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Responses to the Comments of the Anonymous Referee #1 

We very much appreciate the constructive comments and suggestions from this reviewer. 
Our point-by-point responses to the reviewer’s comments are provided as follows (the 
reviewer’s comments are marked in Italic font): 

This study tries to quantify the impact of biomass burning (fire) and other anthropogenic 
(non-fire) sources to the occurrence of low visibility days (LVDs due to PM2.5) in several 
cities across the Southeast Asia. This is an extension of their work in Lee et al., 2017 by 
improving the WRF-Chem model components. Regional air quality degradation is 
assessed using simulated PM2.5 and ozone, derived AQI, and mortality calculations. 
They identify that the inclusion of measured anthropogenic dust component to the model 
increases performance of the model. They also assessed the performance of some 
machine learning algorithms to predict the occurrence of LVDs.  

Generally, the study is of importance, and relevance to ACP. It can be published with a 
major revision.  

First, the novelty of the work (if any) should be mentioned in the manuscript, in the 
introduction.  

Studies of Southeast Asia air quality using high-resolution models with interactive 
chemistry and meteorology combining with observations, even for specific cases rather 
than decadal-scale analysis, are still rare. Our previous study using WRF coupled with a 
simplified tracer model for PM2.5 provided arguably the first such quantitative analysis, 
which demonstrates that biomass burning aerosols contributed to up to 40-60% of haze 
events in the major cities of Southeast Asia during 2003-2014 (Lee et al., 2017). In this 
study, we have further the depth of the analysis by applying a more sophisticated regional 
weather-chemistry model of WRF-Chem to quantitatively address the impacts of fire and 
non-fire aerosols on air quality and visibility degradation over Southeast Asia. We have 
also used available in-situ measurements to evaluate and correct model for providing a 
better base for further improvement of particularly emissions over the region. Beyond the 
traditional process models such as WRF-Chem, we have also experimented using 
machine learning algorithms to identify suitable conditions for hazes based on historical 
data and hence to forecast the likelihood of the occurrence of such events. 
 
To address the reviewer’s point, we have further emphasized the uniqueness of our study 
in the introduction section of the revised manuscript, by clearly indicating the new 
methods and approaches adopted in our study. 

Authors mention that the underestimation of particulate matter in the model could be due 
to horizontal resolution or missing anthropogenic dust. Have you considered any other 
aspects of the model before making such a statement? how about the simulated boundary 
layer mixing of tracers? why ozone is overestimated in the model?  



	 2	

We have actually used the measured particulate composition data to correct modeled 
biases due to missing organic matter (residual) besides anthropogenic dust component 
(Snider et al., 2016) (Fig. S1 in the revised version; also see response to a later comment). 
Although this was mentioned in the original manuscript, it may have been unclear. We 
have revised the text accordingly to emphasize the importance of applying the correction 
to the modeled PM2.5 concentration using the measured values of organic matter 
residuals. 

We adopted the Mellor-Yamada-Nakanishi-Niino level 2.5 (MYNN) (Nakanishi and 
Niino, 2009) as the planetary boundary scheme in this study. The WRF model also has a 
reasonably fine vertical resolution for the PBL by using a vertical coordinate that is 
stretched to have higher resolutions inside PBL (e.g., having an average depth of ~30 m 
near the surface). With four to five model layers within the PBL, the model should be 
able to reasonably simulate the mixing of tracers in the boundary layer. We have added 
description of the PBL scheme in the revised manuscript as: “The Mellor-Yamada-
Nakanishi-Niino level 2.5 (MYNN) (Nakanishi and Niino, 2009) is chosen as the 
planetary boundary scheme in this study. By using a vertical coordinate that is stretched 
to have higher resolutions inside the planetary boundary layer, the model has about 4-5 
vertical layers inside the planetary boundary layer with a vertical resolution of ~30 m 
near the surface.” 

We have noticed that NOx emission is higher in REAS emission inventory compared with 
other emission inventories and studies (Kurokawa et al., 2013). The boundary condition 
of background ozone in the default WRF-Chem configuration also appears to be 
somewhat high (30 ppbv) for our domain.  Both could lead to the overestimated ozone in 
the model. We have added corresponding discussion in Sect. 3.1 in the revised 
manuscript.   

Have you tried the simulations using any other emission inventories? This is very 
important.  

We agree with the reviewer that using different emission inventories in the model would 
very likely lead to different results as indicated in our previous study (Lee et al., 2017), 
where we used two different biomass burning inventories in the simulations and derived 
different results for given cases; however, such differences did not substantially influence 
our major conclusion. In this study, we have actually compared the differences between 
the two available emission inventories for WRF-Chem for the targeted domain, the 
REAS and EDGAR inventories, in a pair of one-year simulations comparing 2006 REAS 
against EDGAR emissions.  The results are shown in Table R1 (Table S3 in revised 
manuscript). It is quite clear that the differences regarding aerosols are quite limited. 
After considering the high spatiotemporal resolution of REAS emission inventory and the 
comparison results, we decided to use REAS in our study. Besides our analysis, 
Kurokawa et al. (2013) have also documented the comparison of REAS with other 
emission inventories in Southeast Asia.  

In the revised manuscript, we have added that “We have compared the modeled results 
using REAS versus EDGAR emission inventories in one-year paired simulations: the 
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differences between these two model runs are rather limited regarding aerosol-related 
variables (Table S3). After considering high spatiotemporal resolution of REAS emission 
inventory and the comparison results, we decided to use REAS in this study.  In addition, 
a detail comparison of REAS with other emission inventories in Southeast Asia was also 
presented by Kurokawa et al. (2013).”    

Table R1. Mean annual emissions and modeled concentration of BC, OC, SO2, CO and 
NO2 from 2006 REAS and EDGAR emission inventories in the simulated domain.   

 REAS EDGAR 

 
Emissions 
(Tg/year) 

Modeled 
(ug/m3 or ppmv) 

Emissions 
(Tg/year) 

Modeled 
(ug/m3 or ppmv) 

OC 0.12 0.1131 0.15 0.1487 
BC 0.036 0.0311 0.065 0.0643 
SO2 0.43 1.03×10-4 0.65 2.01×10-4 
NO2 0.3 4.94×10-4 0.205 4.83×10-4 
CO 3.53 8.10×10-2 7.48 8.72×10-2 

 

Model evaluation should be conducted in a much better way before making conclusions. 
Spatiotemporal distribution of each species should be evaluated thoroughly, in the 
context of all the modeling components. PM2.5 (its components and extinction values) 
should be assessed, not just PM10 (there are some measurements available).  

We appreciate the reviewer’s suggestion. In the revised manuscript, we have modified 
many presentations of the results in Section 3.1. Nevertheless, a fundamental issue in 
evaluating model for Southeast Asia domain is the lack of observations. As we described 
in the manuscript, PM2.5 observations in this region are very limited. Even in Singapore, 
observed PM2.5 data are only available after 2014 for the general public and research 
community to access. In most other Southeast Asian counties, even PM10 measurement 
data are hard to find, especially for the time periods before 2008. We are fortunate to be 
able to obtain some chemical species data from WMO and long-term AQI data from the 
Malaysian government. In addition, PM2.5 component data from SPARTAN filtered 
samples (operated after 2013) have also been used, e.g., in Fig. S1 of the revised version.     

Have you assessed the importance of organic matter in PM2.5 over these regions? the 
‘residual matter’ in Snider et al., 2016 is mainly organic, please refer to that paper; so, 
the statements such as “including the in situ anthropogenic dust improved the ...” should 
be revised (since you are adding dust and organics).  

We really appreciate the reviewer for raising this issue. Indeed, the residual matters that 
have actually been used in the study to correct modeled PM2.5 concentration are mostly 
organic carbon, though this was not made clear in the original manuscript. We have made 
our best effort to clearly indicate this fact in the revised manuscript.   

Clearly quantify and describe the uncertainty in your estimates of LVDs etc. (for fire and 
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non-fire related) derived using model values. An entire section should be devoted to 
uncertainty analysis.  

We appreciate the reviewer’s suggestion. Since a full-scale forward-integrating 
uncertainty analysis based on WRF-Chem model would extremely expensive 
computationally, we have adopted a method for dichotomous (yes or no LVDs) cases and 
then give a contingency table as below to address model evaluation and to quantify model 
performance. 
 

  Observed LVD 

  yes no 

Modeled 
LVD 

yes hits false alarms 

no misses correct 
negatives 

  
We have estimated accuracy based on the Eq. (1): 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  !!"#!!"##$!% !"#$%&'"(
!!"#!!"##$#!!"#$% !"!#$%!!"##$!% !"#$%&'"(

                   (1) 
 

Accuracy here is also called fraction correct, which is easy to evaluate model prediction. 
However, it can be misleading for some cases since it is heavily influenced by the most 
common category, usually "no event" in the case of LVD. Hence, we have provided 
threat score in this study as well. Based on the equation of threat score (or critical 
success index), we can measure the fraction of observed and/or modeled LVDs that were 
correctly predicted. Threat score also can be referred as the accuracy when correct 
negatives have been removed from consideration, that is, threat score only concerns 
modeled LVDs that count.     
 

𝑇ℎ𝑟𝑒𝑎𝑡 𝑆𝑐𝑜𝑟𝑒 =  !!"#
!!"#!!"##$#!!"#$% !"!#$%

                              (2) 

The	 figure	 below	 shows	 the	mean	 value	 of	 accuracy	 and	 threat	 score	 of	modeled	
LVDs	 among	 50	 ASEAN	 cities	 in	 three	 experiments:	 FF,	 BB,	 and	 FFBB.	 	 Since	 the	
category	of	correct	negatives	is	heavily	counted	in	the	accuracy,	the	values	are	also	
twice	as	high	as	 the	 threat	scores.	 	Basically,	BB	has	 the	 lowest	 threat	score	while	
FFBB	has	the	highest	score	as	expected.						
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The	above	discussion	has	been	added	in	Sect.	S1	in	the	supplementary	and	
introduced	in	the	manuscript,	Sect.	3.1.		

	

Section 3 should be improved for a better reading, by excluding unnecessary statistical 
details, and by describing the figures and findings in a more clear and concise way. 
(abstract and conclusion sections should also be revised).  

Based on the reviewer’s suggestion, we have removed statistical details (i.e., mostly the 
standard deviations) in the text (the numbers are still presented in corresponding tables). 
The structure of the manuscript has been rearranged as well. We have made the 
manuscript more concise, including the abstract.   

 

Separate section 3.2 into two; first, describe 4 selected cities and your conclusions; then, 
the entire region.  

We have separated Section 3.2 into Sections 3.2 and 3.3 in the revised version. As the 
reviewer suggested, Section 3.2 now describes results of the 3 selected cities and Section 
3.3 discusses those for the entire ASEAN cities.  

 

Section 3.4 is too vague, are you really assessing the impact of aerosols on regional 
climate? need a better analysis; descriptions are loose; need to cite relevant works 
throughout the discussion.  

We agree with the reviewer that this section diffuses the focus of the paper. We have 
moved it to supplementary material with a rewriting. 

 

Provide a brief description of machine learning algorithms in the introduction itself (and 
your motivation for doing this); also, describe it in the method section. Section 4.2 should 
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be described in an entirely separate section.  

Based on the reviewer’s suggestion, we have added the motivation of applying machine 
learning techniques to predict the occurrence of LVDs in the introduction section. We 
would like to keep the description of each algorithm in the machine learning section to 
maintain the flow of discussion. Sections 4.1 and 4.2 have been separated into two 
individual sections in the revised version.   

 

Line 501-503: vague arguments; Line 569-570: describe  

Lines 501-503: “Applying inverse modeling, for example, could optimize the emission 
inventories and hence improve the model performance” has been removed in the revised 
version.  

We have rewrite Line 569-570 to: “Nevertheless, previous works by Reid et al. (2012) 
and Lee et al. (2017) also suggested the relationships between fire hotspot appearance 
and certain weather phenomena particularly precipitation.  Therefore, we are surprised 
that precipitation in the fire regions does not appear to be a significant feature for 
predicting Singapore haze compared with other features in our current analysis.”  

  

Reducing the number of figures and tables in the main manuscript (without losing much 
information) would be helpful; even figure captions are too lengthy.  

The reviewer’s point has been well received. We have shortened the paper in the revised 
manuscript.  Table 1 has been removed. Table 3, Fig. 7 and Fig. 9 have been moved to 
the supplementary material.  We also have made the captions more concise.  	
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