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 2 

Abstract 24 

 Atmospheric nitrate deposition resulting from anthropogenic activities negatively affects human and 25 

environmental health. Identifying deposited nitrate that is produced locally vs. that originating from long-distance 26 

transport would help inform efforts to mitigate such impacts. However, distinguishing the relative transport 27 

distances of atmospheric nitrate in urban areas remains a major challenge since it may be produced locally and/or 28 

come from upwind regions. To address this uncertainty we assessed spatiotemporal variation in monthly 29 

weighted-average Δ17O and δ15N values of wet and dry nitrate deposition during one year at urban and rural sites 30 

along the western coast of the northern Japanese island of Hokkaido, downwind of the East Asian continent. Δ17O 31 

values of nitrate in wet deposition at the urban site mirrored those of wet and dry deposition at the rural site, ranging 32 

between ~ +22 and +30 ‰ with higher values during winter and lower values in summer, which suggests greater 33 

relative importance of oxidation of NO2 by O3 during winter and OH during summer. In contrast, Δ17O values of 34 

nitrate in dry deposition at the urban site were lower (+19 - +25 ‰) and displayed less distinct seasonal variation. 35 

Furthermore, the difference between δ15N values of nitrate in wet and dry nitrate deposition was, on average, 3 ‰ 36 

greater at the urban than rural site, and Δ17O and δ15N values were correlated for both forms of deposition at both 37 

sites with the exception of dry deposition at the urban site. These results suggest that, relative to nitrate in wet 38 

deposition in urban environments and wet and dry deposition in rural environments, nitrate in dry deposition in 39 

urban environments forms from relatively greater oxidation of NO by peroxy radicals and/or oxidation of NO2 by 40 

OH. Given greater concentrations of peroxy radicals and OH in cities, these results imply that dry nitrate deposition 41 

results from local NOx emissions more so than wet deposition, which is transported longer distances. These results 42 

illustrate the value of stable isotope data for distinguishing the transport distances and reaction pathways of 43 

atmospheric nitrate pollution. 44 

 45 

 46 

 47 
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 3 

 1 Introduction 48 

 The percentage of the world’s population living in cities has rapidly grown in recent decades, and this trend 49 

is expected to continue for at least a generation (United Nations, 2014). Besides socioeconomic transformation, 50 

urbanization also has environmental consequences, such as air pollution (Bloom et al., 2008; Cumming et al., 2014; 51 

Akimoto, 2003; Gurjar et al., 2016; von Glasow et al., 2013). For example, fossil fuel combustion from mobile and 52 

stationary sources produces nitrogen oxides (NOx = NO + NO2), which mediate atmospheric ozone (O3) and 53 

fine-particle production, thus affecting human health. Furthermore, oxidation of NOx leads to the formation of 54 

nitrate (NO3
-), which when deposited on Earth’s surface contributes to the acidification and eutrophication of 55 

ecosystems (Galloway et al., 2004; Brown et al., 2006; Crutzen, 1979). Efforts to reduce NOx emissions can mitigate 56 

nitrate deposition (Liu et al., 2016; Zhao et al., 2015), but NOx and atmospheric nitrate are also transported long 57 

distances and thus can affect areas far downwind of production hotspots (Holtgrieve et al., 2011; Akimoto, 2003; 58 

Lin et al., 2017). The pathways that transform NOx to nitrate (Figure 1), as well as the spatiotemporal patterns of 59 

atmospheric nitrate deposition, are relatively well understood (Ban et al., 2016; Li et al., 2016). However, it remains 60 

challenging to identify the sources of many pollutants, including nitrate produced locally vs. originating from 61 

long-distance transport, which impedes efforts to improve air quality and environmental conditions (Wagstrom and 62 

Pandis, 2011; Skyllakou et al., 2014). 63 

 The stable nitrogen and oxygen isotope compositions of nitrate have been suggested as potential tracers of 64 

the sources and fate of NOx in the environment (Elliott et al., 2009; Kendall et al., 2007; Freyer et al., 1993). 65 

Nitrogen isotopes (δ15N) of nitrate can potentially reflect those of NOx when nitrate production rates are high, but 66 

mass-dependent isotopic fractionations during the oxidation of NOx to nitrate can also alter the original δ15N value 67 

of NOx, thus complicating efforts to use δ15N values of nitrate for source partitioning (e.g. Walters and Michalski, 68 

2015, 2016; Walters et al., 2016). A unique alternative that has recently emerged is the triple oxygen isotope (Δ17O) 69 
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value of nitrate1, which reflects (as the result of mass-independent fractionation during the formation of O3) the 70 

number of oxygen atoms derived from O3 that are involved in the oxidation of NOx (Alexander et al., 2009; Morin et 71 

al., 2008; Michalski et al., 2003; Tsunogai et al., 2010; Tsunogai et al., 2016) since direct emissions of nitrate during 72 

combustion are relatively small (Fraser et al., 1998). The fraction of NO oxidized to NO2 by O3 relative to peroxy 73 

radicals (HO2 + RO2) determines two-thirds of the Δ17O value of nitrate. The remaining fraction results from the 74 

extent to which O3 vs. OH oxidize NO2 (Geng et al., 2017). Δ17O values of atmospheric nitrate deposition are often 75 

highest in winter and lowest in summer (Michalski et al., 2003; Savarino et al., 2007; Tsunogai et al., 2010; 76 

Tsunogai et al., 2016), because greater darkness and lower temperatures favor the oxidation of NOx by O3, as well as 77 

N2O5 hydrolysis reactions, whereas oxidation of NO2 by OH is more important when daylight is longer and 78 

temperatures higher (Figure 1). Peroxy radicals, which form from oxidation of carbon monoxide, reactive 79 

hydrocarbons, and volatile organic compounds (Saito et al., 2002), are thought to compete with O3 to oxidize NO in 80 

polluted settings and thus depress Δ17O values of nitrate (Guha et al., 2017; Fang et al., 2011). Decreasing 81 

nitrate-Δ17O values during the past ~150 years in West Antarctica suggest that anthropogenic activities have 82 

increased the relative importance of peroxy radicals in NOx cycling globally (Sofen et al., 2014). However, reactive 83 

hydrocarbons and aerosols can also facilitate the formation of nitrate directly or through N2O5, respectively, which 84 

elevates Δ17O values of nitrate (Michalski et al., 2011). Although wet (aqueous nitrate) and dry (gaseous HNO3 or 85 

particulate nitrate) deposited nitrate are often presumed to have similar Δ17O values (Guerrieri et al., 2015), dry 86 

deposition may be less prone to long-distance transport (Celle-Jeanton et al., 2009; Dasch and Cadle, 1985; 87 

Balestrini et al., 2000). Shorter transport distances could lead to distinct oxidation pathways and thus different Δ17O 88 

                                                        

1 Δ17O values are defined as:

 ( )
1

O1
O1O  

nitrate
18

nitrate
17

nitrate
17 −

δ+

δ+
=Δ

β
 

where β = 0.527918, δ = [Rsample/Rstandard] - 1, and R represents the elemental ratios (i.e., 17O/16O and 18O/16O) 

between a sample and standard. 
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values of nitrate between these forms of deposition in urban environments where concentrations of atmospheric 89 

pollutants are typically elevated. Yet, this hypothesis cannot be evaluated using existing data, as prior studies 90 

typically analyzed Δ17O values of only wet or dry nitrate deposition at single sites (Guha et al., 2017; Tsunogai et al., 91 

2010).    92 

 Here we assess the effect of urbanization on the oxidation chemistry of NOx and the sources of nitrate in 93 

wet and dry deposition using measurements of the Δ17O and δ15N values of atmospheric nitrate. Our two study sites 94 

(Figure 2) are located at a similar longitude, are separated by only ~2° of latitude, and have comparable synoptic 95 

climatologies, but there is a major difference in the degree of urbanization between them (see below). These sites 96 

were chosen to be downwind of several megacities in East Asia, a region where NOx emissions have increased 97 

approximately four-fold during the past forty years (Akimoto, 2003; Uno et al., 2007). This arrangement of sites 98 

provides an ideal setting to investigate potential differences in the oxidation pathways and sources of atmospheric 99 

nitrate pollution in urban and rural environments against high background levels of atmospheric nitrate deposition. 100 

 101 

2 Material and Methods  102 

2.1 Study sites 103 

 Rishiri is a remote (population size: ~5,000; density: ~28 people/km2) and small island in the Sea of Japan 104 

off the coast of the island of Hokkaido in northern Japan. Samples of wet and dry atmospheric deposition were 105 

collected at the Rishiri National Acid Rain Monitoring station (Figure 2; 45° 07’ 11” N, 141° 12’ 33” E; 40 m a.s.l.), 106 

which is part of the Acid Deposition Monitoring Network in East Asia (EANET), between January and December in 107 

2009. The mean annual precipitation is ~920 mm and mean annual temperature is ~7.1°C 108 

(http://www.jma.go.jp/jma/indexe.html). Precipitation amounts are the highest in the late summer through winter, 109 

with lower amounts in the spring and early summer. The main land cover within a ~10 km radius of the monitoring 110 

station is forest and shrub land.  111 

 Sapporo is a city of ~1.9 million people (density: ~1,710 people/km2) that is ~400 km south of Rishiri. 112 
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Samples of wet and dry atmospheric deposition were obtained from the roof of the Institute of Environmental 113 

Sciences in Sapporo (Figure 2; 43° 04’ 55” N, 141° 20’ 00” E; ~26 m a.s.l.) between January and December in 2009. 114 

The sampling site in Sapporo is not part of EANET. The mean annual precipitation is ~1,100 mm and mean annual 115 

temperature is ~8.9°C (http://www.jma.go.jp/jma/indexe.html). Seasonal precipitation patterns in Sapporo are 116 

similar to those in Rishiri. Sapporo is bordered by the Sea of Japan to the north and by mountains to the west and 117 

south. The major sources of local NOx emissions are automobile exhaust and boilers used for domestic heating. 118 

There are no major factories or combustion-based electricity generation facilities in Sapporo (Kaneyasu et al., 1995). 119 

The prevailing winds in Hokkaido typically originate from the northwest in winter and southeast in summer 120 

(Kaneyasu et al., 1995). 121 

2.2 Sample collection 122 

 Composite samples of wet deposition falling on a daily and weekly basis were collected at Rishiri (n= 62) 123 

and Sapporo (n = 41), respectively, using auto samplers (DKK DRS-200(S), DKK and US-420, Ogasawara Keiki 124 

Corp, respectively). The wet deposition samples were filtered through a 0.45 µm filter and stored at 4°C until 125 

measurement of nitrate and nitrite (NO2
-) concentrations and isotopes.  126 

 Samples of dry deposition were obtained using the filter-pack method, which has been widely used in dry 127 

deposition monitoring programs throughout the world (Aikawa et al., 2010; Endo et al., 2011; Mehlmann and 128 

Warneck, 1995; Tørseth et al., 1999). At each site, air was drawn through a four-stage filter pack at a rate of 4 L/min 129 

to collect gaseous HNO3 and particulate nitrate. Composite samples collected using this approach (which we refer to 130 

as dry deposition) were obtained on a monthly basis at Rishiri (n = 12). Sampling of dry deposition at Sapporo 131 

occurred approximately bi-weekly (n = 24); sampling occurred bi-weekly rather than monthly (as at Rishiri) because 132 

of the higher nitrate concentrations in dry deposition at Sapporo than Rishiri. However, only 15 of the 24 dry 133 

deposition samples from Sapporo were available for analysis in the present study. The first stage is a multi-nozzle 134 

cascade impactor (NL-4-10P, Tokyo Dylec. Corp.) and Teflon binder filter (T60A20-20H, Tokyo Dylec. Corp.) that 135 

collects coarse particles >10 µm in diameter. The second stage is a Teflon filter (ADVANTEC T080A047A) that 136 
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collects fine particles that passed through the first filter. The third stage is a 0.45 µm nylon filter (PALL ULTIPOR 137 

N66-NX047100) that collects HNO3 gas and some SO2, HCl, HONO, NH3, and NO2. Although HNO3 volatilization 138 

from the filter may occur during the monthly (Rishiri) and bi-weekly (Sapporo) sampling periods, volatilization 139 

results in mass-dependent isotopic fractionation and therefore should not affect the Δ17O values of nitrate remaining 140 

on the filter. The 4th and 5th stage filters (ADVANTEC No. 51A, alkaline impregnated filter) are used to collect the 141 

remaining SO2, HCl, and HONO. The last filter (ADVANTEC No. 51A, acid impregnated filter) is used to collect 142 

the remaining NH3. The nitrate and nitrite on the first, second, and third filters were extracted using ultrapure water, 143 

passed through a 0.45 µm filter, and stored at 4°C until measurement of nitrate and nitrite concentrations and 144 

isotopes.  145 

2.3 Analysis 146 

Nitrite and nitrate in the filtered samples of wet and dry deposition were quantified using ion 147 

chromatography (Dionex DX-500, ICS-1500 and ICS-2000, Nippon Dionex Co., Ltd., Osaka, Japan). Nitrite 148 

concentrations were < 1.0 % of the sum of nitrite and nitrate concentrations in all samples of wet deposition, and 149 

they were < 5.0 % in 72 % and 87 % of samples of dry deposition at Rishiri and Sapporo, respectively.   150 

For isotopic analysis, nitrite and nitrate in each filtrate sample was converted to N2O using chemical 151 

conversion (McIlvin and Altabet, 2005) with slight modification (Tsunogai et al., 2016; Tsunogai et al., 2008). 152 

Isotopic analysis of nitrite alone was also performed on samples with nitrite concentrations > 5.0 % of the total 153 

nitrite plus nitrate concentrations (McIlvin and Altabet, 2005). The δ15N, δ18O, and Δ17O values of N2O in each vial 154 

were determined using a continuous-flow isotope ratio mass spectrometry system (Komatsu et al., 2008; Hirota et 155 

al., 2010). The obtained δ18O values were normalized to VSMOW using local laboratory nitrate standards calibrated 156 

against USGS 34 and USGS 35 (Tsunogai et al., 2014; Nakagawa et al., 2013). The obtained δ15N values were 157 

normalized to Air using local laboratory nitrate standards calibrated against USGS 32 and USGS 34. The δ18O 158 

values of the three local standards range between 1.1 and 22.4 ‰, and the δ15N values of the three local standards 159 

range between -2.1 and 11.8 ‰. Analytical precision (1σ) was + 0.3 ‰ for δ15N, + 0.5 ‰ for δ18O, and + 0.2 ‰ for 160 
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Δ17O based on repeated measurements of the local nitrate standards (Tsunogai et al., 2010). For samples with nitrite 161 

concentrations > 5 % of the total nitrite plus nitrate concentrations the δ15N values of nitrate were calculated by mass 162 

balance: δ15NNO3
-
 = (δ15NNO2

-
+NO3

-
 * [NO2

-
 + NO3

-] - δ15NNO2
-
 * [NO2

-])/[NO3
-]. The measured Δ17O values of nitrite 163 

for samples on which this analysis was performed was 0 ‰. Therefore, we presumed that the Δ17O value of nitrite is 164 

0 ‰ because of rapid oxygen change between NO2 and water at near-neutral pH condition (Casciotti et al., 2007), 165 

and we corrected the Δ17O values of nitrate as Δ17ONO3
-
 = Δ17ONO2

-
+NO3

-
 * [NO2

- + NO3
-]/[NO3

-].  166 

To quantify the Δ17O and δ15N values of nitrate in dry deposition, we calculated monthly 167 

weighted-average (weighted based on mass) Δ17O and δ15N values of nitrate (Δ17Odry and δ15Ndry, respectively) 168 

among coarse (Δ17Ocoarse and δ15Ncoarse, respectively) and fine (Δ17Ofine and δ15Nfine, respectively) particles and gas 169 

(Δ17Ogas and δ15Ngas, respectively) phases using each isotopic value and concentration. For Sapporo, isotopic values 170 

for samples of dry deposition collected during the same month were averaged as monthly weighted-average values. 171 

To compare isotopic values of wet and dry deposition within and between sites, we calculated monthly 172 

weighted-average Δ17O and δ15N values of nitrate for wet deposition (Δ17Owet and δ15Nwet). Paired t-tests were used 173 

to compare monthly weighted-average Δ17Owet and Δ17Odry, as well as δ15Nwet and δ15Ndry, within sites. A one-way 174 

ANOVA, followed by a Tukey’s pairwise comparison when appropriate, was used to compare monthly 175 

weighted-average Δ17Ocoarse, Δ17Ofine, and Δ17Ogas, as well as δ15Ncoarse, δ15Nfine, and δ15Ngas at each site. A one-way 176 

ANOVA was also used to compare monthly weighted-average Δ17Owet and Δ 17Odry at Rishiri with Δ17Owet at 177 

Sapporo, as well as δ15Nwet and δ15Ndry at Rishiri with δ15Nwet at Sapporo. Statistical analyses were performed in 178 

PAST version 3.01 (Hammer et al., 2001). 179 

 Wet deposition flux was calculated using precipitation amount and nitrate concentration data obtained for 180 

each site from the National Institute for Environmental Studies, Japan (http://www.nies.go.jp/index-e.html). The 181 

monthly flux is the sum of precipitation amount multiplied by nitrate concentration for all samples in each month. 182 

Dry deposition flux was estimated following the inferential method (Hicks, 1986), where  183 

Fdry = Vd × C  184 
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and Fdry represents the dry deposition flux, Vd the deposition velocity, and C the nitrate concentration in air 185 

(calculated from measured nitrate concentrations in the sample extracts and pumped air volume). Calculation of Vd 186 

by the inferential method requires meteorological and land use data. Meteorological data were obtained from the 187 

Japan Meteorological Agency (http://www.jma.go.jp/jma/indexe.html). Landuse was presumed to be forest at 188 

Rishiri and city at Sapporo. The height of the forest canopy at Rishiri was presumed to be 10 m, and seasonal 189 

canopy resistance was determined from NDVI values (Noguchi et al., 2006). Deposition velocity was calculated 190 

using the inferential method version 4.2 (Noguchi et al., 2011; Wesely, 1989; Walcek et al., 1986; Erisman et al., 191 

1997; Zhang et al., 2003) (the program file is available at 192 

http://www.hro.or.jp/list/environmental/research/ies/katsudo/acid_rain/kanseichinchaku/dry_deposition.html). 193 

Deposition velocities of gaseous and particulate materials are estimated separately. Fluxes of coarse and fine 194 

particles were not differentiated. 195 

 196 

3 Results and discussion 197 

3.1 Oxidation pathways of NOx inferred from triple oxygen isotopes  198 

 At the rural site, Rishiri, there was no difference between monthly weighted-average Δ17Odry and Δ17Owet, 199 

which ranged between +22.3 and +30.1 ‰ and between +22.7 and +30.3 ‰, respectively (Figure 3; p = 0.57, n = 200 

12). Both forms of deposition exhibited generally larger Δ17O values in the winter than summer (Figures 3 and 4). 201 

Δ17Ocoarse was on average 4.0 ‰ more positive than Δ17Ofine (p = 0.01, n = 10), an offset similar to that observed in 202 

prior studies (Morin et al., 2009; Patris et al., 2007), although the difference was overall greater during the summer 203 

months.  204 

  The similar values and seasonal trends of Δ17Odry and Δ17Owet at Rishiri imply that both forms of 205 

deposition experienced similar seasonal variation in photochemical reactions during their production. The values 206 

and trends are consistent with prior studies in East Asia (Tsunogai et al., 2010; Tsunogai et al., 2016) and elsewhere 207 

(Michalski et al., 2011; Michalski et al., 2003), which suggest that they indicate seasonal variation in the relative 208 
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importance of oxidation of NO2 by O3 vs. OH. During summer when solar radiation is high, the relative importance 209 

of oxidation of NO2 by OH is likely greatest, thus decreasing nitrate Δ17O values. In contrast, solar radiation is low 210 

in winter, which likely causes pathways involving oxidation of NO2 by O3 to be relatively more important, thus 211 

increasing nitrate Δ17O values. 212 

 At the urban site, Sapporo, monthly weighted-average Δ17Owet ranged between +23.0 and +30.8 ‰ and was 213 

higher than Δ17Odry, which ranged between +18.8 and +25.0 ‰ (p < 0.001, n = 12; Figure 3). Δ17Odry at Sapporo 214 

displayed less pronounced seasonal variation than Δ17Owet (Figures 3 and 4). Δ17Owet at Sapporo exhibited similar 215 

values and seasonal patterns as Δ17Odry and Δ17Owet at Rishiri (p = 0.97, n = 12). The most straightforward 216 

interpretation of these results is that wet deposition at Sapporo underwent similar photochemical formation 217 

processes as both forms of deposition at Rishiri. Like Rishiri, Δ17Ocoarse was more positive (by 3.9 ‰, on average) 218 

than Δ17Ofine (p = 0.005, n = 12), as well as 5.4 ‰ more positive on average than Δ17Ogas (p < 0.001, n = 12). The 219 

fluxes of nitrate in dry particulate deposition and gaseous dry deposition were generally greater at Sapporo than 220 

Rishiri (Figure 3) because the dry deposition velocity dominates the flux value of dry deposition and it is greater for 221 

Rishiri (assumed to be forest) than Sapporo (assumed to be urban).  222 

 In contrast to Δ17Odry and Δ17Owet at Rishiri and Δ17Owet at Sapporo, values of Δ17Odry at Sapporo were 223 

lower and displayed less seasonal variation. These results suggest unique oxidation processes associated with dry 224 

deposition at this site. One potential explanation for the relatively low Δ17Odry values at Sapporo relates to OH. 225 

Concentrations of OH are typically higher in urban than rural areas as the result of the formation of OH from 226 

Criegee intermediates during alkene oxidation and/or photolysis of nitrous acid or formaldehyde in more polluted 227 

urban settings (Monks, 2005). OH competes with O3 to oxidize NO2, and thus greater oxidation of NO2 by OH in 228 

dry deposition would drive down Δ17Odry values. Another potential explanation for the relatively low Δ17Odry at 229 

Sapporo relates to peroxy radicals potentially being of greater importance in the oxidation of NO to NO2 in dry 230 

deposition at this site. Peroxy radicals typically form via photochemical oxidation of non-methane hydrocarbons that 231 

originate from anthropogenic sources, such as vehicle exhaust, and their concentrations are usually higher in urban 232 
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than rural environments (Saito et al., 2002; Carslaw et al., 2002). These radicals rapidly compete with O3 to oxidize 233 

NO to NO2 (Monks, 2005), which results in lower Δ17Odry values. Atmospheric inversions are common in Sapporo 234 

(Uno et al., 1988) and other Japanese cities (Saito et al., 2002; Uno et al., 1996), particularly during winter, and such 235 

conditions may trap pollutants and help facilitate reaction of OH with NO2 and/or NO with peroxy radicals.  236 

3.2 Nitrogen isotopes of nitrate 237 

 To aid our interpretations we evaluated δ15N values of nitrate, recognizing that such values may not 238 

conservatively trace the δ15N values of the source NOx (e.g. Walters and Michalski, 2015, 2016; Walters et al., 239 

2016). Furthermore, we realize that δ15N values of nitrate are influenced by several factors that are difficult to 240 

constrain, including the δ15N values of NOx from East Asia, the removal rate of NOx (or production rate of nitrate) 241 

during transport from East Asia, isotopic fractionation between NOx and nitrate during in-cloud and below-cloud 242 

scavenging processes during transport from East Asia, the δ15N values of locally produced NOx, and the relative 243 

amount of proportion of NOx derived locally vs. that from East Asia. The former three factors are likely similar 244 

between our sites, whereas the latter two factors likely vary between sites with more locally produced NOx at 245 

Sapporo than Rishiri.  246 

 Monthly weighted-average δ15Ndry at Rishiri varied between -4.8 and +7.5 ‰ and was on average 3.5 ‰ 247 

larger than δ15Nwet, which varied between -8.6 and +2.0 ‰ (Figure 5; p = 0.02, n = 12). At Sapporo monthly 248 

weighted-average δ15Ndry varied between +0.5 and +11.2 ‰ and was on average 6.5 % larger than δ15Nwet, which 249 

varied between -4.7 and +3.4 ‰ (Figure 5; p < 0.001, n = 12). Generally larger values of δ15Ndry than δ15Nwet has 250 

been observed in prior studies and suggest differential partitioning of isotopes between dry and wet deposition 251 

(Elliott et al., 2009; Freyer, 1991; Garten, 1996). Furthermore, the fact that both forms of deposition exhibited 252 

generally larger δ15N values in the winter than summer months at both sites (Figures 4 and 5) may reflect the effect 253 

of seasonal changes in temperature on isotopic fractionation of nitrogen isotopes and/or in the proportion of NO2 in 254 

NOx (Walters et al., 2016).  255 

 In contrast to these similarities between sites, the difference between δ15Ndry and δ15Nwet was greater at 256 
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Sapporo than Rishiri, and thus δ15Ndry was greater at Sapporo than Rishiri despite δ15Nwet at Sapporo having similar 257 

values and seasonal patterns as δ15Nwet (p = 0.36, n =12) and δ15Ndry (p = 0.46, n =12) at Rishiri (Figure 5). 258 

Furthermore, there were positive correlations between the δ15N and Δ17O values of wet and dry deposition at both 259 

sites, with the exception of dry deposition at Sapporo (Figure 6). Presuming that the δ15N values from NOx 260 

emissions sources in Sapporo are not much less than those from East Asia (which seems reasonable given that local 261 

emissions from East Asia and Sapporo are dominated by anthropogenic sources), we interpret the relatively high 262 

δ15Ndry values and lack of correlation between δ15Ndry and Δ17Odry at Sapporo to result from relatively high 263 

locally-produced NOx concentrations and low conversion rates of NOx to nitrate in Sapporo.  264 

3.3 Inference of transport distances of wet and dry deposition in urban settings 265 

 Regardless of the precise mechanism driving down Δ17Odry at Sapporo, such values, greater δ15Ndry at 266 

Sapporo than Rishiri, and the lack of correlation of Δ17Odry and δ15Ndry at Sapporo suggest two distinct sources of 267 

nitrate in wet and dry deposition in our study region. The first is likely transported relatively long distances to both 268 

Rishiri and Sapporo in wet deposition and to Rishiri in dry deposition. Below-cloud scavenging of local/regional 269 

particulate nitrate and gaseous HNO3 undoubtedly occurs at the beginning of precipitation events, but the similar 270 

absolute values and temporal variations of Δ17Owet at both sites suggest that the majority of nitrate in wet deposition 271 

at Sapporo (as well as Rishiri) originates from afar and is transported to Japan in cloud water. The second source is 272 

likely local anthropogenic NOx emissions that are deposited in dry deposition near their point of production at the 273 

urban site, Sapporo, as concentrations of OH and peroxy radicals are typically elevated in more polluted urban 274 

environments (Monks, 2005).  275 

 Our results illustrate that isotopic data are useful for investigating the sources and relative transport 276 

distances of atmospheric nitrate pollution in wet and dry deposition. Furthermore, these results imply that local-scale 277 

efforts to reduce nitrate deposition resulting from local NOx emissions will be most effective to the extent that dry 278 

deposition is the dominant form of atmospheric deposition. Local efforts may be less effective in places and times 279 

where atmospheric deposition arrives as wet deposition, since wet deposition seems more likely to originate from 280 

Page 12 of 30

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-1071
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 2 January 2018
c© Author(s) 2018. CC BY 4.0 License.



 13 

long distances. Thus, regional, national and global efforts will likely be required to reduce the effects of atmospheric 281 

nitrate in wet deposition that is transported long distances in air masses. 282 

3.4 Implications for oxidation chemistry and watershed studies 283 

 Our results have implications for understanding oxidation chemistry in different forms of deposition in 284 

urban and polluted settings. For example, they suggest that urban pollution alters the NOx to nitrate photo-oxidation 285 

pathway in dry deposition by enhancing the importance of either OH in NO2 oxidation and/or the peroxy radical in 286 

NO oxidation relative to background atmospheric reactions of NOx. A recent study also suggested that formation of 287 

NO2 by reaction of peroxy radicals with NO in polluted air caused short-term shifts toward lower Δ17Odry in Taiwan, 288 

particularly during summer and autumn (Guha et al., 2017). In contrast to our Δ17Odry data, our Δ17Owet data do not 289 

suggest an overall shift to increased importance of OH in NO2 oxidation or peroxy radicals in NO oxidation in wet 290 

deposition in urban (or rural) environments. A previous study at Rishiri found a short-term increase in Δ17Owet (up to 291 

values of ~ +34.5 ‰) during February 2007, likely because of increased relative importance of reaction of NO2 with 292 

reactive hydrocarbons and aerosols in polluted air that promoted the formation of nitrate deposition directly or 293 

through N2O5 (Tsunogai et al., 2010). We observed short-term peaks in Δ17Owet values at our sites (to a maximum of 294 

31.9 ‰ at Sapporo and 31.6 ‰ at Rishiri), which could also suggest increased importance of such pathways in 295 

production of nitrate in wet deposition (Figure 4). Thus, our results in combination with prior studies, suggest that 296 

urban pollution may be more prone to alter oxidation reactions of NO associated with dry deposition and oxidation 297 

reactions of NO2 associated with wet deposition. However, additional datasets with paired measurements of Δ17Owet 298 

and Δ17Odry are required to more definitively assess the influence of urban pollution on oxidation chemistry. Samples 299 

of wet and dry nitrate deposition are collected by ongoing air-quality monitoring efforts throughout the world, and 300 

stable isotope measurements from such samples could be used to evaluate our interpretation of the oxidation 301 

pathways and sources and transport distances of nitrate deposited in urban environments. 302 

 Δ17O values of nitrate are also increasingly used in watershed studies to determine the relative abundance 303 

of unprocessed atmospheric nitrate in environmental waters, such as rivers and lakes (Sabo et al., 2016; Riha et al., 304 
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2015; Tsunogai et al., 2016; Tsunogai et al., 2010; Michalski et al., 2004). Such studies often use Δ17Owet or Δ17Odry 305 

as an end-member for calculating the amount of unprocessed atmospheric nitrate in a sample. Our results suggest 306 

that it may be reasonable to assume that Δ17Owet and Δ17Odry are similar in rural settings, since the annual 307 

weighted-average Δ17O values of wet and dry were nearly identical (+27.2 and +27.1 ‰, respectively) at Rishiri. 308 

However, in urban settings or settings downstream of urban environments the potential differences between Δ17Owet 309 

and Δ17Odry may need to be considered to avoid over- or under-estimating the amount of unprocessed atmospheric 310 

nitrate when using Δ17O values of nitrate as a tracer of atmospheric nitrate. For example, consider a simple mixing 311 

model such as % atmospheric nitrate = 100 × [(Δ17Omeasured - Δ17Oterrestrial)/( Δ17Oatmospheric - Δ17Oterrestrial)] 312 

where Δ17Omeasured is the Δ17O value of nitrate in a stream sample, Δ17Oterrestrial is the Δ17O value of nitrate containing 313 

no atmospheric nitrate (i.e., 0 ‰), and Δ17Oatmospheric is the Δ17O value of atmospheric nitrate (either +27.6 or 314 

+21.8 ‰, representing the average weighted-average annual values of Δ17Owet and Δ17Odry measured at Sapporo in 315 

the present study). The difference in % atmospheric nitrate when +27.6 vs. +21.8 ‰ are used as end-members for 316 

Δ17Oatmospheric is small when Δ17Omeasured is small (e.g., ~1 % when Δ17Omeasured is ~1 ‰), but increases when 317 

Δ17Omeasured is large (e.g., ~19 % when Δ17Omeasured is 20 ‰). Thus, our results suggest a weighted average of Δ17Owet 318 

and Δ17Odry should be used when Δ17O values of nitrate are used to quantify the amount of unprocessed atmospheric 319 

nitrate exported from urban watersheds. At Sapporo, the weighted average of Δ17Owet and Δ17Odry is +25.7 ‰, which 320 

is more similar to Δ17Owet than Δ17Odry at this site. 321 

 322 

4 Conclusions 323 

 Our results suggest differences in the oxidation chemistry and transport distances of wet and dry 324 

deposition in urban settings: wet deposition tends to originate from afar, whereas dry deposition is produced largely 325 

from local sources as the result of unique NOx oxidation pathways that occur in polluted urban settings. These 326 

results imply that reductions in local NOx emissions will be most effective when and where dry deposition is the 327 

dominant form of atmospheric deposition, which has implications for efforts to reduce nitrate deposition and its 328 
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negative environmental impacts in cities and downwind areas. The approach used herein of comparing isotopic 329 

values of wet and dry deposition in different environmental settings is likely to provide continued insight into the 330 

transport distances and reaction pathways of atmospheric nitrate pollution.   331 
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 563 

Figure 1. Conceptual diagram of pathways for conversion of NOx (NO + NO2) to nitrate (NO3
-) in a) background 564 

atmosphere and b) urban atmosphere. The first step in the process is the conversion of NO to NO2, which is 565 

accomplished primarily by O3 or peroxy radicals (HO2 + RO2). The second step is the oxidation of NO2. In daylight 566 

OH oxidizes NO2 to nitrate and at night O3 oxidizes NO2 to nitrate. Reactions with dimethylsulfide (DMS) or 567 

reactive hydrocarbons (RH) or NO2 (to form N2O5, followed by hydrolysis on aerosol surfaces) provide a pathway 568 

for nitrate deposition. Thicker arrows and larger fonts suggest greater relative importance of different pathways 569 

between panels on an annual basis. These diagrams are oversimplifications; for example, they ignore potential 570 

seasonal variation, such as the N2O5 pathway being relatively more important in rural environments during the 571 

winter than summer and the OH pathway being relatively more important in urban environments during the summer 572 

than winter.   573 
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 579 

Figure 2. Location of study sites, Rishiri and Sapporo, in northern Japan. The base layer of the map was obtained 580 

from https://www.amcharts.com/svg-maps/. 581 
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 586 

Figure 3. Time series of monthly weighted-average a, b) Δ17O values of nitrate in dry and wet deposition c, d) Δ17O 587 

values of nitrate in coarse and fine particles and in gaseous form, and e, f) fluxes of particulate nitrate, gaseous 588 

nitrate, and wet nitrate. Data from Rishiri (rural) are in left column and data from Sapporo (urban) are in right 589 

column. Error bars on Δ17O values of nitrate in dry deposition represent one standard deviation of Δ17O values of 590 

nitrate in coarse and fine particles and in gaseous form, whereas errors bars on Δ17O values of nitrate in wet 591 

deposition represent one standard deviation of all Δ17O values of nitrate in wet deposition made during the sampling 592 

period. 593 
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 594 

Figure 4. Time series of a, b) Δ17O values of nitrate in wet deposition and c, d) δ15N values of nitrate in wet 595 

deposition. Data from Rishiri (rural) are in left column and data from Sapporo (urban) are in right column. 596 
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 607 

Figure 5. Time series of monthly weighted-average a, b) δ15N values of nitrate in dry and wet deposition, and c, d) 608 

δ15N values of nitrate in coarse and fine particles and gaseous form. Data from Rishiri (rural) are in left column and 609 

data from Sapporo (urban) are in right column. Error bars were calculated as described in the legend of Figure 3. 610 

Please note that the values on the y axes in panels a and b are different from those in panels c and d. Overall, there 611 

was no difference among δ15Ncoarse, δ15Nfine, and δ15Ngas (p = 0.28, n = 10) at Rishiri, whereas δ15Nfine was on average 612 

3.4 ‰ larger than δ15Ncoarse (p = 0.04, n = 12) and 3.5 ‰ larger than δ15Ngas (p = 0.03, n = 12) at Sapporo. 613 
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 622 

 623 

 624 

 625 
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 627 

 628 

 629 

 630 

Figure 6. Correlation of δ15N and Δ17O values of nitrate in wet and dry deposition at Rishiri and Sapporo. Dry 631 

deposition at Rishiri: slope = 0.57 (95% confidence interval = 0.15 – 0.79), r = 0.70, p = 0.01, n = 12; Wet 632 

deposition at Rishiri: slope = 0.74 (95% confidence interval = 0.43 – 0.97), r = 0.73, p = 0.007, n = 12; Dry 633 

deposition at Sapporo: r = 0.17, p = 0.59, n = 12; Wet deposition at Sapporo: slope = 0.95 (95% confidence interval 634 

= 0.33 – 1.35), r = 0.73, p = 0.007, n = 12. 635 
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