Supplementary Information for

"Estimates of Exceedances of Critical Loads for Acidifying Deposition in Alberta and Saskatchewan"

5 Paul A. Makar¹, Ayodeji Akingunola¹, Julian Aherne², Amanda S. Cole¹, Yayne-abeba Aklilu³, Junhua Zhang¹, Isaac Wong⁴, Katherine Hayden¹, Shao-Meng Li¹, Jane Kirk⁵, Ken Scott⁶, Michael D. Moran¹, Alain Robichaud¹, Hazel Cathcart², Pegah Baratzedah¹, Balbir Pabla¹, Philip Cheung¹, Qiong Zheng¹, Dean S. Jeffries⁷

Gas-Phase Deposition in GEM-MACH

10 S.1 Deposition Velocity Formula

The deposition velocity of gases in GEM-MACH is given by the following land-use type and gaseous-species specific equation:

$$V_d = (R_a + R_b + R_c)^{-1}$$
(S.1)

where R_a is the aerodynamic resistance and has the same values for all constituents, R_b is the quasi-laminar sublayer

15 resistance which depends on gas diffusivity, and R_c is the net surface resistance which depends on various environmental factors and land-use. The deposition velocity for each gas for each land-use type in each grid-square is calculated using (A.1), and then net deposition velocity for that grid-square and gas is given by sum of the land-use-fraction-weighted deposition velocities across land-use types within the grid-square.

Ozone deposition velocities calculated via (A.1) are reset to observation-based values. If the land-use is "inland water", or

- ²⁰ "ocean", Wesely and Hicks (2000) noted that ozone deposition velocities over ocean were found to be in the range 0.01 to 0.05 cm s⁻¹, and over freshwater lakes were 0.01 or smaller: a value of $3x10^{-4}$ m s⁻¹ has been used as a mid-range for these land-use classes. For ozone deposition to tundra, Wesely and Hicks (2000) noted that observational evidence suggested a typical value of 0.15 cm s⁻¹, hence $1.5x10^{-3}$ m s⁻¹ was used here. An overall upper limit of 0.1 m s⁻¹ was also used on the ozone deposition velocity.
- 25 S.2 Net Surface Resistance, R_c

The net canopy resistance, R_c, is given by the following formula (Jacobson (1999), Wesely (1989)):

$$\frac{1}{R_c} = \frac{1 - W_{st}}{R_{st} + R_{mx}} + \frac{1}{R_{cut}} + \frac{1}{R_{conv} + R_{exp}} + \frac{1}{R_{can} + R_{soil}}$$
(S.2)

Where R_{st} is the stomatal resistance, R_{mx} is the mesophyll resistance, R_{cut} is the cuticle resistance, R_{conv} is the resistance of gases to buoyant convection, R_{exp} is the resistance associated with leaves, twigs, bark and other exposed surfaces in the lower canopy, R_{can} is the resistance associated with the height and density of the vegetated canopy, and R_{soil} is the resistance associated with the soil, leaf litter, etc., at the surface. W_{st} is used to account for the impact of precipitation and high humidity on the stomatal and mesophyll resistance, and is set in

5 account for the impact of precipitation and high humidity on the stomatal and mesophyll resistance, and is set in GEM-MACH to 0.5 if the precipitation rate exceeds 1 mm hr⁻¹, or the relative humidity exceeds 95%.

When the surface is snow-covered (the equivalent liquid water depth of snow is greater than 5 mm), the net surface resistance is assumed to follow the observed deposition behavior of SO₂ (Dasch and Cadle (1986)):

10
$$\frac{1}{R_c} = \frac{1}{R_{cut} + exp_{Ts}} + \frac{1}{R_{conv} + R_{exp} + exp_{Ts}} + \frac{1}{R_{can} + R_{soil} + exp_{Ts}}$$
 (S.3)

Where exp_{Ts} is a temperature dependent function based on fitting to the data presented in Dasch and Cadle (1986)):

$$exp_{T_{S}} = 1000e^{-(Tsurf + 4.0)}$$
 (S.4)

15

Where T_{surf} is the surface temperature in Celcius.

Each of the remaining terms in equations (S.2) and (S.3) are described below.

20 $S.2.1 R_{soil}$: Resistance associated with soil, leaf litter, etc.

Soil resistance for the i'th gas and j'th land use type and season is also calculated, largely using values from Wesely (1989):

$$R_{soil_{i,j}} = \left(\frac{\alpha_i}{R_{gd,SO2_j}} + \frac{\beta_i}{R_{gd,O3_j}}\right)^{-1}$$
(S.5)

- The values of R_{gd,SO2} and R_{gd,O3} for the different land use types used in GEM-MACH are given below (Table S1), and are followed by the values of α and β for each chemical species (Table A2). Values of zero for α and β indicate that the given term is not used in the creation of R_{soil}; if both are zero, no contribution from R_{soil} used for that species. Note that Wesely (1989) used values of zero for R_{gd,SO2} and R_{gd,O3} for some terms which are assigned values of 10 in Table S1: the low but non-zero values were used here to avoid division by zero error in the calculation of Rsoil^{i,j}. Wesely did not include a class for ice caps and glaciers; in Table S1, the values for this land use class for R_{gd,O3} were taken from the winter values for inland water, and the most common "Winter; snow and subfreezing value" from the other land use classes, 100 sm⁻¹, was used for
- $R_{gd,SO2}$

Season 🗲	Midsu	mmer	Autum	ın,	Late		Winter	; snow	Transitional:	
	R _{gd}		pre-ha	pre-harvest		Autumn,		sub-	spring,	
		1		R _{gd} post-fro		ost,	ost, freezing		partially	
					pre-sn	ow	R _{gd}		green,	R _{gd}
					\mathbf{R}_{gd}					
Land Use	SO ₂	O ₃	SO ₂	O ₃	SO ₂	O ₃	SO ₂	O ₃	SO ₂	O ₃
Evergreen needle-leaf	500	200	500	200	500	200	100	3500	500	200
forest										
Evergreen broadleaf	500	200	500	200	500	200	100	3500	500	200
forest										
Deciduous needle-leaf	500	200	500	200	500	200	100	3500	500	200
forest										
Deciduous broadleaf	500	200	500	200	500	200	100	3500	500	200
forest										
Mixed Forest	100	300	100	300	200	300	100	3500	200	300
Grassland	350	200	350	200	350	200	100	3500	350	200
Crops, mixed farming	150	150	200	150	150	150	100	3500	150	150
Desert	1000	400	1000	400	1000	400	1000	400	1000	400
Tundra	400	200	400	200	400	200	50	3500	400	200
Dwarf trees, shrubs	400	200	400	200	10	200	50	3500	400	200
Wetland with plants	10	1000	10	800	10	1000	100	3500	10	1000
Ice caps and glaciers	100	2000	100	2000	100	2000	200	2000	100	2000
Inland water	10	2000	10	2000	10	2000	10	2000	10	2000
Ocean	10	2000	10	2000	10	2000	10	2000	10	2000
Urban	400	3000	400	3000	400	3000	100	600	500	300

Table S1. $R_{gd,SO2}$ and $R_{gd,O3}$ values used in GEM-MACH (s m⁻¹)

Species	α	β
SO ₂	1	0.0
H_2SO_4	1	1.0
NO	0	0.01
NO ₂	0	0.8
HNO ₃	10	10
PAN	0	0.6
HONO	2	2.0
Organic Nitrate	0	0.5
NH ₃	1	0.0

Table S2: Values of α and β used in GEM-MACH, by S_{dep} and N_{dep} gas species:

5

S.2.2 R_{can} : The canopy resistance, R_{can} (also called the aerodynamic canopy resistance) is a function of season and land use value, and is based on Zhang et al. (2003), given in Table S3.

Table S3.	. R_{can} values used in GEM-MACHv2 (s m ⁻¹)
-----------	--

Season 🗲	Midsummer	Autumn,	Late	Winter;	Transitional:
		pre-harvest	Autumn,	snow and	spring,
			post-frost,	sub-	partially
			pre-snow	freezing	green
Evergreen needle-leaf forest	100	100	100	100	100
Evergreen broadleaf forest	250	250	250	250	250
Deciduous needle-leaf forest	100	85	70	60	60
Deciduous broadleaf forest	250	190	115	100	100
Mixed Forest	190	150	110	100	100
Grassland	40	40	40	10	30
Crops, mixed farming	40	40	10	10	20
Desert	0	0	0	0	0
Tundra	0	0	0	0	0
Dwarf trees, shrubs	60	60	30	20	30
Wetland with plants	20	20	20	20	20
Ice caps and glaciers	0	0	0	0	0
Inland water	0	0	0	0	0
Ocean	0	0	0	0	0
Urban	40	40	40	40	40

S.2.3 R_{exp}: Lower Canopy Exposed Surface Resistance

The resistance for the lower canopy follows Wesely (1989), and is given by an equation similar to (S.5):

5

$$R_{exp} = \left[1x10^{-5} \frac{H^*}{R_{exp,SO2}} + \frac{f_0}{R_{exp,O3}}\right]^{-1}$$
(S.6)

The values of $R_{exp,SO2}$ and $R_{exp,O3}$ used in GEM-MACHv2 are given in Table A4, and the values of H^* and f_0 are given in Table S5.

S.2.4 R_{mx}: Mesophyll Resistance

10

Mesophyll resistance is usually considered to be of minor importance (Zhang *et al.*, 2002, 2003 use values of 0 to 100 s m⁻¹ for R_{mx}, Baldocchi *et al.* (1987) mention its small impact on a leaf basis, quoting Hosker and Lindberg (1982) values in the range 10 to 50 sm⁻¹), and in GEM-MACH follows the formula of Wesely (1989). Table A5 contains the values of H^* and f_0 used in GEM-MACH for non-zero R_{mx}, as well as the resulting values of R_{mx} .

$$R_{mx} = (H^*/3000 + 100f_0)^{-1}$$
(S.7)

Table S4. $R_{exp,SO2}$ and $R_{exp,O3}$ values used in GEM-MACH (s $m^{\text{-}1})$

Season 🗲	Midsummer		Autum	ın,	Late		Winter	r; snow	Transitional:		
	Rexp	Rexp		p pre-harvest Autumn,		and sub-		spring,			
			Rexp		post-fr	ost,	freezin	freezing		partially	
					pre-sn	ow	Rexp		green,	Rexp	
					Rexp						
Land Use	SO ₂	O ₃	SO ₂	O ₃	SO ₂	O ₃	SO ₂	O ₃	SO ₂	O ₃	
Evergreen needle-leaf forest	2000	1000	2000	1000	3000	1000	200	1500	2000	1500	
Evergreen broadleaf forest	2000	1000	2000	1000	3000	1000	200	1500	2000	1500	
Deciduous needle-leaf forest	2000	1000	9000	400	9000	400	9000	400	4000	500	
Deciduous broadleaf forest	2000	1000	9000	400	9000	400	9000	400	4000	500	
Mixed Forest	2000	1000	4000	600	6000	1000	400	600	3000	700	
Grassland	2000	1000	9000	400	9000	400	9999	1000	4000	500	
Crops, mixed farming	2000	1000	9000	400	9000	1000	9999	1000	4000	1000	
Desert	9999	9999	9999	9999	9999	9999	9999	9999	9999	9999	
Tundra	4000	1000	9000	400	9000	600	9000	800	8000	800	
Dwarf trees, shrubs	2000	1000	9000	400	9000	400	9000	400	4000	500	
Wetland with plants	2500	1000	9000	600	400	600	400	600	3000	600	
Ice caps and glaciers	9999	9999	9999	9999	9999	9999	9999	9999	9999	9999	
Inland water	9999	9999	9999	9999	9999	9999	9999	9999	9999	9999	
Ocean	9999	9999	9999	9999	9999	9999	9999	9999	9999	9999	
Urban	9999	9999	9999	9999	9999	9999	9999	9999	9999	9999	

Species	H^{*}	f_0	R _{mx}
SO ₂	1x10 ⁵	0.0	3.0x10 ⁻²
NO	3x10 ⁻³	0.0	1.0×10^{6}
NO ₂	1x10 ⁻²	0.1	1.0x10 ⁻¹
HNO ₃	1×10^{14}	0.0	3.0x10 ⁻¹¹
PAN	$3.6 \times 10^{\circ}$	0.1	1.0×10^{-1}
HONO	1x10 ⁵	0.01	2.3×10^{-2}
NH ₃	2.0×10^4	0.0	1.5x10 ⁻¹

Table S5. H* and f0 used in GEM-MACH, for S_{dep} and N_{dep} species.

S.2.5 R_{cut}: Cuticle Resistance

5 The dry leaf cuticle resistance is given by the formula of Wesely (1989):

$$R_{cut} = R_{cuti} [LAI(10^{-5}H^* + f_0)]^{-1}$$
(S.8)

Where LAI is the vertically integrated leaf area index; both LAI and the coefficient R_{cuti} are dependent on the land-use type and season, given in Table S6, below.

10

	Midsum	mer	1	nn, pre-	Late		Winter	snow	Transiti	ional:
			harve	-	Autum	n,	and	sub-	spring,	partially
					post-fr	*		green		
					pre-sno		e			
	LAI	R _{cuti}	LAI	R _{cuti}	LAI	R _{cuti}	LAI	R _{cuti}	LAI	R _{cuti}
Evergreen needle-leaf	5.3	1000	5.3	1500	4.7	2000	5.5	2000	5.5	1000
forest										
Evergreen broadleaf	4.5	1000	4.5	1500	4.5	2000	4.5	2000	4.5	1000
forest		• • • • •		2000	0.0	0000	0.0	0000		40.00
Deciduous needle-leaf forest	1.1	2000	0.8	3000	0.3	8000	0.0	9999	0.0	4000
Deciduous broadleaf forest	3.4	1200	1.9	2000	0.1	9000	0.0	9999	0.0	2000
Mixed	4.5	1000	3.5	1500	2.3	2000	2.3	2000	2.3	1000
Forest		1 = 0.0						10.0.0		1.7.0.0
Grassland	2.0	1500	1.5	2000	1.0	3000	0.5	6000	0.5	1500
Crops, mixed farming	2.0	1500	1.5	2000	1.0	3000	0.0	9999	0.0	1500
Desert	0.0	9999	0.0	9999	0.0	9999	0.0	9999	0.0	9999
Tundra	0.0	9999	0.0	9999	0.0	9999	0.0	9999	0.0	9999
Dwarf trees, shrubs	2.5	4000	2.5	1500	1.5	2000	1.2	3000	0.5	4000
Wetland with plants	0.2	6000	0.2	6000	0.1	9000	0.0	9999	0.1	6000
Ice caps and glaciers	0.0	9999	0.0	9999	0.0	9999	0.0	9999	0.0	9999
Inland water	0.0	9999	0.0	9999	0.0	9999	0.0	9999	0.0	9999
Ocean	0.0	9999	0.0	9999	0.0	9999	0.0	9999	0.0	9999
Urban	0.3	6000	0.2	6000	0.1	9000	0.0	9999	0.2	6000

Table S6. LAI and Rcuti values used in GEM-MACHv2

S.2.6 Rconv: Resistance of gases to buoyant convection

The resistance of gases to buoyant convection, and is given by (Wesely, 1989, and assuming a slope of zero on the terrain):

$$R_{conv} = 100 + \left[1.0 + \frac{1000}{SRAD + 10}\right]$$
(S.9)

Where SRAD is the visible solar radiation (Wm⁻²).

S.2.7 R_{st}: Stomatal Resistance

The stomatal resistance is generated following a similar approach to Jarvis (1976), Zhang *et al.* (2002, 2003), Baldocchi *et al.* (1987), and ValMartin *et al.* (2014), and results from several terms describing its dependence on light $(k_s(Q_p))$, water vapour pressure deficit $(k_s(\delta e))$, temperature (k_{st}) , CO₂ concentration (k_{sca}) , the leaf area index (*LAI*), and the ratio of the molecular diffusivities of water to the gas being deposited $(\frac{D_{H2O}}{C})$,

$$R_{st} = \frac{R_{s,min}}{k_s(Q_p)k_s(\delta e)k_{st}k_{sca}LAI} \frac{D_{H2O}}{D_{gas}}$$
(S.10)

The leaf area index depends on the type of vegetation, and is given in Table A6. The minimum stomatal resistance varies with vegetation type; the values used in GEM-MACHv2 are given in Table A7. The ratio of the molecular diffusivity of water with respect to that of the gas is given by:

10

5

$$\frac{D_{H20}}{D_{gas}} = \sqrt{\frac{2.608}{\left(1 + \frac{28.9644}{M_{gas}}\right)}}$$
(S.11)

Where M_{gas} is the molecular mass of the depositing gas.

Table S7. Values of minimum stomatal resistance (sm⁻¹). Values of 9999 indicate no contribution of stomatal resistance due to the given land-use type at the given season.

	Midsummer	Autumn,	Late	Winter; snow	Transitional:
		pre-harvest	Autumn,	and sub-	spring,
			post-frost,	freezing	partially
			pre-snow		green
Evergreen needle-leaf forest	130	250	250	400	250
Evergreen broadleaf forest	130	250	250	400	250
Deciduous needle-leaf forest	70	9999	9999	9999	140
Deciduous broadleaf forest	70	9999	9999	9999	140
Mixed Forest	100	800	800	800	190
Grassland	120	9999	9999	9999	240
Crops, mixed farming	60	9999	9999	9999	120
Desert	9999	9999	9999	9999	9999
Tundra	150	9999	9999	9999	300
Dwarf trees, shrubs	70	9999	9999	9999	140
Wetland with plants	80	9999	9999	9999	160
Ice caps and glaciers	9999	9999	9999	9999	9999
Inland water	9999	9999	9999	9999	9999
Ocean	9999	9999	9999	9999	9999
Urban	9999	9999	9999	9999	9999

15

The formulae for each of the terms in the denominator of equation (S.10) follow.

S.2.7.1 $k_s(Q_p)$, Stomatal conductance correction for photon flux density (Q_p)

20 The light dependence of stomatal resistance was provided by curve-fitting to the data of Jarvis (1976), and Ellsworth and Reich, 1993), and included a conversion the input to the formula to be the solar radiation in W m⁻² (SRAD), resulting in the following formula:

$$k_{\rm s}(SRAD) = 0.205935 \ln(SRAD) - 0.6052 \tag{S.12}$$

We note here that the light dependence of stomatal resistance is also described in some references by $G_{st}(SRAD)$, the response of the stomatal resistance to visible radiation, which may be related to (S.12) via equation (S.13):

$$G_{st}(SRAD) = \frac{k_s(SRAD)R_{s,min}}{LAI}$$
(S.13)

- 5 Using (S.13), the values of the effect of light on stomatal conductance was cross-compared for different references. The values derived using (S.12) for given vegetation types are similar to those derived using the formulae of Baldocchi *et al.* (1987), but are lower than those of the formulae of Zhang *et al.* (2002), for the same land use types. For some vegetation types, the variation in the values of $k_s(SRAD)$ between Baldocchi *et al.* (1987) and Zhang *et al.* (2002) may be as high as a factor of 1.66 (e.g. for Evergreen coniferous forests, with Baldocchi *et al.* (1987) being the higher values). These differences
- 10 stem from different assumptions and lighting models being used between these and other references, and probably account for much of the factor of two differences between estimates of gas-phase deposition between these references.

S.2.7.2 $k_s(\delta e)$, Stomatal conductance correction for vapour pressure deficit (δe) 15 In GEM-MACHv2, this term is given by:

$$k_{s}(\delta e) = 1.0 - 0.03(1 - HU_{r}) \ 10^{\left[\frac{0.7859 + 0.03477 \ T_{surf}}{1 + 0.00412 \ T_{surf}}\right]}$$
(S.14)

Where T_{surf} is the surface temperature (the term in which T_{surf} appears gives the saturation vapour pressure of water in mb – a minimum value of 1mb is used here), and HU_r is the relative humidity on a 0 to 1 scale. We note that this terms is also referenced as f_{vpd} in Meyers *et al.* (1988), and f(D) in Brook *et al.* (1999). Zhang *et al.* (2002)

20 (2002) and Zhang *et al.* (2003) use vegetation-dependent values for this correction factor; here it was noted that the range of uncertainty across different references for the same vegetation types was high, so a single value was derived based on fitting to the available data.

S.2.7.3 k_{st} , Stomatal conductance correction for the temperature

25 The temperature dependence of the stomatal resistance in GEM-MACHv2 is given by equation (S.15):

$$k_{st} = \left[\frac{(T_a(z) - T_{min})(T_{max} - T_a(z))}{(T_{opt} - T_{min})(T_{max} - T_{opt})}\right]^{0.014}$$
(S.15)

Where $T_a(z)$ is the ambient air temperature at height (z), and T_{max} , T_{min} , and T_{opt} are vegetation dependent parameters; the GEM-MACHv2 values are given in Table A8 (based on Wesel (1989)). Meyers *et al.* (1998) and Zhang *et al.* (2002) use a value of $\left(\frac{T_{max}-T_{opt}}{T_{opt}-T_{min}}\right)$ for the exponential in the formula, while Jarvis (1976) used $\left(\frac{T_{max}-T_{opt}}{T_{max}-T_{min}}\right)$. However, the Jarvis' exponential term use of T_{max} in the denominator is alm ost certainly a typo, since its use would result in values of k_{st} greater than unity. Here, the value of 0.614 (based on fitting of the available data, which again had a large variation between different references) was used.

Table S8. Temperature-dependent Stomatal Conductance parameters used in GEM-MACHv2. Values of 9999.0 indicate no air-surface exchange via this resistance pathway.

	1		T
Land use category	T _{max}	T _{min}	T _{opt}
Evergreen needle-leaf forest	40.0	-5.0	15.0
Evergreen broadleaf forest	45.0	0.0	30.0
Deciduous needle-leaf forest	40.0	-5.0	15.0
Deciduous broadleaf forest	45.0	0.0	27.0
Mixed forest	42.0	-3.0	21.0
Grassland	45.0	5.0	27.0
Crops, mixed farming	45.0	5.0	25.0
Desert	9999.0	9999.0	9999.0
Tundra	9999.0	9999.0	9999.0
Dwarf trees, shrubs	43.0	0.0	21.5
Wet land with plants	45.0	5.0	25.0
Ice caps and glaciers	9999.0	9999.0	99999.0
Inland water	9999.0	9999.0	9999.0
Ocean	9999.0	9999.0	9999.0
Urban	45.0	0.0	22.0

S.2.7.4 k_{sca} , Stomatal conductance correction for the concentration of CO_2

5 The stomatal resistance correction for the presence of CO_2 in GEM-MACHv2 was based on curve-fitting and conversion of units to solar radiation (SRAD) to data presented in Jarvis (1976), to derive a continuous function of the radiation and CO_2 concentration data presented there:

$$k_{sca} = \begin{cases} 1.0, [CO_2] \le 100 \\ 1 - \{7.352x10^{-4}ln[ln(S_{rad})] - 8.748x10^{-4}\}[CO_2], 100 < [CO_2] < 1000 \\ 0.0, [CO_2] \ge 1000 \end{cases}$$
(S.16)

Where S_{rad} is the incoming solar radiation in Wm⁻². Jarvis original experiments with Sitka spruce and Douglas fir, suffered from an insufficient range of variation in the ambient CO₂ concentration to be able to determine the values of the numerical constants for the coefficients for the CO₂ concentration; consequently they were set to zero and the CO₂ effect was thereafter neglected in that reference. However, Jarvis also presented laboratory results with varying CO₂ concentrations, which suggested the impact of changes in CO₂ could be large (Jarvis 1976, Figure 15). We note however, that the solar radiation dependence in (A.16), resulting from curve-fitting to Jarvis (1976), may result in some inconsistencies in the accounting for

15 the impact of solar radiation, which also appears in (S.12).

S.3 Aerodynamic Resistance, R_a

The aerodynamic and quasi-laminar sublayer resistances are relatively minor contributions to the overall deposition velocity compared to the surface resistance. The aerodynamic resistance is calculated using a variation on the approach of Voldner *et al.* (1986):

$$R_a = \frac{ln\left(\frac{Z_H + Z_0}{Z_0}\right) - \psi_c}{ku^*} \tag{S.17}$$

The values of the parameter ψ_c is given by the following formulae, where L is the Monin-Obukhov length, u* is the friction velocity, z_0 is the local (land-use dependent) roughness length, and Z_H is a reference height (10m):

$$\psi_{c} = \begin{cases} -5\left(\frac{Z_{H}-Z_{0}}{L}\right), & \frac{Z_{H}}{L} > 0.01 \\ e^{\left[0.598+0.39\ln\left(-\frac{Z_{H}}{L}\right)-0.18\ln\left(-\frac{Z_{H}}{L}\right)\right]} \\ -e^{\left[0.598+0.39\ln\left(-\frac{Z_{0}}{L}\right)-0.18\ln\left(-\frac{Z_{0}}{L}\right)\right]'} & \frac{Z_{H}}{L} < -0.01 \\ 0, & -0.01 \le \frac{Z_{H}}{L} \le 0.01 \end{cases}$$
(S.18)

5 S.4 Quasi-laminar sublayer resistance, R_b

10

The quasi-laminar sublayer resistance is given by (Hicks et al., 1987):

$$R_b = \frac{2\left(\frac{Sc_{gas}}{P_r}\right)^{2/3}}{ku^*}$$
(S.19)

Where the P_r is the Prandtl number for air (0.72), *k* is the von Karman constant (0.4), and u* is the friction velocity. *Sc_{gas}* is the Schmidt number for the gas, and is given by:

$$Sc_{gas} = 0.84 \frac{D_{H2O}}{D_{gas}}$$
 (S.20)

The ratio of the molecular diffusivity of water to the gas is given in equation (S.11).