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Abstract: It is widely recognized that saltation is a turbulent process, similar to other transport 11 

processes in the atmospheric boundary layer. But due to the lack of high frequency observations, 12 

the statistic behavior of saltation is so far not well understood. In this study, we use the data 13 

from the Japan-Australian Dust Experiment (JADE) to investigate turbulent saltation by 14 

analyzing the probability density function, energy spectrum and intermittency of saltation 15 

fluxes. Threshold friction velocity, u*t, and saltation coefficient, c0, are two important 16 

parameters in saltation models, often assumed to be deterministic. But as saltation is turbulent, 17 

we argue that it is more reasonable to consider them as parameters obeying certain probability 18 

distributions. The JADE saltation fluxes are used to estimate the u*t and c0 probability 19 

distributions. The stochasticity of these parameters is attributed to the randomness in friction 20 

velocity and threshold friction velocity as well as soil particle size.  21 

 22 

Keywords: wind erosion; turbulent saltation; saltation intermittency; saltation model; threshold 23 

friction velocity; saltation coefficient; maximum likelihood 24 

 25 

Highlight: We use the data from a field experiment to investigate saltation by analysing the 26 

probability density function, energy spectrum and intermittency of saltation fluxes. We also 27 

estimate two key wind-erosion model parameters and their probabilistic distributions. It 28 

continues the line of considering saltation as a turbulent process and represents a progress 29 

towards deriving more general wind erosion models. 30 

 31 

1. Introduction 32 

It is known from the start of modern aeolian research [Bagnold, 1941] that saltation, the hop 33 

motion of sand grains near the earth’s surface, is a turbulent process. However, early aeolian 34 

studies focused mainly on its “mean” behaviour. Most well-known is for example the Owen 35 

[Owen, 1964] saltation model which predicts that the vertically integrated saltation flux is 36 

proportional to friction velocity cubed. A dedicated investigation on turbulent saltation was 37 

conducted by Butterfield [1991]. Staut and Zobeck [1997] introduced the idea of saltation 38 

intermittency and pointed out that even when the averaged friction velocity, u*, is below the 39 

threshold, saltation can still intermittently occur. The emphasis of the latter authors has been on 40 

the saltation intermittency caused by the fluctuations of turbulent wind. Turbulent saltation has 41 

attracted much attention in more recent years [e.g. McKenna Neuman et al. 2000; Davidson-42 

Arnott and Bauer, 2009; Sherman et al. 2017] and sophisticated models have been under 43 

developed to model the process [e.g. Dupond et al. 2013]. However, due to the lack of high-44 

frequency field observations of saltation fluxes, the statistical behaviour of turbulent saltation 45 

is to date not well understood.  46 

 47 
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A related problem is how saltation can parameterized in wind erosion models. For example, for 48 

dust modelling, it is important to quantify saltation, as saltation bombardment is a main 49 

mechanism for dust emission. In wind erosion models, threshold friction velocity, u*t, is a key 50 

parameter which depends on many factors including soil texture, moisture, salt concentration, 51 

crust and surface roughness. In models, it is often expressed as 52 

 53 

)...()()()()(,...),,,;( ** rcrlscwtrlt cfsfffducsdu       (1) 54 

 55 

where u*t(d) is the minimal threshold friction velocity for grain size d [Shao and Lu, 2000]; λ is 56 

roughness frontal-area index; θ is soil moisture; sl is soil salt content and cr is a descriptor of 57 

surface crustiness; fλ, fw, fsc and fcr are the corresponding correction functions. The corrections 58 

are determined semi-empirically, e.g., fλ using the Raupach et al. [1993] scheme and fw the 59 

Fécan et al. [1999] scheme. The corrections fsc and fcr are so far not well known.   60 

 61 

For homogeneous saltation, the saltation flux can be computed using the Kawamura [1964] 62 

scheme, here multiplied by the fraction of erodible surface area σf, 63 

 64 
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 66 

where d is particle diameter in sand particle size range, ρ is air density, g is acceleration due to 67 

gravity and u* is friction velocity. According to Kawamura [1964], the saltation coefficient, co, 68 

falls between 1.8 and 3.1. In wind-erosion models, co is often set to 2.6 [White, 1979]. The total 69 

(all particle size) saltation flux, Q, is a particle-size weighted average of Q(d) 70 

 71 
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 73 

where d1 and d2 define the upper and lower limits of saltation particle size, respectively, and 74 

ps(d) is the soil particle size distribution. Observations show, however, co varies considerably 75 

from case to case, and as the data presented later in this paper show, for a given location, it may 76 

vary from day to day and even during a wind erosion event.   77 
 78 
While wind-erosion modules built in numerical weather and global climate models [e.g. Shao 79 

et al. 2011; Kok et al. 2014; Klose et al. 2014] are in general more sophisticated than what is 80 

described above and include a dust scheme, the estimate of Q is essentially done using 81 

Equations (1) to (3) or similar. Thus, the estimates of u*t and specification of c0 are rather critical 82 

to wind-erosion and dust modelling.  83 

 84 

In most wind erosion models, both u*t and co are considered to be deterministic. But as saltation 85 

is turbulent, it is more rational to treat u*t and co as parameters which satisfy certain probability 86 

distributions. Saltation intermittency also implies that u*t and c0 must depend on the scale of 87 

averaging. Shao and Mikami [2005] noticed that u*t for 10-minute averaged Q and 1-minute 88 

averaged Q are quite different. Namikas et al. [2003] and Ellis et al. [2012] have also noticed 89 

that averaging intervals of surface shear stress are important to quantifying sediment transport 90 

because both shear stress and saltation flux are turbulent.  91 

 92 
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In this study, we analyse the statistic behaviour of saltation using field measurements of 93 

saltation fluxes. In light of the analysis, we ask the question what the most likely values of u*t 94 

and co are and how representative they are. We also estimate the probability distribution of the 95 

two parameters. Between 23 Feb and 14 Mar 2006, Ishizuka et al. (2008; 2014) carried out the 96 

Japan-Australian Dust Experiment (JADE) on an Australian farm. In JADE, both u* and Q, 97 

together with a range of atmospheric and soil surface quantities, were measured with high 98 

sampling rate. The loamy sand soil surface at the JADE site was very mobile and thus the JADE 99 

data are representative to surfaces almost ideal for sand drifting. The JADE data are used in this 100 

study.   101 

 102 

2. Method for Parameter Estimation and Data 103 
 104 

Suppose )~,...,~,~(
~

21 nxxxX   is a measurement vector, with
ix~ being the measured value at time ti, 105 

and A is a model with a forcing vector F and parameters β. Let the initial state of the system be 106 

i0, then the modelled value of the system, X = (x1, x2, …, xn), can be expressed as   107 

 108 

);,()( 0  FiAX        (4) 109 

 110 

The error vector is given by XXE 
~

)( , here, fully attributed to β. Given X
~

, the posterior 111 

parameter probability density function (pdf), )
~

( Xp  , can be estimated from the Bayes 112 

theorem: 113 

 114 
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 116 

where )(p  is the prior parameter pdf, )
~

( Xp  the likelihood. If )(p is given, then the 117 

problem of finding )
~

( Xp  reduces to finding the maximum likelihood. Assume the error 118 

residuals are independent and Gaussian distributed with constant variance, σ2, the likelihood 119 

can be written as 120 

 121 
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 123 

In this case, maximizing the likelihood is equivalent to minimizing the error, i.e.,  124 

 125 
22 )~(min)(  

i

ii xxR       (7) 126 

This is the least-squares method for estimating β. 127 

 128 

As an alternative, approximate Bayesian computation (ABC) method has been proposed [e.g. 129 

Vrugt and Sadegh, 2013]. It is argued that β* should be a sample from )
~

( Xp  as long as the 130 

distance between the observed and simulated data is less than a small positive value 131 

 132 
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~
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 134 
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This procedure provides an estimate of the probability distribution function for given dataset. 135 

More efficient techniques based on the same principle exist, e.g., Markov Chain Monte Carlo 136 

Simulation [Sadegh and Vrugt, 2014]. In this study, we apply the Differential Evolution 137 

Adaptive Metropolis (DREAM) algorithm proposed by Vrugt et al. (2011) for estimation of 138 

hydrologic model parameter. The algorithm integrates Differential Evolution [Storn and Price, 139 

1997] and self-adaptive randomized subspace sampling to accelerate Markov Chain Monte 140 

Carlo simulation.  141 

  142 

Ishizuka et al. carried out JADE between 23 Feb and 14 Mar 2006 on an Australian farm at 143 

(33o50’42.4”S, 142o44’9.0”E). A range of atmospheric variables, land surface properties, soil 144 

particle-size distributions and size-resolved sand and dust fluxes are measured. During the study 145 

period, 12 wind-erosion episodes occurred. The dataset is particular valuable in that particle 146 

size resolved sand and dust fluxes [Shao et al. 2011] were measured. The details of the 147 

experiments and datasets can be found in Ishizuka et al. [2014] and hence only a brief summary 148 

is given here. 149 

 150 

In JADE, three Sand Particle Counters (SPCs) [Yamada et al. 2002] were used to measure 151 

saltation at the 0.05, 0.1 and 0.3 m levels with a sampling rate of 1 Hz. A SPC measures the 152 

saltation of particles in the range of 38.9 - 654.3 µm in 32 bins with mean diameters of 38.9, 153 

54.1, 69.2 µm etc. At each measurement height, the saltation flux density (ML-2T-1), q, is 154 

obtained as the sum of qi (saltation flux for size bin i) for the 32 size bins, i.e.  155 





32

1j

jqq        (11) 156 

The saltation flux, Q, is then estimated by integrating q over height, namely,  157 

 158 

 qdzQ        (12) 159 

 160 

In computing Q, we assume q = q0 exp(-az) with q0 and a being fitted from the measurements. 161 

As q was measured only at three heights, the vertical resolution of q is relatively poor and 162 

inaccuracies in the Q estimates are unavoidable. However, the profiles of q are well behaved 163 

and thus the inaccuracies in the Q estimates are not expected to be so large to affect the 164 

conclusions of this study.    165 

 166 

Atmospheric variables, including wind speed, air temperature and humidity at various levels, 167 

as well as radiation and precipitation, were measured using an automatic weather station (AWS). 168 

Two anemometers were mounted at heights 0.53m and 2.16m on a mast for measuring wind 169 

speed. Also available are the Monin-Obukhov length and sensible heat fluxes. From the wind 170 

measurements, surface roughness length z0 and friction velocity u* are derived, assuming a 171 

logarithmic profile (with stability correction) of the mean wind. The roughness length for the 172 

experiment site is estimated to be 0.48 mm. Observations of surface soil properties, including 173 

soil temperature, soil moisture and surface cover were also made. The wind erosion model, as 174 

detailed in Shao et al. (2011), is used for computing the saltation fluxes using the JADE 175 

atmospheric and surface soil measurements as input. The essence of the saltation model 176 

component is as described in Section 1. The fraction of erodible surface area, σf, used in 177 

Equation (1), is estimated from photos using the technique as detailed Shao et al. (2011). For 178 

the site, the fraction of surface cover is about 0.02, almost negligible.   179 

 180 

The resolution of Q is one second. We denote its time series as Q1s. From Q1s, the one-minute 181 

averages, Q1m, and 30-minute averages of saltation fluxes, Q30m, are derived. The resolution of 182 
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friction velocity is one minute. We denote the one-minute averages of friction velocity as u*1m 183 

and the 30-minute averages u*30m.    184 

 185 

3. Results 186 
 187 

3.1 Statistical Features of Saltation 188 
 189 

Fig. 1 shows the time series of Q1m and u*1m, and Fig. 2 Q30m and u*30m. The figures show that 190 

both Q and u* significantly fluctuate, but the amplitude of Q1m fluctuations is several times of 191 

that of Q30m fluctuations.  192 

 193 

 194 

 195 
Figure 1: Observed time series of 1-min averaged saltation flux, Q (gm-1s-1), and friction 196 

velocity, u* (ms-1). Note that the axes in (b) have different scales as in (a). 197 

 198 

 199 

 200 
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Figure 2: As Fig. 1, but for running means over 30-min intervals.  201 

 202 

In Fig. 3, Q is plotted against u*
3. Several interesting features can be identified. For the majority 203 

of the points, the Q ~ u*
3 relationship appears to hold, but this relationship can vary significantly 204 

even for the same data set from event to event. For example, large differences exist between 205 

day 62 (a day of intensive wind erosion) and day 72 (a day of weak wind erosion), as seen in 206 

both Fig. 3a and Fig. 3b. Also hysteresis can be observed in the saltation flux and friction 207 

velocity relationship (Fig. 3c): during an erosion event, for the same friction velocity, saltation 208 

is much stronger in the strengthening than in the weakening phase. There may be many reasons 209 

for the hysteresis in the relationship between sediment flux and friction velocity but the most 210 

likely are the differences in atmospheric turbulence (e.g. more gusty in the strengthening than 211 

in the weakening phase) and time-varying surface conditions (e.g. particle sorting and 212 

aerodynamic roughness).   213 

 214 

 215 

Figure 3: (a) Saltation flux, Q (gm-1s-1), plotted against friction velocity, u*
3 (m3s-3), for 1-216 

minute averages; (b) As (a), but for 30-minute averages; (c) As (b), but enlarged to illustrated 217 

saltation hysteresis.  218 

 219 

How well the saltation model performs, whether u*t and co are universal and how they are 220 

probabilistically distributed must depend on the turbulent properties of saltation. As the JADE 221 

saltation fluxes are sampled at 1 Hz, we can use the data to reveal (to some degree) the statistical 222 

behavior of saltation. In Fig. 4, the pdfs of the saltation fluxes for different particle size groups 223 

are plotted, computed using Q1s and Q1m. It is seen that the pdfs generally behaves like 224 

 225 
QQp )(        (13) 226 

 227 

Page 6 of 17

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-1090
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 19 December 2017
c© Author(s) 2017. CC BY 4.0 License.

bscuser
Nota adhesiva
Using time-dependent colors here in 3c might be interesting option.



In case of Q1s, there seems to be a distinct change in α at a critical value of Qc ~ 3 gm-1s-1, with 228 

α = 0.8 ~ 0.9 for Q < Qc and α = 4.0 for Q > Qc. The pdfs derived from Q1m appear to be 229 

somewhat different, although the basic functional form is as given by Equation (13). In this 230 

case, α is about 1 and drops off to about 2 for large Q values. Fig. 4 shows that the pdfs of Q 231 

depends quite significantly on the interval of time averaging. Fig. 4 also shows that after 232 

averaging, smaller saltation fluxes become more likely. This is because the time series of Q1s is 233 

more intermittent (see also Fig. 6). 234 

 235 

 236 

 237 
 238 

 239 

Figure 4: (a) Probability density functions of saltation flux averaged over 1 second; (b) as (a), 240 

but for saltation fluxes averaged over 1 minute.  241 

 242 

In theory, p(Q) can be derived from the pdf of u*, p(u*).  From Equation (2), we have  243 

 244 
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It follows that  247 
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 250 

Fig. 5a shows the p(u*) estimated from u*1m and Fig. 5b p(Q) estimated from Q1m. It is seen that 251 

p(u*) can be well fitted with a Weibull distribution. We computed p(Q) using Equation (15) 252 

with the fitted p(u*), assuming u*t = 0.2 ms-1 and co = 2.6. It is seen that while the observed and 253 

modelled p(Q) only have qualitative similarities but are profoundly different. Fig. 5 shows that 254 

even if the saltation model cannot reproduce the p(Q) if u*t. For example, the model fails to 255 

predict the frequent weak saltation occurring when u* is below the specified threshold.   256 
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 257 
Figure 5: (a) Probability density functions of friction velocity, p(u*), plotted against u* (bars). 258 

To compute p(u*), u*1m is used; a Weibull distribution (blue line) is fitted to p(u*); the red line 259 

marks the assumed threshold friction velocity. (b) Probability density function of Q, p(Q), 260 

estimated using Q1m (blue) and using Equation (15) (black).  261 

 262 

Also, the soil particle size distribution can influence p(Q). In JADE, soil samples from the 263 

experiment site were collected and the psds were analyzed in laboratory. Depending on the 264 

methods used, the soil texture can be classified as sandy loam (clay 0.33%, silt 25% and sand 265 

74.67%) or loamy sand (clay 11%, silt 35% and sand 54%). The soil at the observation site is 266 

bimodal with one psd maximum at about 180 µm and another at about 500 µm (not shown). 267 

The relatively large p(Q) at about Q1m = 10-1 gm-1s-1 is related to the psd maximum at d = 180 268 

µm. 269 

 270 

Following Stout and Zobeck [1997], the intermittency of saltation, γint, is defined as the fraction 271 

of time during which saltation occurs at a given point in a given time period. The latter authors 272 

assumed that saltation is expected to occur only in the time windows when friction velocity 273 

exceeds the threshold friction velocity. Therefore, suppose p(u*) is known, then γint is 274 

 275 


tu

duup
*

0
**int )(1  276 

 277 

This definition of γint is problematic, because u*t here is fixed. Stout and Zobeck [1997] used 278 

the counts per second of sand impacts on a piezoelectric crystal saltation sensor as a measure 279 

of saltation activity and found that γint rarely exceeds 0.5.  280 

 281 

We examined γint using the JADE data. First, γint is computed using Q1m conditionally sampled 282 

for u* > u*c, with u*c successively varied from small to large. In Fig. 6a, γint is plotted as a 283 

function of u*c. It is seen that on one-minute intervals, γint has a maximum of about 0.25 for 284 

small u*c and decreases to zero at about u*c = 0.3 ms-1. This shows that saltation intermittency 285 

mainly occurs under weak wind conditions. If γint is computed using Q1s, then its maximum 286 

reaches about 0.4, similar to that reported in Stout and Zobeck [1997]. For the one-second case, 287 

we cannot plot γint as a function of u*c, because u* is not available at such high frequency. Fig. 288 

6b shows (the maximum of) γint as function of particle size for the one-second, one-minute and 289 
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30-minute cases. In general, γint increases with particle size, i.e., the saltation of larger particles 290 

is more intermittent. Also, γint decreases with increased averaging time intervals, implying that 291 

the small scales features of turbulence play an important role in intermittent saltation.   292 

  293 

 294 
 295 
Figure 6: (a) Saltation intermittency, γint, computed using Q1m conditionally sampled for u* > 296 

u*c; (b) γint as a function of particle size for the one-second, one-minute and 30-minute cases.  297 

 298 

Fig. 7 shows the power spectra of Q and u* (Fig. 7a) as well their co-spectrum (Fig. 7b). The 299 

power spectrum of Q is computed using both Q1s and Q1m, that of u* with u*1m. It is seen that 300 

the power spectra of Q and u* have qualitatively very similar behaviour. Both have a maximum 301 

at about 10-5 Hz, a minimum at about 10-4 Hz and another maximum at about 2x10-3 Hz.  The 302 

maximum at 10-5 Hz is related to the diurnal to synoptic events which drive the wind erosion 303 

episodes, the minimum at 10-4 Hz is due to the lack of turbulent winds at the time scale of 304 

several hours, while the maximum at 2x10-3 Hz is caused by the minute-scale gusty winds/large 305 

eddies in turbulent flows. Also the Q-u* co-spectrum shows that Q and u* are most strongly 306 

correlated on diurnal/synoptic and gust/large-eddy time scales. The saltation spectrum 307 

computed using Q1s reveals again the maximum at 2x10-3 Hz. However, the power of Q 308 

spectrum rapidly decreases with frequency and become relatively weak on time scales smaller 309 

than ~ 10 s.   310 
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 311 
   312 

Figure 7: (a) Normalized power spectrum of friction velocity (blue) computed with u*1m, 313 

together with the normalized power spectrum of saltation flux computed with Q1m (red) and Q1s 314 

(green). (b) Normalized Q-u* co-spectrum, computed using with Q1m and u*1m. In both (a) and 315 

(b), dots are unsmoothed spectra, while curves are smoothed spectra. 316 

 317 

4.2 Estimates of Saltation Model Parameters 318 
 319 

Given the turbulent nature of saltation, it is rational to treat u*t and c0 in the saltation model to 320 

be parameters obeying certain probability distributions. To examine the behavior of these 321 

parameters, we introduce two coefficients rc0 and ru*t, and multiply them respectively to c0 and 322 

u*t in Equation (2). They are then varied to generate a model estimate of Q using Equations (2) 323 

and (3) with observed u* and the theoretical values of u*t and c0. We denote the time series of 324 

the modelled saltation flux as QM,i, (i=1,N) and of the corresponding measurement QD,i. The 325 

absolute error,
AQ , and Nash coefficient, INash, are used as measures for the goodness of the 326 

agreement between the model and the measurement. They are defined as,  327 

 328 

 iA a
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 335 

The prior pdfs of rc0 and ru*t are assumed to be uniform. In the numerical experiment, we 336 

randomly generate rc0 and ru*t and seek their values, such that  AQ and NashI .  These 337 
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experiments are repeated for Q1m and Q30m. The plots of
AQ and

NashI as functions of rc0 and ru*t 338 

show that for certain values of rc0 and ru*t, the above conditions are satisfied. Fig. 8 shows that 339 

for Q1m, the best simulation is achieved with rc0 = 1.23 and ru*t = 1.05, while for the Q30m, with 340 

rc0 = 0.94 and ru*t = 0.91. This shows that while the “optimal” estimates of u*t and c0 are close 341 

to the corresponding theoretic values, they are dependent on the time averaging intervals, with 342 

both u*t and c0 being larger for shorter averaging intervals.  343 

 344 
Figure 8: 

AQ and
NashI are both functions of rc0 and ru*t. Along the dashed curves, the 345 

condition minAQ is satisfied and along the solid curves the condition  maxNashI  is 346 

satisfied. The curves are estimated with both one-minute and 30-minute averaged saltation 347 

fluxes.  348 

 349 

The parameter pdfs p(ru*t) and p(rc0) estimated using the  DREAM algorithm are shown Fig. 9. 350 

All pdfs are fitted to a Γ-distribution. As seen in Fig. 9a and 9c, the most frequent ru*t values 351 

are respectively 1.12 and 1.04 for Q1m and Q30m, close to the estimates of 1.05 and 0.91 found 352 

in Fig. 8. For Q1m, ru*t scatters in the range of ~1.12 ± 0.2 and for Q30m in the range of ~1.04 ± 353 

0.3. This implies that sometimes saltation occurs when u* is below the theoretic u*t value and 354 

sometimes saltation does not occur even when u* is above the theoretic u*t, as already seen in 355 

Fig. 6a. In the case of p(rc0) (Fig. 9c and 9d), the most frequent values of rc0 for Q1m and Q30m 356 

are respectively 1.04 and 0.92, close to the optimal estimates of 1.23 and 0.94 found in Fig. 8. 357 

But rc0 scatters over a wide range, for instance, for Q30m between 0.5 and 5, i.e., c0 is a rather 358 

stochastic parameter.  359 

 360 
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 361 
Figure 9: (a) Parameter pdf p(ru*t) for 1-min averaged saltation fluxes; (b) as (a), but for p(rc0); 362 

(c) and (d), as (a) and (b), but for 30-min averaged saltation fluxes. 363 

 364 

In nature, many factors influence sediment transport, but the stochasticity of the parameters is 365 

determined primarily by the turbulent fluctuations of friction velocity (representing surface 366 

shear stress), the randomness of threshold friction velocity, and soil particle size distribution 367 

(representing particle response to forcing). Studies have shown, for instance, that small changes 368 

in soil moisture can have large influences on saltation [Ishizuka et al. 2008] and soil moisture 369 

in the very top soil layer can vary significantly over relatively short time periods. Over the 370 

period of 18 days this study is based on soil moisture varied. In this study, the influence of soil 371 

moisture on saltation is accounted for via Equation (1) using the soil moisture measurements in 372 

the top 0.05m layer (see also Fig. 4a in Shao et al. 2011). The uncertainty in the wind erosion 373 

parameters arising from soil moisture is most likely reflected in the stochasticity of u*t.  374 

 375 

The stochasticity of c0 is more likely related to turbulence and particle size. To show this, we 376 

divided the time series of the saltation fluxes into two subsets, one with QD,i ≤ 3 gm-1s-1 377 

representing weak saltation and one with QD,i > 3 gm-1s-1 representing significant saltation. This 378 

separation is arbitrary but sufficient for making the point that wind erosion parameters depend 379 

on u* which is a measure of turbulence intensity. The parameter pdfs, p(ru*t) and p(rc0), for the 380 

subset QD,i ≤ 3 gm-1s-1 is shown in Fig. 10. For Q1m and Q30m, the most frequent ru*t values are 381 

now respectively 0.99 and 0.85, somewhat smaller than the estimated values for the full set (see 382 

Fig. 9). In comparison, the most frequent rc0 values are now respectively 0.30 and 0.29, much 383 

smaller than for the case when the full set is considered (see Fig. 9). This suggests that c0 has a 384 

dependency on u* and is smaller for smaller u* when saltation is more intermittent, as also seen 385 

in Fig. 6a.  386 

 387 
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 388 
Figure 10: As Fig. 9, but estimated using the time series of saltation fluxes which satisfy QD,i ≤ 389 

3 gm-1s-1.  390 

 391 

We fitted the pdfs, p(ru*t) and p(rc0), for individual particle size bins. It is found that the most 392 

frequent ru*t values do not differ substantially among the particle sizes, but rc0 depends 393 

systematically on particle size. For example, the most frequent rc0 values for 100.7, 151.2, 203.3, 394 

314.5 and 397.7 µm are respectively 0.48, 1.31, 1.65, 3.06 and 4.00. These values are obtained 395 

by first estimating p(rc0) for the individual particle size bins with the measured saltation flux 396 

for the corresponding bins and then normalizing p(rc0) with the mass fraction of the size bins 397 

of the parent soil. A least squares curve fitting shows that the most frequent rc0 value depends 398 

almost linearly on particle size:  399 

 400 

62.0012.0
0

 drc        (16) 401 

 402 

for the particle size range (100 to 400 µm) we tested, with d being particle size in µm. 403 

 404 

We have shown that both u*t and c0 satisfy certain pdfs which depend on the properties of the 405 

surface, atmospheric turbulence and soil particle size. Fig. 9 shows that for a fixed choice of u*t 406 

and c0, even if they are “optimally” chosen, a portion of the measurements cannot be 407 

represented by the model. Then, how does the saltation model perform if a single fixed u*t and 408 

a single fixed c0 are used as is often the case in aeolian models? The p(Q) computed using the 409 

model and derived from the JADE measurements are shown for Q1m and Q30m in Fig. 11. In this 410 

case, the saltation model is applied to the individual particle size groups and the total (particle-411 

size integrated) saltation flux is computed using the u*t and c0 optimally estimated. Fig. 11 412 

shows that the model over predicts and probability of large Q, but under predicts the probability 413 

of small Q in both cases of Q1m and Q30m.   414 

 415 
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 416 
Figure 11: (a) Probability density functions of observed Q and simulated Q for 1-min averages; 417 

(b) as (a), but for 30-min averages.  418 

 419 

5. Summary 420 
 421 

In this paper, we have used the JADE data of saltation fluxes (resolution one second) and 422 

frictional velocity (resolution one minute) to analyze the statistical behavior of turbulent 423 

saltation and estimate the probability distribution of two of the most important parameters, 424 

namely, the threshold friction velocity, u*t, and saltation coefficient, c0, in a saltation model.  425 

 426 

Saltation fluxes show a rich variations on different scales. It is found that while the widely used 427 

Q ~ u*
3 relationship holds in general, it can vary significantly between different wind erosion 428 

events. In several wind erosion events observed in JADE, saltation hysteresis occurred. We 429 

examined the probability density function of the saltation fluxes, p(Q), and found that it 430 

generally behaves like Q-α. For Q1s, there is a distinct change in α at Q = 3 ~ 4 gm-1s-1 with α = 431 

0.8 ~ 0.9 for smaller Q and α = 4.0 larger Q. It is shown that p(Q) is dependent on the averaging 432 

time intervals as a consequence of saltation intermittency.  433 

 434 

We defined saltation intermittency, γint, as the fraction of time during which saltation occurs at 435 

a given point in a given time period, and computed γint using the JADE saltation flux 436 

measurements. For Q1m conditionally sampled with u* > u*c, it is found that γint has a maximum 437 

of about 0.25 for small u*c and decreases to zero at about u*c = 0.3 ms-1. This shows that saltation 438 

intermittency mainly occurs under weak wind conditions. The γint computed using Q1s has a 439 

maximum of about 0.4. We have also computed γint as a function of different particle sizes and 440 

found that γint in general increases with particle size.  441 

 442 
The power spectra of saltation flux and friction velocity are found to have qualitatively similar 443 

behaviour. Both have a maximum at about 10-5 Hz, a minimum at about 10-4 Hz and another 444 

maximum at about 2x10-3 Hz. The maximum at 10-5 Hz is related to the diurnal to synoptic 445 

events which drive wind erosion episodes, the minimum at 10-4 Hz is due to the lack of turbulent 446 

wind fluctuations at the time scale of several hours, while the maximum at 2x10-3 Hz is caused 447 
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by the minute-scale gusty winds/large eddies in turbulent flows. The power of the saltation 448 

rapidly decreases with frequency and become relatively weak at frequencies of 0.1 Hz.  449 

 450 
The posterior pdfs of the two parameters are estimated using the DREAM algorithm applied to 451 

the JADE saltation flux measurements. While both u*t and c0 have clear physical interpretations, 452 

they appear to be dependent on the intervals of time averaging. Both u*t and c0 for the 1-min 453 

averages are larger than for the 30-min averages. The pdf of u*t shows that it has a most frequent 454 

value close to the theoretic value, but can vary in a range of 20 to 30%. Therefore, the use of 455 

the most frequent value of u*t in the saltation model seems to be reasonable. In contrast, the pdf 456 

of c0 shows that it scatters over a much wider range. This suggests that it is rather unlikely that 457 

a universal c0 exists and the use of the most frequent value of c0 would not reduce the scatter 458 

between the model and the data. The likely reason for the relatively large uncertainty in c0 may 459 

be that it is parameter depending on additional factors (e.g. friction velocity and soil particle 460 

size distribution). It may also be that saltation in reality is never in equilibrium as Bagnold 461 

(1941), Kawamura (1964) and Owen (1964) conceptualized, because due to turbulent 462 

fluctuations, sand grains are continuously entrained at different rates into the airflow and a 463 

continuous flow and particle-motion feedback takes place. As a consequence, it is difficult to 464 

treat c0 as a universal constant.  465 

 466 
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