 330	

the primary source of CO in Bukit Kototabang is from biomass burning, hence high CO 331	

levels occur during fire seasons (Fig. 3b).  The model accurately captured observed CO 332	
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levels during the simulation.  Model simulated evolution of volume mixing ratio of O3 also 333	

matches observations very well, though with a positive bias of about 20 ppbv on average 334	

(34.8 versus 13.4 ppbv) (Fig. 3c).  We notice that NOx emission is higher in REAS emission 335	

inventory comparing with other emission inventories and studies (Kurokawa et al., 2013).  336	

The boundary condition of WRF-Chem also sets the background surface ozone quite high 337	

(30 ppbv).  Both could lead to the overestimated background ozone in the model.   338	

3.2 Fire- and non-fire-caused LVDs in three selected cities  339	

Based on the logical chart shown in Fig. 2, we can use the modeled results to classify 340	

observed LVDs into 5 types of events with different main aerosol sources.  In Bangkok, 341	

there are about 165 LVDs per year during 2002-2008 based on observations.  Modeled 342	

results suggest that about 60% of these LVDs can be brought by either fire or non-fire 343	

aerosols (the sum of Type 1, Type 2, and Type 3 in Fig. 2; see Table 2).  Generally 344	

speaking, fire and non-fire aerosols contribute equally towards the haze events occurring in 345	

Bangkok.  A more interesting finding is that 11% of LVDs need a combination of both fire 346	

and non-fire aerosols to occur (Type 4).  This highlights the importance of fire aerosols in 347	

worsening air quality of otherwise moderate haze conditions under the existing suspended 348	

non-fire aerosols.  Overall, the model missed about 29% of LVDs of Bangkok during the 349	

simulation period.   350	

Haze occurs slightly less frequently in Kuala Lumpur than Bangkok.  There are about 351	

104 LVDs per year in Kuala Lumpur during 2002-2008.  Thirty-six percent of these LVDs 352	

are caused by either fire or non-fire aerosols; while 15% of the LVDs need a combination of 353	

both aerosol sources to form haze (Table 2).  Our study shows that non-fire aerosols are 354	

capable of causing of 28% of LVDs occurring in Kuala Lumpur, even in the absence of fire 355	

aerosols.  Once we include the impact of fire aerosols, the model can capture an additional 356	
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23% of LVDs, of which most are Type 4 case.  Overall, fire and non-fire aerosols make 357	

similar contributions to observed LVDs in Kuala Lumpur.   358	

In Singapore, there are about 50 LVDs per year during 2002-2008.  The contribution of 359	

non-fire aerosols to LVDs is about 8%.  Compared with the additional 25% of LVDs owing 360	

to fire aerosols, the contribution of non-fire aerosols to LVDs is small in Singapore.  361	

However, the model failed to capture a high percentage of LVD cases in both Kuala Lumpur 362	

(49%) and Singapore (67%) (Type 5; see Table 2).  As discussed in Sect. 3.1, missing 363	

AFCID in the emission inventory could explain why the model failed to capture the LVDs 364	

in these two sites.  Further discussion is presented in Sect. 4.  365	

3.3 Fire- and non-fire-caused LVDs over the whole Southeast Asia 366	

By comparing the annual mean PM2.5 concentration in 50 Association of Southeast 367	

Asian Nations (ASEAN) cities between three simulations, we identify that there are 13 368	

ASEAN cities receiving more than 70% PM2.5 concentration from non-fire sources, while 369	

other 10 ASEAN cities where fire aerosols are the major (more than 70%) component of 370	

PM2.5 (Fig. 5).  Note that although fire aerosols are the major component of annual mean 371	

PM2.5 concentration in these latter 10 ASEAN cities, the influence period of fire aerosols 372	

normally is only about 3 to 5 months.  The rest of the ASEAN cities are essentially 373	

influenced by coexisting fire and non-fire aerosols.  Note that the sum of PM2.5 374	

concentrations in FF and BB is not necessarily equal to the PM2.5 concentration in FFBB in 375	

any given city due to non-linearity in modeled aerosol processes.   376	

The annual mean LVDs among 50 ASEAN cities is 192 days during 2002-2008.  377	

Applying the logical chart described in Fig. 2 to analyze cases of each of these ASEAN 378	

cities, we find that by considering aerosols emitted from non-fire emissions alone, about 379	

59% of observed LVDs can be explained, whereas considering fire aerosols adds an 380	
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additional 13% of LVDs.  Conversely, by considering aerosols emitted from fire alone, 381	

about 47% of observed LVDs can be explained, whereas adding non-fire aerosols adds an 382	

additional 25% of LVDs.  About 28% of observed LVDs remains unexplained.  In general, 383	

non-fire aerosols appear to be the major contributor to LVDs in these cities.  384	

3.4 Impacts of ozone and PM2.5 on air quality and human health 385	

Similar to PM2.5, O3 also brings public health besides air quality issues (Chen et al., 386	

2007).  Previously in Sect. 3.1, we have discussed that the model systematically 387	

overestimated O3 volume mixing ratio by 20 ppbv comparing with observations.  388	

Overestimated 9-h O3 could lead to a mistakenly derived high AQI(O3).  Nevertheless, the 389	

relative differences of AQI(O3) between various model simulations can still provide useful 390	

information of the relative contributions of fire and non-fire emissions, either alone or in 391	

combination, on air quality and potentially human health.       392	

We find that modeled 9-h O3 in Bangkok from non-fire emissions (FF) alone triggered 393	

19% of daily AQI(O3) to reach moderate and unhealthy pollution level during 2002-2008, 394	

while fire emissions (BB) alone can only trigger 3% of such situations (Table 3).  In 395	

comparison, combining fire and non-fire emissions as derived from the simulation of FFBB 396	

can cause 33% of daily AQI(O3) to reach moderate and unhealthy pollution levels.  In Kuala 397	

Lumpur and Singapore, O3 is not the major source for air quality degradation, where fire or 398	

non-fire emissions alone can seldom cause O3 levels to reach even moderate pollution 399	

levels.  For example, in the FF simulation, only 5% of daily AQI(O3) readings in Kuala 400	

Lumpur and 1% in Singapore reached moderate pollution levels.  Again, the majority of the 401	

high AQI(O3) cases result from combining fire and non-fire emissions (FFBB) (Table 3).  402	

Overall, non-fire emissions alone only cause 6% of daily AQI(O3) to reach moderate 403	
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pollution levels in 50 ASEAN cities, whereas about 12% of moderate and unhealthy 404	

pollution cases resulted from the combined effect of fire and non-fire emissions.      405	

We find that in Southeast Asia, PM2.5 actually plays a more important role than O3 in 406	

causing high AQI cases.  In Bangkok, PM2.5 resulted in 37% and 33% high daily AQI(PM2.5) 407	

cases in FF and BB simulation, respectively (Table 4).  Among these, three times more cases 408	

with daily AQI(PM2.5) reaching unhealthy levels can be attributed to PM2.5 from BB than 409	

those from FF (Table 4).  However, the unhealthy levels caused by fire aerosols alone still 410	

occur relatively infrequently in Bangkok, Kuala Lumpur, and Singapore.  In Bangkok, a city 411	

with an 8 million population, persistent aerosol emissions from non-fire sources, aided by 412	

seasonal fire aerosols, cause almost two-thirds of daily air quality readings that reached 413	

moderate or unhealthy pollution levels.  Kuala Lumpur and Singapore also have 48% and 414	

22% bad air quality days during 2002-2008, respectively (Table 4).  Examining 24-h PM2.5 415	

AQI(PM2.5) among 50 ASEAN cities shows that non-fire aerosols alone contribute to 416	

moderate to unhealthy pollution levels 2.6 times more often than fire aerosols alone (23% 417	

versus 9%).  Compared to the modeled results in FF, PM2.5 in FFBB increases 10% more 418	

bad air quality to moderate and unhealthy pollution level (Table 4).  This result is consistent 419	

with the findings in Sect. 3.3.        420	

We have exanimated the health impacts due to PM2.5 in 50 ASEAN cities using the 421	

method described in Sect. 2.7 and the results show that the top three cities for premature 422	

mortality caused by particulate pollution are Jakarta (Indonesia), Bangkok (Thailand), and 423	

Hanoi (Vietnam) with 910, 1080, and 620 premature mortalities per year, respectively (Fig. 424	

6).  The premature mortality in Jakarta is mainly due to exposure to PM2.5 particles emitted 425	

from non-fire emissions (95%), the same situation as in Hanoi (80%).  However, in 426	

Bangkok, the health impact due to fire and non-fire aerosols are equally critical (Figs. S3 427	
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and S4).  In general, owing to the increasing trend of non-fire emissions during the analysis 428	

period, the premature mortalities due to PM2.5 emitted from non-fire sources have increased 429	

with time in most ASEAN cities (Fig. S3).  Besides this, higher fire aerosols levels in 430	

Sumatra and Borneo in 2002, 2004 and 2006 also increase the number of premature 431	

mortalities in cities such as Kuching, which are exposed to particulate matters from these 432	

burning events (Figs. 6 and S4).   433	

Additional discussion of the impact of fire and non-fire aerosols on regional climate is 434	

presented in Sect. S2 of the supplementary.       435	

4 Impact of missing components in the emission inventories on 436	

modeled results  437	

In this study, we have noticed that the simulated PM2.5 concentrations in Singapore are 438	

often lower than the observations of the National Environment Agency of Singapore 439	

(https://data.gov.sg/dataset/air-pollutant-particulate-matter-pm2-5) (6.1 µg m-3 versus 20.3 440	

µg m-3 in annual mean during 2002-2008).  Owing to the lower simulated PM2.5 441	

concentration in Singapore, the model could not capture many observed LVDs (Table 2) and 442	

consequently underestimated AQI levels resulting from PM2.5.  As mentioned before, Philip 443	

et al. (2017) have pointed out that global atmospheric models can produce a 2 - 16 µg m-3 444	

underestimation in fine particulate mass concentration across East and South Asia and most 445	

current global emission inventories indeed either do not include anthropogenic fugitive and 446	

industrial dusts, or substantially underestimate the quantities of these emissions (Klimont et 447	

al., 2016; Janssens-Maenhout et al., 2015).  The fugitive dust sources, such as road and 448	

construction dust, in most major cities in Southeast Asia are apparently not well represented 449	

in the emission inventory used in our study.  To correct these systematic underestimates, we 450	
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have used crustal matter and residual matter from SPARTAN PM2.5 measurements as the 451	

reference to fill in the modeled PM2.5 for the missing anthropogenic aerosol components.  452	

Excluding the high concentration samples during the fire haze events, the mean 453	

concentration of crustal matter and residual matter is 25.8 µg m-3 in Hanoi, 10.4 µg m-3 in 454	

Singapore, 18.1 µg m-3 in Bandung, and 9.2 µg m-3 in Manila.  We then added these values 455	

as additional anthropogenic aerosol components in modeled aerosol abundance to 456	

recalculate modeled visibility and AQI(PM2.5).  Table 5 shows the calculated percentage of 457	

LVDs caused by various aerosol types in Fig. 2 before and after the above correction.   458	

Adding the missing anthropogenic aerosol component based on in-situ measurement in 459	

the modeled results can reproduce 98% of observed LVDs in Hanoi (an increase from 79%).  460	

Because the missing anthropogenic aerosols are included in non-fire aerosols, LVDs in Type 461	

1 and Type 2 are heavily weighted in the new result.  The results also show the LVDs in 462	

Hanoi are mainly caused by non-fire aerosols and the contribution of fire aerosols is 463	

relatively small.  Adding the missing anthropogenic aerosol components also reduced the 464	

number of missing LVDs events from 67% to 20% in Singapore.  Differing from Hanoi, not 465	

only Type 2 LVDs but also Type 4 LVDs increased after introducing the missing 466	

anthropogenic aerosols in Singapore, implying that the fire and non-fire aerosols are equally 467	

important in causing LVDs there.  After applying the correction, non-fire aerosols alone can 468	

explain 30% LVDs while coexisting fire and non-fire aerosols can explain 40% LVDs in 469	

Singapore (Table 5).  Note that the mode of the distribution of observed visibility in 470	

Singapore is around 11 km.  Therefore, when fire occurs in the surrounding countries, even 471	

a moderate addition to the aerosol abundance from fire can worsen visibility to reach a low 472	

visibility condition (visibility < 10 km).  Because of the poor data quality of observed 473	

visibility in Bandung (only less than 10% observations are available), introducing the 474	
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missing anthropogenic aerosol components did not help to characterize the major aerosol 475	

contribution.  In Manila, the number of missed LVDs in the model reduced 35% while Type 476	

2 and Type 4 LVDs increased 26% and 9%, respectively, after introducing the missing 477	

anthropogenic aerosol components.  Nevertheless, even after adding the missing 478	

anthropogenic aerosols to the non-fire aerosol category, the model still missed 57% of LVDs 479	

in Manila.  This is mainly because the model did not capture many fire events in that area, 480	

likely due to underestimation of fire emissions in the emission inventory.  481	

Besides LVDs, the missing anthropogenic aerosols also substantially affect the modeled 482	

AQI(PM2.5).  Table 6 shows the frequency of various AQI(PM2.5) levels calculated respectively 483	

with and without the missing anthropogenic aerosol components in Hanoi, Singapore, 484	

Bandung, and Manila.  After considering the missing anthropogenic aerosol components, 485	

modeled air pollution levels in Hanoi and Bandung persistently reach the moderate or 486	

unhealthy pollution levels.  In Singapore, modeled frequency of moderate and unhealthy 487	

cases also increase from 22% to 66%, and in Manila from 8% to 36%.  Furthermore, the 488	

number of premature mortalities in Singapore and Manila increases significantly from 0 to 489	

230 and 130, respectively (Table 7).  These results indicate the importance for models to 490	

include anthropogenic fugitive and industrial dusts  in order to capture low visibility events 491	

in the region.      492	

5 Experiment in applying machine learning algorithms to 493	

predict the occurrence of PM2.5 caused LVDs 494	

Traditional physical models such as WRF-Chem are developed based on equations 495	

describing fluid dynamics, physical processes, and chemical reactions to link these 496	

processes on different scales and to predict consequences resulting from circulation and 497	
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physiochemical process evolutions.  However, various parameterizations, and numerical as 498	

well as input data errors can all lead to the uncertainty of model prediction.  Specifically, for 499	

the task of forecasting the occurrence of haze events (i.e., LVDs), using these models is 500	

nearly impossible due to the lack of real-time emission estimates to drive aerosol chemical 501	

and physical processes.  On the other hand, machine learning algorithms permit 502	

interpretation of large quantity of complex historical data based on computer analyses, and 503	

this capacity of machine learning seems promising for us to derive suitable conditions for 504	

hazes from historical data and hence to forecast the likelihood of the occurrence of such 505	

events. 506	

We hence experiment using the so-called supervised learning skill that trains or 507	

optimizes a machine to produce the outcomes based on input data (or features) as close as 508	

possible to known results or gaining an accuracy as high as possible.  In our experiment, we 509	

have applied 6 different machine learning algorithms, including Nearest Neighbors 510	

(Pedregosa et al., 2011), Linear Support Vector Machine (SVM) (Schölkopf and Smola, 511	

2002), SVM with Radial Basis Function Kernel (non-linear SVM) (Scholkopf et al., 1997; 512	

Quinlan, 1986), Decision Tree (Quinlan, 1986), Random Forest (Breiman, 2001), and 513	

Neural Network (Haykin et al., 2009), to reproduce past visibility patterns or to predict haze 514	

occurrence.  Through the supervised learning procedure, we have also examined the 515	

importance of each input variable.  These machine learning machines are trained for 516	

predicting LVDs at three airports in Singapore reporting to the GSOD, i.e., Changi, Seletar, 517	

and Paya Labar.  All the input data or features are listed in Table S5.  Data are available 518	

from 2000 to 2015 at Changi and Paya Labar but only between 2004 and 2015 at Seletar.  519	

We have used several different classifications in the training.  The first one uses two 520	

classes, corresponding to haze (visibility lower or equal to 10 km) and non-haze (visibility 521	
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higher than 10 km) events.  Another applied 2-class classification uses 7 km instead of 10 522	

km in identifying the haze events.  In addition, a 3-class classification has also been tested, 523	

which includes two haze classes: visibility lowers than 7 km and between 10 and 7 km, 524	

respectively.  The training-testing ratio is set to be 60:40. 525	

In our study, the highest validation accuracy and F1-score (Powers, 2011) in any 526	

algorithm appear in the machine for Changi site, while the difference in accuracy between 527	

each algorithm is small (Figs. 7 and S5).  However, the accuracy for all the algorithms at 528	

Seletar and Paya Labar drops dramatically by about 20-30% in 2-class classification using 529	

10-km visibility and 3-class classification.  The reason for the best performances in Changi 530	

is likely to be the least frequency of haze events at this site (account for only 10% of the 531	

total LVDs), in comparison, 37% and 44% of haze events occurred at Paya Labar and 532	

Seletar during the training time period, respectively.  The machines also predict non-haze 533	

events with higher accuracy than haze events at Changi.  Using severe haze (visibility < 7 534	

km) instead of moderate haze (visibility < 10 km) to label haze event can also increase 535	

accuracy (over 80%).  This could be due to the fact that severe haze events are primarily 536	

caused by heavy biomass burnings, whose occurrence would be well captured in the satellite 537	

hotspot input data.   538	

Besides accuracy and F1-score analysis, we have also used the feature importance 539	

function in the scikit-learn Random Forest package to measure the importance of various 540	

features (i.e. Gini importance) (Pedregosa et al., 2011).  The function takes array of features 541	

and computes the normalized total reduction of the criterion brought by that feature.  The 542	

higher the value, the more important the feature is to the forecasting machine.  We find that 543	

the hotspot counts from three fire regions are ranked consistently among the top three most 544	

important features for most machine learning predictions in all three classifications (Fig. 8; 545	
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Fig. S6 and S7).  The values of importance of hotspot counts are higher than 0.15.  Analysis 546	

also suggests that “Month” is among the top five most important features in all machines, 547	

followed by wind direction and relative humidity (Fig. 8), implying that besides fire hotspot, 548	

seasonal monsoon wind patterns, wind-related weather conditions (i.e., SRV in Fig. 8) are 549	

also important factors in forecasting the occurrence of haze events in Singapore.  In 550	

addition, relative humidity is a critical variable for visibility (i.e., growth of hygroscopic 551	

particles can drastically enhance the light extinction).  These results are consistent with 552	

previous studies of haze events in Singapore (Reid et al., 2012; Lee et al., 2017).  553	

Nevertheless, previous works by Reid et al. (2012) and Lee et al. (2017) also suggested the 554	

relationships between fire hotspot appearance and certain weather phenomena particularly 555	

precipitation.  Therefore, we are surprised that precipitation in the fire regions does not 556	

appear to be a significant feature for predicting Singapore haze compared with other features 557	

in our current analysis.  558	

6 Summary  559	

We have quantified the impacts of fire (emitted from biomass burning) and non-fire 560	

(emitted from anthropogenic sources other than biomass burning) aerosols on air quality and 561	

visibility degradation over Southeast Asia, by using WRF-Chem in three scenarios driven 562	

respectively by aerosol emissions from: (a) fossil fuel burning only, (b) biomass burning 563	

only, and (c) both fossil fuel and biomass burning.  These model results reveal that 39% of 564	

observed low visibility days in 50 ASEAN cities can be explained by either fossil fuel 565	

burning or biomass burning emissions alone when they coexist, a further 20% by fossil fuel 566	

burning alone, a further 8% by biomass burning alone, and a further 5% by a combination of 567	

fossil fuel burning and biomass burning.  The remaining 28% of observed low visibility 568	



	 25	

days remain unexplained, likely due to emissions sources that have not been accounted for.  569	

Our results show that owing to the economic growth in Southeast Asia, non-fire aerosols 570	

have become the major reason to cause LVDs in most Southeast Asian cities.  However, for 571	

certain cities including Singapore, LVDs are likely caused by coexisting fire and non-fire 572	

aerosols.  Hence, both fire and non-fire emissions play important roles in visibility 573	

degradation in Southeast Asia.    574	

Furthermore, we have also used air quality index or AQI derived from modeled 9-h O3 575	

and 24-h PM2.5 to analyze the air quality of 50 ASEAN cities. The results are consistent with 576	

the visibility modeling and analysis, indicating that PM2.5 particles, primarily those from 577	

non-fire emissions, are the major reason behind high AQI(PM2.5) occurrence in these 578	

Southeast Asian cities.  In addition to non-fire PM2.5 stand-alone cases, coexisting fire and 579	

non-fire PM2.5 jointly caused an increase of 11% in bad air quality events with moderate 580	

polluted or unhealthy pollution levels (23% versus 34%).  The premature mortality among 581	

the analyzed ASEAN cities has increased from ~4110 in 2002 to ~6540 in 2008.  Bangkok 582	

(Thailand), Jakarta (Indonesia), and Hanoi (Vietnam) are the top three cities in our analysis 583	

for premature mortality due to air pollution, with 1080, 910, and 620 premature mortalities 584	

per year, respectively. 585	

We find the reason behind the model’s miss-capturing of 28% observed LVDs averaged 586	

over 50 ASEAN cities is largely due to a lack of inclusion of anthropogenic fugitive and 587	

industrial as well as road dust from urban sources in the emission inventories used in this 588	

study.  Using PM2.5 chemical composition data from the SPARTAN stations in Hanoi, 589	

Singapore, Bandung, and Manila to fill the missing aerosol components from these excluded 590	

sources can drastically increase the captured LVDs by the model in these cities, for example, 591	

by 47% in Singapore.  The improvement in LVD prediction is especially substantial in non-592	
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fire aerosols alone cases (Type 2; from 5% to 25%) and coexisting fire and non-fire aerosols 593	

cases (Type 4; from 14% to 40%).  Including the missing anthropogenic aerosols in modeled 594	

results also increases the occurrence of cases with moderate and unhealthy air pollution 595	

levels from 22% to 66% in Singapore.  Our study clearly demonstrates the importance of 596	

anthropogenic aerosols along with other fugitive industrial and urban sources in air quality 597	

and visibility degradation in certain Southeast Asian cities such as Singapore.  598	

We have also experimented using six different machine learning algorithms to predict 599	

the occurrence of LVDs caused by PM2.5.  The effort is on forecasting hazes in three surface 600	

visibility observation sites in Singapore.  We find that the machine learning algorithms can 601	

predict severe haze events (visibility < 7 km) with an accuracy greater than 80% in any of 602	

these stations.  On the other hand, the accuracy is found to be sensitive to the selection of 603	

features, labelling of outcome, and forecast sites.  	604	

The current study extends our previous effort (Lee et al., 2017) by using a model 605	

including a full chemistry and aerosol package instead of a smoke aerosol module without 606	

chemistry.  The added model capacity provides more complete quantitative description of 607	

physiochemical processes that allow us to better analyze the contribution of fire versus non-608	

fire aerosols to the regional air quality and visibility degradation.  Our results show that the 609	

majority of the population in Southeast Asian cities are exposed to air pollution that can be 610	

mostly attributed to non-fire aerosols.  On the other hand, our analysis also suggests that for 611	

certain cities such as Singapore, severe air pollution are likely caused by coexisting fire and 612	

non-fire aerosols.  All these further complicate the options for air pollution mitigation.  613	
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7 Data availability   614	

FINNv1.5 emission data are publicly available from 615	

http://bai.acom.uar.edu/Data/fire/.  REAS and EDGAR emission data can be 616	

downloaded from https://www.nies.go.jp/REAS/ and 617	

http://edgar.jrc.ec.europa.eu/overview.php?v=42, respectively.  Malaysia API records 618	

can be obtained from http://apims.doe.gov.my/public_v2/home.html.  The observational 619	

visibility from the GSOD can be downloaded from https://data.noaa.gov/dataset/global-620	

surface-summary-of-the-day-gsod. CO and O3 in WHO GAW station can be obtained 621	

from http://ds.data.jma.go.jp/gmd/wdcgg/.  Fine particle data from SPARTAN are 622	

publicly available in http://spartan-network.weebly.com/.  WRF-Chem simulated data are 623	

available upon request from Hsiang-He Lee (hsiang-he@smart.mit.edu).  624	
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Table	 1.	Mean	 annual	 emissions	 of	 BC,	 OC,	 SO2,	 CO	 and	 NO2	 from	 biomass	 burning	830	

emission	 (BB)	 and	 fossil	 fuel	 burning	 emission	 (FF)	 in	 the	 simulated	 domain	 from	831	
2002	 to	 2008.	 Parentheses	 show	 the	 percentage	 of	 emission	 from	 fire	 and	 non-fire	832	

sources.		833	
 834	

Units: Tg/yr BC OC SO2 CO NO2 

BB 0.4 (50%) 4.1 (73%) 0.4 (7%) 71.6 (64%) 2.6 (37%) 

FF 0.4 (50%) 1.4 (27%) 5.8 (93%) 39.9 (36%) 4.3 (63%) 

 835	
  836	
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Table 2. The contribution of fire aerosols (BB), non-fire aerosols (FF), or coexisting 837	
aerosols to low visibility days (LVDs) (based on the logic chart in Fig. 2) in Bangkok, Kuala 838	
Lumpur, Singapore, and among 50 Association of Southeast Asian Nations (ASEAN) cities 839	
during 2002-2008. 840	
 841	

 Bangkok Kuala 
Lumpur 

Singapore  50 ASEAN 
cities 

FF∩BB (Type 1) 22±10% 12±5% 3±4% 39±5% 
FF (Type 2) 19±5% 16±16% 5±4% 20±3% 
BB (Type 3) 19±7% 8±5% 11±13% 8±2% 
FF+BB (Type 4) 11±4% 15±6% 14±8% 5±1% 
Missing (Type 5) 29±5% 49±26% 67±21% 28±2% 
 842	

843	
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Table 3. The frequency of occurrence of air pollution level in Bangkok, Kuala Lumpur, 844	
Singapore, and 50 Association of Southeast Asian Nations (ASEAN) cities derived using 9-845	
h Ozone (O3) volume mixing ratio in FF, BB, and FFBB during 2002-2008.  846	
 847	

Bangkok AQI(O3) FF BB FFBB 
Good 0-50 81±3% 97±1% 69±3% 

Moderate 51-100 17±2% 3±1% 21±3% 
Unhealthy 101-200 2±1% 0±0% 11±1% 

Very 
Unhealthy 201-300 0±0% 0±0% 0±0% 

Hazardous 301-400 0±0% 0±0% 0±0% 
Hazardous 401-500 0±0% 0±0% 0±0% 

Kuala 
Lumpur AQI(O3) FF BB FFBB 

Good 0-50 95±2% 100±1% 83±6% 
Moderate 51-100 5±2% 0±1% 15±5% 
Unhealthy 101-200 0±0% 0±0% 2±1% 

Very 
Unhealthy 201-300 0±0% 0±0% 0±0% 

Hazardous 301-400 0±0% 0±0% 0±0% 
Hazardous 401-500 0±0% 0±0% 0±0% 
Singapore AQI(O3) FF BB FFBB 
Good 0-50 99±1% 100±0% 94±3% 

Moderate 51-100 1±1% 0±0% 5±2% 
Unhealthy 101-200 0±0% 0±0% 1±1% 

Very 
Unhealthy 201-300 0±0% 0±0% 0±0% 

Hazardous 301-400 0±0% 0±0% 0±0% 
Hazardous 401-500 0±0% 0±0% 0±0% 
50 ASEAN 
cities AQI(O3) FF BB FFBB 

Good 0-50 94±1% 99±0% 88±2% 
Moderate 51-100 6±1% 1±0% 10±2% 
Unhealthy 101-200 0±0% 0±0% 2±0% 

Very 
Unhealthy 201-300 0±0% 0±0% 0±0% 

Hazardous 301-400 0±0% 0±0% 0±0% 
Hazardous 401-500 0±0% 0±0% 0±0% 

 848	
849	
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Table 4. Same as Table 3 but using 24-h PM2.5 concentration. 850	
 851	

Bangkok AQI(PM2.5) FF BB FFBB 
Good 0-50 63±6% 67±5% 38±2% 

Moderate 51-100 34±5% 24±3% 45±3% 
Unhealthy 101-200 3±2% 9±4% 17±4% 

Very 
Unhealthy 201-300 0±0% 0±0% 0±0% 

Hazardous 301-400 0±0% 0±0% 0±0% 
Hazardous 401-500 0±0% 0±0% 0±0% 

Kuala 
Lumpur AQI(PM2.5) FF BB FFBB 

Good 0-50 73±3% 78±8% 52±7% 
Moderate 51-100 27±4% 18±6% 40±4% 
Unhealthy 101-200 0±0% 4±3% 8±4% 

Very 
Unhealthy 201-300 0±0% 0±0% 0±0% 

Hazardous 301-400 0±0% 0±0% 0±0% 
Hazardous 401-500 0±0% 0±0% 0±0% 
Singapore AQI(PM2.5) FF BB FFBB 
Good 0-50 92±5% 92±4% 78±5% 

Moderate 51-100 8±4% 6±2% 19±4% 
Unhealthy 101-200 0±1% 1±2% 3±2% 

Very 
Unhealthy 201-300 0±0% 0±0% 0±0% 

Hazardous 301-400 0±0% 0±0% 0±0% 
Hazardous 401-500 0±0% 0±0% 0±0% 
50 ASEAN 
cities AQI(PM2.5) FF BB FFBB 

Good 0-50 77±1% 90±3% 66±3% 
Moderate 51-100 19±1% 7±2% 26±2% 
Unhealthy 101-200 4±0% 2±1% 8±2% 

Very 
Unhealthy 201-300 0±0% 0±0% 0±0% 

Hazardous 301-400 0±0% 0±0% 0±0% 
Hazardous 401-500 0±0% 0±0% 0±0% 

 852	
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Table 5. The old (without missing anthropogenic aerosol components) and new (with 853	
missing anthropogenic aerosol components in FF and FFBB) calculated percentage of 854	
observed low visibility days (LVDs), categorized according the type classification explained 855	
in Fig. 2. 856	
 857	

 Hanoi Singapore Bandung Manila 
 old new old new old new old new 

FF∩BB 
(Type 1) 38±32% 40±31% 3±4% 5±7% 41±73% 41±74% 0±0% 1±1% 

FF (Type 2) 34±8% 57±13% 5±4% 25±13% 8±19% 8±20% 3±3% 29±33% 
BB (Type 3) 2±2% 0±0% 11±13% 9±10% 0±0% 0±0% 3±3% 2±3% 

FF+BB 
(Type 4) 5±3% 1±1% 14±8% 40±19% 0±0% 0±0% 2±2% 11±3% 

Missing 
(Type 5) 21±15% 2±4% 67±21% 20±9% 51±56% 51±57% 92±41% 57±16% 

 858	
  859	
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 860	
Table 6. The frequency of various daily air pollution levels in Hanoi, Singapore, Bandung 861	
and Manila derived using 24-h PM2.5 concentration with (new) and without (old) the missing 862	
anthropogenic aerosol components in FFBB during 2002-2008. 863	
 864	

Hanoi AQI(PM2.5) old new 
Good 0-50 43±7% 0±0% 

Moderate 51-100 46±3% 32±4% 
Unhealthy 101-200 10±3% 67±4% 

Very Unhealthy 201-300 0±0% 0±0% 
Hazardous 301-400 0±0% 0±0% 
Hazardous 401-500 0±0% 0±0% 
Singapore AQI(PM2.5) old new 
Good 0-50 78±5% 33±8% 

Moderate 51-100 19±4% 59±8% 
Unhealthy 101-200 3±2% 7±3% 

Very Unhealthy 201-300 0±0% 0±0% 
Hazardous 301-400 0±0% 0±0% 
Hazardous 401-500 0±0% 0±0% 
Bandung AQI(PM2.5) old new 
Good 0-50 36±7% 0±0% 

Moderate 51-100 58±5% 52±8% 
Unhealthy 101-200 6±3% 48±8% 

Very Unhealthy 201-300 0±0% 0±0% 
Hazardous 301-400 0±0% 0±0% 
Hazardous 401-500 0±0% 0±0% 
Manila AQI(PM2.5) old new 
Good 0-50 92±4% 64±5% 

Moderate 51-100 7±3% 34±5% 
Unhealthy 101-200 1±1% 2±1% 

Very Unhealthy 201-300 0±0% 0±0% 
Hazardous 301-400 0±0% 0±0% 
Hazardous 401-500 0±0% 0±0% 

 865	
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Table 7. Updated PM2.5 concentration (µg m-3) and premature mortality (95% confidence 866	
intervals) in Hanoi, Singapore, Bandung and Manila with missing anthropogenic aerosol 867	
components.  868	
 869	

City PM2.5 (µg m-3) Premature mortality 
Hanoi 41.07 670 (210-1180) 

Singapore 16.43 230 (20-550) 
Bandung 33.18 260 (70-480) 
Manila 12.38 130 (10-260) 

  870	
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 871	
 872	
 873	

 874	
Figure 1. Model domain used for simulations. The blue color region indicates the fossil fuel 875	
emission coverage from the Regional Emission inventory in ASia (REAS).  The rest of the 876	
domain uses the fossil fuel emission from the Emissions Database for Global Atmospheric 877	
Research (EDGAR).  878	
  879	
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 880	
 881	
Figure 2. Logical chart for fire (BB), non-fire (FF), or coexisting fire and non-fire (FF+BB) 882	
aerosols caused Low Visibility Day (LVD). “Obs. LVD” is an identified low visibility day 883	
from observation. Then, the modeled visibility from FF (VISFF), BB (VISBB), and FFBB 884	
(VISFFBB) are used to classify observed LVD into 5 types of LVD. Type 1 LVD represents 885	
the cases where either fire or non-fire aerosols alone can cause the observed LVD to occur. 886	
Type 2 means that non-fire aerosols are the major contributor to the observed LVD. Type 3 887	
means that fire aerosols are the major contributor to the observed LVD. Type 4 represents 888	
the cases where the observed LVD is induced by coexisting fire and non-fire aerosols. The 889	
observed LVDs that the model cannot capture are classified as Type 5.       890	
  891	



	 42	

 892	

 893	

 894	
Figure 3. (a) Time series of daily surface PM10 (µg m-3; AQI derived) from the ground-based 895	
observations (black line) and FFBB-simulated results (orange line) in Kuala Lumpur, 896	
Malaysia during October 2005 – December 2008. (b) Time series of daily surface CO 897	
mixing ratio (ppbv) from the ground-based observations (black line) and FFBB-simulated 898	
results (orange line) in Bukit Kototabang, Indonesia during 2002 – 2008. (c) Same as (b) but 899	
surface O3.   900	
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 902	
Figure 4. Comparison of daily visibility between GSOD observation (black line) and FFBB-903	
simulated results (orange line) in Singapore during the fire seasons from 2002 to 2008. A, S, 904	
and O in the x axis indicates August, September, and October. 905	
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 907	
Figure 5. The annual mean simulated PM2.5 concentration (µg m-3) in 50 Association of Southeast Asian Nations (ASEAN) cities, derived 908	
from FF (red), BB (blue), and FFBB (green) simulations and averaged over the period 2002-2008.  909	
 910	
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 912	

 913	

Cities Country 2002 2003 2004 2005 2006 2007 2008

Jakarta 	Indonesia
850 830 900 950 910 960 970

Bangkok 	Thailand
850 1010 1030 1170 1120 1180 1170

Ho	Chi	Minh	City 	Vietnam
0 0 830 610 0 230 0

Hanoi 	Vietnam
420 520 540 560 570 610 1150

Singapore 	Singapore
0 0 0 0 0 0 0

Yangon 	Myanmar
0 280 350 330 280 400 330

Surabaya 	Indonesia
220 210 230 230 230 240 230

Quezon	City 	Philippines
0 0 0 0 0 0 0

Bandung 	Indonesia
200 200 210 230 200 220 220

Bekasi 	Indonesia
150 160 180 190 190 210 210

Medan 	Indonesia
0 0 0 10 0 0 0

Tangerang 	Indonesia
120 120 140 150 150 170 170

Hai	Phong 	Vietnam
0 210 200 230 200 270 280

Depok 	Indonesia
130 130 150 160 160 180 190

Manila 	Philippines
0 0 0 0 0 0 0

Semarang 	Indonesia
120 120 140 140 140 150 150

Palembang 	Indonesia
100 0 100 0 150 0 0

Caloocan 	Philippines
0 0 0 0 0 0 0

Kuala	Lumpur 	Malaysia
130 100 160 170 170 150 150

Davao	City 	Philippines
0 0 0 0 0 0 0

South	Tangerang 	Indonesia
130 120 130 140 130 130 130

Makassar 	Indonesia
0 0 0 0 0 0 0

Phnom	Penh 	Cambodia
0 0 40 30 30 40 40

Can	Tho 	Vietnam
60 140 180 170 160 180 180

Batam 	Indonesia
0 0 0 0 10 0 0

Pekan	Baru 	Indonesia
20 0 60 80 80 70 70

Bogor 	Indonesia
100 100 100 110 100 110 110

Da	Nang 	Vietnam
0 0 90 0 0 0 0

Bien	Hoa 	Vietnam
0 0 60 0 0 0 0

Bandar	Lampung 	Indonesia
70 70 70 70 80 70 80

Johor	Bahru 	Malaysia
0 0 20 0 60 30 0

Mandalay 	Myanmar
0 290 330 300 300 360 340

Padang 	Indonesia
0 0 0 10 60 40 30

Cebu	City 	Philippines
0 0 0 0 0 0 0

Denpasar 	Indonesia
0 0 0 0 0 0 0

Malang 	Indonesia
30 0 30 20 10 10 0

Samarinda 	Indonesia
0 0 0 0 0 0 0

Zamboanga	City 	Philippines
0 0 0 0 0 0 0

George	Town 	Malaysia
110 100 140 140 120 120 120

Ipoh 	Malaysia
0 0 50 50 0 0 0

Taguig 	Philippines
0 0 0 0 0 0 0

Tasikmalayu 	Indonesia
30 30 40 40 40 50 50

Antipolo 	Philippines
0 0 0 0 0 0 0

Banjarmasin 	Indonesia
50 0 50 0 60 0 0

Shah	Alam 	Malaysia
60 40 70 70 70 60 60

Pasig 	Philippines
0 0 0 0 0 0 0

Balikpapan 	Indonesia
0 0 0 0 0 0 0

Serang 	Indonesia
50 50 50 50 50 50 50

Petaling	Jaya 	Malaysia
60 40 70 70 70 60 60

Kuching 	Malaysia
50 0 50 0 60 0 0

850																													
(150-1660)

830																													
(130-1650)

900																													
(160-1750)

950																													
(180-1820)

910																													
(150-1790)

960																													
(170-1870)

970																													
(170-1900)

850																													
(90-1950)

1010																													
(130-2230)

1030																													
(130-2280)

1170																													
(180-2530)

1120																													
(150-2480)

1180																													
(160-2590)

1170																													
(150-2600)

0																													
(0-0)

0																													
(0-0)

830																													
(80-1750)

610																													
(0-1590)

0																													
(0-1130)

230																													
(0-1580)

0																													
(0-1530)

420																													
(40-880)

520																													
(80-1020)

540																													
(80-1060)

560																													
(90-1100)

570																													
(80-1120)

610																													
(100-1190)

1150																													
(190-2250)

0																													
(0-0)
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(0-0)

0																													
(0-260)
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(0-380)

280																													
(20-630)

350																													
(30-730)

330																													
(30-710)
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(20-640)

400																													
(40-820)
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(30-440)
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(20-430)
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Figure 6. Premature mortality in different years from 2002 to 2008 and cities in Association of 914	

Southeast Asian Nations (ASEAN) due to exposures PM2.5 in FFBB (95% confidence intervals). 915	

Colors from green to red represent relative number scale.   916	

  917	
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918	

919	

 920	
Figure 7. The testing accuracy in 6 machine learning algorithms for two 2-class (7 km or 10 km 921	

visibility as a breakpoint) and one 3-class classifications haze prediction in (a) Changi, (b) Paya 922	

Labar, and (c) Seletar.  923	
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 925	

926	

 927	

 928	
 929	

Figure 8. Feature importance by using 2-class classification Random Forest algorithm in (a) 930	

Changi, (b) Paya Labar, and (c) Seletar. Desired outputs, haze versus non-haze events, are 931	

defined by using visibility 10 km as a breakpoint. Full name of each input feature are listed in 932	

Table S5.  933	
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