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We thank both reviewers for their comments. We have revised the manuscript based on their 
comments and queries and provided a point-by-point response below. Reviewer comments are in 
regular black, our response is in blue, and the additions/updated text from the manuscript are in 
red.  
 
Reviewer 1  
 
1. Pg. 4 Ln. 149: Somewhere in Sect. 2.1, can you state the OFR residence time used in these 
experiments? It must be given in Jathar 2017a, but it would be useful to quote it here directly for 
context when you discuss specific condensational sink lifetimes below.  
The OFR residence time used in Jathar et al. (2017) was 100 seconds. We have mentioned the 
residence time in the revised text: “The OFR had a residence time of 100 s.”.  
 
2. Pg. 7 Ln. 271: How well does this method of estimation of the diffusion coefficient work? Can 
you provide any references where this method has been tested and used before? If not, please 
state your reasoning for using it, or better yet include a simple figure comparing the values of D 
estimated using this equation with independent measurements/calculations of D for several 
typical species, to illustrate that it works well enough. (It might also be the case that your results 
are insensitive to variations in D).  

The method to estimate the gas-phase diffusion 
coefficient was previously used by Zhang et al. (2014) 
to model SOA formation from toluene photo-oxidation 
using the statistical oxidation model (SOM). We have 
added the Zhang et al. (2014) reference before we 
introduce the equation in the revised text. The 
diffusion coefficients calculated using equation 7 in 
the text were evaluated against diffusion coefficients 
compiled by Tang et al. (2015) for a suite of organic 
compounds. The comparison is shown in the figure to 
the side. The equation used in this work under-
predicted the diffusion coefficient by ~30% for species 
with a value lower than 10-5 m2 s-1. We examined the 
sensitivity in the model predictions to the use of a 
higher diffusion coefficient. Increasing the diffusion 
coefficient by a factor of two did not have any impact 

on the model predictions of OA for the Idle-Diesel-None experiment performed on June 5. The 
following text was added to the methods section after describing the equations for calculating the 
gas-phase diffusion coefficient: “This formulation to calculate the gas-phase diffusion coefficient 
under-predicted the measured gas-phase diffusion coefficients compiled by Tang et al. (2015) by 
~20%. However, doubling the gas-phase diffusion coefficient calculated in equation 8 resulted in 
very small change (<1%) in the OA mass predictions for a representative experiment. Hence, we 
decided to use the formulation in equation (8) for the rest of the work.”  
 
3. Pg. 10 Ln. 357: Your numbers 1 through 3 here are mostly repeating information you have 
already given the reader in the prior sections (number 4 is mostly new text). It’s OK to leave this 
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text if you want to summarize and emphasize the paper organization, but you could 
consolidate/remove the duplicate text to streamline your Methods section.  
We agree with the reviewer that the sections preceding section 2.5 already describe the various 
simulations performed in this work. However, section 2.5 provides an overview of all the 
simulations for the reader to review/jump back to when reading through the results.  
 
4. Pg. 18 Ln. 691-696: I think it would really enhance this section if you could expand upon your 
discussion of Fig. 8 and related text. For instance, you’ve calculated for a 100s residence time, 
but what does it look like for the residence times of 2-4 min that have been used in most of the 
ambient studies, e.g. Palm et al. 2016 that you cite previously? How does this compare to the 
discussion in Sect. 3.3 of Palm et al. 2016, which is similar to the analysis presented here? They 
have suggested that the use of seed aerosol (to increase condensational sink) and the use of 
longer residence times could avoid such issues; can you use your results to provide support for 
such conclusions, or better yet provide quantitative guidance for future OFR studies (e.g. use 
residence times greater than X min or a minimum seed surface area)? Such suggestions would 
provide a great reference for the growing OFR user community.  
Based on the reviewer’s suggestion, we performed simulations with an OFR residence time of 2 
and 4 mins for both the 10 and 100 nm initial particle sizes. In our original text, we had 
commented on the influence of the initial condensational sink. We found that the initial 
condensational sink had to be very large (>5 min-1) to produce the same SOA as that under 
instantaneous partitioning conditions and hence would be very hard to achieve in ambient 
applications of the OFR. If the initial condensational sink were smaller, the use of a smaller 
particle size distribution could help but would still be insufficient in ambient applications of the 
OFR. In the revised text, simulations with the two different residence times suggested that the 
residence times did not have a significant impact on our conclusions. Based on the simulation 
results, we recommend that the OFR be operated with very high initial condensational sinks (>1 
min-1) in case the SOA formed is less than 100 µg m-3. If larger amounts of SOA are expected to 
be formed, it might be possible to operate the OFR with lower initial condensational sinks. We 
also state that these results will need to be experimentally verified. We have expanded on the 
original text as follows: “To explore the relative importance of instantaneous and kinetically-
limited partitioning in an OFR, we used the SOM to simulate SOA formation from diluted diesel 
exhaust using instantaneous and kinetic partitioning assumptions for varying amounts of SOA 
formed (1-10000 µg m-3) and initial condensational sinks (0.001-10 min-1). These simulations 
were similar to the calculations performed by Palm et al. (2017) where they calculated timescales 
and losses of condensable SOA vapors to the OFR walls and sampling lines and reaction with 
OH. The calculations were performed for two different initial particle sizes (10 and 100 nm) 
since the condensation of SOA mass would grow the initial condensational sink for the two 
particles at different rates, i.e. for the same starting initial condensational sink, smaller particles 
would experience quicker growth in the condensational sink compared to larger particles for the 
same amount of condensing mass. The calculations were also performed for two different 
residence times – 2 and 4 minutes – to span the residence time range used in typical applications 
of the OFR. We assumed an accommodation coefficient of 0.1. The results plotted in Figure 8 
show the ratio of SOA predicted through kinetic partitioning to that predicted through 
instantaneous partitioning as a function of the initial condensational sink and the SOA formed 
under an instantaneous partitioning assumption. Across the four scenarios explored (two initial 
particle sizes and two residence times), the SOA formation predicted under the kinetic 
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partitioning assumption was an order of magnitude or more lower than that predicted under the 
instantaneous partitioning assumption over a large portion of the input range explored, e.g., when 
the initial condensational sink was smaller than ~0.1 min-1 and the maximum SOA formed was 
lower than ~100 µg m-3 for the 10 nm simulations and lower than ~1000 µg m-3 for the 100 nm 
simulations. We also found that the SOA formation in the OFR was kinetically-limited under 
typical ambient conditions. The SOA formation predicted under the kinetic partitioning 
assumption approached the SOA formed under the instantaneous partitioning assumption either 
when the initial condensational sink was very large (>5 min-1) or when a large amount of 
condensable SOA was produced in the OFR (>=1000 µg m-3 for the 10 nm particles and 
>>10000 µg m-3 for the 100 nm particles). Our finding implies that ambient applications of the 
OFR, where initial condensational sinks are typically smaller (~0.005-0.5 min-1) and the 
maximum SOA produced is typically less than 40 µg m-3, will only produce a small fraction (0-
30%) of the intended SOA. Furthermore, our simulations suggested that a smaller initial particle 
size (i.e., 10 nm) for the same initial condensational sink and a longer OFR residence time (i.e., 4 
min) may not necessarily help produce the intended SOA under ambient conditions. Although 
these simulation results need to be verified experimentally, they do suggest that it might be 
challenging to operate the OFR in conditions where instantaneous or atmospherically-relevant 
partitioning is applicable, further complicating the coupled atmospheric simulation of chemistry 
and thermodynamics in OFRs.”.   
 
Technical Comments:  
Pg. 5 Ln. 168: Please define ‘THC’.  
This has been corrected.  
 
Table 1: Are some/all of the values reported in this table already reported in the Jathar et al 
2017a reference, or are they new data presented in this work? If the former, you should cite that 
paper in the table caption.  
All values in Table 1, except for the information on the particle size distribution, have been 
reported in Jathar et al. (2017a). We have added the citation to the figure caption.  
 
Pg. 5 Ln. 192: It’s confusing that you’re using ‘VOC’ to represent all of the organic gases 
including SVOCs and IVOCs. I suggest you refer to them as ‘organic gases’ instead of ‘VOCs’ 
in such instances, so you keep the nomenclature clean.  
We have revised the text in the entire manuscript to refer to VOCs, SVOCs, and IVOCs together 
as organic precursors.  
 
Fig. 1c: Please label the yellow pie slices in the VBS and SOM pies.  
We apologize for the omissions. The yellow pie refers to the SOA formed from alkanes. The 
label has been added to Figure 1(c).  
 
Reviewer 2 
 
1. Peng and Jimenez (2017) have published a characterization of whether the chemistry in OFRs 
with high initial NO is similar or very different from that in the atmosphere. The results on 
Figure 4 of that paper can be used to approximately determine whether the cases studied here fall 
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in the good / risky /bad regions and whether the chemistry is predominantly in a low or high NO 
regime. This is important information that should be included in the paper.  
We thank the reviewer for this important comment. Based on the information in Table 2, the 
experiments of Jathar et al. (2017a) were most appropriately represented by the ML and MM 
cases although some of the experiments were beyond the MM case. The figure below shows the 
data from this work overlaid on Figure 4 from Peng and Jimenez (2017). This comparison 
suggested that we use the high NOX parameterizations to model SOA formation for most of the 
experiments in this work.  
 

 
 
To improve our precision, we contacted Zhe Peng (first author of the Peng and Jimenez (2007) 
paper) and Zhe helped us run their model to determine low versus high NO conditions for all our 
experiments. For each experiment, the model was run with initial values of the external OH 
reactivity contributed by CO and THC, NO and NO2 concentrations, the photon flux at each 
photochemical exposure, and the relative humidity. Model results suggested that the OFR ran in 
a high NO mode at all photochemical exposures when the engine was run at load conditions or 
with an aftertreatment device in place. However, the model predicted that the OFR ran in a low 
NO mode at most of the photochemical exposures when the engine was run at idle conditions 
and without an aftertreatment device (i.e., Idle-Diesel-None and Idle-Biodiesel-None). These 
findings from the Peng and Jimenez (2017) model were used to inform the choice between low 
and high NOX parameterizations to model SOA formation. The following text was added to 
Section 2.1 to briefly describe the problem and results from the Peng and Jimenez (2017) model: 
“Although the diesel exhaust was diluted with clean air to produce atmospherically-relevant 
concentrations of POA, the initial THC, CO, and NOX concentrations in the OFR were still quite 
high. Peng and Jimenez (2017) using a detailed gas-phase model argued that the high external 
OH reactivity might lead to non-OH chemistry in the OFR and NO could quickly be consumed 
in the OFR leading to low NO conditions for SOA formation. Peng and Jimenez (2017) 
quantified the potential influence of NO on the oxidation chemistry by calculating the ratio of the 
reactive flux of the peroxy radicals with NO to the reactive flux of the peroxy radicals with HO2 
(rRO2+HO2/rRO2+NO). A ratio greater than 1 was considered as “high NO” while a ratio less than 1 
was considered “low NO”. For the relative humidity, photon flux, initial NO, and external OH 
reactivity values in Jathar et al. (2017a), the model of Peng and Jimenez (2017) predicted that the 
OFR ran in a high NO mode at all photochemical exposures when the engine was run at load 
conditions or with an aftertreatment device in place. However, the model predicted that the OFR 
ran in a low NO mode especially at the high photochemical exposures when the engine was run 
at idle conditions and without an aftertreatment device (i.e., Idle-Diesel-None and Idle-Biodiesel-
None). The rRO2+HO2/rRO2+NO ratio and low versus high NO mode for each experiment and 
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photochemical exposure is listed in Table S1. Based on these results, we accordingly used the 
low and high NOX parameterizations to perform the model simulations.”.  
 
The low NOX SOA parameterizations for the VBS and SOM models were included in Tables 3 
and 5 respectively. All figures and the corresponding discussion in the results section were 
revised based on the use of the new parameterizations. For the full set of changes, please refer to 
the marked Word document included along with the response.  
 
2. High-NOx parametrizations were used in this study, while Peng and Jimenez (2017) found 
that high-NOx conditions are very unlikely to be realized in OFR by initial NO injection only. 
(This can be verified with the previous suggestion) Low-NOx SOA yields are often significantly 
higher than high-NOx ones and SOA formed under low-NOx conditions tends to have higher 
O:C (the results on elemental ratio in this study might be an evidence for this). The paper 
acknowledges that OA is 65% higher in a sensitivity test when low-NOx yields were used. The 
validity of the modeling in this study is thus questionable, and the agreement in e.g. Figure 1 
appears to be for the wrong reasons. The authors should show their simulation results for 
experiments using low- NOx parametrizations and correct their conclusions if needed.  
As mentioned in the previous comment, we used the Peng and Jimenez (2017) model to 
determine if we needed the low versus high NOX parameterization to model the SOA formation 
across the experimental matrix and at different photochemical exposures. The Peng and Jimenez 
(2017) model recommended the use of low NOX parameterizations for the Idle-Diesel/Biodiesel-
None experiments and the use of high NOX parameterizations for all the remaining experiments. 
The use of an experiment/photochemical exposure-specific SOA parameterization resulted in 
three key changes to the manuscript. First, this resulted in a modest change in the IVOC fraction 
that allowed for the most optimum model-measurement comparison across the entire 
experimental matrix: 30% in the revised work versus 40% in the original work. Second, it 
resulted in a better O:C comparison at the optimum IVOC fraction compared to the original work 
and produced slight differences in the SOM versus CIMS comparison performed in Figure 6. 
Third, the use of a low NOX parameterization to model SOA resulted in a substantial increase in 
the SOA formed in the Idle-Diesel-None experiment, which was used as the representative 
experiment to discuss results in Figures 1, 2, 3, 5, 6, and 7. To keep the discussion in these 
figures centered around understanding the influence of the chemistry, thermodynamic, or OFR 
process, we updated the IVOC fraction used in the base case to ensure a good model-
measurement comparison for this particular experiment. A lot of small changes have been made 
in the manuscript to reflect this update so please refer to the marked Word document included 
along with the response. 
 
3. Line 209 and elsewhere: Ahlberg et al. (2017) did systematic experiments and VBS modeling 
to show that SOA growth in OFR is kinetically limited at low OA mass loading. This paper also 
needs to be cited for discussions on the kinetic limitation of SOA growth.  
We thank the reviewer for pointing this out. We have folded the Ahlberg et al. (2017) study and 
cited it along with Lambe et al. (2015), Palm et al. (2016), and Jathar et al. (2017a). 
 
4. Line 292: The POA VBS has more bins than the SOA ones shown in Table 2. How are the 
extra POA bins treated? Do they participate in aging?  
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The VBS in our numerical model is initialized with C* bins ranging for 10-2 to 106 µg m-3 to 
ensure we accommodate the full range of POA volatilities. For first-generation SOA, the C* bins 
other than those listed in Table 2 and 3 are zeroed out. Multigenerational aging for both POA and 
SOA is modeled using the scheme of Robinson et al. (2007) where mass in each C* bin is 
allowed to react with OH and yield a product with a C* that is an order of magnitude lower than 
the direct precursor, to a lower limit C* of 10-2 µg m-3. 
 
5. Line 360: The reason why alpha=0.1 is assumed is not clear to me until I arrive at the end of 
Section 3.2. A brief explanation or a reference to Section 3.2 is needed.  
We have added a note here referring to the relevant sections: “The choices for the base case are 
discussed in Sections 3.2 and 3.3.”.  
 
6. Line 386: Why do curves in Panels a and b of Figure 1 look slightly different? E.g. the 
measurement point at highest age is located between the VBS and SOM predictions in Figure 1a 
while it overlaps with the VBS one in Figure 1b.  
Thank you for pointing that out. The measurements in Figure 1(b) were not being calculated 
correctly. This has been corrected. 
 
7. Line 388: Why does an overprediction of x3 occur at low ages? This should be discussed 
further.  
The over-prediction in Figure 1 that simulates the OA evolution using the base case is mostly a 
result of choosing a 30% IVOC fraction. The 30% IVOC fraction was chosen for the base case to 
produce the best global model-measurement comparison across all photochemical exposures and 
all experiments. The model-measurement comparison, visualized in Figure 4(c) (top panel), 
exhibits a fractional bias of 6% suggesting that the use of a 30% IVOC fraction did not over- or 
under-predict the OA mass with photochemical exposure. It just so happens that the 30% IVOC 
fraction for the Idle-Diesel-None experiment over-predicted the OA mass at lower 
photochemical exposures but produced a reasonable comparison at higher photochemical 
exposures. In contrast, the use of the 30% IVOC fraction resulted in the opposite effect for the 
Idle-Diesel-DPF+DOC experiment shown in Figure 2(b) where the base case model (dashed 
lines) produced reasonable agreement at the lower photochemical exposures but under-predicted 
the OA mass at higher photochemical exposures. We have added the following text to address 
this comment: “Our base case seemed to offer a mixed model-measurement comparison for this 
specific experiment (i.e., over-prediction at lower photochemical ages and a slight under-
prediction at higher photochemical ages) because the 30% IVOC mass fraction used in the base 
case was optimized to achieve a favorable model-measurement comparison across all 
experiments at all photochemical exposures. In other words, the over-prediction in this 
experiment at lower photochemical exposures was probably offset by an under-prediction at 
similar photochemical exposures for some of the other experiments. It is important to note that 
the model performance varied across the suite of experiments and this overall model 
performance is discussed in more detail in Section 3.3.”.  
 
8. Line 431: Palm et al. (2016) reported that a low value of the accommodation coefficient («1) 
was inconsistent with their ambient OFR SOA formation experiments. A more direct 
measurement of the accommodation coefficient of SOA (compared to the more indirect 
measurements on the publications cited here) has been recently published by Krechmer et al. 
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(2017), with measured values in the range 0.5-1. Both of these results support the use of higher 
values for accommodation coefficient and thus support the conclusions here.  
The studies of Palm et al. (2016) and Krechmer et al. (2017) are cited as part of the mass 
accommodation discussion: “This α value for diesel exhaust SOA was consistent with prior 
estimates of the α value for biogenic SOA estimated from chamber, OFR, and aerosol heating 
experiments (Lee et al., 2011;Saleh et al., 2013;Karnezi et al., 2014;Palm et al., 2016) and direct 
measurements of α for alkanol SOA (Krechmer et al., 2017). However, an α of 0.1 was an order 
of magnitude higher than that observed recently for toluene SOA under dry conditions (Zhang et 
al., 2014). Model results presented hereafter include a kinetic treatment of gas/particle 
partitioning and assumed an accommodation coefficient of 0.1.”.  
 
9. Line 443: In Figure 3b, Curves (iv) appear to be higher than Curves (ii). However, the 
condensational sink of (ii) is always that at the end of the growth while that of (iv) starts from 1 
nm particles (identical number concentration). The average of the latter is obviously lower than 
that of the former and hence less OA will condense in the case of (iv) in theory. Why does Figure 
3b show the opposite?  
The OA mass predictions for curves (ii), (iii), and (iv) are quite similar and the small differences 
between them can be attributed to the coupled interaction of multi-generational aging and kinetic 
gas/particle partitioning. The following text has been added: “Slight differences between the 
different curves for the Idle-Diesel-None experiment and curves (ii), (iii), and (iv) for the Idle-
Diesel-DPF+DOC experiment can be attributed to the interaction of multigenerational aging and 
kinetic gas/particle partitioning.”.  
 
10. Line 564: Figure 6 is supposed to convey important information. But it is impossible for me 
to tell data points for similar carbon numbers, so that I cannot verify relevant claims made in 
Sections 3.4. I suggest using different markers/patterns instead of point size to distinguish 
different carbon numbers.  
The figures (see below) have been revised to show carbon numbers in color and oxygen numbers 
in symbols.  
 

 
 
11. Table 1: the 3rd column from the right is OH exposure, not OH.  
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This has been corrected.  
 
12. Table 1: the initial NO and NO2 concentrations should be given here, given their importance.  
The NO and NO2 concentrations along with the CO concentrations have been included in Table 
1.  
 
13. Tables 2 and 3: many references in these tables are not listed on the reference list.  
The missing references have been added to the references list.  
 
14. Equation 3: a parameter, As, seems to be explained as “A3” in the text. Please maintain the 
consistency.  
The variable As in equation 3 should have been A3. This has been corrected.  
 
15. Line 330: although spelled out in a table caption, “DPF+DOC” still needs to be spelled out 
here.  
The following detail about the DPF+DOC was added in Section 2.1: “The engine was run at two 
different loads (idle and 50% load) with two different fuels (diesel and biodiesel), and with and 
without an aftertreatment system. The aftertreatment system included a diesel oxidation catalyst 
(DOC) to oxidize CO and THC and a diesel particle filter (DPF) to trap fine particles.”. 
 
16. Line 455: a fractional bias < -100% does not look appropriate, although I understand what 
the authors mean. I suggest comparing them in log scale or using ratio instead of bias.  
Fractional bias and fractional error are statistical metrics very commonly used to evaluate model 
predictions in the air quality and atmospheric chemistry community. The fractional bias can vary 
from -200% to +200% while the fractional error varies between 0% to 200%. An under-
prediction of a factor of 2 translates to a fractional bias of -67%, an under-prediction of a factor 
of 5 translates to a fractional bias of -133%, and an under-prediction of a factor of 10 translates 
to a fractional bias of -163%. We have added the formulae for fractional bias and fractional error 
where we discuss these statistical metrics for the first time: “statistical metrics of fractional bias, 
fractional error, and R2 for the comparison for both models are listed in Table S4 (fractional bias 
= !"

#$%
&'(
)

*
+,! , fractional error =  !"

#$%
&'(
)

*
+,! , M=predicted value, O=observed value, N=sample 

size)”.  
 
17. Figure 7d: the colors of the dashed lines are not correct.  
The colors of the dashed lines are deliberately lighter to separate them from the base case 
simulation result. This fact has been added to the caption: “The dashed lines in panel (d) are 
deliberately lighter in color than the solid line to help differentiate the Base result from the 
sensitivity results.”.  
 
18. Figure 8a: the exponent of “10ˆ1” in the x-axis is covered.  
This has been fixed in the new figure.  
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Abstract 12 

Laboratory-based studies have shown that combustion sources emit volatile organic compounds that can 13 

be photo-oxidized in the atmosphere to form secondary organic aerosol (SOA). In some cases, this SOA 14 

can exceed direct emissions of primary organic aerosol (POA). Jathar et al. (2017) recently reported on 15 

experiments that used an oxidation flow reactor (OFR) to measure the photochemical production of SOA 16 

from a diesel engine operated at two different engine loads (idle, load), two fuel types (diesel, biodiesel) 17 

and two aftertreatment configurations (with and without an oxidation catalyst and particle filter). In this 18 

work, we used two different SOA models, the volatility basis set (VBS) model and the statistical 19 

oxidation model (SOM), to simulate the formation and composition of SOA for those experiments. 20 

Leveraging recent laboratory-based parameterizations, both frameworks accounted for a semi-volatile and 21 

reactive POA; SOA production from semi-volatile, intermediate-volatility, and volatile organic 22 

compounds (SVOC, IVOC and VOC); NOX-dependent parameterizations, multigenerational gas-phase 23 

chemistry; and kinetic gas/particle partitioning. Both frameworks demonstrated that for model predictions 24 

of SOA mass to agree with measurements across all engine load-fuel-aftertreatment combinations, it was 25 

necessary to model the kinetically-limited gas-particle partitioning in OFRs as well as account for SOA 26 

formation from IVOCs, which were on average found to account for 70% of the model-predicted SOA. 27 

Accounting for IVOCs however resulted in an average under-prediction of 28% for OA atomic O:C 28 

ratios. Model predictions of the gas-phase organic compounds (resolved in carbon and oxygen space) 29 

from the SOM compared favorably to gas-phase measurements from a Chemical Ionization Mass 30 

Spectrometer (CIMS), substantiating the semi-explicit chemistry captured by the SOM. Model-31 

measurement comparisons were improved on using vapor wall-loss corrected SOA parameterizations. As 32 

OFRs are increasingly used to study SOA formation and evolution in laboratory and field environments, 33 

models such as those developed in this work can be used to interpret the OFR data.  34 

 35 
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1 Introduction 40 

Combustion-related aerosols are an important contributor to urban and global air pollution and have 41 

impacts on climate (Pachauri et al., 2014) and human health (Anderson et al., 2012). While direct particle 42 

emissions from combustion sources are dominated by primary organic aerosol (POA) and black carbon 43 

(Bond et al., 2004), these sources also emit more volatile organic compounds (VOCs) that can 44 

photochemically react in the atmosphere to form secondary organic aerosol (SOA) (Robinson et al., 45 

2007). SOA production from combustion emissions is poorly understood and not very well represented in 46 

models in terms of its precursors, gas-particle partitioning, composition, and properties (Fuzzi et al., 47 

2015). Atmospheric models frequently under-predict SOA mass concentrations during strong 48 

photochemical episodes in urban areas (Jathar et al., 2017b), which likely highlights the challenge in 49 

modeling the SOA contributions from urban, combustion-related emissions (Ensberg et al., 2014). 50 

 51 

Diesel-powered sources, which are an important source of air pollution at urban and regional scales, emit 52 

precursors that form SOA in the atmosphere (Gentner et al., 2016). Robinson et al. (2007) found that 53 

photochemical processing of exhaust emissions from a small off-road diesel engine led to SOA 54 

production and doubled the primary aerosol mass over a few hours in an environmental chamber. Chirico 55 

et al. (2010) and Gordon et al. (2014) performed similar chamber experiments on tailpipe emissions from 56 

in-fleet, on-road diesel vehicles run on chassis dynamometers. Both found SOA production that was 57 

roughly consistent with the findings from Robinson et al. (2007). They additionally found that the use of 58 

aftertreatment devices (diesel oxidation catalysts and diesel particulate filters) substantially reduced SOA 59 

production (mimicking the reduction in primary aerosol emissions) but observed some SOA production 60 

during cold starts and/or regeneration events when the proper functioning of the aftertreatment devices 61 

was limited. Furthermore, Gordon et al. (2014) found negligible differences in the SOA formation 62 

between diesel and biodiesel fuel. To access longer equivalent photochemical aging timescales compared 63 

to typical chamber experiments, Tkacik et al. (2014) measured SOA formation using an oxidation flow 64 

reactor (OFR) from air sampled from a highway tunnel in Pittsburgh, PA used by both on-road gasoline 65 

and diesel vehicles. OFRs use high concentrations of atmospheric oxidants, e.g. hydroxyl radicals, to 66 

achieve long exposures on short actual timescales; further discussion is provided below. Tkacik et al. 67 

(2014) measured much stronger SOA formation compared to chambers (SOA: POA was 10:1) over 68 

photochemical exposures equivalent to 2 to 3 days, but found that the SOA was lost, or destroyed, as the 69 

mixture continued to age over the timescale of a week. Recently, Jathar et al. (2017a) performed 70 

experiments using an oxidation flow reactor to measure the photochemical production of SOA from an 71 

off-road diesel engine operated at various engine load, fuel, and aftertreatment configurations. Jathar et al. 72 
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(2017a) found that efficient combustion at higher engine loads and removal of SOA precursors by 73 

aftertreatment systems reduced SOA production by factors of 2 to 10. The only exception was that the 74 

aftertreatment system did not seem to reduce SOA production at idle loads possibly because the exhaust 75 

temperatures were low enough to limit removal of SOA precursors in the oxidation catalyst. Overall, 76 

these studies indicate that diesel exhaust contributes to atmospheric SOA production, although the precise 77 

production of SOA varies across dimensions of photochemical age, engine duty cycle, use of alternative 78 

fuels, and aftertreatment devices.  79 

 80 

Oxidation flow reactors are being used to study the photochemical production of SOA from both 81 

anthropogenic (e.g., Ortega et al. (2016)) and natural (e.g., Palm et al. (2016)) sources. Most OFRs used 82 

for SOA studies are 10 to 15 L, flow-through metal reactors with lamps that can produce high 83 

concentrations of atmospheric oxidants to simulate photochemical processing (e.g., Lambe et al. (2011)). 84 

Flows through an OFR allow for residence times between one and four minutes, but given the high 85 

oxidant concentrations OFRs can simulate several weeks of photochemistry. OFRs have three distinct 86 

advantages over environmental chambers. First, OFRs are smaller in size and easier to operate than 87 

environmental chambers, which allows for shorter experiments and makes them ideal for field 88 

deployments (Palm et al., 2016;Simonen et al., 2017). Second, production of high oxidant concentrations 89 

in OFRs allows for much longer photochemical exposures (~factor of 10) than those possible with 90 

chambers (Lambe et al., 2011). Third, due to their flow-through nature, OFRs have shorter residence 91 

times than conventional chambers (~1-4 minutes) and hence are less susceptible to gas and particle losses 92 

that can influence SOA formation (Zhang et al., 2014;Krechmer et al., 2016). Despite those advantages, 93 

there are concerns that the accelerated chemistry and limitations to gas/particle partitioning may affect the 94 

formation and composition of SOA in OFRs, which calls into question their relevance in understanding 95 

SOA formation in the real atmosphere (Palm et al., 2016;Jathar et al., 2017a;Ahlberg et al., 2017). For 96 

example, short residence times and/or small condensation sinks from preexisting aerosol may not allow 97 

for complete condensation of SOA vapors (Lambe et al., 2015). Similarly, high oxidant concentrations in 98 

OFRs may lead to molecules undergoing a greater number of reactions in the gas-phase before 99 

condensing, including reactions that lead to fragmentation and formation of higher volatility products 100 

(Kroll et al., 2009). Both effects will typically suppress SOA production. With the increased use of OFRs, 101 

there is a need to develop and use modeling tools that can account for fragmentation reactions and kinetic 102 

gas/particle partitioning. This will allow for a more accurate interpretation of OFR data and facilitate 103 

translation of OFR results to the real atmosphere.  104 

 105 
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Models used to simulate the photochemical production of SOA from VOCs in combustion emissions have 109 

traditionally used the two-product (Odum et al., 1996) or the more generalized n-product volatility basis 110 

set (VBS) framework (Donahue et al., 2006a). In this framework, VOC oxidation products are lumped 111 

into volatility bins based on their effective saturation concentrations (C*) and where the saturation 112 

concentration determines the partitioning of the products between the gas and particle phases (Pankow, 113 

1994). This framework has been widely used in both box (Dzepina et al., 2009;Hodzic et al., 2010;Jathar 114 

et al., 2014a;Hayes et al., 2015) and three-dimensional (Murphy and Pandis, 2009;Tsimpidi et al., 115 

2009;Jathar et al., 2011;Ahmadov et al., 2012;Konovalov et al., 2015) models to simulate the chemistry 116 

and gas/particle partitioning of SOA. While this framework offers a simple and computationally efficient 117 

scheme to model SOA formation, the use of volatility alone neither tracks the molecular composition, nor 118 

informs the continued multi-generational chemistry that will determine the atmospheric evolution and 119 

properties of SOA. As a result, volatility-based models have been challenged in leveraging observations 120 

of the elemental composition of SOA (e.g., atomic O:C ratios) that have become possible through the use 121 

of the aerosol mass spectrometer (AMS) to constrain parameterizations or test model predictions. Further, 122 

most volatility-based models have employed ad hoc parameterizations to model multi-generational 123 

chemistry that do not account for fragmentation reactions (Robinson et al., 2007) and possibly double 124 

count SOA formation (Jathar et al., 2016). Therefore, there is a demand to develop models that can 125 

provide an improved representation of the chemistry that governs the formation, composition, and 126 

properties of SOA. 127 

 128 

Previously, volatility-based SOA models have been used to predict photochemical production of SOA 129 

from motor vehicle exhaust (Robinson et al., 2007;Jathar et al., 2014b;Tkacik et al., 2014). These 130 

modeling studies have shown that speciated SOA precursors such as long alkanes (C6-12) and single-ring 131 

aromatics (e.g., benzene, toluene) explain less than 20% of the observed SOA and have argued that the 132 

remainder of the SOA (~80%) arises from the photooxidation of typically unspeciated organic 133 

compounds. These unspeciated compounds, also referred to as intermediate volatility organic compounds 134 

(IVOCs), are likely species with carbon numbers larger than 12 and appear as an unresolved complex 135 

mixture on using traditional gas chromatography mass spectrometry (GC-MS) techniques (Presto et al., 136 

2011). Early estimates of IVOC emissions and their SOA potential have significantly improved 137 

predictions of the SOA formed from diesel exhaust (Jathar et al., 2014b) and have broadly improved OA 138 

model performance in three-dimensional large-scale models (Murphy and Pandis, 2009;Pye and Seinfeld, 139 

2010;Jathar et al., 2011;Tsimpidi et al., 2009). Consider as an example that Zhao et al. (2015), using a 140 

thermal desorption GC-MS to provide detailed speciation of the carbon-number resolved linear, branched, 141 
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and cyclic alkane IVOCs in diesel exhaust, found that these species accounted for up to 60% of the non-142 

methane organic gas emissions. While IVOCs have been recognized as an important class of SOA 143 

precursors for diesel (and even for gasoline and biomass burning) sources, updated emissions and 144 

speciation estimates from Zhao et al. (2015) have not yet been used to explain observations of 145 

photochemically produced SOA from diesel exhaust.  146 

 147 

Recently, several model frameworks have been developed to improve the representation of SOA 148 

formation, considering dimensions of SOA beyond just volatility. The statistical oxidation model (SOM) 149 

developed by Cappa and Wilson (2012) is one such example, although volatility remains an important 150 

consideration. The SOM is a semi-explicit, parameterizable mechanism that uses a two-dimensional 151 

carbon-oxygen grid to simulate the multigenerational chemistry and gas/particle partitioning of organic 152 

compounds. Although the SOM does not explicitly track or specify the product species composition (e.g., 153 

functional groups), the carbon- and oxygen-number representation provides adequate detail to represent 154 

many key atmospheric processes, e.g., reactions with oxidants, formation of functionalized products, 155 

scission of carbon backbones or fragmentation, surface and condensed-phase chemistry and gas/particle 156 

partitioning. The SOM has been used to interpret chamber experiments (Zhang et al., 2014;Cappa et al., 157 

2013;Cappa and Wilson, 2012) and was recently integrated into a chemical transport model (Jathar et al., 158 

2015) to examine the influence of multigenerational aging (Jathar et al., 2016) and chamber-based vapor 159 

wall losses (Cappa et al., 2016) on ambient concentrations and properties of OA. The two-dimensional 160 

VBS (2D-VBS) of Donahue et al. (2011) and the carbon-polarity grid of Pankow and Barsanti (2009) are 161 

examples of similar frameworks. These more sophisticated models (i.e., SOM, 2D-VBS, carbon-polarity 162 

grid) have not yet been employed to study SOA formation from complex mixtures such as combustion 163 

emissions.  164 

 165 

To summarize, combustion sources such as diesel-powered sources emit precursors that can photooxidize 166 

in the atmosphere to produce SOA. This SOA production is dependent not only on the precursor 167 

composition (that could vary by combustion mode and fuel type) and photochemical age, but also 168 

experimental artifacts (e.g., short condensation timescales) introduced by oxidation flow reactors. Hence, 169 

there is a need to develop and apply sophisticated, yet computationally efficient, numerical models to 170 

simulate and study SOA formation from combustion emissions. In this work, we applied two SOA model 171 

frameworks that vary in sophistication (VBS and SOM) to simulate the photochemical production of SOA 172 

in an OFR from diesel exhaust. The models were evaluated by comparing model predictions (OA and 173 

O:C) to the recent measurements made by Jathar et al. (2017a) where SOA production was quantified for 174 
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different photochemical ages under varying engine loads, fuels, and aftertreatment devices. The model-175 

measurement comparison, along with sensitivity simulations, highlights the importance of modeling the 176 

kinetic gas/particle partitioning of SOA in OFRs, the contribution of IVOCs to the total SOA production, 177 

and the ability of the SOM to accurately track the composition of SOA. 178 

 179 

2 Methods 180 

2.1 Experiments and Data 181 

Jathar et al. (2017a) performed photooxidation experiments using an OFR to measure SOA production 182 

from the exhaust of a 4.5L, John Deere diesel engine. The stock engine met Tier 3 emissions standards for 183 

off-road diesel engines. The OFR used therein was described in detail by Friedman et al. (2016) and the 184 

experimental setup and OA measurements from these experiments were described in detail by Jathar et al. 185 

(2017a). We briefly summarize the experimental setup, measurements, and findings from Jathar et al. 186 

(2017a). The engine was run at two different loads (idle and 50% load) with two different fuels (diesel 187 

and biodiesel), and with and without an aftertreatment system. The aftertreatment system included a diesel 188 

oxidation catalyst (DOC) to oxidize CO and THC and a diesel particle filter (DPF) to trap fine particles. 189 

Diesel exhaust was diluted by a factor of 45-110 before entering the OFR. The intensity of the mercury 190 

lamps (at wavelengths of 185 and 254 nm) inside the OFR was varied to produce different hydroxyl 191 

radical (OH) concentrations and simulate different photochemical exposures. The OFR had a residence 192 

time of 100 s. A suite of instrumentation was used to measure gas- (CO2, CO, total hydrocarbons, NOx, 193 

O2, oxygenated organic compounds) and particle- (aerosol size and composition) phase concentrations. A 194 

total of fourteen experiments (see Table 1 for more details) were performed at varying engine loads and 195 

with varying fuels and aftertreatment configurations. The OH exposure was varied between 0 and a 196 

maximum of 9.2×107 molecules-hr cm-3 (equivalent to 2 days of photochemical aging at an OH 197 

concentration of 1.5×106 molecules cm-3). On average, each experiment included measurements at six to 198 

seven different photochemical exposures. The mass concentrations and elemental composition of the POA 199 

(measured when OFR lights were off) and SOA (at varying OH exposures) were measured by a high-200 

resolution aerosol mass spectrometer (HR-AMS). In addition to the measurements reported by Jathar et al. 201 

(2017a), the gas-phase concentrations of oxygenated organic compounds were measured by an acetate 202 

reagent ion-based chemical ionization mass spectrometer (CIMS) (Link et al., 2016). At all engine 203 

configurations, SOA production exceeded the POA emissions after the equivalent of a few hours of 204 

atmospheric photochemical aging. SOA production was particularly strong at idle (or less fuel-efficient) 205 

engine loads and/or when exhaust temperatures were low and proper functioning of the aftertreatment 206 

devices was limited. Further, POA emissions and SOA production were nearly identical between diesel 207 



 
 
 
 

7 

and biodiesel fuels. A synopsis of experiments performed and the total hydrocarbons (THC), which 208 

includes all SOA precursors, POA, SOA, O:C, OH, and size distribution data are presented in Table 1. 209 

 210 

Although the diesel exhaust was diluted with clean air to produce atmospherically-relevant concentrations 211 

of POA, the initial THC, CO, and NOX concentrations in the OFR were still quite high. Peng and Jimenez 212 

(2017), using a detailed gas-phase model, argued that the high external OH reactivity from high THC, 213 

CO, and NOX concentrations might lead to non-OH chemistry in the OFR and NO could quickly be 214 

consumed in the OFR leading to low NO conditions for SOA formation. Peng and Jimenez (2017) 215 

quantified the potential influence of NO on the oxidation chemistry by calculating the ratio of the reactive 216 

flux of the peroxy radicals with NO to the reactive flux of the peroxy radicals with HO2 (rRO2+NO/rRO2+HO2). 217 

A ratio greater than 1 was considered as “high NO” while a ratio less than 1 was considered “low NO”. 218 

For the relative humidity, photon flux, initial NO, and external OH reactivity values in Jathar et al. 219 

(2017a), the model of Peng and Jimenez (2017) predicted that the OFR mostly ran in a high NO mode at 220 

all photochemical exposures when the engine was run at load conditions or with an aftertreatment device 221 

in place. However, the model predicted that the OFR mostly ran in a low NO mode especially at the high 222 

photochemical exposures when the engine was run at idle conditions and without an aftertreatment device 223 

(i.e., Idle-Diesel-None and Idle-Biodiesel-None). The rRO2+NO/rRO2+HO2 ratio and low versus high NO 224 

mode for each photon flux-experiment combination is listed in Table S1. Based on these results, we 225 

accordingly used the low and high NOX parameterizations to perform the model simulations.  226 

 227 

2.2 Organic Aerosol Models 228 

In this work, we used two different OA models to predict the mass concentrations and chemical 229 

composition of SOA and compare predictions against the SOA measurements from Jathar et al. (2017a) 230 

and Friedman et al. (2017). In this section, we briefly describe the two model frameworks, namely the 231 

Volatility Basis Set (VBS) and the Statistical Oxidation Model (SOM), used to simulate the coupled 232 

chemistry, thermodynamic properties, and kinetic gas/particle partitioning of OA. The VBS model was 233 

chosen as it is widely used in contemporary air quality models; the SOM was chosen to examine the 234 

influence of improved representation of OA processes (e.g., fragmentation reactions) on model 235 

predictions.  236 

 237 

2.2.1 Volatility Basis Set 238 

The Volatility Basis Set model, developed by Donahue et al. (2006b), is a parameterizable model that 239 

allows for a volatility-based representation of the coupled chemistry, thermodynamic properties, and 240 
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gas/particle partitioning of OA. The VBS uses logarithmically spaced so-called basis sets based on the 249 

effective saturation concentration (C*); C* of a species determines the partitioning between the gas and 250 

particle phases (Pankow, 1994). In the VBS model, organic precursors were allowed to react with OH to 251 

yield a unique product distribution in C* space that represented stable first-generation products. 252 

Subsequent multi-generational gas-phase oxidation, or so-called ‘aging,’ of the VBS products was 253 

modeled using the scheme of Robinson et al. (2007). In this scheme the product species are allowed to 254 

react with OH and yield a product with a C* that is an order of magnitude lower than the direct precursor, 255 

to a lower limit C* of 10-2 µg m-3. This scheme did not consider fragmentation reactions. The following 256 

equations were used to represent the organic precursor oxidation (equation 1) and subsequent reaction and 257 

formation of products from the precursor oxidation and aging reactions (equation 2): 258 
!"

!#
= −&'([*][,-]        (1)  259 

!./
012

!#
= 34&'([*][,-] + 6	&'(,9:;<:[=4>?

: ][,-] − @	&'(,9:;<:[=4
:][,-]  (2) 260 

where * is the gas-phase concentration of a generic organic precursor (µg m-3; includes VOCs, IVOCs 261 

and SVOCs), &'( is the reaction rate constant between the precursor and OH (cm3 molecule-1 s-1), =4
:>A 262 

is the gas + particle-phase concentration in the jth bin (µg m-3),34is the mass yield of the first-generation 263 

oxidation product of the jth bin (Table 2), kOH,aging is the reaction rate constant (cm3 molecule-1 s-1) to 264 

represent multi-generational aging of the oxidation products, and 6and @are the mass yields associated 265 

with the production and loss terms from multi-generational aging. For the jth bin, the second term in 266 

equation (2) represents the formation of oxidation products from the j+1th volatility bin and the third term 267 

in equation (2) represents the loss of precursor from the jth bin. 6and @ are assumed to have a value of 1 268 

(meaning no fragmentation) but 6 is zero for the last bin and @ is zero for the first bin. 269 

 270 

Volatility-resolved mass yields for eighteen different organic precursors for C* bins ranging from 10-1 to 271 

103 µg m-3 were adopted or refit based on low and high NOX parameterizations published in the literature; 272 

organic precursors, the high and low NOX VBS mass yields, and the relevant references are listed in 273 

Tables 2 and 3. Since there were no direct low NOX VBS parameterizations for alkanes, parameterizations 274 

for linear, branched, and cyclic alkanes were developed using pseudo chamber data generated with the 275 

SOM based on the low NOX parameters listed in Table 5 for n-dodecane, methylundecane, and 276 

hexylcyclohexane respectively. Some of these parameterizations accounted for vapor wall losses and have 277 

been accordingly marked in Tables 2 and 3. Each SOA precursor in the exhaust emissions was assigned a 278 

surrogate from Table 2/3 to model SOA formation in the VBS model. When using the high NOX 279 
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parameterizations, branched and cyclic alkanes were assigned surrogates based on equivalent linear 295 

alkanes, following the work of Lim and Ziemann (2009) and Tkacik et al. (2012). A CX branched alkane 296 

was assigned a CX-2 linear alkane as a surrogate and a CX cyclic alkane was assigned a CX+2 linear alkane 297 

as a surrogate. Since we only fit alkanes up to n-heptadecane, we considered n-heptadecane as a surrogate 298 

for alkanes C17-C22. The Idle-Diesel-None and Idle-Biodiesel-None experiments used the low NOX 299 

parameterizations while all the other experiments used the high NOX parameterizations. The mass transfer 300 

(condensation/evaporation) of the VBS products to the particle phase was assumed to be kinetically-301 

limited in the OFR (Palm et al., 2016;Jathar et al., 2017a;Ahlberg et al., 2017); Section 2.3 describes the 302 

mass transfer equation used to model kinetic gas/particle partitioning. 303 

 304 

2.2.2 Statistical Oxidation Model 305 

The Statistical Oxidation Model (SOM), developed by Cappa and Wilson (2012) is a semi-explicit, 306 

parameterizable model that allows for a statistical representation of the coupled chemistry, 307 

thermodynamic properties, and gas/particle partitioning of OA. The SOM uses a 2-dimensional carbon-308 

oxygen grid to track gas- and particle-phase precursors and products from precursor oxidation. Each cell 309 

in the SOM grid represents a model organic species with a molecular weight defined by the formula 310 

CxHyOz. A SOM species reflects the average properties (e.g. C*, reactivity) of all actual species with the 311 

same number of carbon (NC) and oxygen (NO) atoms that are produced from a given precursor class (e.g., 312 

benzene, alkanes). In the SOM, all gas-phase species are assumed to be reactive towards OH and the OH 313 

reaction rate constant (kOH) is calculated using equation 3 as follows: 314 

BCD(&'() 	= 	G? 	+	GH	×(J.
KL)	×	MNO(−1×

QR
S.U?V	×	W

)	×[1 +
XY

Z H[
MNO(−

?(\<(]^>_._?)`\<(Xa)
a

HZa
)] (3) 315 

b	(J. ≤ 15) 	= 0.0214	×J. + 0.5238 316 

b	(J. ≥ 15) = −0.115×J. + 2.695 317 

m? = −0.2583×J. + 5.8944 318 

mH	(J. ≤ 15) = 0.0314×J. + 0.9871;	mH	(J. > 15) = 0.25×J. − 2.183 319 

where A1=15.1, A2=3.94, and A3=0.797. kOH for a specified NC and NO is assumed to be the same for 320 

species in all the SOM grids. 321 

 322 

The reactions with OH lead to either functionalization or fragmentation, resulting in movement through 323 

the carbon-oxygen grid. Six precursor-specific adjustable parameters are assigned for each SOM grid: 324 

four parameters that define the molar yields of the four functionalized, oxidized products (pO,k, ΣpO,k=1 325 

and hence one out of the four parameters is determined by mass balance), one parameter that determines 326 
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the probability of functionalization or fragmentation (PFrag, PFunc=1-PFrag) and one parameter that 331 

describes the change in C* associated with the addition of one oxygen atom (ΔLVP). Equation 4 332 

represents the evolution of species in the SOM grid: 333 
![.r's]

!#
= 	−&'(

t,u[,-][=t,u] + [,-] &'(
t,u`vwxy<z

t,u`vO',v[=t,u`v]
V
v{? +334 

[,-] &'(
t>4,u`?>vv|R}`u

v{_

~�ÄR0
r,sÅY1Ç

]�ÄR0|ÉÑÖÜ
r,s [=t,u`?>v]

4|R}
4{?   (4) 335 

where CXOZ is the gas + particle-phase concentration of the SOM species with X carbon atoms and Z 336 

oxygen atoms (µg m-3) and Nfragments is the number of possible products from fragmentation. The 337 

probability of fragmentation is modeled using equation 5 as a function of the O:C ratio because higher 338 

O:C ratio compounds are expected to have a higher probability of fragmentation (Chacon-Madrid and 339 

Donahue, 2011): 340 

wxá9: = (
]^
]à
)â�ÄR0      (5) 341 

The C* for each SOM species was calculated using equation 6 as follows: 342 

BCD?_=
∗ = −0.337ãå(. + 11.56 − (J'×çé*w)   (6) 343 

where MWHC (g mole-1) is the molecular weight of the hydrocarbon backbone (accounting only for the 344 

carbon and hydrogen atoms). 345 

 346 

The parameters used to model SOA formation were based on those published in Cappa et al. (2016) and 347 

are listed in Tables 4 and 5. These parameter sets were developed by fitting the SOM predictions to 348 

chamber measurements of SOA mass concentrationsand include corrections to account for vapor wall 349 

losses (Zhang et al., 2014). Each SOA precursor in the exhaust emissions was assigned a surrogate from 350 

Table 4 or 5 to account for the oxidation chemistry associated with oxidation of that species. For example, 351 

pentadecane used the parameterization developed by fitting n-dodecane. The difference in the initial 352 

number of carbons and oxygens, and thus the volatility, between the surrogate compound and the 353 

precursor compound of interest was accounted for, with consequent impact on the SOA yield. In other 354 

words, unlike the VBS where the SOA mass yield of the SOA precursor and surrogate is identical, the 355 

surrogate in the SOM only informed the statistical trajectory for multi-generational oxidation of a given 356 

precursor, and the surrogate and actual compound of interest can have different SOA mass yields. The 357 

Idle-Diesel-None and Idle-Biodiesel-None experiments used the low NOX parameters while all the other 358 

experiments used the high NOX parameters. Similar to the VBS model, the mass transfer 359 

(condensation/evaporation) of the SOM products to the particle phase was assumed to be kinetically-360 

limited in the OFR (Palm et al., 2016;Jathar et al., 2017a;Ahlberg et al., 2017) and Section 2.3 below 361 
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describes the mass transfer equation used to model kinetic gas/particle partitioning. 365 

 366 

2.3 Kinetic Gas/Particle Partitioning 367 

Palm et al. (2016), (Ahlberg et al., 2017), and Jathar et al. (2017a) have argued that the short residence 368 

times and small condensation sinks in the OFR may not permit all low-volatility products formed from 369 

precursor oxidation to condense onto preexisting aerosol. Hence, unlike earlier work that has assumed 370 

equilibrium partitioning to model SOA in OFRs (Tkacik et al., 2014;Chen et al., 2013), we modeled the 371 

kinetic gas/particle partitioning of OA using equation 7 (Zhang et al., 2014): 372 
!.è

2

!#
= 2êë;ëAJAíìî(=;

: −
.è
2.è

∗

.^ï
)      (7) 373 

where =;
A is the particle-phase mass concentration for the ith organic species (µg m-3), Di is the gas-phase 374 

diffusion coefficient of the ith organic species (m2 s-1), Dp is the number mean particle diameter (m) , Np is 375 

the total particle number concentration (m-3), FFS is Fuchs-Sutugin correction for non-continuum mass 376 

transfer, =;
: is the gas-phase mass concentration of the ith organic species (µg m-3), =;∗ is the effective 377 

saturation concentration of the ith organic species, and COA is the total OA mass concentration (µg m-3). 378 

The ith organic species refers to the organic compounds tracked in the VBS bins and the SOM grids. The 379 

gas-phase diffusion coefficient was calculated for each organic species as follows: 380 

ë; = ë.'a
ñóà^a

ñóè
       (8) 381 

where ë.'a is the gas-phase diffusion coefficient of CO2 (1.38×10-5 m2 s-1), ãå.'a (g mole-1) is the 382 

molecular weight of CO2, and MWi (g mole-1) is the molecular weight of the ith organic species. In the 383 

VBS model where we do not track the molecular composition of the SOA species, we assumed all 384 

condensing species to have a molecular weight of 200 g mole-1. This formulation to calculate the gas-385 

phase diffusion coefficient under-predicted the measured gas-phase diffusion coefficients compiled by 386 

Tang et al. (2015) by ~20%. However, doubling the gas-phase diffusion coefficient calculated in equation 387 

8 resulted in very small change (<1%) in the OA mass predictions for a representative experiment. Hence, 388 

we decided to use the formulation in equation (8) for the rest of this work. The Fuchs-Sutugin correction 389 

was calculated as follows: 390 

íìî =
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where Kn is the Knudsen number, α is the mass accommodation coefficient, λi is the mean free path of the 396 

ith organic species in air (m), Ci is the root mean square speed of the gas (m s-1), NA is Avogadro's number 397 

(molecules mole-1), k is the Boltzmann constant (m2 kg s-2 K-1), and T is the temperature (K).  398 

 399 

2.4 Model Inputs 400 

2.4.1 Semi-Volatile and Reactive POA 401 

Previous work has shown that much of combustion-related POA is semi-volatile and exists in an 402 

equilibrium with gas-phase vapors (Robinson et al., 2007;Huffman et al., 2009;May et al., 2013c, b;May 403 

et al., 2013a). Jathar et al. (2017a) measured emissions of POA at no OH exposure and these measured 404 

concentrations were used to initialize the seed OA available for partitioning in the OFR and to calculate 405 

the mass concentrations of vapors in equilibrium with the POA. The mass concentrations of the POA 406 

vapors were determined based on the normalized, volatility-resolved distribution of primary organic 407 

compounds estimated by May et al. (2013b) for emissions from a suite of on- and off-road diesel vehicles. 408 

The volatility distribution of May et al. (2013b) for diesel primary organic compounds is listed in Table 409 

6(a). For the SOM, we assumed that the primary organic compounds could be represented using a 410 

distribution of n-alkanes and we refit the volatility distribution in Table 6(a) to develop a carbon-number 411 

resolved distribution of n-alkanes; this distribution is listed in Table 6(b).  412 

 413 

2.4.2 SOA Precursors 414 

Jathar et al. (2017a) did not speciate the THC or SOA precursor emissions from the diesel engine and 415 

hence we have developed our own emissions profiles based on previously published literature to speciate 416 

the THC emissions. In this work, we used two different emissions profiles listed in EPA SPECIATE 417 

version 4.3 that are commonly used to speciate THC emissions from diesel engines for emissions 418 

inventories used in atmospheric modeling (EPA, 2013): Profiles #3161 (Diesel Exhaust- Farm 419 

Equipment) and #8774 (Heavy Duty Diesel Exhaust). Profile #3161 best matched the diesel engine source 420 

and diesel fuel used by Jathar et al. (2017a) and was used as the baseline emissions profile to speciate the 421 

THC emissions; we examined the sensitivity of using Profile #8774 on model predictions. We were 422 

unable to find a comprehensive emissions profile for THC emissions from the use of straight biodiesel 423 

fuel in the literature, and have relied on emissions profiles that were determined for biodiesel-diesel 424 

blends. Profile #4777 (30% Biodiesel Exhaust - Light Duty) was used as the baseline emissions profile to 425 

speciate THC emissions for experiments performed using the biodiesel fuel. All three emissions profiles 426 
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(3161, 8774, and 4777) are listed in Tables S2 through S4.  433 

 434 

Prior work in studying SOA formation has revealed that traditional speciation of THC emissions does not 435 

include emissions of high molecular-weight organic compounds, such as IVOCs, that are important SOA 436 

precursors (Jathar et al., 2014b). In Profile #3161 such compounds are partially accounted for in the 437 

‘unknown’ species category (13.76% by mass of THC). Zhao et al. (2015) recently estimated that IVOCs 438 

were 60% of the THC emissions from a suite of on- and off-road diesel engines and provided a semi-439 

explicit speciation of the IVOC emissions as a carbon-number distribution of linear, branched and cyclic 440 

alkanes. To account for these IVOC emissions, we assumed that the base case emissions profiles 441 

contained 30% IVOCs on a mass-basis (this IVOC fraction was selected since it resulted in the most 442 

optimum model-measurement comparison for OA mass; this will be discussed later in Section 3.3) and 443 

had the same chemical speciation as that proposed by Zhao et al. (2015) for an off-road engine 444 

(transportation refrigeration unit). We performed sensitivity simulations using IVOC fractions of 0% 445 

(assuming that the THC emissions contained no IVOCs), 13.76% (based on the ‘unknown’ category in 446 

Profile #3161), and 60% (based on the median estimate in Zhao et al. (2015)), on a mass-basis. Addition 447 

of IVOCs to the emissions profile meant that the VOC species (e.g. benzene, toluene, short alkanes) had 448 

to be renormalized to accommodate the IVOCs. Table 7 lists the renormalized baseline emissions profiles 449 

for SOA precursors used for diesel and biodiesel exhaust with 30% IVOCs along with the reaction rate 450 

constants with OH (kOH) and surrogates (or model compound) used to model SOA formation for the VBS 451 

and SOM models. Concentrations for each species were determined by multiplying the experiment-452 

specific THC mass concentrations with the renormalized emissions profiles. 453 

 454 

2.4.3 Particle Size and Particle Number Concentrations 455 

For numerical simplicity, we used a monodisperse aerosol, the properties of which (number mean 456 

diameter (Dp) and number concentration (Np)) were initialized from the measured particle size distribution 457 

data when modeling kinetic gas/particle partitioning. For experiments performed without the DPF+DOC, 458 

the initial particle number concentrations and condensational sinks were high (>3.3×105 # cm-3 and >0.5 459 

min-1) and hence the monodisperse aerosol was initialized based on data at no photochemical exposure. 460 

For experiments performed with the DPF+DOC where the initial particle number concentrations were 461 

relatively low (<1000 # cm-3 and <0.003 min-1), photochemical aging resulted in formation and growth of 462 

new particles and provided a substantial increase in the surface area (>factor of 300) available for 463 

condensation. In these experiments, we initialized the monodisperse aerosol using an average of the data 464 

at no photochemical exposure and after photochemical exposure (Palm et al., 2016). Averaging the data 465 
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allowed for a more realistic estimate of the condensational sink. In each simulation, the condensing SOA 482 

mass was used to calculate the change in particle size but the number concentration was conserved. The 483 

number mean diameter and the number concentration data - representing the initial condensational sink – 484 

for all experiments are listed in Table 1.  485 

 486 

New particle formation and growth was observed for most experiments at or near the highest 487 

photochemical ages (at or >1 OH day), which presumably influenced the condensational sink at the 488 

beginning of the experiment. Therefore, we performed sensitivity simulations to investigate the influence 489 

of new particle formation on model predictions. We performed simulations with each model (VBS and 490 

SOM) with four different initial condensational sinks. The first three simulations used measured data to 491 

calculate the initial condensational sink inputs: (i) number mean diameter and measured number 492 

concentration at no OH exposure (equivalent to the default for non-DPF+DOC experiments), (ii) number 493 

mean diameter and measured number concentration at the given OH exposure, and (iii) average of (i) and 494 

(ii) (default for DPF+DOC experiments). The fourth simulation (iv) assumed that the OFR nucleated 1 495 

nm particles at the beginning of the experiment where the number concentration of these particles was 496 

equal to that measured at the end of the experiment.  497 

 498 

2.5 Model Simulations and Model Code 499 

The VBS and SOM models were run separately for each photochemical exposure simulated for each 500 

experiment listed in Table 1. In the VBS simulations, POA was tracked in one basis set while products 501 

from each SOA precursor were tracked in separate basis sets, allowing us to distinguish between POA and 502 

SOA. In the SOM simulations, all precursor molecules with the same surrogate (e.g., all n-alkanes) were 503 

tracked in the same SOM grid. Model simulations were performed in phases to answer specific questions 504 

and inform model inputs for later simulations: 505 

1. To provide a general overview of the model predictions and model-measurement comparison, and 506 

to orient the reader to the results thereafter, we performed simulations with the VBS and SOM 507 

models using the base set of inputs for one of the Idle-Diesel-None experiments. Our base case 508 

included: Profile #3161 for VOC emissions, 30% IVOC mass fraction, kinetic gas/particle 509 

partitioning with a mass accommodation coefficient of 0.1, and monodisperse aerosol inputs based 510 

on measured data at no photochemical exposure. The partitioning- and IVOC-related choices for 511 

the base case are discussed in Sections 3.2 and 3.3 respectively. 512 

2. Models used to simulate SOA production in environmental chambers and OFRs have typically 513 

assumed instantaneous equilibrium partitioning (e.g., Chen et al. (2013)). To examine the validity 514 
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of assuming instantaneous equilibrium partitioning, we performed simulations with the VBS and 518 

SOM models using instantaneous or kinetic gas/particle partitioning for one of the Idle-Diesel-519 

None and the Idle-Diesel-DPF+DOC experiments. Kinetic partitioning was modeled using three 520 

values of the mass accommodation coefficient (α=0.01, 0.1, 1) to capture the uncertainty in its true 521 

value. To examine the influence of an increased initial condensational sink from new particle 522 

formation on kinetic partitioning, we performed additional simulations using four different initial 523 

condensational sinks (see Section 2.4.3) on one of the Idle-Diesel-None and the Idle-Diesel-524 

DPF+DOC experiments.  525 

3. Previous work has shown that combustion-related IVOCs are important precursors of SOA (e.g., 526 

Jathar et al. (2014b)). To investigate the importance of IVOCs, we performed simulations with the 527 

VBS and SOM models at four different assumed IVOC mass fractions (0%, 13.76%, 30%, and 528 

60%), as discussed above when discussing the THC profiles, at all photochemical exposures and 529 

for all the experiments listed in Table 1. We performed additional simulations with different 530 

emissions profiles and SOA parameterizations on one of the Idle-Diesel-None experiments to 531 

investigate uncertainties linked to the composition and SOA potential of IVOCs.  532 

4. Additional simulations were performed to examine the sensitivity of model predictions to the 533 

following processes: multi-generational aging, vapor wall losses, residence time distributions, and 534 

spatial heterogeneity in OH concentrations. 535 

The numerical codes for the VBS were developed in Matlab while those for the SOM were developed in 536 

IGOR (WaveMetrics Inc.). These codes will be made available on request. The simulations were 537 

performed on an Intel i5 processor (1.7 GHz) and required ~10 s to perform a VBS simulation and ~500 s 538 

to perform a SOM simulation at a single photochemical exposure. 539 

 540 

3. Results 541 

3.1 General Model Results Using the Base Case 542 

In Figure 1, we compare predictions of OA from the VBS and SOM models using the base case to the 543 

measurements for the Idle-Diesel-None experiment performed on June 5. Figures 1(a) and 1(b) compare 544 

predictions to the measurements in units of µg m-3 and g kg-fuel-1, respectively; hereafter we present all 545 

mass predictions in units of g kg-fuel-1. For this experiment, the VBS/SOM models over-predicted the OA 546 

mass by a factor of 1.9/2.2 at the lowest photochemical exposure (0.06 OH days) and a factor of 1.6/1.8 at 547 

the next highest photochemical exposure (0.17 OH days). The over-prediction was because the models 548 

significantly over-predicted the SOA formation at these two photochemical exposures. For higher 549 

photochemical exposures (>0.5 OH days), both models slightly under-predicted the OA mass but 550 
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predictions were still within the measurement uncertainty. Our base case seemed to offer a mixed model-566 

measurement comparison for this specific experiment (i.e., over-prediction at lower photochemical ages 567 

and a slight under-prediction at higher photochemical ages) because the 30% IVOC mass fraction used in 568 

the base case was optimized to achieve a favorable model-measurement comparison across all 569 

experiments at all photochemical exposures. In other words, the over-prediction in this experiment at 570 

lower photochemical exposures was probably offset by an under-prediction at similar photochemical 571 

exposures for some of the other experiments. It is important to note that the model performance varied 572 

across the suite of experiments and this overall model performance is discussed in more detail in Section 573 

3.3. The VBS and SOM models predicted that the OA at the maximum photochemical exposure was 574 

dominated by SOA produced from VOC and IVOC oxidation (92-93%), which agreed well with the 575 

measured composition (see Figure 1(c)). For the measurements, POA was defined as fresh OA while SOA 576 

was defined as OA formed in addition to the POA. Furthermore, both models suggested that most of the 577 

SOA emanated from the oxidation of IVOCs with only 7-14% resulting from the oxidation of aromatic 578 

VOCs and less than 0.6-4% resulting from alkane VOCs smaller than a C12. This dominance of IVOCs in 579 

explaining the photochemically produced SOA is in line with previous OFR and chamber studies that 580 

have modeled SOA formation from diesel exhaust (Tkacik et al., 2014;Zhao et al., 2015;Jathar et al., 581 

2014b). 582 

 583 

3.2 Kinetic Gas/Particle Partitioning 584 

In Figure 2, we plot predictions from the VBS and SOM models for the Idle-Diesel-None and Idle-Diesel-585 

DPF+DOC experiments assuming instantaneous and kinetic gas/particle partitioning. The two different 586 

experiments were deliberately chosen to highlight the role instantaneous partitioning plays at the 587 

extremities. We found that for the Idle-Diesel-None experiment, the use of instantaneous partitioning 588 

roughly produced the same result as kinetic partitioning with α values of 0.1 and 1 and that all these 589 

predictions resulted in roughly the same model-measurement comparison. The instantaneous partitioning 590 

predictions were slightly higher than the kinetic partitioning predictions for the VBS simulations. The 591 

kinetic partitioning simulations (except for that with an α of 0.01) produced the same result as the 592 

instantaneous partitioning simulation most likely because the initial condensational sink was large enough 593 

(1.12 min-1) in this experiment that there were no kinetic limitations to partitioning. The increase in the 594 

condensational sink through condensation of SOA (10 min-1 at the highest photochemical exposure) 595 

tended to further reduce any differences in the predictions between the kinetic and instantaneous 596 

partitioning simulations. However, for the Idle-Diesel-DPF+DOC experiment, the instantaneous 597 

partitioning simulation predicted substantial OA mass at the lower photochemical exposures (0.04 and 598 
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0.12 OH days) compared to the kinetic partitioning simulations, specifically a factor of 9.8-29 larger at 613 

0.04 OH days and a factor of 9.7-75 larger at 0.12 OH days for the VBS model and a factor of 3.9-5.8 614 

larger at 0.04 OH days and a factor of 6.4-9.1 larger for the SOM. The instantaneous partitioning 615 

simulations predicted a lot more SOA because all condensable products of organic precursor oxidation 616 

were allowed to condense instantaneously (according to their respective volatilities) while the kinetic 617 

partitioning simulations predicted little SOA production because the initial condensational sink was quite 618 

small (0.002 min-1). Predictions from the instantaneous and kinetic partitioning simulations were much 619 

closer at the higher photochemical exposures because the SOA formed had grown the condensational sink 620 

enough to reduce limitations to partitioning (1 min-1 at the highest photochemical exposure). These results 621 

imply that the condensation of SOA in OFRs, in some instances, could be kinetically-limited and that 622 

instantaneous partitioning may result in models over-predicting the condensation and formation of SOA.  623 

 624 

We make two additional observations based on the results in Figure 2. First, the initial condensational 625 

sink for the Idle-Diesel-None experiment was large (1.12 min-1) compared to condensational sinks one 626 

would encounter in the real atmosphere. For example, 5 µg m-3 of aerosol in a representative rural or 627 

remote environment will have a condensational sink <0.05 min-1 (Seinfeld and Pandis, 2006). Therefore, 628 

modeling ambient applications of the OFR or OFR use with sources that use emissions control devices 629 

will need to be even more mindful of the instantaneous partitioning assumption while predicting SOA 630 

formation. Second, for the kinetic partitioning results, predictions from both models were relatively less 631 

sensitive to α values between 0.1 and 1 but were dramatically lower for an α value of 0.01; more than a 632 

factor of 2 for the Idle-Diesel-None experiment and more than an order of magnitude for the Idle-Diesel-633 

DPF+DOC experiment. Given the low sensitivity to α values greater than 0.1 and the reasonable model-634 

measurement comparison at an α value of 0.1 and 1 at least for the Idle-Diesel-None experiment, we 635 

argue that the SOA condensation can be represented by an α value larger than 0.1 for the OFR 636 

experiments in this work. This α value for diesel exhaust SOA was consistent with prior estimates of the α 637 

value for biogenic SOA estimated from chamber, OFR, and aerosol heating experiments (Lee et al., 638 

2011;Saleh et al., 2013;Karnezi et al., 2014;Palm et al., 2016) and direct measurements of α for alkanol 639 

SOA (Krechmer et al., 2017). However, an α of 0.1 was an order of magnitude higher than that observed 640 

recently for toluene SOA under dry conditions (Zhang et al., 2014). Model results presented hereafter 641 

include a kinetic treatment of gas/particle partitioning and assumed an accommodation coefficient of 0.1. 642 

 643 

Results from model simulations performed using different initial condensational sink inputs, some of 644 

which captured the influence of new particle formation, are plotted in Figure 3. We found that the initial 645 
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condensational sink had no influence on the OA predictions from both models for the Idle-Diesel-None 666 

experiment, despite substantial differences in the initial condensational sink between the different cases. 667 

This was because the amount of SOA formed (920 µg m-3 at the highest photochemical exposure) was 668 

sufficient to grow the condensational sink enough that the initial condensational sink did not matter. In 669 

contrast, for both models we found large differences between the model predictions of OA for the Idle-670 

Diesel-DPF+DOC experiment. The use of inputs based on the measurements at no OH exposure, where 671 

the aftertreatment system significantly reduced number concentrations (910 cm-3) and hence the available 672 

condensational sink (0.002 min-1), produced much less SOA (an order of magnitude lower or more) and 673 

poorer agreement with the measurements (see curve (i) in Figure 3(b)). Initial condensational sinks that 674 

captured the influence of new particle formation resulted in higher model predictions but were still about 675 

a factor of ~2 lower for the VBS simulations and a factor of ~2.7 lower for the SOM simulations when 676 

compared against the measurements. The DPF+DOC results also suggest that calculating an initial 677 

condensational sink using data from before and after the photochemical exposure, as done by Palm et al. 678 

(2016), could be used as an input to model OFR data. Slight differences between the different curves for 679 

the Idle-Diesel-None experiment and curves (ii), (iii), and (iv) for the Idle-Diesel-DPF+DOC experiment 680 

can be attributed to the interaction of multigenerational aging and kinetic gas/particle partitioning. 681 

 682 

3.3 Influence of IVOCs on SOA Formation 683 

In Figure 4(a), we compare predictions of SOA concentrations from the SOM against measurements for 684 

all the experiments listed in Table 1 and at all photochemical exposures. For visual clarity, we do not 685 

present results from the VBS model as both models had nearly identical predictions with a few 686 

exceptions; see Figure S1 where we compare VBS model predictions to SOM predictions for all 687 

experiments at all photochemical exposures for the base case. The four panels in Figure 4(a) show model-688 

measurement comparisons assuming four different fractions of IVOCs: 0%, 13.76%,  30%, and 60%; 689 

statistical metrics of fractional bias, fractional error, and R2 for the comparison for both models are listed 690 

in Table S4 (fractional bias = ?
]

ñ`'
¢1^
a

<
;{? , fractional error =  ?

]

ñ`'
¢1^
a

<
;{? , M=predicted value, 691 

O=observed value, N=sample size). The model-measurement comparison and the model skill was very 692 

poor when no IVOCs were included (fractional bias = -109%, fractional error = 125%, and R2 = 0.52); 693 

this model reflects the treatment of diesel-powered sources in most traditional emissions inventories and 694 

large-scale models. The model-measurement comparison was reasonable with 13.76% IVOCs (fractional 695 

bias = -46%, fractional error = 101%, and R2 = 0.95) but model predictions were over-predicted with 60% 696 

IVOCs (fractional bias = 72%, fractional error = 97%, and R2 = 0.99). The optimal model performance 697 
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that produced the lowest fractional bias and fractional error was realized at an IVOC mass fraction of 30% 720 

(fractional bias= 6%, fractional error= 86%, and R2 = 0.88). For predictions with an IVOC mass fraction 721 

of 30%, 66% and 70% of the model predictions were within a factor of 1.5 and 2 of the measurements and 722 

IVOCs on average accounted for 67%/72% (VBS/SOM) of the SOA at the highest photochemical 723 

exposure across all experiments. Given the optimal performance, the base case used in this work assumed 724 

a 30% IVOC fraction. These comparisons indicate that it is critical that IVOCs be included when 725 

modeling the SOA formation from diesel exhaust and also validate the IVOC composition estimates made 726 

by Zhao et al. (2015).  727 

 728 

We further investigated the IVOC species that contributed the most to SOA formation. For an IVOC 729 

fraction of 30%, cyclic alkane IVOCs accounted for 23% of the THC emissions and on average accounted 730 

for 61%/53% (VBS/SOM) of the SOA formation across the different experiments. We should note that 731 

the speciation of cyclic alkane IVOCs in Zhao et al. (2015), while robust in quantifying the carbon 732 

number, did not include any specificity in terms of the molecular structure, i.e., their methods would not 733 

be able to distinguish between a pure C10 cyclic alkane and a cyclohexane with a 4-carbon branch. 734 

Further, the parameterizations to model SOA formation from cyclic alkane IVOCs for both models were 735 

based on the behavior of particular compounds. In the VBS model when using the high NOX 736 

parameterizations, the surrogate for a cyclic alkane IVOC was determined through equivalence with a 737 

straight alkane IVOC while in the VBS model when using the low NOX parameterizations or the SOM the 738 

cyclic alkane IVOCs were tied to parameterizations for hexylcyclohexane. (The observed SOA yield and 739 

derived SOM parameterization for hexylcyclohexane is actually quite similar to that for cyclododecane 740 

for low-NOX conditions, but not for high-NOX conditions (Cappa et al., 2013)) This lack of specificity in 741 

the speciation and the SOA parameterizations made the SOA predictions from the oxidation of cyclic 742 

alkane IVOCs relatively uncertain. To examine the sensitivity of the model predictions to uncertainties in 743 

the model treatment of cyclic alkane IVOCs, we performed simulations with both models for one of the 744 

Idle-Diesel-None experiments where the cyclic alkane IVOCs were treated as branched alkane IVOCs; 745 

results from these simulations are shown in Figure 5(a). The use of branched alkane IVOCs to model 746 

cyclic alkane IVOCs only marginally reduced OA predictions for both the VBS and SOM models, 747 

suggesting that the model predictions were not sensitive to the SOA parameterization used for cyclic 748 

alkane IVOCs. Regardless, we recommend that future work focus on a more detailed speciation of cyclic 749 

alkane IVOCs in combustion emissions as well as on chamber and OFR experiments on those speciated 750 

compounds to improve quantification of their SOA mass yields.  751 
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As there were no direct measurements of any SOA precursors in the study of Jathar et al. (2017a), we 790 

have used previously published emissions profiles for diesel exhaust to determine initial concentrations of 791 

the SOA precursors. We examined the sensitivity of model predictions to two different emissions profiles 792 

from the EPA SPECIATE (version 4.3) database: Profile #3161 (included in the base case) and Profile 793 

#8774 that represents emissions from ‘Heavy Duty Diesel Exhaust’; the speciation for both profiles is 794 

provided in Tables S2 and S3. Both profiles only included speciation for VOC emissions and in these 795 

simulations we assumed an IVOC mass fraction of 30%. The results captured in Figure 5(b) for one of the 796 

Idle-Diesel-None experiments show that the choice in the emissions profile had no influence on the OA 797 

evolution for the VBS model but had a small influence on the OA evolution for the SOM. This little to 798 

small influence was expected given that most of the SOA was formed from IVOC, rather than VOC, 799 

oxidation. This further demonstrates that IVOCs, not VOCs, play an important role in controlling the 800 

SOA formation from diesel exhaust emissions and it is important that future studies work towards better 801 

understanding the IVOC speciation.  802 

 803 

The IVOC speciation of Zhao et al. (2015) included 37 unique species, each of which required a unique 804 

surrogate to model the SOA formation from that species. Tracking these many IVOC species in an 805 

atmospheric model (e.g., global climate model) may be intractable and hence, there is a need to develop 806 

simplified parameterizations to efficiently model SOA formation from IVOCs. We note that species using 807 

the same surrogate in the VBS model (e.g., a C15 linear alkane, C17 branched alkane, and C13 cyclic alkane 808 

are all parameterized using n-pentadecane when using the high NOX parameterizations) could be lumped 809 

together to reduce the number of precursors and products tracked and that there are no penalties for a 810 

precursor type (e.g., n-alkanes) to include additional precursor and product species once a SOM grid is 811 

setup. Nonetheless, to investigate the possibility of developing a simplified parameterization, we modeled 812 

SOA from IVOCs assuming that all the IVOCs could be modeled together as a single linear C13, C15, C17 813 

or C19 alkane; a similar strategy was employed by (Jathar et al., 2014b) to model SOA formation from 814 

unspeciated organic compounds in combustion emissions. Results from these simulations are shown in 815 

Figure 5(c) for one of the Idle-Diesel-None experiments. For the VBS model, the use of a larger carbon 816 

number alkane to model IVOC SOA produced increasingly more OA, with the C19 alkane providing the 817 

best comparison against measurements. For the SOM, the use of a  C13 and C15 alkane produced good 818 

agreement with measurements with a C13 alkane slightly under-predicting the OA at 0.5 OH days and the 819 

C15 alkane slightly over-predicting the OA at lower photochemical exposures (0.06 and 0.17 OH days). It 820 

was interesting to observe that for the SOM, in contrast to the VBS, the use of different linear alkanes 821 

produced different OA masses at lower photochemical exposures but converged at the highest 822 
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photochemical exposure suggesting that the effective SOA mass yield in the SOM varied dynamically 836 

with photochemical age. Differences in the VBS and SOM predictions with different alkane 837 

parameterizations point to inherent differences in the coupled representation of multigenerational aging 838 

and gas/particle partitioning. Results from these simulations indicate that in cases where computational 839 

efficiency is demanded, the SOA formation from IVOCs in diesel exhaust could be modeled using a 840 

surrogate linear alkane, possibly a C19 linear alkane with the VBS and a C13 or C15 linear alkane for the 841 

SOM. 842 

 843 

3.4 Elemental Composition 844 

The SOM tracks both the carbon and oxygen number of the oxidation products, which allowed us to 845 

predict the O:C ratio of the OA. The O:C of the OA was calculated by combining the measured O:C of 846 

the POA with the modeled O:C of the SOA. We compare predictions of the O:C of OA from the SOM 847 

against measurements for all the experiments listed in Table 1 and at all photochemical exposures in 848 

Figure 4; statistical metrics of fractional bias, fractional error, and R2 for the comparison are listed in 849 

Table S5. Model predictions for the no IVOC case, where the O:C of the OA was dominated by the O:C 850 

of the aromatic SOA, compared well with measurements (fractional bias = -4.2%, fractional error = 28%, 851 

and R2 = 0.77). However, the poor OA mass predictions with no IVOCs suggests that the good O:C 852 

performance was purely coincidental. The 13.76%, 30%, and 60% IVOC cases under-predicted the OA 853 

O:C where the under-prediction appeared to increase as the IVOC influence increased; fractional bias = -854 

32%, fractional error = 38%, and R2 = 0.72 for the 13.76% IVOC case, fractional bias = --37%, fractional 855 

error = 42%, and R2 = 0.70 for the 30% IVOC case, and fractional bias = -60%, fractional error = -62%, 856 

and R2 = 0.46 for the 60% IVOC case. A higher IVOC fraction resulted in a lower O:C ratio because the 857 

IVOCs were primarily composed of higher carbon number species that on oxidation produced low O:C 858 

SOA compared to SOA formed from precursors such as aromatics. On average, the 30% IVOC case 859 

predicted an O:C ratio that was a factor of 1.5 lower than the measurements. For the three non-zero IVOC 860 

cases (13.76%, 30%, and 60%), the model skill in predicting the O:C was much better for the non-861 

DPF+DOC experiments (R2 = 0.82, 0.83, and 0.80 respectively) than for the DPF+DOC experiments (R2 862 

= 0.02, 0.02, and 0.29 respectively). Measurements and model predictions of the OA O:C ratio from the 863 

30% IVOC case as a function of photochemical age are presented in Figure S2.  864 

 865 

The under-prediction in O:C ratios was confounding when compared to earlier applications of the SOM 866 

and in light of the reasonable model-measurement comparison found in this work in predicting OA mass. 867 

We note that the low O:C in the 13.76%, 30%, and 60% IVOC cases stems from the dominance of 868 
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product species that have high carbon numbers and low oxygen numbers. We explored several lines of 903 

reasoning for this under-prediction. First, Cappa et al. (2013) found good agreement between the SOM-904 

predicted and observed O:C for chamber experiments conducted using individual linear, branched and 905 

cyclic C12 alkanes. Also, general predictions of the dependence of O:C on the carbon number of the parent 906 

hydrocarbon (cf. Fig. 2b in Cappa and Wilson (2012)) show good agreement with observations (cf. Fig. 907 

2a in Tkacik et al. (2012)), both in terms of absolute values and shape. This suggests that uncertainties in 908 

the SOM parameters may not be the dominant reason for the under-prediction. A possible reason for the 909 

under-prediction then is that the compounds identified by Zhao et al. (2015) as IVOCs are structurally 910 

different than the alkanes used to model them in this work. Second, the gas-phase chemistry in the OFR 911 

might be inherently different than that in a chamber. For example, kinetic limitations to gas/particle 912 

partitioning may result in gas-phase oxidation of low-volatility products having high O:C that typically 913 

would have partitioned to the particle phase in a chamber experiment but instead are fragmented (Palm et 914 

al., 2016). As to why the chamber-based SOM parameters then offer good model performance on OA 915 

mass remains unclear. One way in which this issue could be addressed in the future is by developing 916 

SOM parameters exclusively based on OFR data, as and when they become available. Third, the SOM 917 

used here did not include surface/heterogeneous and particle-phase reactions that might influence the OA 918 

composition and O:C ratio. When heterogeneous reactions of OA were included assuming an OH uptake 919 

coefficient of 1 (the product distribution from the oxidation reaction was kept the same as the gas-phase 920 

reactions), SOA production at the highest photochemical exposure for all the experiments was reduced, on 921 

average, by 7% from fragmentation reactions within the particle phase, but the O:C ratio was only 922 

marginally increased (average of 2%). 923 

 924 

To understand the O:C under-prediction better, we compared model predictions of normalized gas-phase 925 

species concentrations from the SOM to normalized gas-phase measurements made by Friedman et al. 926 

(2017) using a chemical ionization mass spectrometer (CIMS). The CIMS detects an array of oxygenated 927 

organic species and the high resolution of the time-of-flight mass spectrometer enables identification of 928 

the elemental composition of each detected peak. The CIMS data were aggregated by carbon and oxygen 929 

number to facilitate comparison with the SOM data. The comparison was performed on a normalized 930 

basis because the CIMS did not provide absolute concentrations for every detected peak. The SOM-CIMS 931 

comparisons for the Idle-Diesel-None and Load-Diesel-None experiments at the highest photochemical 932 

exposure are shown in Figure 6, which highlight four findings of note. First, the CIMS measured species 933 

larger than a carbon number of 12 that are presumably products from oxidation of higher molecular 934 

weight organic compounds, although the possibility of dimer formation in the instrument cannot be 935 
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entirely ruled out. Nonetheless, this provides additional evidence for the presence of IVOC oxidation 959 

products in diesel exhaust emissions. Second, the CIMS measured organic compounds with high O:C 960 

ratios (e.g., C6O6, C7O7). This implies that the reaction chemistry in OFRs rapidly adds functional groups 961 

to the carbon backbone, although larger, less oxidized compounds could be simultaneously functionalized 962 

and fragmented in the CIMS leading to the appearance of highly oxidized species. Third, the SOM offered 963 

a reasonable correlation against the CIMS measurements for both experiments across a majority of the 964 

carbon-oxygen combinations that spanned more than four orders of magnitude. Qualitatively, this finding 965 

validates the statistical evolution of organic compounds tracked through the generalized SOM 966 

mechanism, although certainly some differences are evident. Finally, for the mid-carbon number species 967 

(~C10), the SOM seemed to produce higher fractions of species with low oxygen numbers (O0 to O3) but 968 

lower fractions of species with high oxygen numbers (O5 to O7). This under-prediction of the high oxygen 969 

number species might potentially explain why the SOM may be under-predicting the OA O:C ratio. The 970 

SOM-CIMS comparison is preliminary and we intend to explore the implications of this comparison in 971 

future work. 972 

 973 

3.5 Other Model Sensitivities 974 

We performed sensitivity analyses to examine the influence of other key processes on predictions from 975 

both the VBS and SOM models. When examining the sensitivity to each process, all the other inputs were 976 

kept the same as those listed in the base case. We only present sensitivity results for the Idle-Diesel-None 977 

experiment performed on June 5, as the results for this experiment were generally representative of all 978 

experiments (Figure 7). For completeness, we performed simulations for all the experiments at the highest 979 

photochemical exposure since each of the processes explored below manifested the strongest response at 980 

the highest photochemical exposure. The results from these simulations are presented as a change in the 981 

model predictions relative to that offered by the base case.  982 

  983 

Multi-generational Aging. One of the key differences between the VBS and the SOM models is how they 984 

represent the multi-generational aging of gas-phase products. SOA parameters for the VBS model 985 

represent stable product distributions at the end of the chamber experiments and therefore already include 986 

the influence of multi-generational aging reactions encountered during the chamber experiment. 987 

Additional multi-generational aging in the VBS model, based on the scheme of Robinson et al. (2007), is 988 

simulated as a continuous decrease in product volatility, which does not account for fragmentation 989 

reactions and has not been constrained against experiments. The SOM framework explicitly models multi-990 

generational aging that includes treatment of fragmentation reactions and constrains the aging reactions 991 
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based on the chamber experiments to an extent that is determined by the length (in OH exposure space) of 999 

the experiment. To test the influence of multi-generational aging, we performed model simulations with 1000 

aging turned off for the VBS and SOM models and plot the results in Figure 7(a). We found that aging 1001 

had a small influence (~18% reduction in OA mass) on model predictions from the VBS model, most 1002 

likely because the high SOA and OA mass concentrations resulted in a substantial fraction of the organic 1003 

species to be partitioned to the particle phase. This left very little of the organic species in the gas-phase to 1004 

participate in multi-generational aging. We calculated that less than 20% by mass of the product species 1005 

in this experiment was in the gas-phase at the OA mass concentration at the highest photochemical 1006 

exposure, implying that the SOA mass yields at these OA mass concentrations were rapidly approaching 1007 

100%. In contrast, the absence of aging resulted in a 43% decrease in the OA mass for the SOM. The 1008 

decrease was mainly because the first generation oxidation product with the highest yield (i.e., CxO1) was 1009 

too volatile to partition to the particle phase and needed to be aged further to form condensable products. 1010 

As noted earlier, the term aging is defined differently for the VBS and SOM models and the results 1011 

presented here need to take the definitional issues into account when examining the influence of aging. 1012 

Compared to the base case, no aging resulted in an average decrease of 4% and 30% in OA mass for the 1013 

VBS and SOM models respectively for all experiments at the highest photochemical exposure. These 1014 

simulations suggest that aging of the oxidation products, at least for the SOM, is as important as the 1015 

contribution of first generation products to SOA formation. 1016 

  1017 

Vapor Wall Losses. Prior work has highlighted the influence vapor wall losses exert on the calculation of 1018 

SOA mass yields from chamber experiments (Zhang et al., 2014;Krechmer et al., 2016). Cappa et al. 1019 

(2016), based on the chamber work of Zhang et al. (2014), recently published parameter sets for the SOM 1020 

that accounted for no vapor wall losses and two different vapor wall loss rates (1×10-4 and 2.5×10-4 s-1) 1021 

assuming an equivalent OA mass of the chamber walls of 10 mg m-3 (the base case used the parameter 1022 

sets for a vapor wall loss rate of 2.5×10-4 s-1). We performed model simulations with SOM using 1023 

parameters that were either not corrected for vapor wall losses or that were corrected for vapor wall losses 1024 

using either the low (1×10-4) or high (2.5×10-4) estimates proposed by Cappa et al. (2016). The results 1025 

plotted in Figure 7(b) show that correcting for vapor wall losses significantly increased model predicted 1026 

OA mass (by 73% and 112% for the low wall loss and high wall loss cases respectively at the highest 1027 

photochemical exposure when compared to the no wall loss case) and provided the best performance for 1028 

the high estimate for vapor wall losses. Across all experiments and at the highest photochemical exposure, 1029 

accounting for vapor wall losses using the high estimate resulted in an average increase of 39% over no 1030 

accounting for vapor wall losses. These comparisons suggest that it is important to use SOA 1031 
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parameterizations in which vapor wall losses in chambers have been accounted for when interpreting 1047 

SOA experiments. Furthermore, we also simulated the influence of vapor losses to the OFR walls on 1048 

model predictions. We assumed reversible uptake of vapors to the walls and used a vapor wall loss rate of 1049 

2.5 ×10-3 s-1 (factor of ~10 larger than that for a chamber) based on the work of Palm et al. (2016) and an 1050 

equivalent OA mass concentration of 10 mg m-3 for the OFR walls. The results plotted in Figure 7(b) 1051 

show that the loss of vapors to the OFR walls had a small influence on model predictions: a 6.5% 1052 

decrease for this experiment and an average decrease of 11% across all experiments at the highest 1053 

photochemical exposure. Increasing the equivalent OA mass concentration for the OFR walls to 100 and 1054 

1000 mg m-3 seemed to have no influence on model predictions. These findings imply that vapor wall 1055 

losses in the presence of sufficient seed aerosol might not be of concern for OFRs (Lambe et al., 2015). 1056 

 1057 

Residence Time Distributions. Model simulations performed in this work assumed that the OFR operated 1058 

as a plug flow reactor with a constant residence time. Experimental studies by Lambe et al. (2011) and 1059 

fluid dynamics simulations by Ortega et al. (2016) have shown that OFRs, particularly like the one used 1060 

in this work, exhibit heterogeneity in residence times. We performed simulations to explore the sensitivity 1061 

of varying residence times on model predictions. These simulations were performed based on a 1062 

discretized version of the residence time distribution measured by Lambe et al. (2011) for SO2 that 1063 

yielded an average residence time of 100 seconds (same as that used by Jathar et al. (2017a)). The 1064 

discretized version included six parcels with volume fractions of 0.23, 0.36, 0.24, 0.11, 0.05, and 0.01 1065 

with residence times of 45, 65, 100, 200, 300, and 500 seconds respectively. Each parcel experienced the 1066 

same OH concentration but the varying residence times resulted in different OH exposures for each 1067 

parcel. The parcels were combined after photochemical exposure without repartitioning the OA between 1068 

the six parcels. Similar to the findings of Peng et al. (2015) for calculating OH exposure, our results in 1069 

Figure 7(c) show that using a residence time distribution had very little influence on the OA mass 1070 

evolution compared to use of an effective average time. Compared to the base case, the residence time 1071 

distribution resulted in an average decrease of 3% and 5% in OA mass for the VBS and SOM models 1072 

respectively for all experiments at the highest photochemical exposure.  1073 

 1074 

Spatial Heterogeneity in OH. In addition to the influence exerted by a distribution of residence times, 1075 

spatial heterogeneity in the gas-phase chemistry inside the OFR (e.g., from radial variation in light 1076 

intensity) could lead to spatial heterogeneity in OH concentrations and result in a distribution of OH 1077 

exposures for the sample being aged. We performed simulations to explore the sensitivity of a varying 1078 

OH exposure on model predictions. These simulations were performed where we split the sample coming 1079 
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into the OFR into two parcels and treated the parcels to different OH exposures. Each experiment was 1086 

repeated for all combinations (six total) of three different parcel splits (¼-¾, ⅓-⅔, ½-½) and two different 1087 

OH exposure splits (⅓-X, ⅔-X); X was determined by conserving the total OH exposure reported by 1088 

Jathar et al. (2017a). For instance, the first simulation was performed by splitting the OFR air parcel into 1089 

¼ and ¾ fractions by volume and exposing the ¼ volume to ⅓ the OH exposure. The parcels were 1090 

combined after photochemical exposure without repartitioning the OA between the two parcels. The 1091 

results in Figure 7(d) show that the simulated spatial heterogeneity always reduced the OA mass although 1092 

the maximum reduction (13% for the VBS and 14% for the SOM models) at the highest photochemical 1093 

exposure was within the measurement uncertainty at least for the SOM. Compared to the base case, the 1094 

spatial heterogeneity in OH resulted in a maximum decrease of 13% and 15% in OA mass for the VBS 1095 

and SOM models respectively for all experiments at the highest photochemical exposure. 1096 

  1097 

4. Summary and Discussion 1098 

Recently, Jathar et al. (2017a) reported on experiments performed using the oxidation flow reactor (OFR) 1099 

to measure the photochemical production of secondary organic aerosol (SOA) from diesel exhaust under 1100 

varying engine loads, fuel types, and aftertreatment systems. These data present an opportunity to not only 1101 

test SOA models but also use these models to interpret OFR data and determine their relevance for the 1102 

real atmosphere. In this work, we applied two different SOA model frameworks (VBS and SOM) to 1103 

simulate the photochemical production of SOA in an OFR from diesel exhaust and evaluated those model 1104 

frameworks using the data from Jathar et al. (2017a). The volatility basis set (VBS) model is a 1105 

parameterized model that allows for a volatility-based representation of OA while the statistical oxidation 1106 

model (SOM) is a semi-explicit parameterized model that uses a carbon-oxygen grid to track OA. Both 1107 

simulated the coupled chemistry, thermodynamic properties, and gas/particle partitioning of OA and 1108 

accounted for: (i) semi-volatile and reactive emissions of primary organic aerosol (POA), (ii) SOA 1109 

production from IVOCs and VOCs, (iii) multi-generational aging, and (iv) kinetic gas/particle 1110 

partitioning. 1111 

 1112 

Model predictions suggest that the instantaneous gas/particle partitioning assumption may over-predict 1113 

SOA formation in OFRs when the initial condensational sinks are low and the condensation of SOA is 1114 

likely kinetically limited. Hence, SOA formation in OFRs needs to be modeled/interpreted through an 1115 

explicit treatment of kinetic gas/particle partitioning. Differences in model predictions between 1116 

instantaneous and kinetic partitioning will depend on the rate at which condensable SOA mass is 1117 

produced in the OFR (depends on the initial precursor concentrations and photochemical exposure), 1118 

Deleted: 21119 
Deleted: 51120 
Deleted: well 1121 
Deleted: 21122 
Deleted: 141123 

Deleted: emissions control1124 



 
 
 
 

27 

residence time in the OFR, properties of the condensing species (e.g., diffusion coefficient, molecular 1125 

weight), and parameters relevant for partitioning (e.g., accommodation coefficient, seed aerosol surface 1126 

area). To explore the relative importance of instantaneous and kinetically-limited partitioning in an OFR, 1127 

we used the SOM to simulate SOA formation from diluted diesel exhaust using instantaneous and kinetic 1128 

partitioning assumptions for varying amounts of SOA formed (1-10000 µg m-3) and initial condensational 1129 

sinks (0.001-10 min-1). These simulations were similar to the calculations performed by Palm et al. (2017) 1130 

where they calculated timescales and losses of condensable SOA vapors to the OFR walls and sampling 1131 

lines and reaction with OH. The calculations were performed for two different initial particle sizes (10 1132 

and 100 nm) since the condensation of SOA mass would grow the initial condensational sink for the two 1133 

particles at different rates, i.e. for the same starting initial condensational sink, smaller particles would 1134 

experience quicker growth in the condensational sink compared to larger particles for the same amount of 1135 

condensing mass. The calculations were also performed for two different residence times – 2 and 4 1136 

minutes – to span the residence time range used in typical applications of the OFR. We assumed an 1137 

accommodation coefficient of 0.1. The results plotted in Figure 8 show the ratio of SOA predicted 1138 

through kinetic partitioning to that predicted through instantaneous partitioning as a function of the initial 1139 

condensational sink and the SOA formed under an instantaneous partitioning assumption. Across the four 1140 

scenarios explored (two initial particle sizes and two residence times), the SOA formation predicted under 1141 

the kinetic partitioning assumption was an order of magnitude or more lower than that predicted under the 1142 

instantaneous partitioning assumption over a large portion of the input range explored, e.g., when the 1143 

initial condensational sink was smaller than ~0.1 min-1 and the maximum SOA formed was lower than 1144 

~100 µg m-3 for the 10 nm simulations and lower than ~1000 µg m-3 for the 100 nm simulations. We also 1145 

found that the SOA formation in the OFR was kinetically-limited under typical ambient conditions. The 1146 

SOA formation predicted under the kinetic partitioning assumption approached the SOA formed under the 1147 

instantaneous partitioning assumption either when the initial condensational sink was very large (>5 min-1148 
1) or when a large amount of condensable SOA was produced in the OFR (>=1000 µg m-3 for the 10 nm 1149 

particles and >>10000 µg m-3 for the 100 nm particles). Our finding implies that ambient applications of 1150 

the OFR, where initial condensational sinks are typically smaller (~0.005-0.5 min-1) and the maximum 1151 

SOA produced is typically less than 40 µg m-3, will only produce a small fraction (0-30%) of the intended 1152 

SOA. Furthermore, our simulations suggested that a smaller initial particle size (i.e., 10 nm) for the same 1153 

initial condensational sink and a longer OFR residence time (i.e., 4 min) may not necessarily help produce 1154 

the intended SOA under ambient conditions. Although these simulation results need to be verified 1155 

experimentally, they do suggest that it might be challenging to operate the OFR in conditions where 1156 

instantaneous or atmospherically-relevant partitioning is applicable, further complicating the coupled 1157 
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atmospheric simulation of chemistry and thermodynamics in OFRs.  1177 

 1178 

Upon including IVOCs as SOA precursors, both the VBS and SOM models were able to reasonably 1179 

predict the OA mass evolution reported by Jathar et al. (2017a) across different engine loads, fuel types, 1180 

and aftertreatment systems. Model predictions suggest that 30% of the unburned hydrocarbon emissions 1181 

are likely IVOCs and that these IVOCs (regardless of the emissions profiles used to determine non-IVOC 1182 

emissions) account for most (average of 70%) of the SOA formed from diesel exhaust. These findings are 1183 

consistent with prior work from chamber experiments (Jathar et al., 2014b) and modeling studies (Zhao et 1184 

al., 2015). Simulations performed using single surrogates suggest that the complex mixture of IVOCs in 1185 

diesel exhaust could be well represented using a linear C13 or C15 alkane for the SOM but might need a 1186 

larger surrogate such as a C19 alkane for the VBS model. The need for a different surrogate species to 1187 

model IVOC SOA between the SOM and VBS models most likely arises from differences in the coupled 1188 

treatment of the oxidation chemistry and gas/particle partitioning in the OFR. The use of surrogates offers 1189 

a computationally-efficient strategy to model SOA formation from IVOCs in large-scale three-1190 

dimensional models. The SOM tracks the carbon and oxygen numbers of the oxidation products and 1191 

hence model predictions were used to calculate atomic O:C ratios for OA, which were then compared to 1192 

measurements. While the inclusion of IVOCs allowed for good model-measurement comparisons on OA 1193 

mass, the SOM under-predicted the O:C ratio of OA by a factor of 1.5, possibly highlighting the 1194 

limitations in modeling the IVOCs as alkanes and/or extrapolating chamber-based parameterizations to 1195 

OFR experiments. Model predictions of the gas-phase organic species compared favorably to those 1196 

measured using a chemical ionization mass spectrometer (CIMS), which qualitatively validates the 1197 

statistical evolution of organic compounds tracked through the generalized SOM mechanism. 1198 

 1199 

As OFRs are increasingly used to study SOA formation and evolution in laboratory and field 1200 

environments, there is a need to develop models that can be used to interpret OFR data. This work 1201 

suggests that multi-generational aging (in case of the VBS model), residence time distributions, and 1202 

spatial heterogeneity in OH concentrations produced sensitivities that were well within the measurement 1203 

uncertainty and were not a concern for the model system studied. However, model predictions did appear 1204 

to be more sensitive to multi-generational aging (in case of the SOM) and influence of vapor wall losses, 1205 

highlighting that these processes be included in OFR models. While the conclusions from this work may 1206 

be relevant for other laboratory and ambient studies, their relative importance may vary. There are several 1207 

instances where the model development was insufficient and will likely be addressed in future work. For 1208 

example, the model could benefit from the use of a polydisperse size distribution to treat new particle 1209 
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formation and growth and improve predictions of the evolution of the aerosol size distribution. Similarly, 1222 

the model needs to be rigorously tested against other laboratory (e.g., Lambe et al. (2012)) and ambient 1223 

(e.g., Palm et al. (2016)) OFR data. 1224 
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7 Tables 1425 

 1426 
Table 1: Primary emissions of THC and POA, maximum photochemical production of SOA, maximum O:C of the OA, maximum OH exposure, 1427 
and size distribution data from Jathar et al. (2017a).  1428 
Load-Fuel-
Aftertreatment 
Experiment 

Date 
THC 

(µg m-

3) 

CO 
(ppbv) 

NO 
(ppbv) 

NO2 
(ppbv) 

POA 
(µg m-3) 

SOA% 

(µg m-3) O: C% 
OH Exposure% 
(molec.-hr cm-

3) 

Number 
Mean Dia.* 

(nm) 

Number 
Conc.* (# cm-3) 

Idle-Diesel-None 
June 3 
June 5 

June 12 

1519 
1810 
2554 

2746 
5809 
9664 

960 
878 

1870 

318 
502 

1103 

38±15 
35±11 
85±17 

209±66 
875±288 
877±277 

0.23±0.01 
0.46±0.07 
0.57±0.09 

2.1×107 

6.67×107 

3.61×107 
46 

8.0×105 
6.5×105 
3.4×105 

Idle-Biodiesel-None June 4 
June 8 

1118 
2160 

4270 
8169 

867 
1578 

344 
811 

22±12 
69±20 

999±316 
1415±468 

0.52±0.07 
0.36±0.03 

9.17×107 

4.72×107 46@ 7.3×105@ 
4.1×105@ 

Load-Diesel-None June 3 
June 5 

959 
711 

1558 
1400 

4999 
6690 

379 
34 

19±11 
37±13 

181±58 
253±100 

0.37±0.01 
0.32±0.04 

3.6×107 

2.61×107 190 5.3×105 
4.4×105 

Load- Biodiesel-None June 4 
June 8 

1634 
518 

1410 
2051 

6364 
10813 

30 
496 

29±18 
46±22 

645±204 
284±106 

0.38±0.05 
0.30±0.04 

2.78×107 

1.42×107 190@ 5.0×105@ 
3.3×105@ 

Idle-Diesel-DPF+DOC June 9 2135 7473 2383 23 1.5±0.6 1040±335 0.37±0.02 5×107 52 910 
Load-Diesel-DPF+DOC June 9 303 85 6157 4483 1.6±3.6 146±48 0.29±0.01 1.31×107 57 968 
Idle-Biodiesel-
DPF+DOC June 10 1773 7452 2213 182 2.6±1 787±250 0.44±0.04 5.28×107 52@ 910@ 

Load-Biodiesel-
DPF+DOC June 10 261 58 5475 4525 2±0.14 107±9 0.29±0.01 1.39×107 57@ 968@ 

DPF=diesel particulate filter, DOC=diesel oxidation catalyst 1429 
%maximum values measured in each experiment 1430 
*values measured at no OH exposure 1431 
@No data, assumed to be similar to the equivalent diesel experiment for the model  1432 
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Table 2: SOA precursors and mass yields used in the VBS model for high NOX conditions. 1436 

Species log10C* 
Reference 0.1 1 10 100 1000 

toluene 0.0000 0.0100 0.2400 0.4500 0.7000 Hildebrandt et al. (2009) 
benzene 0.0392 0.0315 0.0000 0.8230 0.0957 Ng et al. (2007)# 

m-xylene 0.0032 0.0106 0.0633 0.0465 0.0000 Ng et al. (2007)# 
p-xylene 0.0000 0.0022 0.0764 0.0000 0.0000 Song et al. (2007)# 
o-xylene 0.0000 0.0132 0.1140 0.0000 0.0000 Song et al. (2007)# 
naphthalene 0.0000 0.1660 0.0000 0.5400 0.8130 Chan et al. (2009)# 
1-methylnaphthalene 0.0000 0.0170 0.4860 0.0000 0.0000 Chan et al. (2009)# 
2-methylnaphthalene 0.0000 0.0531 0.5040 0.0000 0.0000 Chan et al. (2009)# 
1,2-dimethylnaphthalene 0.0000 0.3100 0.0000 0.0000 0.0000 Chan et al. (2009)# 
1-methyl-3-n-propylbenzene 0.0000 0.0000 0.0405 0.0694 0.1140 Odum et al. (1996)# 
n-decane 0.0000 0.0000 0.0110 0.1280 0.2420 Presto et al. (2010)& 

n-undecane 0.0000 0.0040 0.0720 0.1760 0.1450 Presto et al. (2010)& 

n-dodecane 0.0000 0.0140 0.1100 0.1600 0.0000 Presto et al. (2010)& 
n-tridecane 0.0140 0.0590 0.0940 0.0710 0.0000 Presto et al. (2010)& 
n-tetradecane 0.0940 0.3000 0.3500 0.0000 0.0000 Presto et al. (2010)& 
n-pentadecane 0.0440 0.0710 0.4100 0.3000 0.0000 Presto et al. (2010)& 
n-hexadecane 0.0530 0.0830 0.4600 0.2500 0.0000 Presto et al. (2010)& 
n-heptadecane 0.0630 0.0890 0.5500 0.2000 0.0000 Presto et al. (2010)& 
n-octadecane 0.0760 0.3195 0.3750 0.1000 0.0000 Presto et al. (2010)& 
n-nonadecane 0.0890 0.5500 0.2000 0.0000 0.0000 Presto et al. (2010)& 
n-eicosane 0.3195 0.3750 0.1000 0.0000 0.0000 Presto et al. (2010)& 
n-heneicosane 0.5500 0.2000 0.0000 0.0000 0.0000 Presto et al. (2010)& 
n-docosane 0.3750 0.1000 0.0000 0.0000 0.0000 Presto et al. (2010)& 
&extrapolated from the Presto et al. (2010) data  1437 
#do not account for vapor wall losses 1438 
 1439 
Table 3: SOA precursors and mass yields used in the VBS model for low NOX conditions. 1440 

Species C* 
Reference 0.1 1 10 100 1000 

toluene 0.0000 0.0100 0.2400 0.7000 0.7000 Hildebrandt et al. (2009) 

benzene 0.0000 0.0000 0.0000 0.3700 0.0000 Ng et al. (2007)# 

m-xylene 0.0000 0.0000 0.0000 0.0310 0.0000 Ng et al. (2007)# 
p-xylene 0.0000 0.0000 0.0000 0.0310 0.0000 Ng et al. (2007)# 
o-xylene 0.0000 0.0000 0.0000 0.0310 0.0000 Ng et al. (2007)# 

naphthalene 0.0000 0.1565 0.0000 0.1199 0.2708 Chan et al. (2009)# 
1-methylnaphthalene 0.0000 0.1565 0.0000 0.1199 0.2708 Chan et al. (2009) # 
2-methylnaphthalene 0.0000 0.1565 0.0000 0.1199 0.2708 Chan et al. (2009) # 

n-decane 0.0002 0.0050 0.0013 0.3938 0.0278 Loza et al. (2014)& 

n-undecane 0.0001 0.0070 0.0216 0.3321 0.0000 Loza et al. (2014) & 

n-dodecane 0.0011 0.0080 0.0279 0.3902 0.0003 Loza et al. (2014)& 
n-tridecane 0.0029 0.0064 0.0551 0.3231 0.7090 Loza et al. (2014)& 

n-tetradecane 0.0004 1.2000 0.1777 0.0194 0.0014 Loza et al. (2014)& 
n-pentadecane 0.0032 0.0124 0.0686 0.5050 0.0025 Loza et al. (2014)& 
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n-hexadecane 0.0000 0.0572 0.2754 0.4346 0.1710 Loza et al. (2014)& 
n-heptadecane 0.0399 0.0757 0.4409 0.3691 0.0000 Loza et al. (2014)& 
n-octadecane 0.1958 0.0203 0.7077 0.0777 0.0000 Loza et al. (2014)& 
n-nonadecane 1.0281 0.0000 0.0000 0.0000 0.0000 Loza et al. (2014)& 

n-eicosane 0.0024 0.8470 0.2160 0.0000 0.0000 Loza et al. (2014)& 
n-heneicosane 0.3629 0.6766 0.0250 0.0000 0.0000 Loza et al. (2014)& 

n-docosane 0.7991 0.2633 0.0000 0.0000 0.0000 Loza et al. (2014)& 
C12 branched alkane 0.0077 0.0015 0.0416 0.2486 0.9179 Loza et al. (2014)& 
C13 branched alkane 0.0105 0.0007 0.0610 0.2376 1.2045 Loza et al. (2014)& 
C14 branched alkane 0.0135 0.0007 0.0819 0.4173 0.4879 Loza et al. (2014)& 
C15 branched alkane 0.0156 0.0034 0.1677 0.3553 0.7973 Loza et al. (2014)& 
C16 branched alkane 0.0075 0.0704 0.1689 0.5741 0.0000 Loza et al. (2014)& 
C17 branched alkane 0.0510 0.0000 0.4527 0.4605 0.0000 Loza et al. (2014)& 
C18 branched alkane 0.0836 0.0001 0.7962 0.1484 0.0000 Loza et al. (2014)& 
C19 branched alkane 0.3151 0.0001 0.7470 0.0000 0.0000 Loza et al. (2014)& 
C20 branched alkane 0.0198 0.8698 0.1725 0.0000 0.0000 Loza et al. (2014)& 
C21 branched alkane 0.3753 0.6837 0.0000 0.0000 0.0000 Loza et al. (2014)& 
C22 branched alkane 0.8517 0.2056 0.0000 0.0000 0.0000 Loza et al. (2014)& 

C12 cyclic alkane 0.0128 0.0302 0.0124 0.6156 0.0043 Loza et al. (2014)& 
C13 cyclic alkane 0.0297 0.0000 0.0939 0.4062 1.0776 Loza et al. (2014)& 
C14 cyclic alkane 0.0322 0.0000 0.1521 0.5341 0.5717 Loza et al. (2014)& 
C15 cyclic alkane 0.0345 0.0000 0.3430 0.3231 0.8672 Loza et al. (2014)& 
C16 cyclic alkane 0.0147 0.1426 0.3616 0.2839 0.6597 Loza et al. (2014)& 
C17 cyclic alkane 0.0574 0.2408 0.3453 0.4060 0.0000 Loza et al. (2014)& 
C18 cyclic alkane 0.2546 0.0643 0.6091 0.1431 0.0000 Loza et al. (2014)& 
C19 cyclic alkane 0.2940 0.2790 0.5010 0.0000 0.0000 Loza et al. (2014)& 
C20 cyclic alkane 0.3423 0.5700 0.1653 0.0000 0.0000 Loza et al. (2014)& 
C21 cyclic alkane 0.6100 0.4478 0.0155 0.0000 0.0000 Loza et al. (2014)& 
C22 cyclic alkane 0.9573 0.1110 0.0013 0.0000 0.0000 Loza et al. (2014)& 

&produced from pseudo chamber data generated using the SOM 1482 
#do not account for vapor wall losses 1483 
 1484 
Table 4: SOA precursors and parameters used in the SOM (Cappa et al., 2016) for high NOX conditions. 1485 
Species mfrag ΔLVP pO,1 pO,2 pO,3 pO,4 Reference 
n-dodecane 0.0980 1.3900 0.9270 0.0101 0.0180 0.0445 Loza et al. (2014) 
methylundecane 0.0100 1.2100 0.7419 0.0011 0.1820 0.0750 Loza et al. (2014) 
hexylcyclohexane 0.0477 1.5700 0.7313 0.0381 0.2101 0.0205 Loza et al. (2014) 
toluene 0.2220 1.2400 0.0029 0.0010 0.0010 1.0100 Zhang et al. (2014) 
benzene 0.5350 1.7000 0.0792 0.0010 0.9190 0.0010 Ng et al. (2007) 
m-xylene 0.0100 1.6800 0.9360 0.0010 0.0021 0.0609 Ng et al. (2007) 
naphthalene 0.1210 1.3100 0.6440 0.0010 0.0460 0.3080  Chan et al. (2009) 
 1486 
Table 5: SOA precursors and parameters used in the SOM (Cappa et al., 2016) for low NOX conditions. 1487 
Species mfrag ΔLVP pO,1 pO,2 pO,3 pO,4 Reference 
n-dodecane 2.0000 1.8300 0.9990 0.0010 0.0010 0.0010 Loza et al. (2014) 
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methylundecane 2.8200 1.9100 0.9980 0.0010 0.0010 0.0010 Loza et al. (2014) 
hexylcyclohexane 5.0000 2.0500 0.8160 0.1810 0.0019 0.0010 Loza et al. (2014) 
toluene 1.3100 1.7700 0.1850 0.0010 0.0019 0.8120 Zhang et al. (2014) 
benzene 0.0807 1.9700 0.6370 0.0010 0.0021 0.3600 Ng et al. (2007) 
m-xylene 1.0800 2.0500 0.1020 0.0010 0.8780 0.0190 Ng et al. (2007) 
naphthalene 0.1890 1.8700 0.3520 0.0543 0.5330 0.0609 Chan et al. (2009) 
 1523 
 1524 
Table 6: (a) Volatility- and (b) carbon-number resolved distributions used to determine mass 1525 
concentrations of POC in the VBS and SOM models respectively. The volatility distributions are from 1526 
(May et al., 2013b)..  1527 
C* (µg m-3) 10-2 10-1 101 102 103 104 105 106 

fi 0.03 0.25 0.37 0.23 0.06 0.03 0.01 0.01 
 1528 
Carbon 
No. <16 16 17 18 19 20 21 22 23 24 25 26 >26 

fi 0.003 0.000 0.058 0.043 0.055 0.094 0.146 0.181 0.178 0.137 0.078 0.026 0.001 
  1529 
Table 7: Reaction rate constants (kOH), mass fractions, and VBS and SOM surrogates for SOA precursors 1530 
in diesel and biodiesel emissions. kOH values are from Atkinson and Arey (2003) when available or the 1531 
EPI Suite version 4.11 (EPA, 2017). 1532 

Species Carbon 
Number 

kOH (cm3 

molecules-1 
s-1) 

Mass Percentage of THC VBS 
Surrogate SOM Surrogate Diesel Biodiesel 

ethylbenzene 8 7.0×10&'( 0.2516 0.0826 toluene toluene 
indan 9 1.9×10&'' 0.1542 NA naphthalene naphthalene 
butylbenzene 10 4.5×10&'( 0.0081 0.4720 m-xylene m-xylene 
diethylbenzene 10 8.11×10&'( 0.0731 NA m-xylene m-xylene 
isopropyltoluene 10 8.54×10&'( NA 0.3599 toluene toluene 
m-xylene 8 2.31×10&'' 0.4951 0.3717 m-xylene m-xylene 
o-xylene 8 1.36×10&'' 0.2760 0.3953 o-xylene m-xylene 
p-xylene 8 1.43×10&'' 0.0812 NA p-xylene m-xylene 
n-decane 10 1.1×10&'' 0.4302 1.7050 n-decane n-decane 
n-undecane 11 1.23×10&'' 0.2110 1.9410 n-undecane n-dodecane 
toluene 7 5.63×10&'( 1.1932 1.6401 toluene toluene 
n-tridecane 13 1.68×10&'' NA 0.6136 n-tridecane n-dodecane 
benzaldehyde 7 1.2×10&'' 0.5682 NA benzene benzene 

benzene 6 1.22×10&'( 1.6234 1.5988 
 benzene benzene 

C10 aromatics 10 2.3×10&'' 0.0649 NA m-xylene m-xylene 
C9 aromatics 9 2.31×10&'' 0.4058 NA m-xylene m-xylene 
1,2,3-
trimethylbenzene 9 3.27×10&'' 0.0974 NA m-xylene m-xylene 

1,2,4-
trimethylbenzene 9 3.25×10&'' 0.4302 0.4720 m-xylene m-xylene 
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1,2-diethylbenzene 10 8.11×10&'( 0.0731 NA toluene toluene 
1,3,5-
trimethylbenzene 9 5.67×10&'' NA 0.1888 m-xylene m-xylene 

1,2-dimethyl-4-
ethylbenzene 10 1.69×10&'' NA 0.176 m-xylene m-xylene 

1,3-dimethyl-2-
ethylbenzene 10 1.76×10&'' NA 0.3304 m-xylene m-xylene 

1,4-dimethyl-2-
ethylbenzene 10 1.69×10&'' NA 0.4366 m-xylene m-xylene 

1-(1,1-
dimethylethyl)-3,5-
dimethylbenzene 

12 3.01×10&'' NA 0.3717 m-xylene m-xylene 

1-methyl-2-
ethylbenzene 9 7.44×10&'( 0.1136 0.3835 toluene toluene 

1-methyl-3-
ethylbenzene 9 1.39×10&'' 0.2029 0.7198 toluene toluene 

1-methyl-2-tert-
butylbenzene 11 6.74×10&'( NA 0.4307 toluene toluene 

1-tert-butyl-4-
ethylbenzene 12 7.42×10&'( NA 0.1947 m-xylene m-xylene 

2-methyl-butyl-
benzene 11 1.02×10&'' NA 1.1032 m-xylene m-xylene 

3,3-dimethyloctane 10 7.21×10&'( NA 0.3068 n-decane methylundecane 
3-ethyloctane 10 1.18×10&'' NA 0.1888 n-decane methylundecane 
3-methylnonane 10 1.14×10&'' NA 0.2655 n-decane methylundecane 
C12 branched alkane 12 1.82×10&'' 1.1335 1.1335 n-decane methylundecane 
C13 branched alkane 13 1.68×10&'' 0.8111 0.8111 n-undecane methylundecane 
C14 branched alkane 14 1.39×10&'' 0.5257 0.5257 n-dodecane methylundecane 
C15 branched alkane 15 1.82×10&'' 0.4692 0.4692 n-tridecane methylundecane 

C16 branched alkane 16 1.96×10&'' 0.4935 0.4935 n-
tetradecane methylundecane 

C17 branched alkane 17 2.1×10&'' 0.2198 0.2198 n-
pentadecane methylundecane 

C18 branched alkane 18 2.24×10&'' 0.2863 0.2863 n-
hexadecane methylundecane 

C19 branched alkane 19 2.38×10&'' 0.1716 0.1716 n-
heptadecane methylundecane 

C20 branched alkane 20 2.52×10&'' 0.0969 0.0969 n-octadecane methylundecane 

C21 branched alkane 21 2.67×10&'' 0.0639 0.0639 n-
nonadecane methylundecane 

C22 branched alkane 22 2.81×10&'' 0.0604 0.0604 n-eicosane methylundecane 

C12 cyclic alkane 12 1.82×10&'' 4.3427 4.3427 n-
tetradecane hexylcyclohexane 

C13 cyclic alkane 13 1.68×10&'' 4.4265 4.4265 n-
pentadecane hexylcyclohexane 

C14 cyclic alkane 14 1.39×10&'' 3.1480 3.1480 n- hexylcyclohexane 
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hexadecane 

C15 cyclic alkane 15 1.82×10&'' 2.8599 2.8599 n-
heptadecane hexylcyclohexane 

C16 cyclic alkane 16 1.96×10&'' 2.1848 2.1848 n-
octatadecane hexylcyclohexane 

C17 cyclic alkane 17 2.1×10&'' 1.8546 1.8546 n-
nonadecane hexylcyclohexane 

C18 cyclic alkane 18 2.24×10&'' 1.6900 1.6900 n-eicosane hexylcyclohexane 

C19 cyclic alkane 19 2.38×10&'' 1.0570 1.0570 n-
heneicosane hexylcyclohexane 

C20 cyclic alkane 20 2.52×10&'' 0.5900 0.5900 n-docosane hexylcyclohexane 
C21 cyclic alkane 21 2.67×10&'' 0.3736 0.3736 n-tricosane hexylcyclohexane 
C22 cyclic alkane 22 2.81×10&'' 0.3141 0.3141 n-tricosane hexylcyclohexane 
dodecane 12 1.82×10&'' 0.5830 0.5830 n-dodecane n-dodecane 
tridecane 13 1.68×10&'' 0.5465 0.5465 n-tridecane n-dodecane 

tetradecane 14 1.39×10&'' 0.3649 0.3649 n-
tetradecane n-dodecane 

pentadecane 15 1.82×10&'' 0.3063 0.3063 n-
pentadecane n-dodecane 

hexadecane 16 1.96×10&'' 0.2281 0.2281 n-
hexadecane n-dodecane 

heptadecane 17 2.1×10&'' 0.1655 0.1655 n-
heptadecane n-dodecane 

octadecane 18 2.24×10&'' 0.1481 0.1481 n-
octatadecane n-dodecane 

nonadecane 19 2.38×10&'' 0.0726 0.0726 n-
nonadecane n-dodecane 

eicosane 20 2.52×10&'' 0.0365 0.0365 n-eicosane n-dodecane 

heneicosane 21 2.67×10&'' 0.0222 0.0222 n-
heneicosane n-dodecane 

docosane 22 2.81×10&'' 0.0143 0.0143 n-docosane n-dodecane 

pristane 19 2.44×10&'' 0.1434 0.1434 n-
nonadecane methylundecane 

phytane 20 2.61×10&'' 0.0799 0.0799 n-eicosane methylundecane 
naphthalene 10 2.3×10&'' 0.1038 0.1038 naphthalene naphthalene 
phenanthrene 14 1.3×10&'' 0.0117 0.0117 naphthalene naphthalene 
  1755 
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8 Figures 1848 
 1849 

   1850 
Figure 1: VBS and SOM model predictions of OA compared to measurements from the experiment 1851 
performed on June 5 (Idle-Diesel-None) as a function of photochemical age. Inputs for both models have 1852 
been specified in the text. Panel (a) has comparisons in µg m-3 and panel (b) has comparisons in g kg-1853 
fuel-1. Panel (c) shows the modeled and measured OA composition at the highest photochemical exposure.  1854 
 1855 

   1856 
Figure 2: VBS model predictions of OA compared to measurements from the experiment performed on 1857 
June 5 (Idle-Diesel-None) as a function of photochemical age assuming instantaneous equilibrium 1858 
partitioning and kinetic gas/particle partitioning run at three accommodation coefficients, α = 1 (dash-1859 
dot) ,0.1 (dash) and 0.01 (solid). 1860 
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 1873 

   1874 
Figure 3: VBS and SOM model predictions of OA compared to measurements from the experiments 1875 
performed on (a) June 5 (Idle-Diesel-None) and (b) June 11 (Idle-Diesel-DPF+DOC) as a function of 1876 
photochemical age for four different particle size distribution inputs: (i) number mean diameter and 1877 
measured number concentration at no OH exposure (solid), (ii) number mean diameter and measured 1878 
number concentration at the given OH exposure (dash), (iii) average of (i) and (ii) (dash-dot), and (iv) 1879 
nucleation of 1 nm particles (dot).  1880 
 1881 

   1882 

 1883 
Figure 4: Scatter plot comparing SOM predictions of OA mass and O:C to measurements from all 1884 
experiments at all photochemical ages at four different IVOC mass fractions: (a) 0%, (b) 13.76%, (c) 1885 
30%, and (d) 60%.  1886 
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 1904 

  1905 
Figure 5: VBS and SOM predictions of OA compared to measurements from the experiment performed on 1906 
June 5 (Idle-Diesel-None) as a function of photochemical age. Panel (a) examines uncertainty in model 1907 
treatment of cyclic alkanes, panel (b) examines uncertainty in the VOC emissions profile, and (c) explores 1908 
suitability of using a single surrogate linear alkane to model SOA formation from all IVOCs.  1909 
 1910 

  1911 
Figure 6: Normalized gas-phase concentration predictions from the SOM model for the Idle-Diesel-None 1912 
and Load-Diesel-None experiments performed on June 5 and compared to normalized gas-phase 1913 
concentrations measured by the CIMS. 1914 
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   1921 
Figure 7: VBS and SOM predictions of OA compared to measurements from the experiment performed on 1922 
June 5 (Idle-Diesel-None) as a function of photochemical age. Panels (a), (b), (c), and (d) examine the 1923 
influence of multi-generational aging, vapor wall losses, residence time distribution, and spatial 1924 
heterogeneity in OH concentrations respectively. The dashed lines in panel (d) are deliberately lighter in 1925 
color than the solid line to help differentiate the Base result from the sensitivity results.  1926 
 1927 
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  1932 
Figure 8: Model predictions of the ratio of SOA produced under kinetic partitioning assumptions to the 1933 
SOA produced under instantaneous partitioning assumptions as a function of the initial condensational 1934 
sink and the SOA formed under instantaneous partitioning. Panels (a) and (b) are for calculations 1935 
performed at two different particles sizes: 10 and 100 nm. 1936 
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