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Abstract.

Meteorological normalisation is a technique which accounts for changes in meteorology over time in an air quality time series.

Controlling for such changes helps support robust trend analysis because there is more certainty that the observed trends

are due to changes in emissions or chemistry, not changes in meteorology. Predictive random forest models (RF; a decision

tree machine learning technique) were grown for 31 air quality monitoring sites in Switzerland using surface meteorological,5

synoptic scale, boundary layer height, and time variables to explain daily PM10 concentrations. The RF models were used to

calculate meteorologically normalised trends which were formally tested and evaluated using the Theil-Sen estimator. Between

1997 and 2016, significantly decreasing normalised PM10 trends ranged between -0.09 and -1.16 µgm−3 year−1 with urban

traffic sites experiencing the greatest mean decrease in PM10 concentrations at -0.77 µgm−3 year−1. Similar magnitudes have

been reported for normalised PM10 trends for earlier time periods in Switzerland which indicates PM10 concentrations are10

continuing to decrease at similar rates as in the past. The ability for RF models to be interpreted was leveraged using partial

dependence plots to explain the observed trends and relevant physical and chemical processes influencing PM10 concentrations.

Notably, two regimes were suggested by the models which cause elevated PM10 concentrations in Switzerland: one related to

poor dispersion conditions and a second resulting from high rates of secondary PM generation in deep, photochemically active

boundary layers. The RF meteorological normalisation process was found to be robust, user friendly and simple to implement,15

and readily interpretable which suggests the technique could be useful in many air quality exploratory data analysis situations.

1 Introduction

1.1 Air quality trend analysis

Trend analysis of ambient air quality data is a common and important procedure. The goal of such trend analysis usually

involves the confirmation, or lack of confirmation of a statistically significant change in pollutant concentrations over time. If20

pollutant concentrations are significantly increasing or decreasing, there is evidence that air quality is better or worse than in

the past and conclusions such as these are useful for scientists, policy makers, and the public (Porter et al., 2001). However,
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air quality trend analysis is complicated because it is usually unknown if the behaviour of the trend is driven by changes in

meteorology or changes in emissions or atmospheric chemistry (Rao and Zurbenko, 1994; Pryor et al., 1995; Libiseller and

Grimvall, 2003; Libiseller et al., 2005; Wise and Comrie, 2005). The former is usually is of greatest importance for policy

makers because investigation in changes in emissions, and in turn, the perturbations on ambient pollutant concentrations is

how efficacy of intervention activities are judged (Zeldin and Meisel, 1978; Carslaw et al., 2006). Despite the uncertainty5

surrounding the drivers of air pollutant trends, this issue is often acknowledged but rarely robustly compensated for.

The issue surrounding meteorology and air quality trend analysis arises because air quality and pollutant concentrations are

highly dependent on meteorological conditions across all spatial scales (Stull, 1988). Wind speed, wind direction, atmospheric

temperature and stability can be expected to have large influences on pollutant concentrations at most locations. The influence

of such meteorological variables can be much greater than an intervention activity which results in meteorological conditions10

often obscuring or exacerbating trends (Anh et al., 1997). In situations where these processes are not accounted for, a calculated

trend is less likely to represent changes in pollutant emissions due to air quality management efforts and therefore erroneous

conclusions can be made on what is causing the observed trend.

The methods used for trend analysis are diverse and range from simple least squares linear regression analysis to numeri-

cally complex methods often requiring multiple pre-processing or work-up steps before the final trend test is conducted (Lou15

Thompson et al., 2001; Porter et al., 2001; Marchetto et al., 2013). When trends are found to be monotonic, i.e. constantly

changing with time, the robust non-parametric linear regression Mann-Kendal test is often used (Guerreiro et al., 2014). The

Mann-Kendal test can be supplemented by using the Theil-Sen estimator and bootstrapping techniques which increase the test’s

robustness and can account for autocorrelation in the time series (Siegel, 1982; Hamed and Ramachandra Rao, 1998; Salmi

et al., 2002). Although methods for the testing of monotonic trends are mature and are in common usage in air quality and20

other environmental applications (Meals et al., 2011), much of the effort of trend analysis is put into the pre-processing steps

which generally involves deciding what aggregation period and function to use as well as handling the removal of the seasonal

component if necessary (an annual cyclical pattern). Common techniques to allow for removal of the seasonal component of a

time series is classical decomposition using loess (often called seasonal and trend decomposition using loess; STL) (Cleveland

et al., 1990) and Kolmogorov-Zurbenko filters (Wise and Comrie, 2005; Yang and Zurbenko, 2010). Although these decom-25

position methods help treat the time series for further trend analysis, they alone do not address changes of meteorology over

time.

1.2 Meteorological normalisation

A method to control or take into account meteorology effects on pollutant concentrations involves the development and use of

predictive statistical models (Lou Thompson et al., 2001; Carslaw et al., 2006; Beevers et al., 2009; Carslaw and Priestman,30

2015; Fuller and Carslaw, 2017). Such models attempt to use a number of explanatory variables such as surface measurements

of wind behaviour, atmospheric temperature, and pressure to explain the variability of pollutant concentrations. Time variables

such as Julian day (day of the year), weekday, and hour of the day can also be used as predictors. These time variables act as

proxies for emission strength because pollutant emissions or generation processes vary by the time of day, day of the week, and
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season (Derwent et al., 1995). If the predictive models are found to explain an adequate amount of the variation in pollutant

concentration, the model can be used to account for the influence of meteorological variables on the pollutant concentration.

The explanation of some of the variation in a time series also has the side effect of allowing significant trends to be detected

earlier because of the reduction of estimate uncertainty. This technique is known by a few different names but here, we refer to

the technique as meteorological normalisation.5

The application of meteorological normalisation approaches are however complicated due to how pollutant concentrations

vary based on meteorological variables. For example, for a traffic sourced pollutant such as nitrogen dioxide (NO2), it would be

expected that concentrations would decrease with increasing wind speed due to atmospheric dilution and dispersion processes

(Hitchins et al., 2000). However, this process is highly unlikely to be linear and when a monitoring site is located adjacent

to a kerb, the effect of dilution based on the wind speed would also be highly dependent on wind direction. There would10

be further complication if the monitoring site was located within a street canyon. When variables depend on one another (or

among more than two variables) in such a way, this is termed interaction (Cox, 1984). Interaction effects generally require

special treatment in most statistical models. Additionally normality, homoscedasticity, multicollinearity, and independence

should also be addressed before and during statistical modelling. All of these features are commonly encountered in air quality

time series which can make the use statistical techniques highly burdensome in this domain.15

1.3 Machine learning

In the past three decades, there has been large development in the field of what is now known as machine learning (ML). ML

is a fusion of statistics, data science, and computing which experiences use across a very wide range of applications (Smola

and Vishwanathan, 2008; Kuhn, 2013). ML is a diverse topic but it has seen the development of many predictive models

which offer alternatives to “classical” statistical models for exploratory data analysis. Some of the more popular ML predictive20

models include decision tree methods such as boosted regression trees and random forest, the kernel methods which include

support vector machines, and finally artificial neural networks (Friedman, 2006). These ML methods, when used in regression

mode, can be used in similar applications as multiple regression models such as general additive models (GAMs). These ML

techniques are non-parametric and have the critical advantage of not needing to address many of the assumptions needed for

statistical models such as sample normality, homoscedasticity, independence, adherence to other strict parametric assumptions,25

and the careful handling of interaction effects (Immitzer et al., 2012). ML predictive models have the potential to supplement

more classical statistical techniques which may result in improved air quality trend analysis.

1.3.1 Decision trees and random forest

Random forest (RF) (also known as decision forests) which is utilised in this study is an ensemble decision tree ML method

(Breiman, 2001; Tong et al., 2003). Decision trees use a binary recursive classifying algorithm which creates “pure” nodes30

by splitting observations into two homologous groups. The recursive nature of the algorithm means splitting is repeated until

node purity is achieved. Together the entire series of splits, individually called nodes or branches, is referred to as a tree.

The recursive algorithm will always correctly classify input data if the trees are allowed to grow to their maximum depth.
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Algorithms of this sort are called greedy (Biau et al., 2008). This greedy behaviour can result in very deep trees (especially

with continuous numeric variables) where the final split is only evaluating two observations i.e., a singleton node. Models

such these will very rarely generalise to new data which was not used to train the model. Therefore, decision trees are prone

to overfitting (Kotsiantis, 2013). RF controls for this disadvantage by growing many individual decision trees from a training

set using a process called bagging (bootstrap aggregation). RF is an ensemble method because the model consists of many5

individual trees/models/learners grown from bagged data but when used for prediction, all the trees’ outputs are used together

(Figure 1).

...
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nOut-of-bag
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Figure 1. Conceptual diagram of a random forest model. Many out-of-bag samples are taken from the training set and different decision

trees are grown. After many decision trees are grown, termed the forest, all trees are used to form a single prediction. The predictions can

then be validated using the test set which is withheld from the training process. Tree icons are from freepik.com (2017).

Bagging refers to randomly sampling observations with replacement from the training set along with sampling of explanatory

variables (Breiman, 1996). A set which results from bagging is called out-of-bag data (OOB) and OOB data will always be

lacking some of the input data. When a single tree is grown from OOB data, it is unlikely to contain the same observations and10

variables used by other trees if the process is repeated. RF models usually contain a few hundred trees using OOB data and

this creates a forest which consists of many decorrelated trees which have been trained on different subsets of the training set

(Figure 1). Every tree can then be used to predict and the predictions are aggregated to form a single prediction. In regression

applications, the mean of predictions is used. Somewhat counter intuitively, the bagging process and ensemble predictions

addresses decision trees’ tendency to overfit training sets (Friedman et al., 2001). This allows RF to produce predictive models15

which generalise well and predictive performance is generally considered among the best of any ML technique (Caruana and

Niculescu-Mizil, 2006).
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RF also has the advantage of not being a “black-box” method (Jones and Linder, 2015). Decision trees are one of the few ML

techniques where the learning process can be explained, investigated, and interpreted. In the case of artificial neural networks

or kernel based learning methods, this is much more difficult to do (Kotsiantis, 2013; Tong et al., 2003). RF models can be

investigated with partial dependence plots which demonstrate the relationships among variables and a variable’s importance

as a predictor can be determined. RF can be used in unsupervised, regression, or classification modes, accepts numeric and5

categorical variables, and is known to be simpler to tune when compared to other decision tree methods which usually require

pruning; a process which removes some of the grown branches from the forest. The combination of these attributes has made

RF a popular ML technique (Friedman et al., 2001; Immitzer et al., 2012).

1.4 Objectives

Improvements in the pre-processing steps for air quality trend analysis need to be made which control, or account for meteo-10

rology and allow for more robust trend and intervention exploration. This paper has the overall objective to present a meteoro-

logical normalisation technique which uses RF predictive models to prepare ambient atmospheric pollutant concentration data

for trend analysis. Specifically, this paper will (i) present a meteorological normalisation technique using RF predictive models

using routine data which will be accessible to most data users, (ii) present a trend analysis of the meteorologically normalised

time series, and (iii) use RF’s advantage of being able to interpret the learning processes to explain the trends which are ob-15

served. Daily PM10 observations from across Switzerland will be used for the analysis. The use of daily Swiss PM10 data was

chosen because the data record and capture rates are excellent, and a previous study (Barmpadimos et al., 2011) conducted a

PM10 trend analysis using a different method for observations between 1991 and 2008. Therefore, this work also updates and

extends previous work.

2 Methods20

2.1 Data

Routine air quality observations from Switzerland were used in this study and these data were accessed from the European

Environment Agency (EEA) AirBase and Air Quality e-Reporting (AQER) data repositories (European Environment Agency,

2014, 2017). The AirBase repository includes data between 1969 and 2012 (inclusive) while the AQER repository contains

data from 2013 onwards. These two repositories contain monitoring sites which are within Switzerland’s National Air Pollution25

Monitoring Network (NABEL) and sites which are managed by the Swiss Cantons (states) (Federal Office for the Environment,

2014, 2017). Data from the two repositories have different data models and file formats which required transformation and

processing into a standardised relational data model called smonitor (Grange, 2016, 2017). The Härkingen-A1 and Sion-

Aéroport sites’ data are not submitted to the EEA, therefore these data were requested and delivered directly from the Swiss

Federal Office for the Environment (FOEN).30
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Daily PM10 observations were used as the pollutant of interest and in the models as the dependent variable. Observations

between 1997 and 2016 were used and the observations were collected with the use of commercially available gravimetric

instrumentation and are subjected to quality assurance and control procedures (Federal Office for the Environment, 2017). A

total of 186400 PM10 observations from 31 sites were used. The sites were classified into six site types: rural, rural mountain,

urban background, suburban, rural motorway, or urban traffic based on classifications in the AQER reporting system. For site5

locations and details see Table 1 and Figure 2.

The 31 PM10 monitoring sites where chosen for their suitably for use in trend analysis. The main condition was that PM10

observations needed to be unbroken for at least five years. One exception was made for Zürich-Schimmelstrasse. Zürich-

Schimmelstrasse has a broken PM10 time series due to PM10 monitoring occurring every second year between 2002 and 2010,

however, these data were still considered valuable to include in the analysis. All other sites had very high data capture rates10

(median of 99 %) for the duration they were operational. Five monitoring sites were closed before, or did not have PM10 data

to the end of the analysed time period (the end of 2016) but until their date of closure, had uninterrupted PM10 time series.
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Figure 2. Locations of the air quality and meteorological sites included in the analysis. The map outline is the extent of Switzerland.

Surface meteorological variables to be included in the modelling process such as wind speed, wind direction, and atmo-

spheric temperature were accessed from the Integrated Surface Database (ISD) with the worldmet R package (NOAA, 2016;
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Table 1. Information for the PM10 and meteorological monitoring sites used in this study.

ID Site name Latitude Longitude Elevation (m) Site type Site name ISD (met.) Data span

1 Avully-Passeiry 46.163 6.005 427 Rural Geneva Cointrin 2001–2016

2 Magadino-Cadenazzo 46.160 8.934 203 Rural Locarno - Magadino 1997–2016

3 Payerne 46.813 6.944 489 Rural Payerne 1997–2016

4 Saxon 46.139 7.148 460 Rural Sion 1998–2016

5 Tänikon 47.480 8.905 538 Rural Aadorf-Taenikon 2002–2016

6 Härkingen-A1 47.312 7.821 431 Rural motorway Wynau 1997–2016

7 Sion-Aéroport-A9 46.220 7.342 483 Rural motorway Sion 1997–2016

8 Chaumont 47.050 6.979 1136 Rural mountain Chasseral 2002–2016

9 Rigi-Seebodenalp 47.067 8.463 1031 Rural mountain Luzern 2002–2016

10 Basel-Binningen 47.541 7.583 316 Suburban Bale Mulhouse 1997–2016

11 Dübendorf-EMPA 47.403 8.613 432 Suburban Zuerich-Fluntern 1997–2016

12 Ebikon-Sedel 47.068 8.301 482 Suburban Luzern 2002–2016

13 Ittigen 46.976 7.479 460 Suburban Bern-Zollikofen 2002–2016

14 Lugano-Pregassona 46.026 8.968 305 Suburban Lugano 2007–2016

15 Meyrin-Vaudagne 46.231 6.074 439 Suburban Geneva Cointrin 2002–2016

16 Opfikon-Balsberg 47.439 8.570 430 Suburban Zuerich-Fluntern 2001–2016

17 Thônex-Foron 46.196 6.211 422 Suburban Geneva Cointrin 2002–2016

18 Basel-St-Johann 47.566 7.582 260 Urban background Bale Mulhouse 1997–2016

19 Lugano-Università 46.011 8.957 280 Urban background Lugano 1997–2016

20 Luzern-Museggstrasse 47.056 8.310 460 Urban background Luzern 2002–2010

21 Winterthur-Obertor 47.500 8.732 448 Urban background Zuerich-Fluntern 2000–2014

22 Zürich-Kaserne 47.378 8.530 409 Urban background Zuerich-Fluntern 1997–2016

23 Basel-Feldbergstrasse 47.567 7.595 255 Urban traffic Bale Mulhouse 2004–2016

24 Bern-Bollwerk 46.951 7.441 536 Urban traffic Bern Belp 1997–2016

25 Bern-Brunngasshalde 46.949 7.450 533 Urban traffic Bern-Zollikofen 2002–2015

26 Genève-Ile 46.206 6.143 375 Urban traffic Geneva Cointrin 2001–2008

27 Genève-Wilson 46.216 6.151 376 Urban traffic Geneva Cointrin 2002–2013

28 Lausanne-César-Roux 46.522 6.640 530 Urban traffic Geneva Cointrin 1997–2016

29 St-Gallen-Rorschacherstrasse 47.429 9.387 660 Urban traffic St. Gallen 2001–2013

30 Zürich-Schimmelstrasse 47.371 8.524 415 Urban traffic Zuerich-Fluntern 1997–2016

31 Zürich-Stampfenbachstrasse 47.387 8.540 445 Urban traffic Zuerich-Fluntern 1997–2016

Carslaw, 2017). These observations are generally available as hourly means and were therefore aggregated to daily averages.

The wind speed aggregation used was the scalar averages which represents average atmospheric motion well at this aggregation

period (Grange, 2014). Generally, the closest ISD site with a complete time series was matched to an air quality monitoring

site, but there were cases where the data record was poor for the closest site, or it was unrepresentative (usually due to large

differences in elevation) so another ISD site was used instead. Some air quality monitoring sites monitor meteorological vari-5

ables, but often the time series were not complete in the ISD database and another site was therefore supplemented. Fourteen

unique ISD sites were used and Table 1 shows which ISD site was used for each of the 31 air quality monitoring sites.

Synoptic scale weather patterns were included into the models by using the Swiss Weather Type Classifications (WTC). The

WTC is an objective and automatic classification scheme which is used to describe broad synoptic scale circulation patterns in

Switzerland. There are ten different WTCs types but only the CAP9 classification was used which defines nine distinct clusters10
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of synoptic weather patterns calculated by principal component analysis (Weusthoff, 2011). Descriptions of what these nine

classes represent can be found in the supplementary material (Table A1).

Modelled daily boundary layer heights between 1997 and 2016 were sourced from the European Centre for Medium-Range

Weather Forecasts (ECMWF) ERA-Interim data portal (Dee et al., 2011). The highest spatial resolution outputs were used

which were at 0.125 × 0.125 decimal degrees. The NetCDF ECMWF model outputs were promoted to a raster stack and the5

midday boundary layer heights were extracted for each of the 31 monitoring sites (Hijmans, 2016; Pierce, 2017). Many of the

Swiss urban monitoring sites are within close proximity and therefore only 23 unique raster cells were needed to represent

the 31 sites. After the raster extraction, daily time series of boundary layer heights for each site were generated. The modelled

ECMWF outputs were tested against radio sounding observations at Payerne before 2010 when such data exists. Although the

two data sets did not agree well, a positive correlation was present and inclusion of boundary layer variable was done to allow10

the models to have a predictor which represented approximate atmospheric stability and the modelled data was judged to be

suitable for this purpose.

For each of the 23 raster cells, daily back trajectories were calculated using the HYSPLIT model for the monitored period

of PM10 (1997–2016) (Stein et al., 2015). The back trajectories were calculated backwards in time for 120 hours and used half

the mean monthly boundary layer height as their starting height. This start height ensured that the back trajectory receptor was15

aloft, but remained within the boundary layer throughout the year. The back trajectories were then clustered into six clusters

using the Euclidian distance and these clusters were used to represent the common air masses the PM10 monitoring sites were

exposed to. The use of six clusters was a heuristic, but the six clusters represented distinct air masses and they were very stable

across the 23 receptor locations. The HYSPLIT clustering function in openair was used to determine these clusters (Carslaw

and Ropkins, 2012).20

2.2 Modelling

RF models which used PM10 as the dependent variable for each of the 31 air quality monitoring sites were grown. All RF

models used the same explanatory variables to predict daily PM10 concentrations. The explanatory variables were: wind speed,

wind direction, atmospheric temperature, synoptic weather pattern, boundary layer height, air mass cluster based on the HYS-

PLIT back trajectories, a linear trend term which was the Unix time of the observation (number of seconds since 1 January,25

1970), Julian day (day of the year) as the seasonal term, and day of the week. The air mass cluster, the synoptic weather pat-

tern, and day of the week variables were categorical variables while all others were numeric. All variables were used within

their response scale with no transformations being applied. The randomForest R package was used as the interface to the

RF functions reported by Breiman (2001) (Liaw and Wiener, 2002). A daily PM10 concentration was only modelled if valid

wind speed data was available for that day. For all other input variables, missing data was imputed with the median of numeric30

variables and the mode for categorical variables. Training of the models was conducted on 80 % of the input data and the other

20 % was withheld from the training and used to validate the models once they had been grown.

RF only requires a handful of tuning parameters (also called hyper parameters) to be specified by the user (Liaw and Wiener,

2002; Immitzer et al., 2012). To determine the optimal values, many models were run with different combinations of tuning
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parameters. The model performance statistics using the testing set (data withheld from the training step) and run times were

evaluated to judge what hyper parameters grew the best performing models. For this application, the models were found to be

rather insensitive to tuning parameters. However, the number of variables used to grow a tree was set to three, the minimum

node-size or depth was five, and the number of trees within a forest was set at 300 for all models.

2.2.1 Meteorological normalisation5

The meteorological normalisation of the daily PM10 time series was achieved by repeatedly sampling and predicting using

individual site RF models, rather than attempting to solve-for, and then remove the short term variation in a time series. The

RF predictive model for a site was used to predict every PM10 concentration 1000 times. For every prediction, the explanatory

variables, with the exception of the trend term, were sampled without replacement and randomly allocated to a dependent

variable observation (a PM10 concentration). The 1000 predictions were then aggregated using the arithmetic mean and this10

represented “average” meteorological conditions and hence, this was the meteorologically normalised trend. If more than a

thousand predictions were made, only a very minor reduction of noise was achieved. The functions used to grow the RF

models and apply the meteorological normalisation procedure reported here are available in the normalweatherr R package

(Grange, 2017).

2.3 Trend tests15

After the normalised time series for a site had been calculated, formal trend tests were preformed. The Theil-Sen estimator

accounting for autocorrelation was used at the 95 % confidence level (α = 0.05) to indicate a significant trend. The autocor-

relation consideration process results in more conservative confidence intervals for the trend estimates. These functions were

also provided by the openair R package (Carslaw and Ropkins, 2012).

3 Results and discussion20

3.1 Random forest model evaluation

The predictive random forest (RF) models performed well for most PM10 monitoring sites. All mean squared errors (MSE)

and R2 values are displayed in tabular form in the supplementary material (Table A2). R2 values ranged from 54 to 71 %

(Figure 3). This indicates for some sites in Switzerland PM10 concentrations could be well explained by a combination of

surface meteorological conditions, boundary layer height, synoptic scale conditions, back trajectory receptor air mass clusters,25

and time variables which acted as proxies for emission strength. There were only two obvious patterns observed between site

type and predictive model performance: the rural motorway sites performed in a similar way and the rural mountain sites’

models generally performed worse than other site types when using the R2 metric. However, there were only two of each of

these site types analysed in this study, and the other four site types did not demonstrate any conclusive grouping with model

performance measures (Figure 3).30
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Figure 3. The R2 values for the 31 random forest models grown for the Swiss PM10 monitoring sites.

The most important explanatory variable for PM10 concentrations depended on which site was being investigated. However,

generally, wind speed was the variable with the greatest importance for prediction (Figure 4). Other sites demonstrated that the

seasonal term (Julian day), or trajectory cluster were the most important variables to explain variability in PM10 concentrations

(Figure 4). This indicates that both local and regional scale processes were important when explaining PM10 concentrations in

Switzerland. Day of the week and the synoptic-scale classification (WTC) were generally the least important variables in the5

RF models, but both variables always contributed to the models’ predictive ability (Figure 4). Including variables with little

predictive power does not negatively effect the performance of RF models and therefore there was no attempt to remove such

variables from the models. Interestingly, wind direction was often a relatively unimportant variable (Figure 4). This may be due

to daily wind direction averages not contributing much information gain in the model because the aggregation period results

in the metric representing atmospheric motion rather poorly. For all of the 31 sites, the normalised PM10 was approximately10

monotonic and no seasonal component was apparent which made formal trend tests suitable.
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Figure 4. Variable importance for the 31 Swiss PM10 monitoring sites’ random forest models. Dots represent the mean increase in mean

square error (MSE) and the lines represent the interquartile range for each variable.

3.2 PM10 trend analysis

In all but two PM10 Swiss monitoring sites, normalised PM10 concentrations were found to be significantly decreasing at the

α= 0.05 level between 1997 and 2016. Significantly decreasing normalised PM10 trends at individual sites ranged from -0.09

to -1.16 µgm−3 year−1 (Figure A1). These values were similar to the normalised trends reported by Barmpadimos et al. (2011)

of -0.15 to -1.2 µgm−3 year−1 which analysed Swiss PM10 trends between 1991 and 2008 with a different method (general5

additive models; GAMs). The similarities between the two studies suggests that PM10 concentrations have continued to reduce

at the same rate as reported in the past, which also validates the performance of emission control measures relating to vehicular

and heating PM emissions and confirms the trends that were modelled based on emission inventories and their projections

(Heldstab et al., 2013). Luzern-Museggstrasse was the only monitoring site which demonstrated a significantly increasing

normalised PM10 trend of 0.14 µgm−3 year−1. However, this facility stopped monitoring PM10 in 2009 and therefore it is10

unknown if this trend continued to more recent times. The two monitoring sites in Geneva also did not have PM10 observations

to the end of the analysis period. PM10 at Genève-Wilson demonstrated no significant normalised trend and Genève-Ile had the

least significant normalised PM10 trend across the 31 sites analysed (Figure A1). This may suggest that Geneva’s PM10 trends

are different from the rest of Switzerland, but with the lack of more recent observations, this is uncertain.
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Sites classified as ‘urban traffic’ had a greater decreasing trend when compared to other site types (Figure 5). When the

six site type trends were aggregated together, the stronger decreasing trend for traffic sites was clear with an average trend

of -0.77 µgm−3 year−1, compared to the other site types which ranged between -0.39 and -0.63 µgm−3 year−1 (Figure 5).

Barmpadimos et al. (2011) also reported trends based on site type but their site type definitions were not the same as used in

this study so they should not be directly compared. The higher first four points in the rural panel of Figure 5 was caused by the5

aggregated time series only containing the Magadino-Cadenazzo monitoring site at the very beginning of the analysis period.

Magadino-Cadenazzo is located south of the Alps and experiences higher average concentrations of PM10 compared to the

other rural sites. Without the observations from the other rural sites, these higher concentrations leveraged the mean seen in

Figure 5. These observations were still included in the analysis and the Theil-Sen estimator used is hardened against outliers

so this will have minimal influence on the trend estimate.10

Difference in annual mean PM10 concentrations between the rural and urban traffic site types for 2016, the final year of

analysis, was 4.7 µgm−3 compared to 9.8 µgm−3 in 1997. The deltas between rural and other site types (excluding the

mountainous sites) also decreased during the analysis period. This suggests the locations which are influenced by immediate

PM10 sources are becoming less polluted by local emissions and are increasingly heading towards rural background levels.

The rural and urban background sites’ trend metrics are very similar indicating that these two site types are behaving in a very15

similar way in respect to changes to PM10 concentrations over time.

The site type classifications used in this study can be sorted by their increasing anthropogenic PM10 load in this order:

rural mountain, rural, suburban, urban background, and urban traffic. Site types which experience more anthropogenic PM10

emissions could be expected to demonstrate greater reductions in PM10 concentrations when emission inventions or controls

are applied. This continuum is only partially shown in the trend magnitudes however with suburban and rural motorway sites20

not conforming to this expected pattern (Figure 5). In fact, the suburban sites demonstrate the smallest decrease in PM10

concentrations.

The rural motorway trends can be explained because although PM (tailpipe) emissions for road traffic have decreased in

Switzerland between 1997 and 2016, the volume of traffic using the adjacent roads has increased (Bundesamt für Strassen,

2017). This increase in traffic would have offset the lower emissions during the time period and thus PM concentrations would25

not have decreased as much as could be expected based on vehicular emissions alone. The suburban sites’ lack of decrease

is more difficult to explain. There are many processes which could explain this feature, but we attribute this result due to

changes in the surrounding environment of the suburban sites. Many of the monitoring sites in Switzerland which are classed

as suburban have become increasingly urban during the period of analysis (1997 and 2016). Therefore, some of these suburban

monitoring sites are being influenced by more urban-like processes and emissions due to the development in their vicinity.30

Woodburning is a source of PM10 in the alpine, suburban, and urban areas in Switzerland. The number of woodburning

appliances and heating demand is deceasing over time and this change will contribute to the trends observed in Figure 5

(Stettler and Betbèze, 2017). However, the quantification of the reduction in woodburning activity on PM10 concentrations

among the different site types is cannot be conducted with the current data concerning woodburner usage.
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Figure 5. Aggregated meteorologically normalised PM10 trends for the six site types in Switzerland between 1997 and 2016. Points represent

the aggregated meteorologically normalised monthly means, lines represent the trend estimate, and n represents the number of sites in the

group.

The comparison of the RF meteorological normalisation models with other techniques was not a primary objective of this

work. However, it is important to consider what effect meteorological normalisation had on the trend estimates. To investigate

this, the PM10 observations which were subjected to the meteorological normalisation process were aggregated to monthly

means and their trends tested with the Theil-Sen test with identical parameters as used on the normalised time series. This could

be considered a ‘standard’ and routine procedure for air quality data analysis. With the exception of the rural motorway sites,5

the normalised trend estimate was found to be greater (more negative), than the non-normalised trend estimates (Figure 6). This

indicates that meteorology in Switzerland between 1997 and 2016 has masked or obscured changes in PM10 emissions during

the same period in the observational record. Because the meteorological normalisation technique helps to explain variation in

PM10 concentrations, the normalised trend estimates had a much lower range of uncertainty when compared to the aggregated

observations in all cases (Figure 6). Therefore, not only did the meteorological normalisation technique generally estimate10

more negative trends compared to standard methods, the trends calculated were more robust and less uncertain when compared

to a routine analysis method which would lead to quicker identification of significant trends.
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Figure 6. PM10 trend slope estimates of meteorological normalised and non-meteorological normalised observations for five site types in

Switzerland between 1997 and 2016. The line ranges represent the 95 % confidence intervals of the slope estimates.

3.2.1 Explaining the observed trends

One of the primary advantages of decision tree methods like RF over other machine learning techniques is the ability to

interpret and explain the models and discussion of this is presented in Section 1.3.1. Here, this advantage will be leveraged to

help explain some of the features in the PM10 trends in Switzerland between 1997 and 2016.

Partial dependence plots allow RF models to be evaluated and to confirm how the explanatory variables are being used in5

the models for prediction (Jones and Linder, 2015). For the application presented here, there are general physical and chemical

processes which should be confirmed in the RF models. For example, it can be expected that PM10 concentrations will be

inversely related to wind speed due to increased atmospheric dispersion, and that wintertime concentrations will be higher

than other seasons resulting from a combination of greater emissions and atmospheric stability. These general predictions and

processes were confirmed by the RF models’ partial dependence plots (one site shown as an example in Figure 7).10

The partial dependence plots of the Zürich-Stampfenbachstrasse RF model (Figure 7) showed some interesting features

and were typical for Switzerland’s traffic influenced sites. The y (vertical) axes for each plot represents the dependence of
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Figure 7. Partial dependence plots of the explanatory variables used in the Zürich-Stampfenbachstrasse PM10 random forest model.

PM10 concentration on one variable if all other variables are fixed at their average level. The most important variable at this

location was wind speed and the non-linear relationship is present in Figure 7. When wind speeds were very low, the PM10

concentrations were on average over 38 µgm−3 day−1 but the influence on PM10 concentrations was strong and therefore at

wind speeds greater than 3 ms−1, average concentrations decreased to under 22 µgm−3 day−1 (Figure 7). There was minimal

evidence of increasing PM10 concentrations at high wind speeds due to resuspension of wind blown PM at any monitoring site5

in the RF models.

Weekday was the variable of least importance for the Zürich-Stampfenbachstrasse RF model but the partial dependence plot

still demonstrates what would be expected. Weekdays (days 1–5; Monday–Friday) were more polluted than the weekend days

due to higher traffic sourced emissions, but the variability of PM10 concentrations among the weekdays was less than 2 µgm−3

day−1, i.e., the response scale was small (Figure 7). There was evidence of a sequential loading process over the weekdays10

which peaked on Thursdays (day 4) and also lower concentrations during the early working week (Monday and Tuesday; days

1 and 2) which resulted from reduced precursor PM emissions during the weekend, especially Sunday.

The seasonal component represented by Julian day showed a similar pattern to air temperature (Figure 7). Despite the similar

shapes of dependencies on PM10 for these variables, they represent rather different processes. The Julian day dependence

represents the changes in local and regional emissions which influence PM10 concentrations over the course of the year. In the15
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case of Zürich-Stampfenbachstrasse, this will be dominated by changes in regional background concentrations with the addition

of local traffic emissions. The seasonal variation of emissions which effect PM10 concentrations at Zürich-Stampfenbachstrasse

spans 10 µgm−3, and this indicates that the seasonal effect is important to consider. When Julian day was removed from the

RF models, the dependence on air temperature and boundary layer height did not change and this shows that the models were

able to differentiate the different processes correctly despite their collinearity.5

The back trajectory cluster variable was important for many PM10 monitoring sites including Zürich-Stampfenbachstrasse

(Figure 4 and 7). The decoded clusters’ descriptions displayed in Figure 7 can be found in Table A3 but the two most polluted

air masses, 5 and 6 represented a local flow from south west Switzerland and a strong north east flow from Poland and southern

Germany respectively (Figure 8). This indicates that air masses from surrounding European states can cause polluted PM10

conditions in Zürich, as can periods of calm and localised flows.10
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Figure 8. The six back trajectory clusters for the Zürich receptor location between 1997 and 2016 which were used by the random forest

PM10 models. The clusters are decoded in Table A3 and the percentages indicate the frequency of occurrence.

The partial dependence plots indicate that most monitoring sites experience their minimum PM10 concentrations when

the boundary layer is ≈ 1000 metres high, but concentrations increase again once the boundary layer increases over 2000

metres (Figure 7). This is an interesting phenomenon and it suggests that there are two regimes in Switzerland which drive

elevated PM10 concentrations. The first is the obvious (and expected) combination of low temperatures, low boundary heights,
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and high rates of surface-based emissions during wintertime. These factors combine to create a poor dispersive environment

which leads to high pollutant concentrations. The second regime which causes elevated PM10 concentrations is active when

temperatures are above 20◦C and the boundary layer is above 2000 metres (Figure 7). These conditions occur with every air

mass cluster and under all synoptic weather patterns which are experienced at these higher temperatures. Therefore, this regime

is associated with warm, dry, dusty, and deep convective boundary layer conditions which favour transportation of PM10 from5

other locations and the generation of secondary aerosol and other processes driven by photochemistry. Daily sulphur (in PM10)

observations are available at the Payerne monitoring site and SO2−
4 concentrations do indeed increase at higher boundary layer

heights while primary pollutants such as NOx do not (Figure 9). These results are consistent with enhanced sulphate formation

in summertime when the formation of sulphate through photochemistry is most important. By contrast, the concentration of

primary pollutants such as NOx tend to decrease with increasing boundary layer height due to increased mixing.10
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Figure 9. Mean normalised concentrations of SO2−
4 , a secondary PM species and NOx for binned boundary layer heights (bin was set at 50

metres) at Payerne between 1997 and 2016.

The partial dependence plots of the seasonal and trend components also demonstrate that while the trend component de-

creased between 1997 and 2016, the seasonal component also decreased at some of the Swiss PM10 monitoring sites. The best

example of this was demonstrated at Magadino-Cadenazzo, a rural site in Ticino in the south of Switzerland (Table 1 and Fig-

ure 2). The decrease in the seasonal component was especially true after 2006 and during early winter at Magadino-Cadenazzo

(December; Figure 10(a)). As discussed above, this further validates air pollutant emission controls and interventions because15
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both the background concentration and the local loading of PM10 during winter is decreasing simultaneously. There is evidence

however that the wintertime loading has plateaued since approximately 2014 at this monitoring site (Figure 10(b)).
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Figure 10. (a) PM10 partial dependence on trend and seasonal components (Date and Julian day respectively) and (b) annual predicted

seasonal component at Magadino-Cadenazzo where dots represent the mean and lines indicate the amplitude of the seasonal component.

The rural mountain Chaumont and Rigi-Seebodenalp monitoring sites have low PM10 concentrations when compared to the

other Swiss sites and site types (Figure A1 and Figure 5). Both of these locations are isolated and are located above 1000 metres

of elevation (Table 1 and Figure 2). Therefore, these two monitoring sites represent pristine locations. The PM10 concentrations5

at both locations decreased at ≈ -0.45 µgm−3 year−1 between 1997 and 2016 indicating a wider-scale European reduction in

PM10 and its precursors (Guerreiro et al., 2014). Interestingly, the normalised trend at Rigi-Seebodenalp showed an additional

PM10 loading between April 8 and 26, 2010 due to the Eyjafjallajökull Icelandic volcanic eruption (Bukowiecki et al., 2011;

Thorsteinsson et al., 2012) but at Chaumont, this was not discernible (not shown). This demonstrates that the two sites do

behave differently and are exposed to different processes at times. The differences between the two sites are not clear in the10

concentration data alone and demonstrates a potentially useful side effect of the technique where it can be used to investigate

abnormal events.

The RF models for these two rural and mountainous locations also demonstrated different processes compared to other

site types. The most interesting feature was that the relationship between air temperature and boundary layer height with

PM10 concentrations differed from the other Swiss monitoring sites. The two mountainous sites experienced their highest15

PM10 concentrations at high temperatures (Chaumont shown in Figure 11(a)). This difference in dependence was due to these

monitoring locations being intermittently above the boundary layer, which was also confirmed with the boundary layer height

partial dependence plots (Figure 11(b)). When these elevated sites were within the boundary layer during warmer periods, the

relatively well mixed PM10 influenced the monitoring locations, but during cooler times, the sites were located in the free

troposphere decoupled from surface based emissions. This generally resulted in the elevated monitoring sites experiencing20

lower concentrations of PM10 during cooler periods which was not the case for monitoring sites located at lower elevations,

for example, Basel-St-Johann, an urban background site located at 260 metres of elevation (Figure 11).
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Figure 11. Partial dependence of PM10 concentrations on (a) air temperature and (b) boundary layer height at two monitoring sites with

different site type classifications.

4 Conclusions

This paper presented a meteorological normalised PM10 trend analysis using daily data from Switzerland. Random forest (RF)

predictive models which were used to explain variation of PM10 concentrations using surface meteorology, synoptic scale

weather patterns, boundary layer height, back trajectory clusters, and time variables. The models were then used to prepare the

PM10 time series to create a meteorological normalised trend which was suitable for formal trend analysis.5

The RF performed well for the 31 monitoring sites with R2 values up to 71 %. Wind speed, Julian day (the seasonal

component), and back trajectory cluster were generally the most important predictors for PM10 concentration. For 29 of the

31 monitoring sites analysed, PM10 concentrations were found to be significantly decreasing at rates between -0.09 and -

1.16 µgm−3 year−1 and on average, urban traffic sites demonstrated the greatest decrease of -0.77 µgm−3 year−1. The RF

models’ learning process was interpreted with partial dependence plots to explain the trends observed. There was evidence10

of a decrease in the seasonal component at some sites, i.e., the wintertime loading has decreased, and the monitoring sites

above 1000 metres of elevation showed interesting dependences on air temperature which were not demonstrated at other sites

because they are intermittently located above the boundary layer. The models also indicated that across Switzerland, elevated

PM10 concentrations occur in poor dispersion conditions as well as at high temperatures with a deep boundary layers due to

high rates secondary PM generation resulting from photochemical processes.15
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The meteorological normalisation technique using RF was found to be helpful in the PM10 trend analysis conducted and

resulted in more negative and less uncertain trend estimates compared to another standard analysis method. The predictive

modelling framework and technique was found to be easy to implement and user friendly because RF does not need to con-

form to strict parametric assumptions. The technique described could be used in many air quality exploratory data analysis

applications.5
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Table A1. The nine synoptic scale weather type classifications (WTC) used in this study (from Weusthoff, 2011).

CAP9 class CAP9 description

1 North-East, indifferent

2 West-South-West, cyclonic, flat pressure

3 Westerly flow over Northern Europe

4 East, indifferent

5 High Pressure over the Alps

6 North, cyclonic

7 West-South-West, cyclonic

8 High Pressure over Central Europe

9 Westerly flow over Southern Europe, cyclonic
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Table A2. Random forest model performance statistics for 31 PM10 air quality monitoring sites in Switzerland.

ID Site Site type MSE R2 (%)

1 Avully-Passeiry Rural 54.824 59.980

2 Magadino-Cadenazzo Rural 129.356 56.898

3 Payerne Rural 60.854 62.431

4 Saxon Rural 64.023 62.097

5 Tänikon Rural 51.140 67.523

6 Härkingen-A1 Rural motorway 84.145 65.531

7 Sion-Aéroport-A9 Rural motorway 53.355 64.646

8 Chaumont Rural mountain 26.095 61.019

9 Rigi-Seebodenalp Rural mountain 32.276 53.513

10 Basel-Binningen Suburban 65.807 64.247

11 Dübendorf-EMPA Suburban 64.563 63.084

12 Ebikon-Sedel Suburban 68.702 54.373

13 Ittigen Suburban 68.965 64.415

14 Lugano-Pregassona Suburban 84.349 55.492

15 Meyrin-Vaudagne Suburban 52.188 59.037

16 Opfikon-Balsberg Suburban 57.011 62.900

17 Thônex-Foron Suburban 61.899 66.192

18 Basel-St-Johann Urban background 63.320 66.413

19 Lugano-Università Urban background 173.909 55.792

20 Luzern-Museggstrasse Urban background 89.484 62.690

21 Winterthur-Obertor Urban background 68.498 57.971

22 Zürich-Kaserne Urban background 73.583 61.867

23 Basel-Feldbergstrasse Urban traffic 62.058 63.296

24 Bern-Bollwerk Urban traffic 94.146 67.708

25 Bern-Brunngasshalde Urban traffic 66.208 57.540

26 Genève-Ile Urban traffic 66.777 59.299

27 Genève-Wilson Urban traffic 80.017 62.025

28 Lausanne-César-Roux Urban traffic 80.206 61.248

29 St-Gallen-Rorschacherstrasse Urban traffic 55.139 60.131

30 Zürich-Schimmelstrasse Urban traffic 91.317 70.609

31 Zürich-Stampfenbachstrasse Urban traffic 75.976 61.974
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Table A3. The six decoded HYSPLIT back trajectory clusters. The integer cluster key was used in the random forest models and the decoded

cluster was determined after the cluster analysis.

Cluster Decoded cluster

1 Strong northerly flow from north sea

2 Very strong north west flow from Atlantic Ocean

3 Westerly flow from Atlantic Ocean

4 South west flow from France and western Switzerland

5 Local flow from south west Switzerland

6 Strong north east flow from Poland and southern Germany
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Figure A1. Meteorologically normalised PM10 trends for the 31 sites analysed in Switzerland between 1997 and 2016.
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