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Section 2.1: “The model of Peng and Jimenez (2017) also indicated that most of the experiments 
performed by Jathar et al. (2017) were run under, in what Peng and Jimenez (2017) refer to as, 
‘risky’ or ‘bad’ conditions. These conditions refer to situations in the OFR where the initial NO 
concentrations and external OH reactivity are high enough to suppress OH exposure and lead to 
non-tropospheric photolysis at 185 and 254 nm, which could compete with OH exposure to 
determine the fate of the SOA precursors and its oxidation products. Such conditions could be 
avoided by ensuring low initial NO concentrations and external OH reactivity that for 
combustion emissions would require substantial dilution with clean air before they are oxidized 
in the OFR. Future studies on combustion sources should be cognizant of this fact to avoid 
artifacts linked to non-tropospheric photolysis of organic compounds in OFRs.”.  
 
Section 2.2: “Neither model accounted for photolysis of organic compounds in the gas phase at 
185 or 254 nm, which may need to be considered in the future when modeling the OFR 
chemistry from combustion emissions.”. 
 
Section 3.3: “We note that the model of Peng and Jimenez (2017) suggested that the organic 
compounds in the OFR experiments performed by Jathar et al. (2017) may have been subjected 
to non-tropospheric photolysis at 185 and 254 nm. Accounting for the photolysis of the key SOA 
precursors (IVOCs and aromatics) could affect the optimal IVOC fraction identified above and 
hence needs to be considered in future work.”. 
 
Section 4: “The model of Peng and Jimenez (2017) suggested that the SOA precursors and their 
oxidation products in the Jathar et al. (2017) experiments might have been subjected to non-
tropospheric photolysis. Our work did not consider the photolysis of IVOCs (or other SOA 
precursors), which if considered, may have implications for the IVOC findings reported here. We 
recommend that future studies on combustion sources significantly dilute their emissions before 
oxidizing them in an OFR while simultaneously accounting for photolysis reactions in models 
that simulate OFR chemistry.”.  
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Abstract 12 

Laboratory-based studies have shown that combustion sources emit volatile organic compounds that can 13 

be photo-oxidized in the atmosphere to form secondary organic aerosol (SOA). In some cases, this SOA 14 

can exceed direct emissions of primary organic aerosol (POA). Jathar et al. (2017) recently reported on 15 

experiments that used an oxidation flow reactor (OFR) to measure the photochemical production of SOA 16 

from a diesel engine operated at two different engine loads (idle, load), two fuel types (diesel, biodiesel) 17 

and two aftertreatment configurations (with and without an oxidation catalyst and particle filter). In this 18 

work, we used two different SOA models, the volatility basis set (VBS) model and the statistical 19 

oxidation model (SOM), to simulate the formation and composition of SOA for those experiments. 20 

Leveraging recent laboratory-based parameterizations, both frameworks accounted for a semi-volatile and 21 

reactive POA; SOA production from semi-volatile, intermediate-volatility, and volatile organic 22 

compounds (SVOC, IVOC and VOC); NOX-dependent parameterizations, multigenerational gas-phase 23 

chemistry; and kinetic gas/particle partitioning. Both frameworks demonstrated that for model predictions 24 

of SOA mass to agree with measurements across all engine load-fuel-aftertreatment combinations, it was 25 

necessary to model the kinetically-limited gas-particle partitioning in OFRs as well as account for SOA 26 

formation from IVOCs, which were on average found to account for 70% of the model-predicted SOA. 27 

Accounting for IVOCs however resulted in an average under-prediction of 28% for OA atomic O:C 28 

ratios. Model predictions of the gas-phase organic compounds (resolved in carbon and oxygen space) 29 

from the SOM compared favorably to gas-phase measurements from a Chemical Ionization Mass 30 

Spectrometer (CIMS), substantiating the semi-explicit chemistry captured by the SOM. Model-31 

measurement comparisons were improved on using vapor wall-loss corrected SOA parameterizations. As 32 

OFRs are increasingly used to study SOA formation and evolution in laboratory and field environments, 33 

models such as those developed in this work can be used to interpret the OFR data.  34 

 35 
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1 Introduction 36 

Combustion-related aerosols are an important contributor to urban and global air pollution and have 37 

impacts on climate (Pachauri et al., 2014) and human health (Anderson et al., 2012). While direct particle 38 

emissions from combustion sources are dominated by primary organic aerosol (POA) and black carbon 39 

(Bond et al., 2004), these sources also emit more volatile organic compounds (VOCs) that can 40 

photochemically react in the atmosphere to form secondary organic aerosol (SOA) (Robinson et al., 41 

2007). SOA production from combustion emissions is poorly understood and not very well represented in 42 

models in terms of its precursors, gas-particle partitioning, composition, and properties (Fuzzi et al., 43 

2015). Atmospheric models frequently under-predict SOA mass concentrations during strong 44 

photochemical episodes in urban areas (Jathar et al., 2017b), which likely highlights the challenge in 45 

modeling the SOA contributions from urban, combustion-related emissions (Ensberg et al., 2014). 46 

 47 

Diesel-powered sources, which are an important source of air pollution at urban and regional scales, emit 48 

precursors that form SOA in the atmosphere (Gentner et al., 2016). Robinson et al. (2007) found that 49 

photochemical processing of exhaust emissions from a small off-road diesel engine led to SOA 50 

production and doubled the primary aerosol mass over a few hours in an environmental chamber. Chirico 51 

et al. (2010) and Gordon et al. (2014) performed similar chamber experiments on tailpipe emissions from 52 

in-fleet, on-road diesel vehicles run on chassis dynamometers. Both found SOA production that was 53 

roughly consistent with the findings from Robinson et al. (2007). They additionally found that the use of 54 

aftertreatment devices (diesel oxidation catalysts and diesel particulate filters) substantially reduced SOA 55 

production (mimicking the reduction in primary aerosol emissions) but observed some SOA production 56 

during cold starts and/or regeneration events when the proper functioning of the aftertreatment devices 57 

was limited. Furthermore, Gordon et al. (2014) found negligible differences in the SOA formation 58 

between diesel and biodiesel fuel. To access longer equivalent photochemical aging timescales compared 59 

to typical chamber experiments, Tkacik et al. (2014) measured SOA formation using an oxidation flow 60 

reactor (OFR) from air sampled from a highway tunnel in Pittsburgh, PA used by both on-road gasoline 61 

and diesel vehicles. OFRs use high concentrations of atmospheric oxidants, e.g. hydroxyl radicals, to 62 

achieve long exposures on short actual timescales; further discussion is provided below. Tkacik et al. 63 

(2014) measured much stronger SOA formation compared to chambers (SOA: POA was 10:1) over 64 

photochemical exposures equivalent to 2 to 3 days, but found that the SOA was lost, or destroyed, as the 65 

mixture continued to age over the timescale of a week. Recently, Jathar et al. (2017a) performed 66 

experiments using an oxidation flow reactor to measure the photochemical production of SOA from an 67 

off-road diesel engine operated at various engine load, fuel, and aftertreatment configurations. Jathar et al. 68 



 
 
 
 

3 

(2017a) found that efficient combustion at higher engine loads and removal of SOA precursors by 69 

aftertreatment systems reduced SOA production by factors of 2 to 10. The only exception was that the 70 

aftertreatment system did not seem to reduce SOA production at idle loads possibly because the exhaust 71 

temperatures were low enough to limit removal of SOA precursors in the oxidation catalyst. Overall, 72 

these studies indicate that diesel exhaust contributes to atmospheric SOA production, although the precise 73 

production of SOA varies across dimensions of photochemical age, engine duty cycle, use of alternative 74 

fuels, and aftertreatment devices.  75 

 76 

Oxidation flow reactors are being used to study the photochemical production of SOA from both 77 

anthropogenic (e.g., Ortega et al. (2016)) and natural (e.g., Palm et al. (2016)) sources. Most OFRs used 78 

for SOA studies are 10 to 15 L, flow-through metal reactors with lamps that can produce high 79 

concentrations of atmospheric oxidants to simulate photochemical processing (e.g., Lambe et al. (2011)). 80 

Flows through an OFR allow for residence times between one and four minutes, but given the high 81 

oxidant concentrations OFRs can simulate several weeks of photochemistry. OFRs have three distinct 82 

advantages over environmental chambers. First, OFRs are smaller in size and easier to operate than 83 

environmental chambers, which allows for shorter experiments and makes them ideal for field 84 

deployments (Palm et al., 2016;Simonen et al., 2017). Second, production of high oxidant concentrations 85 

in OFRs allows for much longer photochemical exposures (~factor of 10) than those possible with 86 

chambers (Lambe et al., 2011). Third, due to their flow-through nature, OFRs have shorter residence 87 

times than conventional chambers (~1-4 minutes) and hence are less susceptible to gas and particle losses 88 

that can influence SOA formation (Zhang et al., 2014;Krechmer et al., 2016). Despite those advantages, 89 

there are concerns that the accelerated chemistry and limitations to gas/particle partitioning may affect the 90 

formation and composition of SOA in OFRs, which calls into question their relevance in understanding 91 

SOA formation in the real atmosphere (Palm et al., 2016;Jathar et al., 2017a;Ahlberg et al., 2017). For 92 

example, short residence times and/or small condensation sinks from preexisting aerosol may not allow 93 

for complete condensation of SOA vapors (Lambe et al., 2015). Similarly, high oxidant concentrations in 94 

OFRs may lead to molecules undergoing a greater number of reactions in the gas-phase before 95 

condensing, including reactions that lead to fragmentation and formation of higher volatility products 96 

(Kroll et al., 2009). Both effects will typically suppress SOA production. With the increased use of OFRs, 97 

there is a need to develop and use modeling tools that can account for fragmentation reactions and kinetic 98 

gas/particle partitioning. This will allow for a more accurate interpretation of OFR data and facilitate 99 

translation of OFR results to the real atmosphere.  100 

 101 
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Models used to simulate the photochemical production of SOA from VOCs in combustion emissions have 102 

traditionally used the two-product (Odum et al., 1996) or the more generalized n-product volatility basis 103 

set (VBS) framework (Donahue et al., 2006a). In this framework, VOC oxidation products are lumped 104 

into volatility bins based on their effective saturation concentrations (C*) and where the saturation 105 

concentration determines the partitioning of the products between the gas and particle phases (Pankow, 106 

1994). This framework has been widely used in both box (Dzepina et al., 2009;Hodzic et al., 2010;Jathar 107 

et al., 2014a;Hayes et al., 2015) and three-dimensional (Murphy and Pandis, 2009;Tsimpidi et al., 108 

2009;Jathar et al., 2011;Ahmadov et al., 2012;Konovalov et al., 2015) models to simulate the chemistry 109 

and gas/particle partitioning of SOA. While this framework offers a simple and computationally efficient 110 

scheme to model SOA formation, the use of volatility alone neither tracks the molecular composition, nor 111 

informs the continued multi-generational chemistry that will determine the atmospheric evolution and 112 

properties of SOA. As a result, volatility-based models have been challenged in leveraging observations 113 

of the elemental composition of SOA (e.g., atomic O:C ratios) that have become possible through the use 114 

of the aerosol mass spectrometer (AMS) to constrain parameterizations or test model predictions. Further, 115 

most volatility-based models have employed ad hoc parameterizations to model multi-generational 116 

chemistry that do not account for fragmentation reactions (Robinson et al., 2007) and possibly double 117 

count SOA formation (Jathar et al., 2016). Therefore, there is a demand to develop models that can 118 

provide an improved representation of the chemistry that governs the formation, composition, and 119 

properties of SOA. 120 

 121 

Previously, volatility-based SOA models have been used to predict photochemical production of SOA 122 

from motor vehicle exhaust (Robinson et al., 2007;Jathar et al., 2014b;Tkacik et al., 2014). These 123 

modeling studies have shown that speciated SOA precursors such as long alkanes (C6-12) and single-ring 124 

aromatics (e.g., benzene, toluene) explain less than 20% of the observed SOA and have argued that the 125 

remainder of the SOA (~80%) arises from the photooxidation of typically unspeciated organic 126 

compounds. These unspeciated compounds, also referred to as intermediate volatility organic compounds 127 

(IVOCs), are likely species with carbon numbers larger than 12 and appear as an unresolved complex 128 

mixture on using traditional gas chromatography mass spectrometry (GC-MS) techniques (Presto et al., 129 

2011). Early estimates of IVOC emissions and their SOA potential have significantly improved 130 

predictions of the SOA formed from diesel exhaust (Jathar et al., 2014b) and have broadly improved OA 131 

model performance in three-dimensional large-scale models (Murphy and Pandis, 2009;Pye and Seinfeld, 132 

2010;Jathar et al., 2011;Tsimpidi et al., 2009). Consider as an example that Zhao et al. (2015), using a 133 

thermal desorption GC-MS to provide detailed speciation of the carbon-number resolved linear, branched, 134 
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and cyclic alkane IVOCs in diesel exhaust, found that these species accounted for up to 60% of the non-135 

methane organic gas emissions. While IVOCs have been recognized as an important class of SOA 136 

precursors for diesel (and even for gasoline and biomass burning) sources, updated emissions and 137 

speciation estimates from Zhao et al. (2015) have not yet been used to explain observations of 138 

photochemically produced SOA from diesel exhaust.  139 

 140 

Recently, several model frameworks have been developed to improve the representation of SOA 141 

formation, considering dimensions of SOA beyond just volatility. The statistical oxidation model (SOM) 142 

developed by Cappa and Wilson (2012) is one such example, although volatility remains an important 143 

consideration. The SOM is a semi-explicit, parameterizable mechanism that uses a two-dimensional 144 

carbon-oxygen grid to simulate the multigenerational chemistry and gas/particle partitioning of organic 145 

compounds. Although the SOM does not explicitly track or specify the product species composition (e.g., 146 

functional groups), the carbon- and oxygen-number representation provides adequate detail to represent 147 

many key atmospheric processes, e.g., reactions with oxidants, formation of functionalized products, 148 

scission of carbon backbones or fragmentation, surface and condensed-phase chemistry and gas/particle 149 

partitioning. The SOM has been used to interpret chamber experiments (Zhang et al., 2014;Cappa et al., 150 

2013;Cappa and Wilson, 2012) and was recently integrated into a chemical transport model (Jathar et al., 151 

2015) to examine the influence of multigenerational aging (Jathar et al., 2016) and chamber-based vapor 152 

wall losses (Cappa et al., 2016) on ambient concentrations and properties of OA. The two-dimensional 153 

VBS (2D-VBS) of Donahue et al. (2011) and the carbon-polarity grid of Pankow and Barsanti (2009) are 154 

examples of similar frameworks. These more sophisticated models (i.e., SOM, 2D-VBS, carbon-polarity 155 

grid) have not yet been employed to study SOA formation from complex mixtures such as combustion 156 

emissions.  157 

 158 

To summarize, combustion sources such as diesel-powered sources emit precursors that can photooxidize 159 

in the atmosphere to produce SOA. This SOA production is dependent not only on the precursor 160 

composition (that could vary by combustion mode and fuel type) and photochemical age, but also 161 

experimental artifacts (e.g., short condensation timescales) introduced by oxidation flow reactors. Hence, 162 

there is a need to develop and apply sophisticated, yet computationally efficient, numerical models to 163 

simulate and study SOA formation from combustion emissions. In this work, we applied two SOA model 164 

frameworks that vary in sophistication (VBS and SOM) to simulate the photochemical production of SOA 165 

in an OFR from diesel exhaust. The models were evaluated by comparing model predictions (OA and 166 

O:C) to the recent measurements made by Jathar et al. (2017a) where SOA production was quantified for 167 
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different photochemical ages under varying engine loads, fuels, and aftertreatment devices. The model-168 

measurement comparison, along with sensitivity simulations, highlights the importance of modeling the 169 

kinetic gas/particle partitioning of SOA in OFRs, the contribution of IVOCs to the total SOA production, 170 

and the ability of the SOM to accurately track the composition of SOA. 171 

 172 

2 Methods 173 

2.1 Experiments and Data 174 

Jathar et al. (2017a) performed photooxidation experiments using an OFR to measure SOA production 175 

from the exhaust of a 4.5L, John Deere diesel engine. The stock engine met Tier 3 emissions standards for 176 

off-road diesel engines. The OFR used therein was described in detail by Friedman et al. (2016) and the 177 

experimental setup and OA measurements from these experiments were described in detail by Jathar et al. 178 

(2017a). We briefly summarize the experimental setup, measurements, and findings from Jathar et al. 179 

(2017a). The engine was run at two different loads (idle and 50% load) with two different fuels (diesel 180 

and biodiesel), and with and without an aftertreatment system. The aftertreatment system included a diesel 181 

oxidation catalyst (DOC) to oxidize CO and THC and a diesel particle filter (DPF) to trap fine particles. 182 

Diesel exhaust was diluted by a factor of 45-110 before entering the OFR. The intensity of the mercury 183 

lamps (at wavelengths of 185 and 254 nm) inside the OFR was varied to produce different hydroxyl 184 

radical (OH) concentrations and simulate different photochemical exposures. The OFR had a residence 185 

time of 100 s. A suite of instrumentation was used to measure gas- (CO2, CO, total hydrocarbons, NOx, 186 

O2, oxygenated organic compounds) and particle- (aerosol size and composition) phase concentrations. A 187 

total of fourteen experiments (see Table 1 for more details) were performed at varying engine loads and 188 

with varying fuels and aftertreatment configurations. The OH exposure was varied between 0 and a 189 

maximum of 9.2×107 molecules-hr cm-3 (equivalent to 2 days of photochemical aging at an OH 190 

concentration of 1.5×106 molecules cm-3). On average, each experiment included measurements at six to 191 

seven different photochemical exposures. The mass concentrations and elemental composition of the POA 192 

(measured when OFR lights were off) and SOA (at varying OH exposures) were measured by a high-193 

resolution aerosol mass spectrometer (HR-AMS). In addition to the measurements reported by Jathar et al. 194 

(2017a), the gas-phase concentrations of oxygenated organic compounds were measured by an acetate 195 

reagent ion-based chemical ionization mass spectrometer (CIMS) (Link et al., 2016). At all engine 196 

configurations, SOA production exceeded the POA emissions after the equivalent of a few hours of 197 

atmospheric photochemical aging. SOA production was particularly strong at idle (or less fuel-efficient) 198 

engine loads and/or when exhaust temperatures were low and proper functioning of the aftertreatment 199 

devices was limited. Further, POA emissions and SOA production were nearly identical between diesel 200 



 
 
 
 

7 

and biodiesel fuels. A synopsis of experiments performed and the total hydrocarbons (THC), which 201 

includes all SOA precursors, POA, SOA, O:C, OH, and size distribution data are presented in Table 1. 202 

 203 

Although the diesel exhaust was diluted with clean air to produce atmospherically-relevant concentrations 204 

of POA, the initial THC, CO, and NOX concentrations in the OFR were still quite high. Peng and Jimenez 205 

(2017), using a detailed gas-phase model, argued that the high external OH reactivity from high THC, 206 

CO, and NOX concentrations might lead to non-OH chemistry in the OFR and NO could quickly be 207 

consumed in the OFR leading to low NO conditions for SOA formation. Peng and Jimenez (2017) 208 

quantified the potential influence of NO on the oxidation chemistry by calculating the ratio of the reactive 209 

flux of the peroxy radicals with NO to the reactive flux of the peroxy radicals with HO2 (rRO2+NO/rRO2+HO2). 210 

A ratio greater than 1 was considered as “high NO” while a ratio less than 1 was considered “low NO”. 211 

For the relative humidity, photon flux, initial NO, and external OH reactivity values in Jathar et al. 212 

(2017a), the model of Peng and Jimenez (2017) predicted that the OFR mostly ran in a high NO mode at 213 

all photochemical exposures when the engine was run at load conditions or with an aftertreatment device 214 

in place. However, the model predicted that the OFR mostly ran in a low NO mode especially at the high 215 

photochemical exposures when the engine was run at idle conditions and without an aftertreatment device 216 

(i.e., Idle-Diesel-None and Idle-Biodiesel-None). The rRO2+NO/rRO2+HO2 ratio and low versus high NO 217 

mode for each photon flux-experiment combination is listed in Table S1. Based on these results, we 218 

accordingly used the low and high NOX parameterizations to perform the model simulations.  219 

 220 

The model of Peng and Jimenez (2017) also indicated that most of the experiments performed by Jathar et 221 

al. (2017) were run under, in what Peng and Jimenez (2017) refer to as, ‘risky’ or ‘bad’ conditions. These 222 

conditions refer to situations in the OFR where the initial NO concentrations and external OH reactivity 223 

are high enough to suppress OH exposure and lead to non-tropospheric photolysis at 185 and 254 nm, 224 

which could compete with OH exposure to determine the fate of the SOA precursors and its oxidation 225 

products. Such conditions could be avoided by ensuring low initial NO concentrations and external OH 226 

reactivity that for combustion emissions would require substantial dilution with clean air before they are 227 

oxidized in the OFR. Future studies on combustion sources should be cognizant of this fact to avoid 228 

artifacts linked to non-tropospheric photolysis of organic compounds in OFRs.  229 

 230 

2.2 Organic Aerosol Models 231 

In this work, we used two different OA models to predict the mass concentrations and chemical 232 

composition of SOA and compare predictions against the SOA measurements from Jathar et al. (2017a) 233 
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and Friedman et al. (2017). In this section, we briefly describe the two model frameworks, namely the 234 

Volatility Basis Set (VBS) and the Statistical Oxidation Model (SOM), used to simulate the coupled 235 

chemistry, thermodynamic properties, and kinetic gas/particle partitioning of OA. Neither model 236 

accounted for photolysis of organic compounds in the gas phase at 185 or 254 nm, which may need to be 237 

considered in the future when modeling the OFR chemistry from combustion emissions. The VBS model 238 

was chosen as it is widely used in contemporary air quality models; the SOM was chosen to examine the 239 

influence of improved representation of OA processes (e.g., fragmentation reactions) on model 240 

predictions.  241 

 242 

2.2.1 Volatility Basis Set 243 

The Volatility Basis Set model, developed by Donahue et al. (2006b), is a parameterizable model that 244 

allows for a volatility-based representation of the coupled chemistry, thermodynamic properties, and 245 

gas/particle partitioning of OA. The VBS uses logarithmically spaced so-called basis sets based on the 246 

effective saturation concentration (C*); C* of a species determines the partitioning between the gas and 247 

particle phases (Pankow, 1994). In the VBS model, organic precursors were allowed to react with OH to 248 

yield a unique product distribution in C* space that represented stable first-generation products. 249 

Subsequent multi-generational gas-phase oxidation, or so-called ‘aging,’ of the VBS products was 250 

modeled using the scheme of Robinson et al. (2007). In this scheme the product species are allowed to 251 

react with OH and yield a product with a C* that is an order of magnitude lower than the direct precursor, 252 

to a lower limit C* of 10-2 µg m-3. This scheme did not consider fragmentation reactions. The following 253 

equations were used to represent the organic precursor oxidation (equation 1) and subsequent reaction and 254 

formation of products from the precursor oxidation and aging reactions (equation 2): 255 
!"

!#
= −&'([*][,-]        (1)  256 

!./
012

!#
= 34&'([*][,-] + 6	&'(,9:;<:[=4>?

: ][,-] − @	&'(,9:;<:[=4
:][,-]  (2) 257 

where * is the gas-phase concentration of a generic organic precursor (µg m-3; includes VOCs, IVOCs 258 

and SVOCs), &'( is the reaction rate constant between the precursor and OH (cm3 molecule-1 s-1), =4
:>A 259 

is the gas + particle-phase concentration in the jth bin (µg m-3),34is the mass yield of the first-generation 260 

oxidation product of the jth bin (Table 2), kOH,aging is the reaction rate constant (cm3 molecule-1 s-1) to 261 

represent multi-generational aging of the oxidation products, and 6and @are the mass yields associated 262 

with the production and loss terms from multi-generational aging. For the jth bin, the second term in 263 

equation (2) represents the formation of oxidation products from the j+1th volatility bin and the third term 264 



 
 
 
 

9 

in equation (2) represents the loss of precursor from the jth bin. 6and @ are assumed to have a value of 1 265 

(meaning no fragmentation) but 6 is zero for the last bin and @ is zero for the first bin. 266 

 267 

Volatility-resolved mass yields for eighteen different organic precursors for C* bins ranging from 10-1 to 268 

103 µg m-3 were adopted or refit based on low and high NOX parameterizations published in the literature; 269 

organic precursors, the high and low NOX VBS mass yields, and the relevant references are listed in 270 

Tables 2 and 3. Since there were no direct low NOX VBS parameterizations for alkanes, parameterizations 271 

for linear, branched, and cyclic alkanes were developed using pseudo chamber data generated with the 272 

SOM based on the low NOX parameters listed in Table 5 for n-dodecane, methylundecane, and 273 

hexylcyclohexane respectively. Some of these parameterizations accounted for vapor wall losses and have 274 

been accordingly marked in Tables 2 and 3. Each SOA precursor in the exhaust emissions was assigned a 275 

surrogate from Table 2/3 to model SOA formation in the VBS model. When using the high NOX 276 

parameterizations, branched and cyclic alkanes were assigned surrogates based on equivalent linear 277 

alkanes, following the work of Lim and Ziemann (2009) and Tkacik et al. (2012). A CX branched alkane 278 

was assigned a CX-2 linear alkane as a surrogate and a CX cyclic alkane was assigned a CX+2 linear alkane 279 

as a surrogate. Since we only fit alkanes up to n-heptadecane, we considered n-heptadecane as a surrogate 280 

for alkanes C17-C22. The Idle-Diesel-None and Idle-Biodiesel-None experiments used the low NOX 281 

parameterizations while all the other experiments used the high NOX parameterizations. The mass transfer 282 

(condensation/evaporation) of the VBS products to the particle phase was assumed to be kinetically-283 

limited in the OFR (Palm et al., 2016;Jathar et al., 2017a;Ahlberg et al., 2017); Section 2.3 describes the 284 

mass transfer equation used to model kinetic gas/particle partitioning. 285 

 286 

2.2.2 Statistical Oxidation Model 287 

The Statistical Oxidation Model (SOM), developed by Cappa and Wilson (2012) is a semi-explicit, 288 

parameterizable model that allows for a statistical representation of the coupled chemistry, 289 

thermodynamic properties, and gas/particle partitioning of OA. The SOM uses a 2-dimensional carbon-290 

oxygen grid to track gas- and particle-phase precursors and products from precursor oxidation. Each cell 291 

in the SOM grid represents a model organic species with a molecular weight defined by the formula 292 

CxHyOz. A SOM species reflects the average properties (e.g. C*, reactivity) of all actual species with the 293 

same number of carbon (NC) and oxygen (NO) atoms that are produced from a given precursor class (e.g., 294 

benzene, alkanes). In the SOM, all gas-phase species are assumed to be reactive towards OH and the OH 295 

reaction rate constant (kOH) is calculated using equation 3 as follows: 296 
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BCD(&'() 	= 	G? 	+	GH	×(J.
KL)	×	MNO(−1×

QR
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)	×[1 +
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MNO(−

?(\<(]^>_._?)`\<(Xa)
a

HZa
)] (3) 297 

b	(J. ≤ 15) 	= 0.0214	×J. + 0.5238 298 

b	(J. ≥ 15) = −0.115×J. + 2.695 299 

m? = −0.2583×J. + 5.8944 300 

mH	(J. ≤ 15) = 0.0314×J. + 0.9871;	mH	(J. > 15) = 0.25×J. − 2.183 301 

where A1=15.1, A2=3.94, and A3=0.797. kOH for a specified NC and NO is assumed to be the same for 302 

species in all the SOM grids. 303 

 304 

The reactions with OH lead to either functionalization or fragmentation, resulting in movement through 305 

the carbon-oxygen grid. Six precursor-specific adjustable parameters are assigned for each SOM grid: 306 

four parameters that define the molar yields of the four functionalized, oxidized products (pO,k, ΣpO,k=1 307 

and hence one out of the four parameters is determined by mass balance), one parameter that determines 308 

the probability of functionalization or fragmentation (PFrag, PFunc=1-PFrag) and one parameter that 309 

describes the change in C* associated with the addition of one oxygen atom (ΔLVP). Equation 4 310 

represents the evolution of species in the SOM grid: 311 
![.q'r]

!#
= 	−&'(

s,t[,-][=s,t] + [,-] &'(
s,t`uvwx<y

s,t`uO',u[=s,t`u]
V
uz? +312 

[,-] &'(
s>4,t`?>uu{R|`t

uz_

}~�R0
q,rÄY1Å

]~�R0{ÇÉÑÖ
q,r [=s,t`?>u]

4{R|
4z?   (4) 313 

where CXOZ is the gas + particle-phase concentration of the SOM species with X carbon atoms and Z 314 

oxygen atoms (µg m-3) and Nfragments is the number of possible products from fragmentation. The 315 

probability of fragmentation is modeled using equation 5 as a function of the O:C ratio because higher 316 

O:C ratio compounds are expected to have a higher probability of fragmentation (Chacon-Madrid and 317 

Donahue, 2011): 318 

vwÜ9: = (
]^
]á
)à~�R0      (5) 319 

The C* for each SOM species was calculated using equation 6 as follows: 320 

BCD?_=
∗ = −0.337äã(. + 11.56 − (J'×åç*v)   (6) 321 

where MWHC (g mole-1) is the molecular weight of the hydrocarbon backbone (accounting only for the 322 

carbon and hydrogen atoms). 323 

 324 

The parameters used to model SOA formation were based on those published in Cappa et al. (2016) and 325 

are listed in Tables 4 and 5. These parameter sets were developed by fitting the SOM predictions to 326 
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chamber measurements of SOA mass concentrationsand include corrections to account for vapor wall 327 

losses (Zhang et al., 2014). Each SOA precursor in the exhaust emissions was assigned a surrogate from 328 

Table 4 or 5 to account for the oxidation chemistry associated with oxidation of that species. For example, 329 

pentadecane used the parameterization developed by fitting n-dodecane. The difference in the initial 330 

number of carbons and oxygens, and thus the volatility, between the surrogate compound and the 331 

precursor compound of interest was accounted for, with consequent impact on the SOA yield. In other 332 

words, unlike the VBS where the SOA mass yield of the SOA precursor and surrogate is identical, the 333 

surrogate in the SOM only informed the statistical trajectory for multi-generational oxidation of a given 334 

precursor, and the surrogate and actual compound of interest can have different SOA mass yields. The 335 

Idle-Diesel-None and Idle-Biodiesel-None experiments used the low NOX parameters while all the other 336 

experiments used the high NOX parameters. Similar to the VBS model, the mass transfer 337 

(condensation/evaporation) of the SOM products to the particle phase was assumed to be kinetically-338 

limited in the OFR (Palm et al., 2016;Jathar et al., 2017a;Ahlberg et al., 2017) and Section 2.3 below 339 

describes the mass transfer equation used to model kinetic gas/particle partitioning. 340 

 341 

2.3 Kinetic Gas/Particle Partitioning 342 

Palm et al. (2016), (Ahlberg et al., 2017), and Jathar et al. (2017a) have argued that the short residence 343 

times and small condensation sinks in the OFR may not permit all low-volatility products formed from 344 

precursor oxidation to condense onto preexisting aerosol. Hence, unlike earlier work that has assumed 345 

equilibrium partitioning to model SOA in OFRs (Tkacik et al., 2014;Chen et al., 2013), we modeled the 346 

kinetic gas/particle partitioning of OA using equation 7 (Zhang et al., 2014): 347 

!.é
2

!#
= 2èê;êAJAëíì(=;

: −
.é
2.é

∗

.^î
)      (7) 348 

where =;
A is the particle-phase mass concentration for the ith organic species (µg m-3), Di is the gas-phase 349 

diffusion coefficient of the ith organic species (m2 s-1), Dp is the number mean particle diameter (m) , Np is 350 

the total particle number concentration (m-3), FFS is Fuchs-Sutugin correction for non-continuum mass 351 

transfer, =;
: is the gas-phase mass concentration of the ith organic species (µg m-3), =;∗ is the effective 352 

saturation concentration of the ith organic species, and COA is the total OA mass concentration (µg m-3). 353 

The ith organic species refers to the organic compounds tracked in the VBS bins and the SOM grids. The 354 

gas-phase diffusion coefficient was calculated for each organic species as follows: 355 

ê; = ê.'a
ïñá^a

ïñé
       (8) 356 

where ê.'a is the gas-phase diffusion coefficient of CO2 (1.38×10-5 m2 s-1), äã.'a (g mole-1) is the 357 
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molecular weight of CO2, and MWi (g mole-1) is the molecular weight of the ith organic species. In the 358 

VBS model where we do not track the molecular composition of the SOA species, we assumed all 359 

condensing species to have a molecular weight of 200 g mole-1. This formulation to calculate the gas-360 

phase diffusion coefficient under-predicted the measured gas-phase diffusion coefficients compiled by 361 

Tang et al. (2015) by ~20%. However, doubling the gas-phase diffusion coefficient calculated in equation 362 

8 resulted in very small change (<1%) in the OA mass predictions for a representative experiment. Hence, 363 

we decided to use the formulation in equation (8) for the rest of this work. The Fuchs-Sutugin correction 364 

was calculated as follows: 365 

ëíì =
_.óòô(?>ö<)

ö<a>ö<>_.HSU⋅ö<⋅ô	>_.óòô
      (9) 366 

úù =
Hûé
ü2

        (10) 367 

†; =
Uüé
./

         (11) 368 

=; =
S]îuW

[ïñé
        (12) 369 

where Kn is the Knudsen number, α is the mass accommodation coefficient, λi is the mean free path of the 370 

ith organic species in air (m), Ci is the root mean square speed of the gas (m s-1), NA is Avogadro's number 371 

(molecules mole-1), k is the Boltzmann constant (m2 kg s-2 K-1), and T is the temperature (K).  372 

 373 

2.4 Model Inputs 374 

2.4.1 Semi-Volatile and Reactive POA 375 

Previous work has shown that much of combustion-related POA is semi-volatile and exists in an 376 

equilibrium with gas-phase vapors (Robinson et al., 2007;Huffman et al., 2009;May et al., 2013c, b;May 377 

et al., 2013a). Jathar et al. (2017a) measured emissions of POA at no OH exposure and these measured 378 

concentrations were used to initialize the seed OA available for partitioning in the OFR and to calculate 379 

the mass concentrations of vapors in equilibrium with the POA. The mass concentrations of the POA 380 

vapors were determined based on the normalized, volatility-resolved distribution of primary organic 381 

compounds estimated by May et al. (2013b) for emissions from a suite of on- and off-road diesel vehicles. 382 

The volatility distribution of May et al. (2013b) for diesel primary organic compounds is listed in Table 383 

6(a). For the SOM, we assumed that the primary organic compounds could be represented using a 384 

distribution of n-alkanes and we refit the volatility distribution in Table 6(a) to develop a carbon-number 385 

resolved distribution of n-alkanes; this distribution is listed in Table 6(b).  386 

 387 
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2.4.2 SOA Precursors 388 

Jathar et al. (2017a) did not speciate the THC or SOA precursor emissions from the diesel engine and 389 

hence we have developed our own emissions profiles based on previously published literature to speciate 390 

the THC emissions. In this work, we used two different emissions profiles listed in EPA SPECIATE 391 

version 4.3 that are commonly used to speciate THC emissions from diesel engines for emissions 392 

inventories used in atmospheric modeling (EPA, 2013): Profiles #3161 (Diesel Exhaust- Farm 393 

Equipment) and #8774 (Heavy Duty Diesel Exhaust). Profile #3161 best matched the diesel engine source 394 

and diesel fuel used by Jathar et al. (2017a) and was used as the baseline emissions profile to speciate the 395 

THC emissions; we examined the sensitivity of using Profile #8774 on model predictions. We were 396 

unable to find a comprehensive emissions profile for THC emissions from the use of straight biodiesel 397 

fuel in the literature, and have relied on emissions profiles that were determined for biodiesel-diesel 398 

blends. Profile #4777 (30% Biodiesel Exhaust - Light Duty) was used as the baseline emissions profile to 399 

speciate THC emissions for experiments performed using the biodiesel fuel. All three emissions profiles 400 

(3161, 8774, and 4777) are listed in Tables S2 through S4.  401 

 402 

Prior work in studying SOA formation has revealed that traditional speciation of THC emissions does not 403 

include emissions of high molecular-weight organic compounds, such as IVOCs, that are important SOA 404 

precursors (Jathar et al., 2014b). In Profile #3161 such compounds are partially accounted for in the 405 

‘unknown’ species category (13.76% by mass of THC). Zhao et al. (2015) recently estimated that IVOCs 406 

were 60% of the THC emissions from a suite of on- and off-road diesel engines and provided a semi-407 

explicit speciation of the IVOC emissions as a carbon-number distribution of linear, branched and cyclic 408 

alkanes. To account for these IVOC emissions, we assumed that the base case emissions profiles 409 

contained 30% IVOCs on a mass-basis (this IVOC fraction was selected since it resulted in the most 410 

optimum model-measurement comparison for OA mass; this will be discussed later in Section 3.3) and 411 

had the same chemical speciation as that proposed by Zhao et al. (2015) for an off-road engine 412 

(transportation refrigeration unit). We performed sensitivity simulations using IVOC fractions of 0% 413 

(assuming that the THC emissions contained no IVOCs), 13.76% (based on the ‘unknown’ category in 414 

Profile #3161), and 60% (based on the median estimate in Zhao et al. (2015)), on a mass-basis. Addition 415 

of IVOCs to the emissions profile meant that the VOC species (e.g. benzene, toluene, short alkanes) had 416 

to be renormalized to accommodate the IVOCs. Table 7 lists the renormalized baseline emissions profiles 417 

for SOA precursors used for diesel and biodiesel exhaust with 30% IVOCs along with the reaction rate 418 

constants with OH (kOH) and surrogates (or model compound) used to model SOA formation for the VBS 419 

and SOM models. Concentrations for each species were determined by multiplying the experiment-420 
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specific THC mass concentrations with the renormalized emissions profiles. 421 

 422 

2.4.3 Particle Size and Particle Number Concentrations 423 

For numerical simplicity, we used a monodisperse aerosol, the properties of which (number mean 424 

diameter (Dp) and number concentration (Np)) were initialized from the measured particle size distribution 425 

data when modeling kinetic gas/particle partitioning. For experiments performed without the DPF+DOC, 426 

the initial particle number concentrations and condensational sinks were high (>3.3×105 # cm-3 and >0.5 427 

min-1) and hence the monodisperse aerosol was initialized based on data at no photochemical exposure. 428 

For experiments performed with the DPF+DOC where the initial particle number concentrations were 429 

relatively low (<1000 # cm-3 and <0.003 min-1), photochemical aging resulted in formation and growth of 430 

new particles and provided a substantial increase in the surface area (>factor of 300) available for 431 

condensation. In these experiments, we initialized the monodisperse aerosol using an average of the data 432 

at no photochemical exposure and after photochemical exposure (Palm et al., 2016). Averaging the data 433 

allowed for a more realistic estimate of the condensational sink. In each simulation, the condensing SOA 434 

mass was used to calculate the change in particle size but the number concentration was conserved. The 435 

number mean diameter and the number concentration data - representing the initial condensational sink – 436 

for all experiments are listed in Table 1.  437 

 438 

New particle formation and growth was observed for most experiments at or near the highest 439 

photochemical ages (at or >1 OH day), which presumably influenced the condensational sink at the 440 

beginning of the experiment. Therefore, we performed sensitivity simulations to investigate the influence 441 

of new particle formation on model predictions. We performed simulations with each model (VBS and 442 

SOM) with four different initial condensational sinks. The first three simulations used measured data to 443 

calculate the initial condensational sink inputs: (i) number mean diameter and measured number 444 

concentration at no OH exposure (equivalent to the default for non-DPF+DOC experiments), (ii) number 445 

mean diameter and measured number concentration at the given OH exposure, and (iii) average of (i) and 446 

(ii) (default for DPF+DOC experiments). The fourth simulation (iv) assumed that the OFR nucleated 1 447 

nm particles at the beginning of the experiment where the number concentration of these particles was 448 

equal to that measured at the end of the experiment.  449 

 450 

2.5 Model Simulations and Model Code 451 

The VBS and SOM models were run separately for each photochemical exposure simulated for each 452 

experiment listed in Table 1. In the VBS simulations, POA was tracked in one basis set while products 453 
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from each SOA precursor were tracked in separate basis sets, allowing us to distinguish between POA and 454 

SOA. In the SOM simulations, all precursor molecules with the same surrogate (e.g., all n-alkanes) were 455 

tracked in the same SOM grid. Model simulations were performed in phases to answer specific questions 456 

and inform model inputs for later simulations: 457 

1. To provide a general overview of the model predictions and model-measurement comparison, and 458 

to orient the reader to the results thereafter, we performed simulations with the VBS and SOM 459 

models using the base set of inputs for one of the Idle-Diesel-None experiments. Our base case 460 

included: Profile #3161 for VOC emissions, 30% IVOC mass fraction, kinetic gas/particle 461 

partitioning with a mass accommodation coefficient of 0.1, and monodisperse aerosol inputs based 462 

on measured data at no photochemical exposure. The partitioning- and IVOC-related choices for 463 

the base case are discussed in Sections 3.2 and 3.3 respectively. 464 

2. Models used to simulate SOA production in environmental chambers and OFRs have typically 465 

assumed instantaneous equilibrium partitioning (e.g., Chen et al. (2013)). To examine the validity 466 

of assuming instantaneous equilibrium partitioning, we performed simulations with the VBS and 467 

SOM models using instantaneous or kinetic gas/particle partitioning for one of the Idle-Diesel-468 

None and the Idle-Diesel-DPF+DOC experiments. Kinetic partitioning was modeled using three 469 

values of the mass accommodation coefficient (α=0.01, 0.1, 1) to capture the uncertainty in its true 470 

value. To examine the influence of an increased initial condensational sink from new particle 471 

formation on kinetic partitioning, we performed additional simulations using four different initial 472 

condensational sinks (see Section 2.4.3) on one of the Idle-Diesel-None and the Idle-Diesel-473 

DPF+DOC experiments.  474 

3. Previous work has shown that combustion-related IVOCs are important precursors of SOA (e.g., 475 

Jathar et al. (2014b)). To investigate the importance of IVOCs, we performed simulations with the 476 

VBS and SOM models at four different assumed IVOC mass fractions (0%, 13.76%, 30%, and 477 

60%), as discussed above when discussing the THC profiles, at all photochemical exposures and 478 

for all the experiments listed in Table 1. We performed additional simulations with different 479 

emissions profiles and SOA parameterizations on one of the Idle-Diesel-None experiments to 480 

investigate uncertainties linked to the composition and SOA potential of IVOCs.  481 

4. Additional simulations were performed to examine the sensitivity of model predictions to the 482 

following processes: multi-generational aging, vapor wall losses, residence time distributions, and 483 

spatial heterogeneity in OH concentrations. 484 

The numerical codes for the VBS were developed in Matlab while those for the SOM were developed in 485 

IGOR (WaveMetrics Inc.). These codes will be made available on request. The simulations were 486 
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performed on an Intel i5 processor (1.7 GHz) and required ~10 s to perform a VBS simulation and ~500 s 487 

to perform a SOM simulation at a single photochemical exposure. 488 

 489 

3. Results 490 

3.1 General Model Results Using the Base Case 491 

In Figure 1, we compare predictions of OA from the VBS and SOM models using the base case to the 492 

measurements for the Idle-Diesel-None experiment performed on June 5. Figures 1(a) and 1(b) compare 493 

predictions to the measurements in units of µg m-3 and g kg-fuel-1, respectively; hereafter we present all 494 

mass predictions in units of g kg-fuel-1. For this experiment, the VBS/SOM models over-predicted the OA 495 

mass by a factor of 1.9/2.2 at the lowest photochemical exposure (0.06 OH days) and a factor of 1.6/1.8 at 496 

the next highest photochemical exposure (0.17 OH days). The over-prediction was because the models 497 

significantly over-predicted the SOA formation at these two photochemical exposures. For higher 498 

photochemical exposures (>0.5 OH days), both models slightly under-predicted the OA mass but 499 

predictions were still within the measurement uncertainty. Our base case seemed to offer a mixed model-500 

measurement comparison for this specific experiment (i.e., over-prediction at lower photochemical ages 501 

and a slight under-prediction at higher photochemical ages) because the 30% IVOC mass fraction used in 502 

the base case was optimized to achieve a favorable model-measurement comparison across all 503 

experiments at all photochemical exposures. In other words, the over-prediction in this experiment at 504 

lower photochemical exposures was probably offset by an under-prediction at similar photochemical 505 

exposures for some of the other experiments. It is important to note that the model performance varied 506 

across the suite of experiments and this overall model performance is discussed in more detail in Section 507 

3.3. The VBS and SOM models predicted that the OA at the maximum photochemical exposure was 508 

dominated by SOA produced from VOC and IVOC oxidation (92-93%), which agreed well with the 509 

measured composition (see Figure 1(c)). For the measurements, POA was defined as fresh OA while SOA 510 

was defined as OA formed in addition to the POA. Furthermore, both models suggested that most of the 511 

SOA emanated from the oxidation of IVOCs with only 7-14% resulting from the oxidation of aromatic 512 

VOCs and less than 0.6-4% resulting from alkane VOCs smaller than a C12. This dominance of IVOCs in 513 

explaining the photochemically produced SOA is in line with previous OFR and chamber studies that 514 

have modeled SOA formation from diesel exhaust (Tkacik et al., 2014;Zhao et al., 2015;Jathar et al., 515 

2014b). 516 

 517 

3.2 Kinetic Gas/Particle Partitioning 518 

In Figure 2, we plot predictions from the VBS and SOM models for the Idle-Diesel-None and Idle-Diesel-519 
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DPF+DOC experiments assuming instantaneous and kinetic gas/particle partitioning. The two different 520 

experiments were deliberately chosen to highlight the role instantaneous partitioning plays at the 521 

extremities. We found that for the Idle-Diesel-None experiment, the use of instantaneous partitioning 522 

roughly produced the same result as kinetic partitioning with α values of 0.1 and 1 and that all these 523 

predictions resulted in roughly the same model-measurement comparison. The instantaneous partitioning 524 

predictions were slightly higher than the kinetic partitioning predictions for the VBS simulations. The 525 

kinetic partitioning simulations (except for that with an α of 0.01) produced the same result as the 526 

instantaneous partitioning simulation most likely because the initial condensational sink was large enough 527 

(1.12 min-1) in this experiment that there were no kinetic limitations to partitioning. The increase in the 528 

condensational sink through condensation of SOA (10 min-1 at the highest photochemical exposure) 529 

tended to further reduce any differences in the predictions between the kinetic and instantaneous 530 

partitioning simulations. However, for the Idle-Diesel-DPF+DOC experiment, the instantaneous 531 

partitioning simulation predicted substantial OA mass at the lower photochemical exposures (0.04 and 532 

0.12 OH days) compared to the kinetic partitioning simulations, specifically a factor of 9.8-29 larger at 533 

0.04 OH days and a factor of 9.7-75 larger at 0.12 OH days for the VBS model and a factor of 3.9-5.8 534 

larger at 0.04 OH days and a factor of 6.4-9.1 larger for the SOM. The instantaneous partitioning 535 

simulations predicted a lot more SOA because all condensable products of organic precursor oxidation 536 

were allowed to condense instantaneously (according to their respective volatilities) while the kinetic 537 

partitioning simulations predicted little SOA production because the initial condensational sink was quite 538 

small (0.002 min-1). Predictions from the instantaneous and kinetic partitioning simulations were much 539 

closer at the higher photochemical exposures because the SOA formed had grown the condensational sink 540 

enough to reduce limitations to partitioning (1 min-1 at the highest photochemical exposure). These results 541 

imply that the condensation of SOA in OFRs, in some instances, could be kinetically-limited and that 542 

instantaneous partitioning may result in models over-predicting the condensation and formation of SOA.  543 

 544 

We make two additional observations based on the results in Figure 2. First, the initial condensational 545 

sink for the Idle-Diesel-None experiment was large (1.12 min-1) compared to condensational sinks one 546 

would encounter in the real atmosphere. For example, 5 µg m-3 of aerosol in a representative rural or 547 

remote environment will have a condensational sink <0.05 min-1 (Seinfeld and Pandis, 2006). Therefore, 548 

modeling ambient applications of the OFR or OFR use with sources that use emissions control devices 549 

will need to be even more mindful of the instantaneous partitioning assumption while predicting SOA 550 

formation. Second, for the kinetic partitioning results, predictions from both models were relatively less 551 

sensitive to α values between 0.1 and 1 but were dramatically lower for an α value of 0.01; more than a 552 
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factor of 2 for the Idle-Diesel-None experiment and more than an order of magnitude for the Idle-Diesel-553 

DPF+DOC experiment. Given the low sensitivity to α values greater than 0.1 and the reasonable model-554 

measurement comparison at an α value of 0.1 and 1 at least for the Idle-Diesel-None experiment, we 555 

argue that the SOA condensation can be represented by an α value larger than 0.1 for the OFR 556 

experiments in this work. This α value for diesel exhaust SOA was consistent with prior estimates of the α 557 

value for biogenic SOA estimated from chamber, OFR, and aerosol heating experiments (Lee et al., 558 

2011;Saleh et al., 2013;Karnezi et al., 2014;Palm et al., 2016) and direct measurements of α for alkanol 559 

SOA (Krechmer et al., 2017). However, an α of 0.1 was an order of magnitude higher than that observed 560 

recently for toluene SOA under dry conditions (Zhang et al., 2014). Model results presented hereafter 561 

include a kinetic treatment of gas/particle partitioning and assumed an accommodation coefficient of 0.1. 562 

 563 

Results from model simulations performed using different initial condensational sink inputs, some of 564 

which captured the influence of new particle formation, are plotted in Figure 3. We found that the initial 565 

condensational sink had no influence on the OA predictions from both models for the Idle-Diesel-None 566 

experiment, despite substantial differences in the initial condensational sink between the different cases. 567 

This was because the amount of SOA formed (920 µg m-3 at the highest photochemical exposure) was 568 

sufficient to grow the condensational sink enough that the initial condensational sink did not matter. In 569 

contrast, for both models we found large differences between the model predictions of OA for the Idle-570 

Diesel-DPF+DOC experiment. The use of inputs based on the measurements at no OH exposure, where 571 

the aftertreatment system significantly reduced number concentrations (910 cm-3) and hence the available 572 

condensational sink (0.002 min-1), produced much less SOA (an order of magnitude lower or more) and 573 

poorer agreement with the measurements (see curve (i) in Figure 3(b)). Initial condensational sinks that 574 

captured the influence of new particle formation resulted in higher model predictions but were still about 575 

a factor of ~2 lower for the VBS simulations and a factor of ~2.7 lower for the SOM simulations when 576 

compared against the measurements. The DPF+DOC results also suggest that calculating an initial 577 

condensational sink using data from before and after the photochemical exposure, as done by Palm et al. 578 

(2016), could be used as an input to model OFR data. Slight differences between the different curves for 579 

the Idle-Diesel-None experiment and curves (ii), (iii), and (iv) for the Idle-Diesel-DPF+DOC experiment 580 

can be attributed to the interaction of multigenerational aging and kinetic gas/particle partitioning. 581 

 582 

3.3 Influence of IVOCs on SOA Formation 583 

In Figure 4(a), we compare predictions of SOA concentrations from the SOM against measurements for 584 

all the experiments listed in Table 1 and at all photochemical exposures. For visual clarity, we do not 585 
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present results from the VBS model as both models had nearly identical predictions with a few 586 

exceptions; see Figure S1 where we compare VBS model predictions to SOM predictions for all 587 

experiments at all photochemical exposures for the base case. The four panels in Figure 4(a) show model-588 

measurement comparisons assuming four different fractions of IVOCs: 0%, 13.76%,  30%, and 60%; 589 

statistical metrics of fractional bias, fractional error, and R2 for the comparison for both models are listed 590 

in Table S4 (fractional bias = ?
]

ï`'
°1^
a

<
;z? , fractional error =  ?

]

ï`'
°1^
a

<
;z? , M=predicted value, 591 

O=observed value, N=sample size). The model-measurement comparison and the model skill was very 592 

poor when no IVOCs were included (fractional bias = -109%, fractional error = 125%, and R2 = 0.52); 593 

this model reflects the treatment of diesel-powered sources in most traditional emissions inventories and 594 

large-scale models. The model-measurement comparison was reasonable with 13.76% IVOCs (fractional 595 

bias = -46%, fractional error = 101%, and R2 = 0.95) but model predictions were over-predicted with 60% 596 

IVOCs (fractional bias = 72%, fractional error = 97%, and R2 = 0.99). The optimal model performance 597 

that produced the lowest fractional bias and fractional error was realized at an IVOC mass fraction of 30% 598 

(fractional bias= 6%, fractional error= 86%, and R2 = 0.88). For predictions with an IVOC mass fraction 599 

of 30%, 66% and 70% of the model predictions were within a factor of 1.5 and 2 of the measurements and 600 

IVOCs on average accounted for 67%/72% (VBS/SOM) of the SOA at the highest photochemical 601 

exposure across all experiments. Given the optimal performance, the base case used in this work assumed 602 

a 30% IVOC fraction. These comparisons indicate that it is critical that IVOCs be included when 603 

modeling the SOA formation from diesel exhaust and also validate the IVOC composition estimates made 604 

by Zhao et al. (2015). We note that the model of Peng and Jimenez (2017) suggested that the organic 605 

compounds in the OFR experiments performed by Jathar et al. (2017) may have been subjected to non-606 

tropospheric photolysis at 185 and 254 nm. Accounting for the photolysis of the key SOA precursors 607 

(IVOCs and aromatics) could affect the optimal IVOC fraction identified above and hence needs to be 608 

considered in future work.  609 

 610 

We further investigated the IVOC species that contributed the most to SOA formation. For an IVOC 611 

fraction of 30%, cyclic alkane IVOCs accounted for 23% of the THC emissions and on average accounted 612 

for 61%/53% (VBS/SOM) of the SOA formation across the different experiments. We should note that 613 

the speciation of cyclic alkane IVOCs in Zhao et al. (2015), while robust in quantifying the carbon 614 

number, did not include any specificity in terms of the molecular structure, i.e., their methods would not 615 

be able to distinguish between a pure C10 cyclic alkane and a cyclohexane with a 4-carbon branch. 616 

Further, the parameterizations to model SOA formation from cyclic alkane IVOCs for both models were 617 
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based on the behavior of particular compounds. In the VBS model when using the high NOX 619 

parameterizations, the surrogate for a cyclic alkane IVOC was determined through equivalence with a 620 

straight alkane IVOC while in the VBS model when using the low NOX parameterizations or the SOM the 621 

cyclic alkane IVOCs were tied to parameterizations for hexylcyclohexane. (The observed SOA yield and 622 

derived SOM parameterization for hexylcyclohexane is actually quite similar to that for cyclododecane 623 

for low-NOX conditions, but not for high-NOX conditions (Cappa et al., 2013)) This lack of specificity in 624 

the speciation and the SOA parameterizations made the SOA predictions from the oxidation of cyclic 625 

alkane IVOCs relatively uncertain. To examine the sensitivity of the model predictions to uncertainties in 626 

the model treatment of cyclic alkane IVOCs, we performed simulations with both models for one of the 627 

Idle-Diesel-None experiments where the cyclic alkane IVOCs were treated as branched alkane IVOCs; 628 

results from these simulations are shown in Figure 5(a). The use of branched alkane IVOCs to model 629 

cyclic alkane IVOCs only marginally reduced OA predictions for both the VBS and SOM models, 630 

suggesting that the model predictions were not sensitive to the SOA parameterization used for cyclic 631 

alkane IVOCs. Regardless, we recommend that future work focus on a more detailed speciation of cyclic 632 

alkane IVOCs in combustion emissions as well as on chamber and OFR experiments on those speciated 633 

compounds to improve quantification of their SOA mass yields.  634 

 635 

As there were no direct measurements of any SOA precursors in the study of Jathar et al. (2017a), we 636 

have used previously published emissions profiles for diesel exhaust to determine initial concentrations of 637 

the SOA precursors. We examined the sensitivity of model predictions to two different emissions profiles 638 

from the EPA SPECIATE (version 4.3) database: Profile #3161 (included in the base case) and Profile 639 

#8774 that represents emissions from ‘Heavy Duty Diesel Exhaust’; the speciation for both profiles is 640 

provided in Tables S2 and S3. Both profiles only included speciation for VOC emissions and in these 641 

simulations we assumed an IVOC mass fraction of 30%. The results captured in Figure 5(b) for one of the 642 

Idle-Diesel-None experiments show that the choice in the emissions profile had no influence on the OA 643 

evolution for the VBS model but had a small influence on the OA evolution for the SOM. This little to 644 

small influence was expected given that most of the SOA was formed from IVOC, rather than VOC, 645 

oxidation. This further demonstrates that IVOCs, not VOCs, play an important role in controlling the 646 

SOA formation from diesel exhaust emissions and it is important that future studies work towards better 647 

understanding the IVOC speciation.  648 

 649 

The IVOC speciation of Zhao et al. (2015) included 37 unique species, each of which required a unique 650 

surrogate to model the SOA formation from that species. Tracking these many IVOC species in an 651 
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atmospheric model (e.g., global climate model) may be intractable and hence, there is a need to develop 652 

simplified parameterizations to efficiently model SOA formation from IVOCs. We note that species using 653 

the same surrogate in the VBS model (e.g., a C15 linear alkane, C17 branched alkane, and C13 cyclic alkane 654 

are all parameterized using n-pentadecane when using the high NOX parameterizations) could be lumped 655 

together to reduce the number of precursors and products tracked and that there are no penalties for a 656 

precursor type (e.g., n-alkanes) to include additional precursor and product species once a SOM grid is 657 

setup. Nonetheless, to investigate the possibility of developing a simplified parameterization, we modeled 658 

SOA from IVOCs assuming that all the IVOCs could be modeled together as a single linear C13, C15, C17 659 

or C19 alkane; a similar strategy was employed by (Jathar et al., 2014b) to model SOA formation from 660 

unspeciated organic compounds in combustion emissions. Results from these simulations are shown in 661 

Figure 5(c) for one of the Idle-Diesel-None experiments. For the VBS model, the use of a larger carbon 662 

number alkane to model IVOC SOA produced increasingly more OA, with the C19 alkane providing the 663 

best comparison against measurements. For the SOM, the use of a  C13 and C15 alkane produced good 664 

agreement with measurements with a C13 alkane slightly under-predicting the OA at 0.5 OH days and the 665 

C15 alkane slightly over-predicting the OA at lower photochemical exposures (0.06 and 0.17 OH days). It 666 

was interesting to observe that for the SOM, in contrast to the VBS, the use of different linear alkanes 667 

produced different OA masses at lower photochemical exposures but converged at the highest 668 

photochemical exposure suggesting that the effective SOA mass yield in the SOM varied dynamically 669 

with photochemical age. Differences in the VBS and SOM predictions with different alkane 670 

parameterizations point to inherent differences in the coupled representation of multigenerational aging 671 

and gas/particle partitioning. Results from these simulations indicate that in cases where computational 672 

efficiency is demanded, the SOA formation from IVOCs in diesel exhaust could be modeled using a 673 

surrogate linear alkane, possibly a C19 linear alkane with the VBS and a C13 or C15 linear alkane for the 674 

SOM. 675 

 676 

3.4 Elemental Composition 677 

The SOM tracks both the carbon and oxygen number of the oxidation products, which allowed us to 678 

predict the O:C ratio of the OA. The O:C of the OA was calculated by combining the measured O:C of 679 

the POA with the modeled O:C of the SOA. We compare predictions of the O:C of OA from the SOM 680 

against measurements for all the experiments listed in Table 1 and at all photochemical exposures in 681 

Figure 4; statistical metrics of fractional bias, fractional error, and R2 for the comparison are listed in 682 

Table S5. Model predictions for the no IVOC case, where the O:C of the OA was dominated by the O:C 683 

of the aromatic SOA, compared well with measurements (fractional bias = -4.2%, fractional error = 28%, 684 
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and R2 = 0.77). However, the poor OA mass predictions with no IVOCs suggests that the good O:C 685 

performance was purely coincidental. The 13.76%, 30%, and 60% IVOC cases under-predicted the OA 686 

O:C where the under-prediction appeared to increase as the IVOC influence increased; fractional bias = -687 

32%, fractional error = 38%, and R2 = 0.72 for the 13.76% IVOC case, fractional bias = --37%, fractional 688 

error = 42%, and R2 = 0.70 for the 30% IVOC case, and fractional bias = -60%, fractional error = -62%, 689 

and R2 = 0.46 for the 60% IVOC case. A higher IVOC fraction resulted in a lower O:C ratio because the 690 

IVOCs were primarily composed of higher carbon number species that on oxidation produced low O:C 691 

SOA compared to SOA formed from precursors such as aromatics. On average, the 30% IVOC case 692 

predicted an O:C ratio that was 28% lower than the measurements. For the three non-zero IVOC cases 693 

(13.76%, 30%, and 60%), the model skill in predicting the O:C was much better for the non-DPF+DOC 694 

experiments (R2 = 0.82, 0.83, and 0.80 respectively) than for the DPF+DOC experiments (R2 = 0.02, 0.02, 695 

and 0.29 respectively). Measurements and model predictions of the OA O:C ratio from the 30% IVOC 696 

case as a function of photochemical age are presented in Figure S2.  697 

 698 

The under-prediction in O:C ratios was confounding when compared to earlier applications of the SOM 699 

and in light of the reasonable model-measurement comparison found in this work in predicting OA mass. 700 

We note that the low O:C in the 13.76%, 30%, and 60% IVOC cases stems from the dominance of 701 

product species that have high carbon numbers and low oxygen numbers. We explored several lines of 702 

reasoning for this under-prediction. First, Cappa et al. (2013) found good agreement between the SOM-703 

predicted and observed O:C for chamber experiments conducted using individual linear, branched and 704 

cyclic C12 alkanes. Also, general predictions of the dependence of O:C on the carbon number of the parent 705 

hydrocarbon (cf. Fig. 2b in Cappa and Wilson (2012)) show good agreement with observations (cf. Fig. 706 

2a in Tkacik et al. (2012)), both in terms of absolute values and shape. This suggests that uncertainties in 707 

the SOM parameters may not be the dominant reason for the under-prediction. A possible reason for the 708 

under-prediction then is that the compounds identified by Zhao et al. (2015) as IVOCs are structurally 709 

different than the alkanes used to model them in this work. Second, the gas-phase chemistry in the OFR 710 

might be inherently different than that in a chamber. For example, kinetic limitations to gas/particle 711 

partitioning may result in gas-phase oxidation of low-volatility products having high O:C that typically 712 

would have partitioned to the particle phase in a chamber experiment but instead are fragmented (Palm et 713 

al., 2016). As to why the chamber-based SOM parameters then offer good model performance on OA 714 

mass remains unclear. One way in which this issue could be addressed in the future is by developing 715 

SOM parameters exclusively based on OFR data, as and when they become available. Third, the SOM 716 

used here did not include surface/heterogeneous and particle-phase reactions that might influence the OA 717 
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composition and O:C ratio. When heterogeneous reactions of OA were included assuming an OH uptake 718 

coefficient of 1 (the product distribution from the oxidation reaction was kept the same as the gas-phase 719 

reactions), SOA production at the highest photochemical exposure for all the experiments was reduced, on 720 

average, by 7% from fragmentation reactions within the particle phase, but the O:C ratio was only 721 

marginally increased (average of 2%). 722 

 723 

To understand the O:C under-prediction better, we compared model predictions of normalized gas-phase 724 

species concentrations from the SOM to normalized gas-phase measurements made by Friedman et al. 725 

(2017) using a chemical ionization mass spectrometer (CIMS). The CIMS detects an array of oxygenated 726 

organic species and the high resolution of the time-of-flight mass spectrometer enables identification of 727 

the elemental composition of each detected peak. The CIMS data were aggregated by carbon and oxygen 728 

number to facilitate comparison with the SOM data. The comparison was performed on a normalized 729 

basis because the CIMS did not provide absolute concentrations for every detected peak. The SOM-CIMS 730 

comparisons for the Idle-Diesel-None and Load-Diesel-None experiments at the highest photochemical 731 

exposure are shown in Figure 6, which highlight four findings of note. First, the CIMS measured species 732 

larger than a carbon number of 12 that are presumably products from oxidation of higher molecular 733 

weight organic compounds, although the possibility of dimer formation in the instrument cannot be 734 

entirely ruled out. Nonetheless, this provides additional evidence for the presence of IVOC oxidation 735 

products in diesel exhaust emissions. Second, the CIMS measured organic compounds with high O:C 736 

ratios (e.g., C6O6, C7O7). This implies that the reaction chemistry in OFRs rapidly adds functional groups 737 

to the carbon backbone, although larger, less oxidized compounds could be simultaneously functionalized 738 

and fragmented in the CIMS leading to the appearance of highly oxidized species. Third, the SOM offered 739 

a reasonable correlation against the CIMS measurements for both experiments across a majority of the 740 

carbon-oxygen combinations that spanned more than four orders of magnitude. Qualitatively, this finding 741 

validates the statistical evolution of organic compounds tracked through the generalized SOM 742 

mechanism, although certainly some differences are evident. Finally, for the mid-carbon number species 743 

(~C10), the SOM seemed to produce higher fractions of species with low oxygen numbers (O0 to O3) but 744 

lower fractions of species with high oxygen numbers (O5 to O7). This under-prediction of the high oxygen 745 

number species might potentially explain why the SOM may be under-predicting the OA O:C ratio. The 746 

SOM-CIMS comparison is preliminary and we intend to explore the implications of this comparison in 747 

future work. 748 

 749 

3.5 Other Model Sensitivities 750 
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We performed sensitivity analyses to examine the influence of other key processes on predictions from 751 

both the VBS and SOM models. When examining the sensitivity to each process, all the other inputs were 752 

kept the same as those listed in the base case. We only present sensitivity results for the Idle-Diesel-None 753 

experiment performed on June 5, as the results for this experiment were generally representative of all 754 

experiments (Figure 7). For completeness, we performed simulations for all the experiments at the highest 755 

photochemical exposure since each of the processes explored below manifested the strongest response at 756 

the highest photochemical exposure. The results from these simulations are presented as a change in the 757 

model predictions relative to that offered by the base case.  758 

  759 

Multi-generational Aging. One of the key differences between the VBS and the SOM models is how they 760 

represent the multi-generational aging of gas-phase products. SOA parameters for the VBS model 761 

represent stable product distributions at the end of the chamber experiments and therefore already include 762 

the influence of multi-generational aging reactions encountered during the chamber experiment. 763 

Additional multi-generational aging in the VBS model, based on the scheme of Robinson et al. (2007), is 764 

simulated as a continuous decrease in product volatility, which does not account for fragmentation 765 

reactions and has not been constrained against experiments. The SOM framework explicitly models multi-766 

generational aging that includes treatment of fragmentation reactions and constrains the aging reactions 767 

based on the chamber experiments to an extent that is determined by the length (in OH exposure space) of 768 

the experiment. To test the influence of multi-generational aging, we performed model simulations with 769 

aging turned off for the VBS and SOM models and plot the results in Figure 7(a). We found that aging 770 

had a small influence (~18% reduction in OA mass) on model predictions from the VBS model, most 771 

likely because the high SOA and OA mass concentrations resulted in a substantial fraction of the organic 772 

species to be partitioned to the particle phase. This left very little of the organic species in the gas-phase to 773 

participate in multi-generational aging. We calculated that less than 20% by mass of the product species 774 

in this experiment was in the gas-phase at the OA mass concentration at the highest photochemical 775 

exposure, implying that the SOA mass yields at these OA mass concentrations were rapidly approaching 776 

100%. In contrast, the absence of aging resulted in a 43% decrease in the OA mass for the SOM. The 777 

decrease was mainly because the first generation oxidation product with the highest yield (i.e., CxO1) was 778 

too volatile to partition to the particle phase and needed to be aged further to form condensable products. 779 

As noted earlier, the term aging is defined differently for the VBS and SOM models and the results 780 

presented here need to take the definitional issues into account when examining the influence of aging. 781 

Compared to the base case, no aging resulted in an average decrease of 4% and 30% in OA mass for the 782 

VBS and SOM models respectively for all experiments at the highest photochemical exposure. These 783 
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simulations suggest that aging of the oxidation products, at least for the SOM, is as important as the 784 

contribution of first generation products to SOA formation. 785 

  786 

Vapor Wall Losses. Prior work has highlighted the influence vapor wall losses exert on the calculation of 787 

SOA mass yields from chamber experiments (Zhang et al., 2014;Krechmer et al., 2016). Cappa et al. 788 

(2016), based on the chamber work of Zhang et al. (2014), recently published parameter sets for the SOM 789 

that accounted for no vapor wall losses and two different vapor wall loss rates (1×10-4 and 2.5×10-4 s-1) 790 

assuming an equivalent OA mass of the chamber walls of 10 mg m-3 (the base case used the parameter 791 

sets for a vapor wall loss rate of 2.5×10-4 s-1). We performed model simulations with SOM using 792 

parameters that were either not corrected for vapor wall losses or that were corrected for vapor wall losses 793 

using either the low (1×10-4) or high (2.5×10-4) estimates proposed by Cappa et al. (2016). The results 794 

plotted in Figure 7(b) show that correcting for vapor wall losses significantly increased model predicted 795 

OA mass (by 73% and 112% for the low wall loss and high wall loss cases respectively at the highest 796 

photochemical exposure when compared to the no wall loss case) and provided the best performance for 797 

the high estimate for vapor wall losses. Across all experiments and at the highest photochemical exposure, 798 

accounting for vapor wall losses using the high estimate resulted in an average increase of 39% over no 799 

accounting for vapor wall losses. These comparisons suggest that it is important to use SOA 800 

parameterizations in which vapor wall losses in chambers have been accounted for when interpreting 801 

SOA experiments. Furthermore, we also simulated the influence of vapor losses to the OFR walls on 802 

model predictions. We assumed reversible uptake of vapors to the walls and used a vapor wall loss rate of 803 

2.5 ×10-3 s-1 (factor of ~10 larger than that for a chamber) based on the work of Palm et al. (2016) and an 804 

equivalent OA mass concentration of 10 mg m-3 for the OFR walls. The results plotted in Figure 7(b) 805 

show that the loss of vapors to the OFR walls had a small influence on model predictions: a 6.5% 806 

decrease for this experiment and an average decrease of 11% across all experiments at the highest 807 

photochemical exposure. Increasing the equivalent OA mass concentration for the OFR walls to 100 and 808 

1000 mg m-3 seemed to have no influence on model predictions. These findings imply that vapor wall 809 

losses in the presence of sufficient seed aerosol might not be of concern for OFRs (Lambe et al., 2015). 810 

 811 

Residence Time Distributions. Model simulations performed in this work assumed that the OFR operated 812 

as a plug flow reactor with a constant residence time. Experimental studies by Lambe et al. (2011) and 813 

fluid dynamics simulations by Ortega et al. (2016) have shown that OFRs, particularly like the one used 814 

in this work, exhibit heterogeneity in residence times. We performed simulations to explore the sensitivity 815 

of varying residence times on model predictions. These simulations were performed based on a 816 
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discretized version of the residence time distribution measured by Lambe et al. (2011) for SO2 that 817 

yielded an average residence time of 100 seconds (same as that used by Jathar et al. (2017a)). The 818 

discretized version included six parcels with volume fractions of 0.23, 0.36, 0.24, 0.11, 0.05, and 0.01 819 

with residence times of 45, 65, 100, 200, 300, and 500 seconds respectively. Each parcel experienced the 820 

same OH concentration but the varying residence times resulted in different OH exposures for each 821 

parcel. The parcels were combined after photochemical exposure without repartitioning the OA between 822 

the six parcels. Similar to the findings of Peng et al. (2015) for calculating OH exposure, our results in 823 

Figure 7(c) show that using a residence time distribution had very little influence on the OA mass 824 

evolution compared to use of an effective average time. Compared to the base case, the residence time 825 

distribution resulted in an average decrease of 3% and 5% in OA mass for the VBS and SOM models 826 

respectively for all experiments at the highest photochemical exposure.  827 

 828 

Spatial Heterogeneity in OH. In addition to the influence exerted by a distribution of residence times, 829 

spatial heterogeneity in the gas-phase chemistry inside the OFR (e.g., from radial variation in light 830 

intensity) could lead to spatial heterogeneity in OH concentrations and result in a distribution of OH 831 

exposures for the sample being aged. We performed simulations to explore the sensitivity of a varying 832 

OH exposure on model predictions. These simulations were performed where we split the sample coming 833 

into the OFR into two parcels and treated the parcels to different OH exposures. Each experiment was 834 

repeated for all combinations (six total) of three different parcel splits (¼-¾, ⅓-⅔, ½-½) and two different 835 

OH exposure splits (⅓-X, ⅔-X); X was determined by conserving the total OH exposure reported by 836 

Jathar et al. (2017a). For instance, the first simulation was performed by splitting the OFR air parcel into 837 

¼ and ¾ fractions by volume and exposing the ¼ volume to ⅓ the OH exposure. The parcels were 838 

combined after photochemical exposure without repartitioning the OA between the two parcels. The 839 

results in Figure 7(d) show that the simulated spatial heterogeneity always reduced the OA mass although 840 

the maximum reduction (13% for the VBS and 14% for the SOM models) at the highest photochemical 841 

exposure was within the measurement uncertainty at least for the SOM. Compared to the base case, the 842 

spatial heterogeneity in OH resulted in a maximum decrease of 13% and 15% in OA mass for the VBS 843 

and SOM models respectively for all experiments at the highest photochemical exposure. 844 

  845 

4. Summary and Discussion 846 

Recently, Jathar et al. (2017a) reported on experiments performed using the oxidation flow reactor (OFR) 847 

to measure the photochemical production of secondary organic aerosol (SOA) from diesel exhaust under 848 

varying engine loads, fuel types, and aftertreatment systems. These data present an opportunity to not only 849 
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test SOA models but also use these models to interpret OFR data and determine their relevance for the 850 

real atmosphere. In this work, we applied two different SOA model frameworks (VBS and SOM) to 851 

simulate the photochemical production of SOA in an OFR from diesel exhaust and evaluated those model 852 

frameworks using the data from Jathar et al. (2017a). The volatility basis set (VBS) model is a 853 

parameterized model that allows for a volatility-based representation of OA while the statistical oxidation 854 

model (SOM) is a semi-explicit parameterized model that uses a carbon-oxygen grid to track OA. Both 855 

simulated the coupled chemistry, thermodynamic properties, and gas/particle partitioning of OA and 856 

accounted for: (i) semi-volatile and reactive emissions of primary organic aerosol (POA), (ii) SOA 857 

production from IVOCs and VOCs, (iii) multi-generational aging, and (iv) kinetic gas/particle 858 

partitioning. 859 

 860 

Model predictions suggest that the instantaneous gas/particle partitioning assumption may over-predict 861 

SOA formation in OFRs when the initial condensational sinks are low and the condensation of SOA is 862 

likely kinetically limited. Hence, SOA formation in OFRs needs to be modeled/interpreted through an 863 

explicit treatment of kinetic gas/particle partitioning. Differences in model predictions between 864 

instantaneous and kinetic partitioning will depend on the rate at which condensable SOA mass is 865 

produced in the OFR (depends on the initial precursor concentrations and photochemical exposure), 866 

residence time in the OFR, properties of the condensing species (e.g., diffusion coefficient, molecular 867 

weight), and parameters relevant for partitioning (e.g., accommodation coefficient, seed aerosol surface 868 

area). To explore the relative importance of instantaneous and kinetically-limited partitioning in an OFR, 869 

we used the SOM to simulate SOA formation from diluted diesel exhaust using instantaneous and kinetic 870 

partitioning assumptions for varying amounts of SOA formed (1-10000 µg m-3) and initial condensational 871 

sinks (0.001-10 min-1). These simulations were similar to the calculations performed by Palm et al. (2017) 872 

where they calculated timescales and losses of condensable SOA vapors to the OFR walls and sampling 873 

lines and reaction with OH. The calculations were performed for two different initial particle sizes (10 874 

and 100 nm) since the condensation of SOA mass would grow the initial condensational sink for the two 875 

particles at different rates, i.e. for the same starting initial condensational sink, smaller particles would 876 

experience quicker growth in the condensational sink compared to larger particles for the same amount of 877 

condensing mass. The calculations were also performed for two different residence times – 2 and 4 878 

minutes – to span the residence time range used in typical applications of the OFR. We assumed an 879 

accommodation coefficient of 0.1. The results plotted in Figure 8 show the ratio of SOA predicted 880 

through kinetic partitioning to that predicted through instantaneous partitioning as a function of the initial 881 

condensational sink and the SOA formed under an instantaneous partitioning assumption. Across the four 882 
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scenarios explored (two initial particle sizes and two residence times), the SOA formation predicted under 883 

the kinetic partitioning assumption was an order of magnitude or more lower than that predicted under the 884 

instantaneous partitioning assumption over a large portion of the input range explored, e.g., when the 885 

initial condensational sink was smaller than ~0.1 min-1 and the maximum SOA formed was lower than 886 

~100 µg m-3 for the 10 nm simulations and lower than ~1000 µg m-3 for the 100 nm simulations. We also 887 

found that the SOA formation in the OFR was kinetically-limited under typical ambient conditions. The 888 

SOA formation predicted under the kinetic partitioning assumption approached the SOA formed under the 889 

instantaneous partitioning assumption either when the initial condensational sink was very large (>5 min-890 
1) or when a large amount of condensable SOA was produced in the OFR (>=1000 µg m-3 for the 10 nm 891 

particles and >>10000 µg m-3 for the 100 nm particles). Our finding implies that ambient applications of 892 

the OFR, where initial condensational sinks are typically smaller (~0.005-0.5 min-1) and the maximum 893 

SOA produced is typically less than 40 µg m-3, will only produce a small fraction (0-30%) of the intended 894 

SOA. Furthermore, our simulations suggested that a smaller initial particle size (i.e., 10 nm) for the same 895 

initial condensational sink and a longer OFR residence time (i.e., 4 min) may not necessarily help produce 896 

the intended SOA under ambient conditions. Although these simulation results need to be verified 897 

experimentally, they do suggest that it might be challenging to operate the OFR in conditions where 898 

instantaneous or atmospherically-relevant partitioning is applicable, further complicating the coupled 899 

atmospheric simulation of chemistry and thermodynamics in OFRs.  900 

 901 

Upon including IVOCs as SOA precursors, both the VBS and SOM models were able to reasonably 902 

predict the OA mass evolution reported by Jathar et al. (2017a) across different engine loads, fuel types, 903 

and aftertreatment systems. Model predictions suggest that 30% of the unburned hydrocarbon emissions 904 

are likely IVOCs and that these IVOCs (regardless of the emissions profiles used to determine non-IVOC 905 

emissions) account for most (average of 70%) of the SOA formed from diesel exhaust. These findings are 906 

consistent with prior work from chamber experiments (Jathar et al., 2014b) and modeling studies (Zhao et 907 

al., 2015). Simulations performed using single surrogates suggest that the complex mixture of IVOCs in 908 

diesel exhaust could be well represented using a linear C13 or C15 alkane for the SOM but might need a 909 

larger surrogate such as a C19 alkane for the VBS model. The need for a different surrogate species to 910 

model IVOC SOA between the SOM and VBS models most likely arises from differences in the coupled 911 

treatment of the oxidation chemistry and gas/particle partitioning in the OFR. The use of surrogates offers 912 

a computationally-efficient strategy to model SOA formation from IVOCs in large-scale three-913 

dimensional models. The SOM tracks the carbon and oxygen numbers of the oxidation products and 914 

hence model predictions were used to calculate atomic O:C ratios for OA, which were then compared to 915 
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measurements. While the inclusion of IVOCs allowed for good model-measurement comparisons on OA 916 

mass, the SOM under-predicted the O:C ratio of OA on average by 28%, possibly highlighting the 917 

limitations in modeling the IVOCs as alkanes and/or extrapolating chamber-based parameterizations to 918 

OFR experiments. Model predictions of the gas-phase organic species compared favorably to those 919 

measured using a chemical ionization mass spectrometer (CIMS), which qualitatively validates the 920 

statistical evolution of organic compounds tracked through the generalized SOM mechanism.  921 

 922 

As OFRs are increasingly used to study SOA formation and evolution in laboratory and field 923 

environments, there is a need to develop models that can be used to interpret OFR data. This work 924 

suggests that multi-generational aging (in case of the VBS model), residence time distributions, and 925 

spatial heterogeneity in OH concentrations produced sensitivities that were well within the measurement 926 

uncertainty and were not a concern for the model system studied. However, model predictions did appear 927 

to be more sensitive to multi-generational aging (in case of the SOM) and influence of vapor wall losses, 928 

highlighting that these processes be included in OFR models. While the conclusions from this work may 929 

be relevant for other laboratory and ambient studies, their relative importance may vary. There are several 930 

instances where the model development was insufficient and will likely be addressed in future work. For 931 

example, the model could benefit from the use of a polydisperse size distribution to treat new particle 932 

formation and growth and improve predictions of the evolution of the aerosol size distribution. The model 933 

of Peng and Jimenez (2017) suggested that the SOA precursors and their oxidation products in the Jathar 934 

et al. (2017) experiments might have been subjected to non-tropospheric photolysis. Our work did not 935 

consider the photolysis of IVOCs (or other SOA precursors), which if considered, may have implications 936 

for the IVOC findings reported here. We recommend that future studies on combustion sources 937 

significantly dilute their emissions before oxidizing them in an OFR while simultaneously accounting for 938 

photolysis reactions in models that simulate OFR chemistry. Finally, the model needs to be rigorously 939 

tested against other laboratory (e.g., Lambe et al. (2012)) and ambient (e.g., Palm et al. (2016)) OFR data. 940 
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7 Tables 1145 

 1146 
Table 1: Primary emissions of THC and POA, maximum photochemical production of SOA, maximum O:C of the OA, maximum OH exposure, 1147 
and size distribution data from Jathar et al. (2017a).  1148 
Load-Fuel-
Aftertreatment 
Experiment 

Date 
THC 

(µg m-

3) 

CO 
(ppbv) 

NO 
(ppbv) 

NO2 
(ppbv) 

POA 
(µg m-3) 

SOA% 

(µg m-3) O: C% 
OH Exposure% 
(molec.-hr cm-

3) 

Number 
Mean Dia.* 

(nm) 

Number 
Conc.* (# cm-3) 

Idle-Diesel-None 
June 3 
June 5 
June 12 

1519 
1810 
2554 

2746 
5809 
9664 

960 
878 
1870 

318 
502 

1103 

38±15 
35±11 
85±17 

209±66 
875±288 
877±277 

0.23±0.01 
0.46±0.07 
0.57±0.09 

2.1×107 

6.67×107 

3.61×107 
46 

8.0×105 
6.5×105 
3.4×105 

Idle-Biodiesel-None June 4 
June 8 

1118 
2160 

4270 
8169 

867 
1578 

344 
811 

22±12 
69±20 

999±316 
1415±468 

0.52±0.07 
0.36±0.03 

9.17×107 

4.72×107 46@ 7.3×105@ 
4.1×105@ 

Load-Diesel-None June 3 
June 5 

959 
711 

1558 
1400 

4999 
6690 

379 
34 

19±11 
37±13 

181±58 
253±100 

0.37±0.01 
0.32±0.04 

3.6×107 

2.61×107 190 5.3×105 
4.4×105 

Load- Biodiesel-None June 4 
June 8 

1634 
518 

1410 
2051 

6364 
10813 

30 
496 

29±18 
46±22 

645±204 
284±106 

0.38±0.05 
0.30±0.04 

2.78×107 

1.42×107 190@ 5.0×105@ 
3.3×105@ 

Idle-Diesel-DPF+DOC June 9 2135 7473 2383 23 1.5±0.6 1040±335 0.37±0.02 5×107 52 910 
Load-Diesel-DPF+DOC June 9 303 85 6157 4483 1.6±3.6 146±48 0.29±0.01 1.31×107 57 968 
Idle-Biodiesel-
DPF+DOC June 10 1773 7452 2213 182 2.6±1 787±250 0.44±0.04 5.28×107 52@ 910@ 

Load-Biodiesel-
DPF+DOC June 10 261 58 5475 4525 2±0.14 107±9 0.29±0.01 1.39×107 57@ 968@ 

DPF=diesel particulate filter, DOC=diesel oxidation catalyst 1149 
%maximum values measured in each experiment 1150 
*values measured at no OH exposure 1151 
@No data, assumed to be similar to the equivalent diesel experiment for the model  1152 



Table 2: SOA precursors and mass yields used in the VBS model for high NOX conditions. 1153 

Species log10C* 
Reference 0.1 1 10 100 1000 

toluene 0.0000 0.0100 0.2400 0.4500 0.7000 Hildebrandt et al. (2009) 
benzene 0.0392 0.0315 0.0000 0.8230 0.0957 Ng et al. (2007)# 

m-xylene 0.0032 0.0106 0.0633 0.0465 0.0000 Ng et al. (2007)# 
p-xylene 0.0000 0.0022 0.0764 0.0000 0.0000 Song et al. (2007)# 
o-xylene 0.0000 0.0132 0.1140 0.0000 0.0000 Song et al. (2007)# 
naphthalene 0.0000 0.1660 0.0000 0.5400 0.8130 Chan et al. (2009)# 
1-methylnaphthalene 0.0000 0.0170 0.4860 0.0000 0.0000 Chan et al. (2009)# 
2-methylnaphthalene 0.0000 0.0531 0.5040 0.0000 0.0000 Chan et al. (2009)# 
1,2-dimethylnaphthalene 0.0000 0.3100 0.0000 0.0000 0.0000 Chan et al. (2009)# 
1-methyl-3-n-propylbenzene 0.0000 0.0000 0.0405 0.0694 0.1140 Odum et al. (1996)# 
n-decane 0.0000 0.0000 0.0110 0.1280 0.2420 Presto et al. (2010)& 

n-undecane 0.0000 0.0040 0.0720 0.1760 0.1450 Presto et al. (2010)& 

n-dodecane 0.0000 0.0140 0.1100 0.1600 0.0000 Presto et al. (2010)& 
n-tridecane 0.0140 0.0590 0.0940 0.0710 0.0000 Presto et al. (2010)& 
n-tetradecane 0.0940 0.3000 0.3500 0.0000 0.0000 Presto et al. (2010)& 
n-pentadecane 0.0440 0.0710 0.4100 0.3000 0.0000 Presto et al. (2010)& 
n-hexadecane 0.0530 0.0830 0.4600 0.2500 0.0000 Presto et al. (2010)& 
n-heptadecane 0.0630 0.0890 0.5500 0.2000 0.0000 Presto et al. (2010)& 
n-octadecane 0.0760 0.3195 0.3750 0.1000 0.0000 Presto et al. (2010)& 
n-nonadecane 0.0890 0.5500 0.2000 0.0000 0.0000 Presto et al. (2010)& 
n-eicosane 0.3195 0.3750 0.1000 0.0000 0.0000 Presto et al. (2010)& 
n-heneicosane 0.5500 0.2000 0.0000 0.0000 0.0000 Presto et al. (2010)& 
n-docosane 0.3750 0.1000 0.0000 0.0000 0.0000 Presto et al. (2010)& 
&extrapolated from the Presto et al. (2010) data  1154 
#do not account for vapor wall losses 1155 
 1156 
Table 3: SOA precursors and mass yields used in the VBS model for low NOX conditions. 1157 

Species C* 
Reference 0.1 1 10 100 1000 

toluene 0.0000 0.0100 0.2400 0.7000 0.7000 Hildebrandt et al. (2009) 

benzene 0.0000 0.0000 0.0000 0.3700 0.0000 Ng et al. (2007)# 

m-xylene 0.0000 0.0000 0.0000 0.0310 0.0000 Ng et al. (2007)# 
p-xylene 0.0000 0.0000 0.0000 0.0310 0.0000 Ng et al. (2007)# 
o-xylene 0.0000 0.0000 0.0000 0.0310 0.0000 Ng et al. (2007)# 

naphthalene 0.0000 0.1565 0.0000 0.1199 0.2708 Chan et al. (2009)# 
1-methylnaphthalene 0.0000 0.1565 0.0000 0.1199 0.2708 Chan et al. (2009) # 
2-methylnaphthalene 0.0000 0.1565 0.0000 0.1199 0.2708 Chan et al. (2009) # 

n-decane 0.0002 0.0050 0.0013 0.3938 0.0278 Loza et al. (2014)& 

n-undecane 0.0001 0.0070 0.0216 0.3321 0.0000 Loza et al. (2014) & 

n-dodecane 0.0011 0.0080 0.0279 0.3902 0.0003 Loza et al. (2014)& 
n-tridecane 0.0029 0.0064 0.0551 0.3231 0.7090 Loza et al. (2014)& 

n-tetradecane 0.0004 1.2000 0.1777 0.0194 0.0014 Loza et al. (2014)& 
n-pentadecane 0.0032 0.0124 0.0686 0.5050 0.0025 Loza et al. (2014)& 
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n-hexadecane 0.0000 0.0572 0.2754 0.4346 0.1710 Loza et al. (2014)& 
n-heptadecane 0.0399 0.0757 0.4409 0.3691 0.0000 Loza et al. (2014)& 
n-octadecane 0.1958 0.0203 0.7077 0.0777 0.0000 Loza et al. (2014)& 
n-nonadecane 1.0281 0.0000 0.0000 0.0000 0.0000 Loza et al. (2014)& 

n-eicosane 0.0024 0.8470 0.2160 0.0000 0.0000 Loza et al. (2014)& 
n-heneicosane 0.3629 0.6766 0.0250 0.0000 0.0000 Loza et al. (2014)& 

n-docosane 0.7991 0.2633 0.0000 0.0000 0.0000 Loza et al. (2014)& 
C12 branched alkane 0.0077 0.0015 0.0416 0.2486 0.9179 Loza et al. (2014)& 
C13 branched alkane 0.0105 0.0007 0.0610 0.2376 1.2045 Loza et al. (2014)& 
C14 branched alkane 0.0135 0.0007 0.0819 0.4173 0.4879 Loza et al. (2014)& 
C15 branched alkane 0.0156 0.0034 0.1677 0.3553 0.7973 Loza et al. (2014)& 
C16 branched alkane 0.0075 0.0704 0.1689 0.5741 0.0000 Loza et al. (2014)& 
C17 branched alkane 0.0510 0.0000 0.4527 0.4605 0.0000 Loza et al. (2014)& 
C18 branched alkane 0.0836 0.0001 0.7962 0.1484 0.0000 Loza et al. (2014)& 
C19 branched alkane 0.3151 0.0001 0.7470 0.0000 0.0000 Loza et al. (2014)& 
C20 branched alkane 0.0198 0.8698 0.1725 0.0000 0.0000 Loza et al. (2014)& 
C21 branched alkane 0.3753 0.6837 0.0000 0.0000 0.0000 Loza et al. (2014)& 
C22 branched alkane 0.8517 0.2056 0.0000 0.0000 0.0000 Loza et al. (2014)& 

C12 cyclic alkane 0.0128 0.0302 0.0124 0.6156 0.0043 Loza et al. (2014)& 
C13 cyclic alkane 0.0297 0.0000 0.0939 0.4062 1.0776 Loza et al. (2014)& 
C14 cyclic alkane 0.0322 0.0000 0.1521 0.5341 0.5717 Loza et al. (2014)& 
C15 cyclic alkane 0.0345 0.0000 0.3430 0.3231 0.8672 Loza et al. (2014)& 
C16 cyclic alkane 0.0147 0.1426 0.3616 0.2839 0.6597 Loza et al. (2014)& 
C17 cyclic alkane 0.0574 0.2408 0.3453 0.4060 0.0000 Loza et al. (2014)& 
C18 cyclic alkane 0.2546 0.0643 0.6091 0.1431 0.0000 Loza et al. (2014)& 
C19 cyclic alkane 0.2940 0.2790 0.5010 0.0000 0.0000 Loza et al. (2014)& 
C20 cyclic alkane 0.3423 0.5700 0.1653 0.0000 0.0000 Loza et al. (2014)& 
C21 cyclic alkane 0.6100 0.4478 0.0155 0.0000 0.0000 Loza et al. (2014)& 
C22 cyclic alkane 0.9573 0.1110 0.0013 0.0000 0.0000 Loza et al. (2014)& 

&produced from pseudo chamber data generated using the SOM 1158 
#do not account for vapor wall losses 1159 
 1160 
Table 4: SOA precursors and parameters used in the SOM (Cappa et al., 2016) for high NOX conditions. 1161 
Species mfrag ΔLVP pO,1 pO,2 pO,3 pO,4 Reference 
n-dodecane 0.0980 1.3900 0.9270 0.0101 0.0180 0.0445 Loza et al. (2014) 
methylundecane 0.0100 1.2100 0.7419 0.0011 0.1820 0.0750 Loza et al. (2014) 
hexylcyclohexane 0.0477 1.5700 0.7313 0.0381 0.2101 0.0205 Loza et al. (2014) 
toluene 0.2220 1.2400 0.0029 0.0010 0.0010 1.0100 Zhang et al. (2014) 
benzene 0.5350 1.7000 0.0792 0.0010 0.9190 0.0010 Ng et al. (2007) 
m-xylene 0.0100 1.6800 0.9360 0.0010 0.0021 0.0609 Ng et al. (2007) 
naphthalene 0.1210 1.3100 0.6440 0.0010 0.0460 0.3080  Chan et al. (2009) 
 1162 
Table 5: SOA precursors and parameters used in the SOM (Cappa et al., 2016) for low NOX conditions. 1163 
Species mfrag ΔLVP pO,1 pO,2 pO,3 pO,4 Reference 
n-dodecane 2.0000 1.8300 0.9990 0.0010 0.0010 0.0010 Loza et al. (2014) 
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methylundecane 2.8200 1.9100 0.9980 0.0010 0.0010 0.0010 Loza et al. (2014) 
hexylcyclohexane 5.0000 2.0500 0.8160 0.1810 0.0019 0.0010 Loza et al. (2014) 
toluene 1.3100 1.7700 0.1850 0.0010 0.0019 0.8120 Zhang et al. (2014) 
benzene 0.0807 1.9700 0.6370 0.0010 0.0021 0.3600 Ng et al. (2007) 
m-xylene 1.0800 2.0500 0.1020 0.0010 0.8780 0.0190 Ng et al. (2007) 
naphthalene 0.1890 1.8700 0.3520 0.0543 0.5330 0.0609 Chan et al. (2009) 
 1164 
 1165 
Table 6: (a) Volatility- and (b) carbon-number resolved distributions used to determine mass 1166 
concentrations of POC in the VBS and SOM models respectively. The volatility distributions are from 1167 
(May et al., 2013b)..  1168 
C* (µg m-3) 10-2 10-1 101 102 103 104 105 106 

fi 0.03 0.25 0.37 0.23 0.06 0.03 0.01 0.01 
 1169 
Carbon 
No. <16 16 17 18 19 20 21 22 23 24 25 26 >26 

fi 0.003 0.000 0.058 0.043 0.055 0.094 0.146 0.181 0.178 0.137 0.078 0.026 0.001 
  1170 
Table 7: Reaction rate constants (kOH), mass fractions, and VBS and SOM surrogates for SOA precursors 1171 
in diesel and biodiesel emissions. kOH values are from Atkinson and Arey (2003) when available or the 1172 
EPI Suite version 4.11 (EPA, 2017). 1173 

Species Carbon 
Number 

kOH (cm3 

molecules-1 s-

1) 

Mass Percentage of 
THC VBS 

Surrogate SOM Surrogate 
Diesel Biodiesel 

ethylbenzene 8 7.0×10&'( 0.2516 0.0826 toluene toluene 
indan 9 1.9×10&'' 0.1542 NA naphthalene naphthalene 
butylbenzene 10 4.5×10&'( 0.0081 0.4720 m-xylene m-xylene 
diethylbenzene 10 8.11×10&'( 0.0731 NA m-xylene m-xylene 
isopropyltoluene 10 8.54×10&'( NA 0.3599 toluene toluene 
m-xylene 8 2.31×10&'' 0.4951 0.3717 m-xylene m-xylene 
o-xylene 8 1.36×10&'' 0.2760 0.3953 o-xylene m-xylene 
p-xylene 8 1.43×10&'' 0.0812 NA p-xylene m-xylene 
n-decane 10 1.1×10&'' 0.4302 1.7050 n-decane n-decane 
n-undecane 11 1.23×10&'' 0.2110 1.9410 n-undecane n-dodecane 
toluene 7 5.63×10&'( 1.1932 1.6401 toluene toluene 
n-tridecane 13 1.68×10&'' NA 0.6136 n-tridecane n-dodecane 
benzaldehyde 7 1.2×10&'' 0.5682 NA benzene benzene 

benzene 6 1.22×10&'( 1.6234 1.5988 
 benzene benzene 

C10 aromatics 10 2.3×10&'' 0.0649 NA m-xylene m-xylene 
C9 aromatics 9 2.31×10&'' 0.4058 NA m-xylene m-xylene 
1,2,3-
trimethylbenzene 9 3.27×10&'' 0.0974 NA m-xylene m-xylene 

1,2,4-
trimethylbenzene 9 3.25×10&'' 0.4302 0.4720 m-xylene m-xylene 
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1,2-diethylbenzene 10 8.11×10&'( 0.0731 NA toluene toluene 
1,3,5-
trimethylbenzene 9 5.67×10&'' NA 0.1888 m-xylene m-xylene 

1,2-dimethyl-4-
ethylbenzene 10 1.69×10&'' NA 0.176 m-xylene m-xylene 

1,3-dimethyl-2-
ethylbenzene 10 1.76×10&'' NA 0.3304 m-xylene m-xylene 

1,4-dimethyl-2-
ethylbenzene 10 1.69×10&'' NA 0.4366 m-xylene m-xylene 

1-(1,1-
dimethylethyl)-3,5-
dimethylbenzene 

12 3.01×10&'' NA 0.3717 m-xylene m-xylene 

1-methyl-2-
ethylbenzene 9 7.44×10&'( 0.1136 0.3835 toluene toluene 

1-methyl-3-
ethylbenzene 9 1.39×10&'' 0.2029 0.7198 toluene toluene 

1-methyl-2-tert-
butylbenzene 11 6.74×10&'( NA 0.4307 toluene toluene 

1-tert-butyl-4-
ethylbenzene 12 7.42×10&'( NA 0.1947 m-xylene m-xylene 

2-methyl-butyl-
benzene 11 1.02×10&'' NA 1.1032 m-xylene m-xylene 

3,3-dimethyloctane 10 7.21×10&'( NA 0.3068 n-decane methylundecane 
3-ethyloctane 10 1.18×10&'' NA 0.1888 n-decane methylundecane 
3-methylnonane 10 1.14×10&'' NA 0.2655 n-decane methylundecane 
C12 branched alkane 12 1.82×10&'' 1.1335 1.1335 n-decane methylundecane 
C13 branched alkane 13 1.68×10&'' 0.8111 0.8111 n-undecane methylundecane 
C14 branched alkane 14 1.39×10&'' 0.5257 0.5257 n-dodecane methylundecane 
C15 branched alkane 15 1.82×10&'' 0.4692 0.4692 n-tridecane methylundecane 
C16 branched alkane 16 1.96×10&'' 0.4935 0.4935 n-tetradecane methylundecane 

C17 branched alkane 17 2.1×10&'' 0.2198 0.2198 n-
pentadecane methylundecane 

C18 branched alkane 18 2.24×10&'' 0.2863 0.2863 n-
hexadecane methylundecane 

C19 branched alkane 19 2.38×10&'' 0.1716 0.1716 n-
heptadecane methylundecane 

C20 branched alkane 20 2.52×10&'' 0.0969 0.0969 n-octadecane methylundecane 

C21 branched alkane 21 2.67×10&'' 0.0639 0.0639 n-
nonadecane methylundecane 

C22 branched alkane 22 2.81×10&'' 0.0604 0.0604 n-eicosane methylundecane 
C12 cyclic alkane 12 1.82×10&'' 4.3427 4.3427 n-tetradecane hexylcyclohexane 

C13 cyclic alkane 13 1.68×10&'' 4.4265 4.4265 n-
pentadecane hexylcyclohexane 

C14 cyclic alkane 14 1.39×10&'' 3.1480 3.1480 n-
hexadecane hexylcyclohexane 

C15 cyclic alkane 15 1.82×10&'' 2.8599 2.8599 n- hexylcyclohexane 
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heptadecane 

C16 cyclic alkane 16 1.96×10&'' 2.1848 2.1848 n-
octatadecane hexylcyclohexane 

C17 cyclic alkane 17 2.1×10&'' 1.8546 1.8546 n-
nonadecane hexylcyclohexane 

C18 cyclic alkane 18 2.24×10&'' 1.6900 1.6900 n-eicosane hexylcyclohexane 

C19 cyclic alkane 19 2.38×10&'' 1.0570 1.0570 n-
heneicosane hexylcyclohexane 

C20 cyclic alkane 20 2.52×10&'' 0.5900 0.5900 n-docosane hexylcyclohexane 
C21 cyclic alkane 21 2.67×10&'' 0.3736 0.3736 n-tricosane hexylcyclohexane 
C22 cyclic alkane 22 2.81×10&'' 0.3141 0.3141 n-tricosane hexylcyclohexane 
dodecane 12 1.82×10&'' 0.5830 0.5830 n-dodecane n-dodecane 
tridecane 13 1.68×10&'' 0.5465 0.5465 n-tridecane n-dodecane 
tetradecane 14 1.39×10&'' 0.3649 0.3649 n-tetradecane n-dodecane 

pentadecane 15 1.82×10&'' 0.3063 0.3063 n-
pentadecane n-dodecane 

hexadecane 16 1.96×10&'' 0.2281 0.2281 n-
hexadecane n-dodecane 

heptadecane 17 2.1×10&'' 0.1655 0.1655 n-
heptadecane n-dodecane 

octadecane 18 2.24×10&'' 0.1481 0.1481 n-
octatadecane n-dodecane 

nonadecane 19 2.38×10&'' 0.0726 0.0726 n-
nonadecane n-dodecane 

eicosane 20 2.52×10&'' 0.0365 0.0365 n-eicosane n-dodecane 

heneicosane 21 2.67×10&'' 0.0222 0.0222 n-
heneicosane n-dodecane 

docosane 22 2.81×10&'' 0.0143 0.0143 n-docosane n-dodecane 

pristane 19 2.44×10&'' 0.1434 0.1434 n-
nonadecane methylundecane 

phytane 20 2.61×10&'' 0.0799 0.0799 n-eicosane methylundecane 
naphthalene 10 2.3×10&'' 0.1038 0.1038 naphthalene naphthalene 
phenanthrene 14 1.3×10&'' 0.0117 0.0117 naphthalene naphthalene 
  1174 
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8 Figures 1175 
 1176 

   1177 
Figure 1: VBS and SOM model predictions of OA compared to measurements from the experiment 1178 
performed on June 5 (Idle-Diesel-None) as a function of photochemical age. Inputs for both models have 1179 
been specified in the text. Panel (a) has comparisons in µg m-3 and panel (b) has comparisons in g kg-1180 
fuel-1. Panel (c) shows the modeled and measured OA composition at the highest photochemical exposure.  1181 
 1182 

   1183 
Figure 2: VBS model predictions of OA compared to measurements from the experiment performed on 1184 
June 5 (Idle-Diesel-None) as a function of photochemical age assuming instantaneous equilibrium 1185 
partitioning and kinetic gas/particle partitioning run at three accommodation coefficients, α = 1 (dash-1186 
dot) ,0.1 (dash) and 0.01 (solid). 1187 
 1188 
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   1189 
Figure 3: VBS and SOM model predictions of OA compared to measurements from the experiments 1190 
performed on (a) June 5 (Idle-Diesel-None) and (b) June 11 (Idle-Diesel-DPF+DOC) as a function of 1191 
photochemical age for four different particle size distribution inputs: (i) number mean diameter and 1192 
measured number concentration at no OH exposure (solid), (ii) number mean diameter and measured 1193 
number concentration at the given OH exposure (dash), (iii) average of (i) and (ii) (dash-dot), and (iv) 1194 
nucleation of 1 nm particles (dot).  1195 
 1196 

   1197 

 1198 
Figure 4: Scatter plot comparing SOM predictions of OA mass and O:C to measurements from all 1199 
experiments at all photochemical ages at four different IVOC mass fractions: (a) 0%, (b) 13.76%, (c) 1200 
30%, and (d) 60%.  1201 
 1202 
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  1203 
Figure 5: VBS and SOM predictions of OA compared to measurements from the experiment performed on 1204 
June 5 (Idle-Diesel-None) as a function of photochemical age. Panel (a) examines uncertainty in model 1205 
treatment of cyclic alkanes, panel (b) examines uncertainty in the VOC emissions profile, and (c) explores 1206 
suitability of using a single surrogate linear alkane to model SOA formation from all IVOCs.  1207 
 1208 

  1209 
Figure 6: Normalized gas-phase concentration predictions from the SOM model for the Idle-Diesel-None 1210 
and Load-Diesel-None experiments performed on June 5 and compared to normalized gas-phase 1211 
concentrations measured by the CIMS. 1212 
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   1214 
Figure 7: VBS and SOM predictions of OA compared to measurements from the experiment performed on 1215 
June 5 (Idle-Diesel-None) as a function of photochemical age. Panels (a), (b), (c), and (d) examine the 1216 
influence of multi-generational aging, vapor wall losses, residence time distribution, and spatial 1217 
heterogeneity in OH concentrations respectively. The dashed lines in panel (d) are deliberately lighter in 1218 
color than the solid line to help differentiate the Base result from the sensitivity results.  1219 
 1220 

0 0.5 1 1.5 2
0

2

4

6

8

10

12

14

0 0.5 1 1.5 2
0

2

4

6

8

10

12

14

0 0.5 1 1.5 2
0

2

4

6

8

10

12

14

0 0.5 1 1.5 2
0

2

4

6

8

10

12

14

O
A 

(g
 k

g-
fu

el
-1

)

Estimated Photochemical Exposure (OH days)

(a) Multi-generational Aging

VBS
SOM

w/ Aging
no Aging

No wall loss
Low wall loss
High wall loss

High wall loss 
+ OFR loss

VBS
SOM

(b) Vapor Wall Losses (SOM)

(d) OH Heterogeneity

Base
Varying OH

O
A 

(g
 k

g-
fu

el
-1

)

VBS
SOM

Base
Varying 
Residence Time

(c) Residence Time Distribution



 
 
 
 

10 

  1221 
Figure 8: Model predictions of the ratio of SOA produced under kinetic partitioning assumptions to the 1222 
SOA produced under instantaneous partitioning assumptions as a function of the initial condensational 1223 
sink and the SOA formed under instantaneous partitioning. Panels are for calculations performed at two 1224 
different particles sizes: 10 and 100 nm and two different residence times: 2 and 4 min. 1225 
 1226 
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