Responses to the Comments of the Anonymous Referee #1

We very much appreciate the constructive comments and suggestions from this reviewer.
Our point-by-point responses to the reviewer’s comments are provided as follows (the
reviewer’s comments are marked in Italic font):

This study tries to quantify the impact of biomass burning (fire) and other anthropogenic
(non-fire) sources to the occurrence of low visibility days (LVDs due to PM2.5) in several
cities across the Southeast Asia. This is an extension of their work in Lee et al., 2017 by
improving the WRF-Chem model components. Regional air quality degradation is
assessed using simulated PM2.5 and ozone, derived AQI, and mortality calculations.
They identify that the inclusion of measured anthropogenic dust component to the model
increases performance of the model. They also assessed the performance of some
machine learning algorithms to predict the occurrence of LVDs.

Generally, the study is of importance, and relevance to ACP. It can be published with a
major revision.

First, the novelty of the work (if any) should be mentioned in the manuscript, in the
introduction.

Studies of Southeast Asia air quality using high-resolution models with interactive
chemistry and meteorology combining with observations, even for specific cases rather
than decadal-scale analysis, are still rare. Our previous study using WRF coupled with a
simplified tracer model for PM; s provided arguably the first such quantitative analysis,
which demonstrates that biomass burning aerosols contributed to up to 40-60% of haze
events in the major cities of Southeast Asia during 2003-2014 (Lee et al., 2017). In this
study, we have further the depth of the analysis by applying a more sophisticated regional
weather-chemistry model of WRF-Chem to quantitatively address the impacts of fire and
non-fire aerosols on air quality and visibility degradation over Southeast Asia. We have
also used available in-situ measurements to evaluate and correct model for providing a
better base for further improvement of particularly emissions over the region. Beyond the
traditional process models such as WRF-Chem, we have also experimented using
machine learning algorithms to identify suitable conditions for hazes based on historical
data and hence to forecast the likelihood of the occurrence of such events.

To address the reviewer’s point, we have further emphasized the uniqueness of our study
in the introduction section of the revised manuscript, by clearly indicating the new
methods and approaches adopted in our study.

Authors mention that the underestimation of particulate matter in the model could be due
to horizontal resolution or missing anthropogenic dust. Have you considered any other
aspects of the model before making such a statement? how about the simulated boundary
layer mixing of tracers? why ozone is overestimated in the model?



We have actually used the measured particulate composition data to correct modeled
biases due to missing organic matter (residual) besides anthropogenic dust component
(Snider et al., 2016) (Fig. S1 in the revised version; also see response to a later comment).
Although this was mentioned in the original manuscript, it may have been unclear. We
have revised the text accordingly to emphasize the importance of applying the correction
to the modeled PM,s concentration using the measured values of organic matter
residuals.

We adopted the Mellor-Yamada-Nakanishi-Niino level 2.5 (MYNN) (Nakanishi and
Niino, 2009) as the planetary boundary scheme in this study. The WRF model also has a
reasonably fine vertical resolution for the PBL by using a vertical coordinate that is
stretched to have higher resolutions inside PBL (e.g., having an average depth of ~30 m
near the surface). With four to five model layers within the PBL, the model should be
able to reasonably simulate the mixing of tracers in the boundary layer. We have added
description of the PBL scheme in the revised manuscript as: “The Mellor-Yamada-
Nakanishi-Niino level 2.5 (MYNN) (Nakanishi and Niino, 2009) is chosen as the
planetary boundary scheme in this study. By using a vertical coordinate that is stretched
to have higher resolutions inside the planetary boundary layer, the model has about 4-5
vertical layers inside the planetary boundary layer with a vertical resolution of ~30 m
near the surface.”

We have noticed that NOy emission is higher in REAS emission inventory compared with
other emission inventories and studies (Kurokawa et al., 2013). The boundary condition
of background ozone in the default WRF-Chem configuration also appears to be
somewhat high (30 ppbv) for our domain. Both could lead to the overestimated ozone in
the model. We have added corresponding discussion in Sect. 3.1 in the revised
manuscript.

Have you tried the simulations using any other emission inventories? This is very
important.

We agree with the reviewer that using different emission inventories in the model would
very likely lead to different results as indicated in our previous study (Lee et al., 2017),
where we used two different biomass burning inventories in the simulations and derived
different results for given cases; however, such differences did not substantially influence
our major conclusion. In this study, we have actually compared the differences between
the two available emission inventories for WRF-Chem for the targeted domain, the
REAS and EDGAR inventories, in a pair of one-year simulations comparing 2006 REAS
against EDGAR emissions. The results are shown in Table R1 (Table S3 in revised
manuscript). It is quite clear that the differences regarding aerosols are quite limited.
After considering the high spatiotemporal resolution of REAS emission inventory and the
comparison results, we decided to use REAS in our study. Besides our analysis,
Kurokawa et al. (2013) have also documented the comparison of REAS with other
emission inventories in Southeast Asia.

In the revised manuscript, we have added that “We have compared the modeled results
using REAS versus EDGAR emission inventories in one-year paired simulations: the



differences between these two model runs are rather limited regarding aerosol-related
variables (Table S3). After considering high spatiotemporal resolution of REAS emission
inventory and the comparison results, we decided to use REAS in this study. In addition,
a detail comparison of REAS with other emission inventories in Southeast Asia was also
presented by Kurokawa et al. (2013).”

Table R1. Mean annual emissions and modeled concentration of BC, OC, SO,, CO and
NO, from 2006 REAS and EDGAR emission inventories in the simulated domain.

REAS EDGAR

Emissions Modeled Emissions Modeled

(Tg/year) (ug/m’ or ppmv) (Tg/year) (ug/m’ or ppmv)
oC 0.12 0.1131 0.15 0.1487
BC 0.036 0.0311 0.065 0.0643
SO, 0.43 1.03x104 0.65 2.01x104
NO, 0.3 4.94x104 0.205 4.83x104
CcO 3.53 8.10x10-2 7.48 8.72x10-2

Model evaluation should be conducted in a much better way before making conclusions.
Spatiotemporal distribution of each species should be evaluated thoroughly, in the
context of all the modeling components. PM2.5 (its components and extinction values)
should be assessed, not just PM10 (there are some measurements available).

We appreciate the reviewer’s suggestion. In the revised manuscript, we have modified
many presentations of the results in Section 3.1. Nevertheless, a fundamental issue in
evaluating model for Southeast Asia domain is the lack of observations. As we described
in the manuscript, PM; s observations in this region are very limited. Even in Singapore,
observed PM, s data are only available after 2014 for the general public and research
community to access. In most other Southeast Asian counties, even PM;y measurement
data are hard to find, especially for the time periods before 2008. We are fortunate to be
able to obtain some chemical species data from WMO and long-term AQI data from the
Malaysian government. In addition, PM,s component data from SPARTAN filtered
samples (operated after 2013) have also been used, e.g., in Fig. S1 of the revised version.

Have you assessed the importance of organic matter in PM2.5 over these regions? the
‘residual matter’ in Snider et al., 2016 is mainly organic, please refer to that paper; so,
the statements such as “including the in situ anthropogenic dust improved the ...” should
be revised (since you are adding dust and organics).

We really appreciate the reviewer for raising this issue. Indeed, the residual matters that
have actually been used in the study to correct modeled PM; s concentration are mostly
organic carbon, though this was not made clear in the original manuscript. We have made
our best effort to clearly indicate this fact in the revised manuscript.

Clearly quantify and describe the uncertainty in your estimates of LVDs etc. (for fire and



non-fire related) derived using model values. An entire section should be devoted to
uncertainty analysis.

We appreciate the reviewer’s suggestion. Since a full-scale forward-integrating
uncertainty analysis based on WRF-Chem model would extremely expensive
computationally, we have adopted a method for dichotomous (yes or no LVDs) cases and
then give a contingency table as below to address model evaluation and to quantify model
performance.

Observed LVD
yes no
Modeled yes hits false alartms
LVD no misses correc
negatives
We have estimated accuracy based on the Eq. (1):
Accuracy — hits+correct negatives (1)

hits+misses+false alarms+correct negatives

Accuracy here is also called fraction correct, which is easy to evaluate model prediction.
However, it can be misleading for some cases since it is heavily influenced by the most
common category, usually "no event" in the case of LVD. Hence, we have provided
threat score in this study as well. Based on the equation of threat score (or critical
success index), we can measure the fraction of observed and/or modeled LVDs that were
correctly predicted. Threat score also can be referred as the accuracy when correct
negatives have been removed from consideration, that is, threat score only concerns
modeled LVDs that count.

hits

Threat Score = — . (2)
hits+misses+false alarms

The figure below shows the mean value of accuracy and threat score of modeled
LVDs among 50 ASEAN cities in three experiments: FF, BB, and FFBB. Since the
category of correct negatives is heavily counted in the accuracy, the values are also
twice as high as the threat scores. Basically, BB has the lowest threat score while

FFBB has the highest score as expected.
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The above discussion has been added in Sect. S1 in the supplementary and
introduced in the manuscript, Sect. 3.1.

Section 3 should be improved for a better reading, by excluding unnecessary statistical
details, and by describing the figures and findings in a more clear and concise way.
(abstract and conclusion sections should also be revised).

Based on the reviewer’s suggestion, we have removed statistical details (i.e., mostly the
standard deviations) in the text (the numbers are still presented in corresponding tables).
The structure of the manuscript has been rearranged as well. We have made the
manuscript more concise, including the abstract.

Separate section 3.2 into two;, first, describe 4 selected cities and your conclusions, then,
the entire region.

We have separated Section 3.2 into Sections 3.2 and 3.3 in the revised version. As the
reviewer suggested, Section 3.2 now describes results of the 3 selected cities and Section
3.3 discusses those for the entire ASEAN cities.

Section 3.4 is too vague, are you really assessing the impact of aerosols on regional
climate? need a better analysis; descriptions are loose; need to cite relevant works
throughout the discussion.

We agree with the reviewer that this section diffuses the focus of the paper. We have
moved it to supplementary material with a rewriting.

Provide a brief description of machine learning algorithms in the introduction itself (and
your motivation for doing this); also, describe it in the method section. Section 4.2 should



be described in an entirely separate section.

Based on the reviewer’s suggestion, we have added the motivation of applying machine
learning techniques to predict the occurrence of LVDs in the introduction section. We
would like to keep the description of each algorithm in the machine learning section to
maintain the flow of discussion. Sections 4.1 and 4.2 have been separated into two
individual sections in the revised version.

Line 501-503: vague arguments, Line 569-570: describe

Lines 501-503: “Applying inverse modeling, for example, could optimize the emission
inventories and hence improve the model performance” has been removed in the revised
version.

We have rewrite Line 569-570 to: “Nevertheless, previous works by Reid et al. (2012)
and Lee et al. (2017) also suggested the relationships between fire hotspot appearance
and certain weather phenomena particularly precipitation. Therefore, we are surprised
that precipitation in the fire regions does not appear to be a significant feature for
predicting Singapore haze compared with other features in our current analysis.”

Reducing the number of figures and tables in the main manuscript (without losing much
information) would be helpful; even figure captions are too lengthy.

The reviewer’s point has been well received. We have shortened the paper in the revised
manuscript. Table 1 has been removed. Table 3, Fig. 7 and Fig. 9 have been moved to
the supplementary material. We also have made the captions more concise.
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Responses to the Comments of the Anonymous Referee #2

We very much appreciate the constructive comments and suggestions from this reviewer.
Our point-by-point responses to the reviewer’s comments are provided as follows (the
reviewer’s comments are marked in Italic font):

The authors have conducted a very interesting study to investigate the impacts of air
pollutants from fire and non-fire emissions on air quality in Southeast Asia. To achieve
this goal, they have made use of different sources of data and tools. Overall, 1
recommend this paper could be published after they have addressed my concerns here.

a) Line 207-211. The model calculates the visibility based on the extinction coefficient of
aerosols. The authors neglect the role of relative humidity. Very high relative humidity
also leads to low visibility in observations. How will this affect the final result? Can it
explain the missing LVD days in the model?

We thank the reviewer for raising this critical point. As indicated in our previous paper
(Lee et al., 2017), misty and fog days with high relatively humidity have been removed
from the observational based LVDs. On the modeling side, the calculation of visibility is
indeed based on the extinction coefficient and by also considering the hydroscopic
growth of aerosols as a function of relative humidity. We have added necessary
statements in the revised manuscript to make this clearer.

It is possible that due to the model resolution, observed relative humidity might not be
perfectly reproduced by the model. There are other factors that could limit the
performance of the model to reproduce observed LVDs such as missing critical aerosol
components in current emission inventories. We have made our best effort to improve the
results by, e.g., using aerosol composition measurements to correct modeled aerosol
concentrations. We have revised the manuscript accordingly to indicate these potential
issues in modeling LVDs.

b) This paper is too long, with 9 tables and 10 figures. The readers don’t need to know so
many details. So I suggest shortening this paper quite a lot. In my view, these figures and
tables can be moved to the supplement. Table 1. You can just mention it in the text. Table
3. You can cite the website where the readers can find the information here. Table 5-8.
Try to move some of them to the supplement. Too many details will distract the readers.
Figure 6. The readers are lost when they find so much information in this figure. Figure
8-10. Yes, the machine learning techniques used here are very fancy, but they are not the
key points of this paper. There is no need to display three figures to illustrate your ML
results. Abstract. This is a really long abstract. I suggest shortening it.

The reviewer’s point has been well received. We have shortened the paper in the revised
manuscript. Table 1 has been removed. Table 3, Fig. 7 and Fig. 9 have been moved to
the supplementary material. We would like to keep Fig. 6, Fig. 8 and Fig. 10 in the
revised manuscript to support the points that we discuss in the paper. We have shortened
the abstract in revised manuscript.



Lee, H. H,, Bar-Or, R. Z., and Wang, C.: Biomass burning aerosols and the low-
visibility events in Southeast Asia, Atmos. Chem. Phys., 17, 965-980,
10.5194 /acp-17-965-2017, 2017.
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Abstract
Severe haze events in Southeast Asia caused by particulate pollution have become

more intense and frequent in recent years;-degrading-airquality,threatening human

-. Widespread biomass burning

hand;occurrences and particulate pollutants from human activities other than biomass

burning alseboth play an-important releroles in degrading air quality in Southeast Asia. In
this study, numerical simulations have been conducted using the Weather Research and
Forecasting (WRF) model coupled with a chemistry component (WRF-Chem) to
quantitatively examine the contributions of aerosols emitted from fire (i.e., biomass burning)
versus non-fire (including fossil fuel combustion, and road and-industrial-dust;landuse-and
land-change, etc.) sources to the degradation of air quality and visibility over Southeast
Asia. These simulations cover a time period from 2002 to 2008 and svereare respectively
driven by emissions from: (a) fossil fuel burning only, (b) biomass burning only, and (c)
both fossil fuel and biomass burning. —AeressASEAN-50-¢ities;—theseThe model results
reveal that 39% of observed low visibility days can be explained by either fossil fuel
burning or biomass burning emissions alone, a further 20% by fossil fuel burning alone, a

further 8% by biomass burning alone, and a further 5% by a combination of fossil fuel

0,

burning and biomass burning.

analbysisAnalysis of 24-hth PM2s Air Quality Index (AQI) indicates that-comparingte-the

s; the case with coexisting fire
and non-fire PM 5 can substantially increase the chance of AQI being in the moderate or

unhealthy pollution level from 23% to 34%. The premature mortality among major
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Southeast Asian cities due to degradation of air quality by particulate pollutants is estimated
to increase from ~4110 per year in 2002 to ~6540 per year in 2008. In addition, we
demonstrate the importance of certain missing non-fire anthropogenic aerosol sources
including anthropogenic fugitive and industrial dusts in causing urban air quality
degradation. = An—expleratory experiment of using machine learning algorithms to
fereeastingforecast the occurrence of haze events in Singapore is also demenstratedexplored
in this study. All these results suggest that besides minimizing biomass burning activities,
an effective air pollution mitigation policy for Southeast Asia needs to consider controlling

emissions from non-fire anthropogenic sources.

1 Introduction

Severe haze in Southeast Asia has attracted the attention of governments and the
general public in the-recent years due to its impact on local economy, air quality, and public
health (Miettinen et al., 2011; Kunii et al., 2002; Frankenberg et al., 2005; Crippa et al.,
2016). Widespread biomass burning activities are one of the major sources of haze events in
Southeast Asia. Our previous study demonstrated that biomass burning aerosols contributed
to up to 40-60% of haze events in the major cities of Southeast Asia during 2003-2014 (Lee
et al.,, 2017). On the other hand, biomass burning in Southeast Asia could impact climate
through emissions of both carbon dioxide (COz) (van der Werf et al., 2009) and particulate
matter — the latter has a substantial impact specifically on regional climate features including
the spatiotemporal distribution of precipitation and energy budgets (Wang, 2004, 2007).

Regarding the impact of biomass burning aerosols on public health, a recent study based
on the health model in the United States (U.S.) has estimated the number of deaths resulting

from black carbon (BC) to be more than 13,500 in 2010 (Li et al., 2016). Considering that
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both the ambient concentration of particulate matter and overall population in Southeast
Asia are higher than those of the U.S., a worse scenario in the region could thus be
foreseeable. In fact, a few studies quantifying the consequences of aerosols on human
health in Southeast Asia have already suggested taking necessary measures to reduce
biomass burning and deforestation in order to prevent related public health issues (Marlier et
al., 2013). However, as important as biomass burning pollution may be, it is not the only
source of particulate pollution in Southeast Asia. Indeed, aerosols emitted from fossil fuel
burning alongside other non-biomass burning human activities, as indicated in our previous
study (Lee et al., 2017), also contribute significantly to air quality degradation.

Particulate pollutants from human activities other than biomass burning in Southeast
Asia include species both locally produced and brought in from neighboring regions by
long-range transport. Fossil fuel emissions in Southeast Asia have increased significantly in
recent years, especially in areas where energy demands are growing rapidly in response to
economic expansion and demographic trends (IEA, 2015). Therefore, advancing our
understanding of the respective contributions of aerosols from fire (i.e., biomass burning)
versus non-fire (including fossil fuel combustion, road and industrial dust, land use, and land
change, etc.) activities to air quality and visibility degradation has become an urgent task for
developing effective air pollution mitigation policies in Southeast Asia.

In this study, we aim to examine and quantify the impacts of fire and non-fire aerosols
on air quality and visibility degradation over Southeast Asia. Three numerical simulations
have been conducted using the Weather Research and Forecasting (WRF) model coupled

with a chemistry component (WRF-Chem), which is a sophisticated regional weather-

chemistry model, driven respectively by aerosol emissions from: (a) fossil fuel burning only,

(b) biomass burning only, and (c) both fossil fuel and biomass burning. By comparing the
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results of these experiments, we examine the corresponding impacts of fossil fuel and

biomass burning emissions, both separately and combined, on the air quality and visibility

of the region. We also use available is-situ measurements to evaluate and correct model

results for providing a better base for further improvement of particularly emissions over the

region. Beyond the traditional process models such as WRF-Chem, we also experiment

using machine learning algorithms to identify suitable conditions for haze based on

historical data and hence to forecast the likelihood of the occurrence of such events in this

study.

We firstly describe methodologies adopted in the study, followed by the results and
findings from our assessment of the relative contributions of fire and non-fire aerosols in
degrading air quality and visibility over Southeast Asia. We then discuss the uncertainty of
current emission inventories alongside the results from an exploratory experiment of using
machine learning algorithms to fereeastingforecast the occurrence of haze events in several

major cities in Southeast Asia. The last section summarizes and concludes our work.

2 Methodology
2.1 Observational data
2.1.1 Surface visibility

The observational data of surface visibility from the Global Surface Summary of the
Day (GSOD) (Smith et al., 2011) are used in our study to identify the days with low
visibility due to particulate pollution, i.e., haze events. The GSOD is derived from the
Integrated Surface Hourly (ISH) dataset and archived at the U.S. National Climatic Data

Center (NCDC). The daily visibility data are available from 1973 onward.
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2.1.2 Particulate matter (PM1o)

The surface concentrations of particulate matter with sizes smaller than 10 um (PMjo;
measured in ug m~) in Malaysia are derived from the Air Quality Index (AQI; named Air
Pollutant Index or API in Malaysia) records obtained from the website of Ministry of
Natural Resources and Environment, Department of Environment, Malaysia
(http://apims.doe.gov.my/public_v2/home.html). When PMi¢ is reported as the primary
pollutant with a maximum pollutant index, the 24-hth PMjo concentrations are calculated
from AQI based on the equations in Table S1 (Malaysia, 2000). Data from 51 AQI
observation stations are available in Malaysia from October 2005 onward. AQI number is
reported twice daily (11 AM and 5 PM local time), and the data reported at 11 AM are used

in this study.

2.1.3 Carbon monoxide (CO) and ozone (O3)

Fhe-surfaceSurface mole fractions of CO and O3 are ebservedfrommeasured by the
World Meteorological Organization (WMO) Global Atmosphere Watch (GAW) station in
Bukit Kototabang, which is located on the island of Sumatra, Indonesia. Hourly data are
archived at the World Data Center for Greenhouse Gases (WDCGG) under the GAW

program (http://ds.data.jma.go.jp/gmd/wdcgg/).

2.1.4 Crustal matter and residual matter

The Surface PARTiculate mAtter Network (SPARTAN) is a network of ground-based
measurements of fine particle concentrations (http://spartan-network.weebly.com/)
(Snider et al., 2016; Snider et al., 2015). Available data in the SPARTAN network include
hourly PM»s concentrations and certain compositional features (Table S2). Crustal

mattermatters and residual mattermatters, which are mainly organic components, from
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filtered PM> s samples are used in this study to fill the gap in modeled PM, s created by the
missing anthropogenic dustacrosol in emission inventory (Philip et al., 2017)._ The four
operational SPARTAN sites in Southeast Asia are Bandung (Indonesia), Hanoi (Vietnam),

Manila (PhitippinePhilippines), and Singapore (Singapore).  The chemical components of

PMb> s in each city are presented in Fig. S1.

2.2 The model

WRF-Chem version 3.6.1 is used in this study to simulate trace gases and particulates
interactively with the meteorological fields using several treatments for photochemistry and
aerosols (Grell et al., 2005). We selected the Regional Acid Deposition Model; version 2
(RADM2) photochemical mechanism (Stockwell et al., 1997) coupled with the Modal
Aerosol Dynamics Model for Europe (MADE), which includes the Secondary Organic
Aerosol Model (SORGAM) (Ackermann et al., 1998; Schell et al., 2001), to simulate
anthropogenic aerosols evolution in Southeast Asia. MADE/SORGAM uses a modal
approach (including Aiken, accumulation, and coarse modes) to represent the aerosol size
distribution, and predicts mass and number for each aerosol mode. The numerical
simulations are employed within a model domain with a horizontal resolution of 36 km,
including 432 x 148 horizontal grid points (Fig. 1), and 31 vertically staggered layers based
on a terrain-following pressure coordinate system. The-domain—ceovers-an—areafromthe

Indian OceantoThe Mellor-Yamada-Nakanishi-Niino level 2.5 (MYNN) (Nakanishi and

Niino, 2009) is chosen as the planetary boundary scheme in this study. By using a vertical

coordinate that is stretched to have higher resolutions inside the planetary boundary layer.

the model has about 4-5 vertical layers inside the planetary boundary layer with a vertical

resolution of ~30 m near the surface. The domain covers an area from the Indian Ocean to

the Western Pacific Ocean in order to capture the Madden-Julian Oscillation (MJO) pattern.
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The time step is 180 seconds for advection and physics calculation. The physics schemes

-in_the simulations include Morrison (2

moments) microphysics scheme (Morrison et al., 2009), RRTMG longwave and shortwave

radiation schemes (Mlawer et al., 1997: Iacono et al.., 2008), Unified Noah land-surface

scheme (Tewari et al., 2004), and Grell-Freitas ensemble cumulus scheme (Grell and

Freitas, 2014). The initial and boundary meteorological conditions are taken from the U.S.
National Center for Environment Prediction FiNaL (NCEP-FNL) reanalysis data (National
Centers for Environmental Prediction, 2000), which has a spatial resolution of 1 degree and
a temporal resolution of 6 hours. Sea surface temperatures are updated every 6 hours in
NCEP-FNL. All simulations used a four-dimensional data assimilation (FDDA) method to
nudge NCEP-FNL temperature, water vapor, and zonal as well as meridional wind speeds

above the planetary boundary layer-(PBL)-.

2.3 Emission inventories

The Regional Emission inventory in ASia (REAS) version 2.1 (Kurokawa et al., 2013)
is a regional emission inventory for Asia, including monthly emissions of most major air
pollutants, e.g., black carbon (BC), organic carbon (OC), sulfur dioxide (SO2), nitrogen
dioxide (NO2), and greenhouse gases between 2000 and 2008. The spatial resolution of
REAS is 0.25 x 0.25 degrees, covering East, Southeast, South, and Central Asia and the
Asian part of Russia (Russian Far East, Eastern and Western Siberia, and the Ural). The
area coverage of REAS is from 60°E to 160°E in longitude and from 10°S to 50°N in
latitude, which is smaller than our domain configuration. For this reason, we use the
Emissions Database for Global Atmospheric Research (EDGAR) version 3.2 (the year 2000
emission) (Olivier et al., 2005) and version 4.2 (the year 2005 emission)

(http://edgar.jrc.ec.europa.eu) to complement the emissions over areas outside REAS
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coverage. The emission coverage of REAS and EDGAR in our simulated domain is

presented in Fig. 1. We have compared the modeled results using REAS versus EDGAR

emission inventories in a set of one-year paired simulations: the differences between these

two model runs are rather limited regarding aerosol-related variables (Table S3). After

considering high spatiotemporal resolution of REAS emission inventory and the comparison

results, we decided to use REAS in this study. In addition, a detailed comparison of REAS

with other emission inventories in Southeast Asia was also presented by Kurokawa et al.

(2013).

The Fire INventory from U.S. National Center for Atmospheric Research (NCAR)
version 1.5 (FINNv1.5) (Wiedinmyer et al., 2011) is also used in the study to provide fire-
based emissions. FINNvVL1.5 classifies burnings of extra-trepiealextratropical forest, topical
forest (including peatland), savanna, and grassland. The daily data are available from 2002
to 2014 with a 1 km spatiotemporal resolution. FINNv1.5 emission inventory also includes
the major chemical species (e.g., BC, OC, SOz, CO, and NO2) from biomass burning. A
modified plume rise algorithm in WRF-Chem, specifically for tropical peat fire, is described
in Lee et al. (2017).

Compared towith fossil fuel emissions, biomass burning emissions vary in space and

time (Fig. S+S2). However, regarding long-term impact, both emissions are important to
regional air quality in Southeast Asia (Table 21). BC from biomass burning emissions, for
example, has significant inter-annual and inter-seasonal variabilities due to the Southeast
Asia monsoon and the El Nifio-Southern Oscillation (ENSO) (Lee et al., 2017; Reid et al.,
2012), but total BC emissions are equally contributed by fossil fuel and biomass burning

sources (Table 21).
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2.4 Numerical experiment design

Three numerical simulations are proposed to investigate the impacts of fire and non-fire
aerosols on regional air quality and visibility in Southeast Asia. Among these three runs, the
fossil fuel emissions only (FF) simulation and the biomass burning emissions only (BB)
simulation are designed to aeeessassess the impact of stand-alone non-fire and fire aerosols,
respectively. The simulation combining both fossil fuel and biomass burning emissions
(FFBB) is to demonstrate the impacts of both types of aerosols; it is also closer to real world
case than the two other runs. Based on available years of emission inventories, each of these

runs lasts 7 years (i.e., from 2002 to 2008).

2.5 Deriving “Low Visibility Day” (LVD) caused by particulate pollution
According to Visscher (2013), a visibility reading lower than 10 km is considered a

moderate to heavy air pollution event by particulate matter. As in Lee et al. (2017), we

define a “low visibility day (LVD)” when the daily-mean surface visibility is lower or equal

to 10 km:, not including misty and fog days. The modeled visibility is calculated based on

the extinction coefficient of the externally mixed aerosols, including BC, OC, sulfate (SO4%")
and nitrate (NO3"), as a function of particle size, by assuming a log-normal size distribution
of Aitken and accumulation modes. Note that all these calculations are computed for the
wavelength of 550 nm. To make the calculated visibility ef-thebased on modeled aerosols
better match the reality, we have-also eonsideredconsider the hygroscopic growth of OC,
sulfate, and nitrate in the calculation based on the modeled relative humidity (Kiehl et al.,
2000; Lee et al., 2017).

Our focus in this study is to first identify LVDs and then to determine whether fire or

non-fire aerosols alone, or in combination, could cause the occurrence of these LVDs. As a

10
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reference, the observed low visibility days wereare identified and the annual frequency in
every year for a given city wereare also derived by using the GSOD visibility data. Then,
the modeled low visibility days svereare derived following the same procedure. Using these
results and based on the logical chart in Fig. 2, the major particulate source (FF, BB or
FFBB) that caused the occurrence of observed LVDs wereare determined. Here, Type 1
LVD represents the cases where either fire or non-fire aerosols alone can cause the observed
LVD to occur. Type 2 means that non-fire aerosols are the major contributor to the

observed LVD. Type 3 is

ymeans that fire aerosols_are the

major contributor to the observed LVD. Type 4 represents the cases where the observed
LVD is induced by coexisting fire and non-fire aerosols. The observed LVDs that the model

cannot capture are classified as Type 5.

2.6 Air Quality Index (AQI)

The Air Quality Index is established mainly for the purpose to provide easily
understandable information about air pollution to the public. The original derivation of AQI
in the U.S. is based on six pollutants: particulate matter (PMio), fine particulate matter
(PM3.5), sulfur dioxide (SOz), carbon monoxide (CO), ozone (O3), and nitrogen dioxide
(NO2). Each pollutant is scored on a scale extending from 0 through 500 based on the
corresponding breakpoints, and then the highest AQI value is reported to the public. In this
study, we focus on the AQI derived from modeled 24-k+h PM> sand 9-h+h O3. Note that the
original AQI is derived by using 8-k+h O3. Due to the 3-h+h output interval of simulated O3,
we use the 9-hrh O3 level instead in this study.  An index /, for pollutant p is calculated by

using a segmented linear function that relates pollutant concentration, Cp:

Igi—ILo
I, = 2= (C, — Byy) + I, (1

BHi—BLo

11
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where By; is the upper breakpoint of C, satset category and By, is the bottom breakpoint of
C, sat category in Table 3S4. Iy; and /1, are the AQI values corresponding to By; and Bro,
respectively. For example, when the 24h-h#24-h PM, s concentration is 20 pg m™, Bui, Bro,
I, and I, are 12,1, 35.4, 51 and 100, respectively. Then, we selected 24-k+h PM, 5 and the
maximum 9-krh O3 AQI value in one day to represent daily AQI for PMa2s (AQIpm2.5)) and

03 (AQI(03)), respectively.

2.7 Health Impact Assessment (HIA)

Previous observations have revealed significantly higher PM2 s concentrations in the
cities of Southeast Asia than those in America and Europe (WHO, 2016), implying that the
concentration-response functions (CRFs) derived from the latter places may not be directly
applicable to Southeast Asia. In this study, we adaptedadapt CRFs in Gu and Yim (2016) to
estimate the annual number of premature mortalities due to ambient PM2 5 concentration in
the corresponding region. The relative risk (RR) of four causes of death, including chronic
obstructive pulmonary disease, ischemic heart disease, lung cancer, and stroke, when
compared with annual incident rate, have been assessed separately. Such risks swereare
described by a log-linear relationship with the corresponding PMazs concentration level

(Burnett et al., 2014). The basic form of RR formulas is provided as follows:
§
RR=1+a-{1—exp[—B(xj—xo) ]} @)

where X; and X, are the particulate pollutant concentrations (ug m?) in the target cities and
the threshold value below which no additional risk is assumed to exist, respectively. Here
we present the uncertainty range of threshold value between 5.8 ug m3and 8.8 ug m>in a

triangular distribution, as suggested by the GBD 2010 project (Lim et al, 2013).

12
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Epidemiological results are not always available in Southeast Asia. To capture both
climbing and flattening out phases of CRFs curves suitable for Southeast Asia region, we
fittedfit parameters a, 5, and ¢ in CRFs by the epidemiological samples in the East Asian
cities based on Gu and Yim (2016) for China, where PM> 5 concentration has a comparable

level to that in Southeast Asia.

The form of integrated CRF is calculated by the following formula:
E =%;(RR; —1)/RR; - P; - f;, 3)

where P refers to the population in the researched cities from 2002 to 2008, retrieved from
statistics in their respective countries (DSM, 2010; NSCB, 2009; NSOT, 2010; CSOM,
2010; GSOV, 2009; DSS, 2008, 2016; NISC, 2013; BPS, 2009). f denotes the baseline

incident rate above 30 years of age (WHO, 2017).

3 Results

3.1 Model evaluation
Multiple ground-based observations are used in this study to evaluate the model’s
performance particularly in simulating aerosol and major gaseous chemical species such as

ozone and carbon monoxide. PMazs observations in Southeast Asia are very limited;

. _Even in Singapore, observed PM» s data

=) J

are only available after 2014 for the general public and research community to access.

Therefore, PM1o concentrations derived from AQI in Kuala Lumpur (Malaysia) are used to
present the variation of particulate matter during haze and non-haze seasons. Comparing
with the observations, the model accurately predicted PMio concentration, especially during

haze seasons (July to October) (Fig. 3a);): however, it produced a systematic negative bias

13
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of 20 ug m™ in background PM o concentration during non-haze periods. This discrepancy
between modeled and observed background PMo concentration could come from either the
relatively coarse resolution of the model or the underestimation of primary aerosol—e/
aerosol precursor emissions, or both. Philip et al. (2017) indicated that most global emission
inventories do not include anthropogenic fugitive, combustion, and industrial dust (AFCID)
from urban sources, typically including fly ash from coal combustion and industrial
processes (e.g. iron and steel production, cement production), resuspension from paved and
unpaved roads, mining, quarrying, and agricultural operations, and road-residential-
commercial construction. In their study, they estimated a 2— - 16 pg m3 increase in fine
particulate matter (PMa.5s) concentration across East and South Asia simply by including

AFCID emission. We also find that the major component of PMb>s particles from the

filtered samples of SPARAN observational network is residual materials, which are mainly

organic matters (Snider et al., 2016) (Fig. S1). All of these analyses show the incompletion

in the current emission inventories. In addition to PMio data, we have also used observed

surface visibility to evaluate model performance. As mentioned in Sect. 2.5, the modeled
visibility values are derived from the extinction coefficient of the externally mixed aerosols
and simulated fine particulate concentrations. As shown in Fig. 4, the model correctly
predicted about 40% observed low-visibility events during the fire seasons, while 60% miss-
captured low-visibility events are mainly due to the missing AFCID. The details of this are

discussed in Sect. 4.1= Additional uncertainty analysis of modeled LVDs by using a method

for dichotomous (yes or no LVDs) cases is presented in Sect. S1 of the supplementary

material. On the other hand, the model has overestimated the visibility range for many cases

with observed visibility lower than 7 km. Such an-underestimatea result is likely due to the

36-km model resolution used in the study, which could be too coarse to resolve the typical

14
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size of air plumes containing high concentration of fine particulate matters. The detailed

discussion of potential uncertainty factors of modeled visibility, including meteorological

datasets, fire emission inventories, and the model resolution can be found in Lee et al.

(2017).

The observed CO and Os levels #from the only WMO GAW station in the region,

Bukit Kototabang, Indonesia (West Sumatra) are used to evaluate the model performance in
simulating gas phase chemistry. Fossil fuel and biomass combustions and biogenic
emissions are among the major sources of CO in the region, while O3 production is mainly
resulted—from photochemical reactions of precursors such as nitrogen oxides, volatile
organic compounds, and CO, largely from anthropogenic emissions. Due to itsthe
geographic location, the primary source of CO in Bukit Kototabang is from biomass burning,
andhence high CO levels-henee occur during fire seasons (Fig. 3b). The model accurately
captured observed CO levels during the simulation. Medel-simulated-evolution-of volume
20-ppbv-en-average{(34-8+=10-1versus13-4+6-1-ppbw-(Fig—3e) Model simulated evolution

of volume mixing ratio of O3 also matches observations very well, though with a positive

bias of about 20 ppbv on average (34.8 versus 13.4 ppbv) (Fig. 3¢). We notice that NOy

emission is higher in REAS emission inventory comparing with other emission inventories

and studies (Kurokawa et al., 2013). The boundary condition of WRF-Chem also sets the

background surface ozone quite high (30 ppbv). Both could lead to the overestimated

background ozone in the model.
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3.2 Fire- and non-fire-caused LVDs in fourthree selected cities and-over—the

Based on the logical chart shown in Fig. 2, we can use the modeled results to classify

observed LVDs into 5 types of events with different main aerosol sources. In Bangkok,
there are about 165414 LVDs{(45+4%) per year during 2002-2008 based on observations.
Modeled results suggest that about 60% of these LVDs can be brought by either fire or non-
fire aerosols (the sum of Type 1, Type 2, and Type 3 in Fig. 2; see Table 42). Generally
speaking, fire and non-fire aerosols contribute equally towards the haze events occurring in
Bangkok. A more interesting finding is that 11£4% of LVDs need a combination of both
fire and non-fire aerosols to occur (Type 4). This highlights the importance of fire aerosols
in worsening air quality of otherwise moderate haze conditions under the existing suspended
non-fire aerosols. Overall, the model missed about 29+5% of LVDs of Bangkok during the

simulation period.
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Haze occurs slightly less frequently in Kuala Lumpur than Bangkok. There are about
104+51 LVDs-(29+14%) per year in Kuala Lumpur during 2002-2008. Thirty-six percent of
these LVDs are caused by either fire or non-fire aerosols; while 154+6% of the LVDs need a
combination of both aerosol sources to form haze (Table 42). Our study shows that non-fire
aerosols are capable of causing of 28% of LVDs occurring in Kuala Lumpur, even in the
absence of fire aerosols. Once we include the impact of fire aerosols, the model can capture
an additional 23% of LVDs, of which most are Type 4 case. Overall, fire and non-fire
aerosols make similar contributions to observed LVDs in Kuala Lumpur.

In Singapore, there are about 50-=t4 LVDs (14+4%)-per year during 2002-2008. The
contribution of non-fire aerosols to LVDs is about 8%. Compared tewith the additional
25% of LVDs owing to fire aerosols, the contribution of non-fire aerosols to LVDs is small
in Singapore. However, the model failed to capture a high percentage of LVD cases in both
Kuala Lumpur (49+26%) and Singapore (67-2+%) (Type 5; see Table 42). As discussed in
Sect. 3.1, missing AFCID in the emission inventory could explain why the model failed to

capture the LVDs in these two sites. Further discussion is presented in Sect. 4.+

3.3 Fire- and non-fire-caused LVDs over the whole Southeast Asia

By comparing the annual mean PMjs concentration in 50 Association of Southeast

Asian Nations (ASEAN) cities between three simulations, we identify that there are 13

ASEAN cities receiving more than 70% PMo» s concentration from non-fire sources, while

other 10 ASEAN cities where fire aerosols are the major (more than 70%) component of

PM, s (Fig. 5). Note that although fire aerosols are the major component of annual mean

PMb> s concentration in these latter 10 ASEAN cities, the influence period of fire aerosols

normally is only about 3 to 5 months. The rest of the ASEAN cities are essentially

influenced by coexisting fire and non-fire aerosols. Note that the sum of PMys
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concentrations in FF and BB is not necessarily equal to the PM>.s concentration in FFBB in

any given city due to non-linearity in modeled aerosol processes.

The annual mean LVDs among 50 ASEAN cities is 192+8 days (53+2%)-during 2002-
2008. Applying the logical chart described in Fig. 2 to analyze cases of each of these
ASEAN cities, we find that by considering aerosols emitted from non-fire emissions alone,
about 59% of observed LVDs can be explained, whereas considering fire aerosols adds an
additional 13% of LVDs. Conversely, by considering aerosols emitted from fire alengalone,
about 47% of observed LVDs can be explained, whereas adding non-fire aerosols adds an
additional 25% of LVDs. Twe-eight—pereentAbout 28% of observed LVDs remains
unexplained. In general, non-fire aerosols appear to be the major contributor to LVDs in

these cities.

3:33.4 Impacts of ozone and PM> 5 on air quality and human health

Similar to PM2s, O3 also brings public esrneeras-health besides air quality issues (Chen
et al., 2007). Previously; in Sect. 3.1, we have discussed that the model systematically
overestimated O3 volume mixing ratio by 20 ppbv comparing tewith observations.
Overestimated 9-hrh O3 willcould lead to a mistakenly derived high AQI03). Nevertheless,
the relative differences of AQI(3) between various model simulations can still provide
useful information of the relative contributions of fire and non-fire emissions, either alone or
in combination, on air quality and potentially human health.

We find that modeled 9-h#h O3 in Bangkok from non-fire emissions (FF) alone
triggered 19% of daily AQI(03) to reach moderate and unhealthy pollution level during 2002-
2008, while fire emissions (BB) alone can only trigger 3% of such situatiensituations (Table
53). In comparison, combining fire and non-fire emissions as derived from the simulation of

FFBB can cause 33% of daily AQI3) to reach moderate and unhealthy pollution
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levellevels. In Kuala Lumpur and Singapore, O3 is not the major source for air quality
degradation, where fire or non-fire emissions alone can seldom cause O3 levels to reach
even moderate pollution levels. For example, in the FF simulation, only 5% of daily AQI03)
readings in Kuala Lumpur and 1% in Singapore reached moderate pollution levels. Again,
the majority of the high AQI(03) cases result from combining fire and non-fire emissions
(FFBB) (Table 53). Overall, non-fire emissions alone only cause 6% of daily AQI03) to
reach moderate pollution levels in 50 ASEAN cities, whereas about 12% of moderate and
unhealthy pollution cases resulted from the combined effect of fire and non-fire emissions.
We find that in Southeast Asia, PMas actually plays a more important role than O3 in
causing high AQI cases. In Bangkok, PMa s resulted in 37% and 33% high daily AQIpm2.5)
cases in FF and BB simulation, respectively (Table 64). Among these, three times more
cases with daily AQIpm2.5) reaching unhealthy levels can be attributed to PMz s from BB
than those from FF (Table 64). However, the unhealthy levels caused by fire aerosols alone
still occur relatively infrequently in Bangkok, Kuala Lumpur, and Singapore. In Bangkok, a
city with an 8 million population, persistent aerosol emissions from non-fire sources, aided
by seasonal fire aerosols, cause almost two-thirds of daily air quality readings te-reachthat
reached moderate or unhealthy pollution levels. Kuala Lumpur and Singapore also have
48% and 22% bad air quality days during 2002-2008, respectively (Table 64). Examining
24-hrh PM2s AQIem2s) among 50 ASEAN cities shows that non-fire aerosols alone
contribute to moderate to unhealthy pollution levels 2.6 times more often than fire aerosols
alone (23% versus 9%). Compared to the modeled results in FF, PM> s in FFBB increases
10% more bad air quality to moderate and unhealthy pollution level (Table 64). This result

is consistent with the findings in Sect. 3.23.
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We have exanimated the health impacts due to PM>s in 50 ASEAN cities using the
method described in Sect. 2.7 and the results show that the top three cities for premature
mortality caused by particulate pollution are Jakarta (Indonesia), Bangkok (Thailand), and
Hanoi (Vietnam) with 910, 10761080, and 624620 premature mortalities per year,
respectively (Fig. 6). The premature mortality in Jakarta is mainly due to exposure to PM2s
particles emitted from non-fire emissions (95%), the same situation as in Hanoi (80%).
However, in Bangkok, the health impact due to fire and non-fire aerosols are equally critical
(Figs. S2S3 and S3S4). In general, owing to the increasing trend of non-fire emissions
during the analysis period, the premature mortalities due to PM2s emitted from non-fire
sources have increased with time in most ASEAN cities (Fig. $2S3). Besides this, higher
fire aerosols levels in Sumatra and Borneo in 2002, 2004 and 2006 also inereasedincrease
the number of premature mortalities in cities such as Kuching, which swereare exposed to

particulate matters from these burning events (Figs. 6 and S3)——S54).

3-4—TheAdditional discussion of the impact of fire and non-fire aerosols on

regional climate
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4 Impact of missing components in the emission inventories on

modeled results

In this study, we have noticed that the simulated PM; s concentrations in Singapore are
often lower than the observations of the National Environment Agency of Singapore
(https://data.gov.sg/dataset/air-pollutant-particulate-matter-pm2-5) (6.1 pg m versus 20.3

3 in annual mean during 2002-2008). Owing to the lower simulated PMas

pg m
concentration in Singapore, the model could not capture many observed LVDs (Table 42)

and consequently underestimated AQI levels resulting from PM>s. As mentioned before,

Philip et al. (2017) have pointed out that global atmospheric models can produce a 2— - 16

pg m> underestimation in fine particulate mass concentration across East and South Asia

stand most current global emission inventories
indeed either do not include anthropogenic fugitive and industrial dusts, or substantially
underestimate the quantities of these emissions (Klimont et al., 2016; Janssens-Maenhout et
al., 2015). The fugitive dust sources, such as road and construction dust, in most major
cities in Southeast Asia are apparently not well represented in the emission inventory used in
our study. To correct these systematic underestimates, we have used crustal matter and
residual matter from filtered-SPARTAN PM, s measurements as the reference to fill in the

modeled PM>s for the missing anthropogenic dust—eempenentacrosol components.

Excluding the high concentration samples during the fire haze events, the mean

concentration of crustal matter and residual matter is 25.8 pg m> in Hanoi, 10.4 pg m> in
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Singapore, 18.1 pg m in Bandung, and 9.2 pg m> in Manila. We then added these values
as theadditional anthropogenic dustacrosol components in modeled aerosol abundance to
recalculate modeled visibility and AQIpm2.5). Table 75 shows the calculated percentage of
LVDs caused by various aerosol types in Fig. 2 before and after the above correction.
Adding the missing anthropogenic dustacrosol component based on in-situ
measurement in the modeled results can reproduce 98% of observed LVDs in Hanoi (an
increase from 79%). Because the missing anthropogenic dustsaerosols are included in non-
fire aerosols, LVDs in Type 1 and Type 2 are heavily weighted in the new result. The
results also show the LVDs in Hanoi are mainly caused by non-fire aerosols and the
contribution of fire aerosols is relatively small. Adding the missing anthropogenic
dustaerosol components also reduced the number of missing LVDs events from 67% to 20%
in Singapore. Differing from Hanoi, not only Type 2 LVDs but also Type 4 LVDs increased
after introducing the missing anthropogenic dustsacrosols in Singapore, implying that the
fire and non-fire aerosols are equally important in causing LVDs there. After applying the
correction, non-fire aerosols alone can explain 30% LVDs while coexisting fire and non-fire
aerosols can explain 40% LVDs in Singapore (Table 75). Note that the mode of the
distribution of observed visibility in Singapore is around 11 km. Therefore, when fire
occurs in the surrounding countries, even a moderate addition to the aerosol abundance from
fire can worsen visibility to reach a low visibility condition (visibility < 10 km). Because of
the poor data quality of observed visibility in Bandung (only less than 10% observations are

available), introducing the missing anthropogenic dustacrosol components did not help to

characterize the major aerosol contribution. In Manila, the number of missed LVDs in the
model reduced 35% while Type 2 and Type 4 LVDs increased 26% and 9%, respectively,

after introducing the missing anthropogenic dusts.acrosol components. Nevertheless, even

23



F41

542
543
544
545
546
547
548

549

550

551

552

b53

554

555

556

b57

b58

559

560

561

after adding the missing anthropogenic dusts-inaerosols to the non-fire aerosol category, the
model still missed 57% of LVDs in Manila. This is mainly because the model did not
capture many fire events in that area, likely due to underestimation of fire emissions in the

emission inventory.

Besides LVDs, the missing anthropogenic dustsacrosols also substantially affect the
modeledmodeled AQIpm2.5). Table €6 shows the frequency of various AQIpm2.5) levels
calculated respectively with and without the missing anthropogenic dustsacrosol

components in Hanoi, Singapore, Bandung, and Manila. After considering the missing

anthropogenic dustsacrosol components, modeled air pollution levels in Hanoi and Bandung
persistently reach the moderate or unhealthy pollution levels. In Singapore, modeled
frequency of moderate and unhealthy cases also increase from 22% to 66%, and in Manila
from 8% to 36%. Furthermore, the number of premature mortalities in Singapore and
Manila increases significantly from 0 to 230 and 428130, respectively (Table 97). These

results indicate the importance for models to include anthropogenic fugitive and industrial

dustdusts in order to capture low visibility events in the region.
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425 Experiment in applying machine learning algorithms to-

predict the occurrence of PMz s caused LVDs

Traditional physical models such as WRF-Chem are developed based on equations

describing  fluid dynamics, physical processes, and chemical reactions;—and—mass

conservation—equations— to link these processes on different scales and to predict
consequences resulting from circulation and physiochemical process evolutions. However,
various parameterizations, and numerical as well as input data errors can all lead to the
uncertainty of model prediction. Specifically, for the task of forecasting the occurrence of
haze events (i.e., LVDs), using these models is nearly impossible due to the lack of real-time
emission estimates to drive aerosol chemical and physical processes. On the other hand,
Maehine-Learning(MIymachine learning algorithms permit interpretation of large quantity
of complex historical data based on computer analyses, and this capacity of MEmachine
learning seems promising for us to derive suitable conditions for hazes from historical data
and hence to forecast the likelihood of the occurrence of such events.

Here—weWe hence experiment using the so-called supervised learning skill that trains
or optimizes a machine to produce the outcomes based on input data (or features) as close as

possible to known results; or gaining an accuracy as high as possible. In our experiment, we
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have applied 6 different MEmachine learning algorithms, including Nearest Neighbors
(Pedregosa et al., 2011), Linear Support Vector Machine (SVM) (Schélkopf and Smola,
2002), SVM with Radial Basis Function Kernel (non-linear SVM) (Scholkopf et al., 1997;
Quinlan, 1986), Decision Tree (Quinlan, 1986), Random Forest (Breiman, 2001), and
Neural Network (Haykin et al., 2009), to reproduce past visibility patterns or to predict haze
occurrence. Through the supervised learning procedure, we have also examined the
importance of each input variable. These MEmachine learning machines are trained for
predicting LVDs at three airports in Singapore reporting to the GSOD, i.e., Changi, Seletar,
and Paya Labar. All the input data or features are listed in Table S2S5. Data are available
from 2000 to 2015 at Changi and Paya Labar but only between 2004 and 2015 at Seletar.

We have used several different classifications in the training. The first one uses two
classes, corresponding to haze (visibility lower or equal to 10 km) and non-haze (visibility
higher than 10 km) events. Another applied 2-class classification uses 7 km instead of 10
km in identifying the haze events. In addition, a 3-class classification has also been tested,
which includes two haze classes: visibility lewerlowers than 7 km and between 10 and 7 km,
respectively. The training-testing ratio wasis set to be 60:40.

In eemparisenour study, the highest validation accuracy and Fi-score (Powers, 2011) in
any algorithm appear in the machine for Changi site, while the difference in accuracy
between each algorithm is small (Figs. 87 and 9S5). However, the accuracy for each
algorithmall the algorithms at Seletar and Paya Labar drops dramatically by about 20-30%
in 2-class classification using 10-km visibility and 3-class classification. The reason for the
best performances in Changi is likely to be the least frequency of haze events at this site
(account for only 10% of the total LVDs), in comparison, 37% and 44% of haze events

occurred at Paya Labar and Seletar during the training time period, respectively. The
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modelmachines also predietspredict non-haze events with higher accuracy than haze events
at Changi. Using severe haze (visibility < 7 km) instead of moderate haze (visibility < 10
km) to label haze event can also increase accuracy (over 80%). This could be due to the fact
that severe haze events are primarily caused by heavy biomass burnings, whose occurrence
would be well captured in the satellite hotspot input data.

Besides accuracy and Fi-score analysis, we have also used the feature importance
function in the scikit-learn Random Forest package to measure the importance of various
features (i.e. Gini importance) (Pedregosa et al., 2011). The function takes array of features
and computes the normalized total reduction of the criterion brought by that feature. The
higher the value, the more important the feature is to the forecasting machine. We find that
the hotspot counts from three fire regions are ranked consistently among the top three most
important features for most medelmachine learning predictions in all three classifications
(Fig. +08; Fig. S6 and S7). The values of importance of hotspot counts are higher than 0.15.
Analysis also suggests that “Month” is among the top five most important features in all
medelsmachines, followed by wind direction and relative humidity (Fig. +08), implying that
besides fire hotspot, seasonal monsoon wind patterns, wind-related weather conditions (i.e.,
SRV in Fig. 108) are also important factors in forecasting the occurrence of haze events in
Singapore. In addition, relative humidity is a critical variable for visibility (i.e., growth of
hygroscopic particles can drastically enhance the light extinction). These results are
consistent with previous studies of haze events in Singapore (Reid et al., 2012; Lee et al.,

2017).

-es-Nevertheless, previous works by Reid

et al. (2012) and Lee et al. (2017) also suggested the relationships between fire hotspot

appearance and certain weather phenomena particularly precipitation. Therefore, we are
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surprised that precipitation in the fire regions does not appear to be a significant feature for

predicting Singapore haze compared with other features in our current analysis.

56 Summary

We have quantified the impacts of fire (emitted from biomass burning) and non-fire
(emitted from anthropogenic sources other than biomass burning) aerosols on air quality and
visibility degradation over Southeast Asia, by using WRF-Chem in three scenarios driven
respectively by aerosol emissions from: (a) fossil fuel burning only, (b) biomass burning
only, and (c) both fossil fuel and biomass burning. Based-en-theThese model results from

theeesmnro e coneladorey onl that oo e ohindthe s eenmeenen 30 of

observed low visibility days (EVDs)—in 50 ASEAN cities is—aerosels—from—non-fire

to-captare-abeut by either fossil fuel burning or biomass burning emissions alone when the

coexist, a further 20% by fossil fuel burning alone, a further 8% by biomass burning alone,

and a further 5% by a combination of fossil fuel burning and biomass burning. The

remaining 28% of observed EVDslow visibility days remain unexplained, likely due to

emissions sources that have not been accounted for, Our results show that owing to the

economic growth in Southeast Asia, non-fire aerosols have become the major reason to
cause LVDs in most Southeast Asian cities. However, for certain cities including
Singapore, LVDs are likely caused by coexisting fire and non-fire aerosols. Hence, both fire

and non-fire emissions play important roles in visibility degradation in Southeast Asia.
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Furthermore, we have also used air quality index or AQI derived from modeled 9-h¢h
O3 and 24-hrh PM2 s to analyze the air quality of these-50 ASEAN cities. The results are
consistent with the visibility modeling and analysis, indicating that PM> 5 particles, primarily
those from non-fire emissions, are the major reason behind high AQIpm25) occurrence in
these Southeast Asian cities. In addition to non-fire PM> 5 stand-alone cases, coexisting fire
and non-fire PM2 5 jointly caused an increase of 11% in bad air quality events with moderate

polluted or unhealthy pollution levels (23% versus 34%). The premature mortality among

the analyzed ASEAN cities has increased from ~4110 in 2002 to ~6540 in 2008. Bangkok
(Thailand), Jakarta (Indonesia), and Hanoi (Vietnam) are the top three cities in our analysis
for premature mortality due to air pollution, with +6761080, 910, and 624620 premature
mortalities per year, respectively.

We find the reason behind the model’s miss-capturing of 28% observed LVDs averaged
over 50 ASEAN cities is largely due to a lack of inclusion of anthropogenic fugitive and
industrial as well as road dust from urban sources in the emission inventories used in this

study. _Using fitered-PM>s_chemical composition data from the SPARTAN stations in

Hanoi, Singapore, Bandung, and Manila to filledfill the missing aerosol components from
these excluded sources can drastically increase medelthe captured LVDs_ by the model in
these cities, for example, by 47% in Singapore. The improvement in LVD prediction is
especially substantial in non-fire aerosols alone cases (Type 2; from 5% to 25%) and
coexisting fire and non-fire aerosols cases (Type 4; from 14% to 40%). Including the

missing anthropogenic dustsacrosols in modeled results also increases the occurrence of

cases with moderate and unhealthy air pollution levels from 22% to 66% in Singapore. Our

study clearly demonstrates the importance of anthropogenic dustaerosols along with other

29

‘/ Formatted: Not Superscript/S ubscript




689

690

691

692

693

694

695

696

697

698

699

700

701

fugitive industrial and urban sources in air quality and visibility degradation in certain
Southeast Asian cities such as Singapore.
We have also experimented using six different machine learning algorithms to predict

the occurrence of LVDs caused by PM> s.

Neural-Netwerk—The effort is on forecasting hazes in three GSODsurface visibility

observation sites in Singapore. We find that the machine learning algorithms can predict
severe haze events (visibility < 7 km) with an accuracy greater than 80% in any statien-of
these stations. On the other hand, the accuracy is found to be sensitive to the selection of
features, labelling of outcome, and forecast sites.

The current study extends our previous effort (Lee et al., 2017) by using a model
including a full chemistry and aerosol package instead of a smoke aerosol module without
chemistry. The added model capacity provides more complete quantitative description of
physiochemical processes that allow us to better analyze the contribution of fire versus non-
fire aerosols to the regional air quality and visibility degradation. Our results show that the
majority of the population in Southeast Asian cities are exposed to air pollution that can be
mostly attributed to non-fire aerosols. On the other hand, our analysis also suggests that for
certain cities such as Singapore, severe air pollution are likely caused by coexisting fire and

non-fire aerosols. All these further complicate the options for air pollution mitigation.

67 Data availability

FINNv1.5 emission data are publicly available from

http://bai.acom.uar.edu/Data/fire/. = REAS and EDGAR emission data can be
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downloaded from https://www.nies.go.jp/REAS/ and
http://edgar.jrc.ec.europa.eu/overview.php?v=42, respectively. Malaysia API records
can be obtained from http://apims.doe.gov.my/public_v2/home.html. The observational
visibility from the GSOD can be downloaded from https://data.noaa.gov/dataset/global-
surface-summary-of-the-day-gsod. CO and O3 in WHO GAW station can be obtained
from http://ds.data.jma.go.jp/gmd/wdcgg/. Fine particle data from SPARTAN are
publicly available in http://spartan-network.weebly.com/. WRF-Chem simulated data are

available upon request from Hsiang-He Lee (hsiang-he@smart.mit.edu).
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943
944

Fable2-Mean annual emissions of BC, OC, SOz, CO and NO:z from biomass burning
emission (BB:fromFINN-emissioninventory) and fossil fuel burning emission (FF:frem

S : ission— in—Fig—1t) in the
simulated domain from 2002 to 2008. Parentheses show the percentage of emission
from fire and non-fire sources.

Units: Tg/yr BC oC SO CO NO;
BB 0.4 (50%) 4.1 (73%) 0.4 (7%) 71.6 (64%) 2.6 (37%)
FF 0.4 (50%) 1.4 (27%) 5.8 (93%) 39.9 (36%) 4.3 (63%)
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51
52
953

b54
955

956
957

TFable-42. The contribution of fire aerosols (BB), non-fire aerosols (FF), or coexisting
aerosols—(FEBB) to low visibility days (LVDs) (based on the logic chart in Fig. 2) in
Bangkok, Kuala Lumpur, Singapore, and among 50 Association of Southeast Asian Nations

(ASEAN) cities during 2002-2008.

Bangkok Kuala Singapore 50 ASEAN
Lumpur cities
FFNBB (Type 1) 22+10% 124+5% 3+4% 39+5%
FF (Type 2) 19+5% 16+16% 5+4% 20+£3%
BB (Type 3) 19+7% 8+5% 11£13% 8+2%
FF+BB (Type 4) 11+4% 15+6% 14+£8% 5+£1%
Missing (Type 5) 29+5% 49+26% 67£21% 28+2%
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1958 Table 53. The frequency of occurrence of air pollution level in Bangkok, Kuala Lumpur,
959  Singapore, and 50 Association of Southeast Asian Nations (ASEAN) cities derived using 9-
1960 hrh Ozone (03) volume mixing ratio in FF, BB, and FFBB during 2002-2008.

961

Bangkok AQI03) FF BB FFBB
Good 0-50 81£3% 97+1% 69+3%
Moderate 51-100 1742% 3+1% 2143%
Unhealthy 101-200 2+1% 0+0% 11+1%
Un;’g;lythy 201-300 00% 00% 0+0%
Hazardous  301-400 0+0% 0+0% 0+0%
Hazardous  401-500 0+0% 0+0% 0+0%
Lljr‘:fg:‘" AQI03) FF BB FFBB
Good 0-50 95+2% 100=1% 83+6%
Moderate 51-100 542% 0+1% 15+5%
Unhealthy 101-200 0+0% 0+0% 2+1%
Un:g;lythy 201-300 0+0% 0+0% 0£0%
Hazardous  301-400 0+0% 0+0% 0+0%
Hazardous  401-500 0+0% 0+0% 0+0%
Singapore AQI 03 FF BB FFBB
Good 0-50 99+1% 100£0% 94+3%
Moderate 51-100 1£1% 0£0% 542%
Unhealthy 101-200 0+0% 0+0% 141%
Un;’:;lythy 201-300 0+0% 0+0% 0£0%
Hazardous  301-400 0+0% 0+0% 0+0%
Hazardous 401-500 0+0% 0+0% 0+0%
50 ‘:itsifsAN AQI 03 FF BB FFBB
Good 0-50 94+1% 99+0% 88+2%
Moderate 51-100 6+1% 14£0% 10£2%
Unhealthy 101-200 0+0% 0+0% 2+0%
Un:g;lythy 201-300 0+0% 0+0% 0£0%
Hazardous  301-400 0+0% 0+0% 0+0%
Hazardous  401-500 0+0% 0+0% 0+0%
962
963
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D64
965

966

Table 64. Same as Table 53 but using 24-h+h PM> s concentration.

Bangkok AQIpMm25) FF BB FFBB
Good 0-50 63+6% 67+5% 3842%
Moderate 51-100 34+5% 24+3% 45+3%
Unhealthy 101-200 342% 9+4% 17+4%
Un::;fthy 201-300 0+0% 0+0% 0+0%
Hazardous 301-400 0+0% 0+0% 0+0%
Hazardous  401-500 0+0% 0+0% 0+0%
Lljﬁfz?nr AQIpwzs) FF BB FFBB
Good 0-50 73£3% 78+8% 52+7%
Moderate 51-100 27+4% 18+6% 40+4%
Unhealthy 101-200 0+0% 443% 8+4%
Un;’:;{thy 201-300 0+0% 0£0% 0+0%
Hazardous 301-400 0+0% 0+£0% 0+£0%
Hazardous  401-500 0+0% 0+0% 0+0%
Singapore AQIpm25) FF BB FFBB
Good 0-50 92+5% 92+4% 78+5%
Moderate 51-100 8+4% 6+2% 19+4%
Unhealthy 101-200 0+1% 142% 342%
Un;’:;{thy 201-300 0+0% 0+0% 0+0%
Hazardous  301-400 0+0% 0+0% 0+0%
Hazardous  401-500 0+0% 0+0% 0+0%
S0 gfif?N AQIpmzs) FF BB FFBB
Good 0-50 77£1% 90+3% 66+3%
Moderate 51-100 19+1% 7+2% 264+2%
Unhealthy 101-200 4+0% 241% 8+£2%
Un;’:;{thy 201-300 0+0% 0+0% 0£0%
Hazardous  301-400 0+0% 0+0% 0+0%
Hazardous  401-500 0£0% 0+0% 0£0%
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67  Table 75. The old (without missing anthropogenic dustacrosol components) and new (with
68  missing anthropogenic dustacrosol components in FF and FFBB) calculated percentage of
69  observed low visibility days (LVDs s), categorized
70  according the type classification prlamcd in Fig. 24—H—Hﬁﬁ6i4mgﬂj9@¥%8ﬁﬂd—uﬂﬂ—aﬂé
71 beeheedsme o000 o000

972
Hanoi Singapore Bandung Manila
old new old new old new old new
(FTE;S:??) 38:32%  40431%  344%  5:7%  41473%  41£74%  0:0%  1+1%
FF (Type2)  34+8%  57+13%  5+4%  25:13%  8£19%  8£20%  3+3%  29+33%
BB (Type3)  2+2% 0+0%  11£13%  9+10%  0+0% 0+0% 343%  243%
FF+BB 543%  1£1%  1448%  40£19%  0£0%  0+0%  2+2%  113%
(Typg 4)
x;:;nsg) 21£15%  244%  67£21%  2049%  S51456%  51+57%  92+41%  57+16%
973
974
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975
76  Table 86. The frequency of various daily air pollution levels in Hanoi, Singapore, Bandung
77  and Manila derived using 24-hth PMa2s concentration with (new) and without (old) the
78  missing anthropogenic dustsacrosol components in FFBB during 2002-2008.

979

Hanoi AQIlpm25) old new
Good 0-50 43+7% 0+0%
Moderate 51-100 46+3% 32+4%
Unhealthy 101-200 10£3% 67+4%
Very Unhealthy 201-300 0+0% 0+0%
Hazardous 301-400 0+£0% 0+0%
Hazardous 401-500 0+0% 0+0%
Singapore AQIpm2s) old new
Good 0-50 78+5% 33+8%
Moderate 51-100 19+4% 59+£8%
Unhealthy 101-200 3+2% 7+3%
Very Unhealthy 201-300 0+0% 0+0%
Hazardous 301-400 0+0% 0+0%
Hazardous 401-500 0+0% 0+0%
Bandung AQIpm2.5) old new
Good 0-50 36+7% 0+0%
Moderate 51-100 58+5% 52+8%
Unhealthy 101-200 6+3% 48+8%
Very Unhealthy 201-300 0+0% 0+0%
Hazardous 301-400 0+0% 0+0%
Hazardous 401-500 0+£0% 0+0%
Manila AQIpm2s) old new
Good 0-50 92+4% 64+5%
Moderate 51-100 7+£3% 3445%
Unhealthy 101-200 1+1% 2+1%
Very Unhealthy 201-300 0+0% 0+0%
Hazardous 301-400 0+£0% 0+0%
Hazardous 401-500 0+0% 0+0%

980

45



1981 Table 97. Updated PM> s concentration (sgug m) and premature mortality (95% confidence
982 intervals) in Hanoi, Singapore, Bandung and Manila with missing anthropogenic
983 dustsaerosol components.

984
City PMys (sgug m3)  Premature mortality
. 671670 (210-
Hanoi 41.07 11841180)
Singapore 16.43 230 (22-55420-550)
Bandung 33.18 480)260 70-
Manila 12.38 128412130 (10-260)
985
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\J

VIS <10 km
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VISgs <10 km VISgs <10 km
Yes ' l No Yes ' No
FFNBB FF BB 1
[Type 1] [Type 2] [Type 3]
VISgrs < 10 km
Yes ; } No
FF+BB Model Missing

[Type 4] [Type 5]

Figure 2. Logical chart for fire (BB), non-fire (FF), or coexisting fire and non-fire
(FEBBFF+BB) aerosols caused Low Visibility Day (LVD). “Obs. LVD” is an identified low
visibility day from observation. Then, the modeled visibility from FF (VISgr), BB (VISgs),
and FFBB (VISkreB) are used to classify observed LVD into 5 types of LVD. Type 1 LVD
represents the cases where either fire or non-fire aerosols alone can cause the observed LVD
to occur. Type 2 means that non-fire aerosols are the major contributor to the
ebservatedobserved LVD. Type 3 means that biemass—burainefire aerosols are the major
contributor to the observed LVD. Type 4 represents the cases where the observed LVD is
induced by coexisting fire and non-fire aerosols. The observed LVDs that the model cannot
capture are classified as Type 5.
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1015  Figure 3. (a) Time series of daily surface PMio (ug m3; AQI derived) from the ground-based
1016  observations (@)lack line) and FFBB-simulated results (orange line) in Kuala Lumpur,
1017  Malaysia during October 2005 — December 2008. (b) Time series of daily surface CO
1018  mixing ratio (ppbv) from the ground-based observations (black line) and FFBB-simulated
1019  results (orange line) in Bukit Kototabang, Indonesia during 2002 — 2008. (c) Same as (b) but
1020  surface Os.
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1024  Figure 4. Comparison of daily visibility between GSOD observation (black line) and FFBB-
1025  simulated results (orange line) in Singapore during the fire seasons from 2002 to 2008. A, S,
1026  and O in the x axis indicates August, September, and October.
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Figure 5. The annual mean simulated PM2 s concentration (ug m™) in 50 Association of Southeast Asian Nations (ASEAN) cities, derived

from FF (red), BB (blue), and FFBB (green) simulations and averaged over the period 2002-2008.
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1036
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1038

1039

Figure 6. Premature mortality in different years from 2002 to 2008 and cities in Association of
Southeast Asian Nations (ASEAN) due to exposures PM2 s in FFBB (95% confidence intervals).
Colors from green to red represent relative number scale.
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1058  Figure 7. The testing accuracy in 6 machine learning algorithms for two 2-class (7 km or 10 km

1059  visibility as a breakpoint) and one 3-class classifications haze prediction in (a) Changi, (b) Paya

1b60 Labar, and (c) Seletar. The-units-are-inpereentage:
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1b78 Figure 108. Feature importance by using 2-class classification Random Forest algorithm in (a)
1079  Changi, (b) Paya Labar, and (c) Seletar. Desired outputs, haze versus non-haze events, are
1080  defined by using visibility 10 km as a breakpoint. Full name of each input feature are listed in
1081  Table S3S5.
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