

1 **Temporal characteristics of atmospheric ammonia and nitrogen dioxide over China based on**
2 **emission data, satellite observations and atmospheric transport modeling since 1980**

3 Lei Liu ^a, Xiuying Zhang ^{a,*}, Wen Xu ^b, Xuejun Liu ^b, Yi Li ^c, Xuehe Lu ^a, Yuehan Zhang ^d, Wuting
4 Zhang ^{a, e}

5 ^a Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, International
6 Institute for Earth System Science, Nanjing University, Nanjing 210023, China

7 ^b College of Resources and Environmental Sciences, Centre for Resources, Environment and Food
8 Security, Key Lab of Plant-Soil Interactions of MOE, China Agricultural University, Beijing 100193,
9 China

10 ^c Air Quality Division, Arizona Department of Environmental Quality, Phoenix, AZ, 85007, USA

11 ^d School of Atmospheric Sciences, Nanjing University, Nanjing, China

12 ^e Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and
13 Application, Nanjing 210023, China

14 * Corresponding authors: Xiuying Zhang (lzhxy77@163.com)

15 **Abstract**

16 China is experiencing intense air pollution caused in large part by anthropogenic emissions of reactive
17 nitrogen (Nr). Atmospheric ammonia (NH_3) and nitrogen dioxide (NO_2) are the most important
18 precursors for Nr compounds (including N_2O_5 , HNO_3 , HONO and particulate NO_3^- and NH_4^+) in the
19 atmosphere. Understanding the changes of NH_3 and NO_2 has important implications for the regulation
20 of anthropogenic Nr emissions, and is a requirement for assessing the consequence of environmental
21 impacts. We conducted the temporal trend analysis of atmospheric NH_3 and NO_2 on a national scale

22 since 1980 based on emission data (during 1980-2010), satellite observations (for NH₃ since 2008 and
23 for NO₂ since 2005) and atmospheric chemistry transport modeling (during 2008-2015).
24 Based on the emission data, during 1980-2010, both significant continuous increasing trend of NH₃ and
25 NO_x were observed from REAS (Regional Emission inventory in Asia, for NH₃ 0.17 kg N ha⁻¹ y⁻² and
26 for NO_x 0.16 kg N ha⁻¹ y⁻²) and EDGAR (Emissions Database for Global Atmospheric Research, for
27 NH₃ 0.24 kg N ha⁻¹ y⁻² and for NO_x 0.17 kg N ha⁻¹ y⁻²) over China. Based on the satellite data and
28 atmospheric chemistry transport modeling named as the Model for Ozone and Related chemical
29 Tracers, version 4 (MOZART-4), the NO₂ columns over China increased significantly from 2005 to
30 2011 and then decreased significantly from 2011 to 2015; the satellite-retrieved NH₃ columns from
31 2008 to 2014 increased at a rate of 2.37% y⁻¹. The decrease in NO₂ columns since 2011 may result from
32 more stringent strategies taken to control NO_x emissions during the 12th Five-Year-Plan, while no
33 control policy focused on NH₃ emissions. Our findings provided an overall insight on the temporal
34 trends of both NO₂ and NH₃ since 1980 based on emission data, satellite observations and atmospheric
35 transport modeling. These findings can provide a scientific background for policy-makers that are
36 attempting to control atmospheric pollution in China. Moreover, the multiple datasets used in this study
37 have implications for estimating long-term Nr deposition datasets to assess its impact on soil, forest,
38 water and greenhouse balance.

39 **Keywords:** trends, seasonal cycle, ammonia

40 **1. Introduction**

41 Reactive nitrogen (Nr) emissions have increased significantly in China due to anthropogenic activities
42 such as increased combustion of fossil fuels, over-fertilization and high stocking rates of farm animals
43 (Canfield et al., 2010;Galloway et al., 2008;Liu et al., 2013). Elevated Nr in the environment has led to

44 a series of effects on climate change and ecosystems, e.g. biodiversity loss, stratospheric ozone
45 depletion, air pollution, freshwater eutrophication, the potential alteration of global temperature,
46 drinking water contamination, dead zones in coastal ecosystems and grassland seed bank depletion
47 (Basto et al., 2015;Lan et al., 2015;Shi et al., 2015). Atmospheric reactive N emissions are dominated
48 by nitrogen oxides ($\text{NO}_x = \text{NO} + \text{NO}_2$) and ammonia (NH_3) (Li et al., 2016a;Galloway et al., 2004).
49 Atmospheric NO_2 and NH_3 are the most important precursors for Nr compounds including N_2O_5 , HNO_3 ,
50 HONO and particulate NO_3^- and NH_4^+ in the atmosphere (Xu et al., 2015;Pan et al., 2012). Therefore,
51 an understanding of both the spatial and temporal patterns of NO_2 and NH_3 is essential for evaluating
52 N-enriched environmental effects, and can provide the scientific background for N pollution mitigation.
53 To investigate the spatial and temporal variations of atmospheric NO_2 and NH_3 , ground measurements
54 are acknowledged to be an effective way in monitoring the accurate concentrations of NO_2 and NH_3
55 (Xu et al., 2015;Pan et al., 2012;Meng et al., 2010). Ground measurements of NO_2 concentrations in
56 China, including about 500 stations in 74 cities, have been monitored and reported to the public since
57 January 2013 (Xie et al., 2015). By the end of 2013, this network was extended with hourly NO_2
58 concentrations from more than 850 stations in 161 cities. However, there are fewer NH_3 measurements
59 across China than NO_2 measurements. The China Agricultural University has organized a Nationwide
60 Nitrogen Deposition Monitoring Network (NNDMN) since 2010, consisting of 43 monitoring sites
61 covering urban, rural (cropland) and background (coastal, forest and grassland) areas across China (Xu
62 et al., 2015;Liu et al., 2011). Xu et al. (2015) reported the ground NH_3 concentrations throughout China
63 for the first time, providing great potential to understand the ground NH_3 concentrations on a national
64 scale. Other networks include (1) the Chinese Ecosystem Research Network (CERN) which was
65 established in 1988, including 40 field stations (Fu et al., 2010). However, to our knowledge, there are

66 no detailed reports about ground NH₃ concentrations from CERN on a national scale. (2) Four Chinese
67 cities (Xiamen, Xi-An, Chongqing and Zhuhai) have joined the Acid Deposition Monitoring Network
68 in East Asia (EANET) since 1999. However, only one site (Hongwen, Xiamen) in EANET measured
69 the ground NH₃ concentrations and that data is not continuous. Finally, ground NH₃ concentrations at
70 ten sites in Northern China from 2007 to 2010 have been reported by Pan et al. (2013). All of the above
71 ground measurements provide the potential to understand NH₃ and NO₂ concentrations on a regional
72 scale. However, there is limited information on the spatial and temporal variations of NH₃ and NO₂ in
73 the atmosphere across China. This is due to the limited observation sites and monitoring period, as well
74 as given the uneven distribution of the monitoring sites. Importantly, atmospheric NH₃ and NO₂
75 monitoring based on ground-based local sites may have limited spatial representativeness of the
76 regional scale as both NH₃ and NO₂ are highly variable in time and space (Clarisso et al., 2009;Wichink
77 Kruit et al., 2012;Boersma et al., 2007).

78 In order to complement ground-based measurements, satellite observation of NH₃ and NO₂ is a
79 welcome addition for analyzing the recent trends of NH₃ and NO₂ in the atmosphere. Satellite remote
80 sensing offers an opportunity to monitor atmospheric NH₃ and NO₂ with high temporal and spatial
81 resolutions (Warner et al., 2017;Li et al., 2016b). NO₂ was measured by multiple space-based
82 instruments including the Global Ozone Monitoring Experiment (GOME), SCanning Imaging
83 Absorption SpectroMeter for Atmospheric CHartographY (SCIAMACHY), Ozone Monitoring
84 Instrument (OMI) and Global Ozone Monitoring Experiment-2 (GOME-2). The OMI NO₂ provides the
85 best horizontal resolution ($13 \times 24 \text{ km}^2$) among instruments in its class and near-global daily coverage
86 (Levelt et al., 2007). OMI observations have been widely applied in environmental-related studies and
87 for the support of emission control policy (Russell et al., 2012;Zhao and Wang, 2009;Castellanos et al.,

88 2015;Lamsal et al., 2015;Liu et al., 2016a;Foy et al., 2016). First measurements of NH₃ from space
89 were reported over Beijing and San Diego areas with the Tropospheric Emission Spectrometer (TES)
90 (Beer et al., 2008) and in fire plumes in Greece with the Infrared Atmospheric Sounding Interferometer
91 (IASI) (Coheur et al., 2009). The first global map of NH₃ was created from IASI measurements by
92 correlating the observed brightness temperature differences to NH₃ columns using the averaged
93 datasets in 2008 (Clarisso et al., 2009). Shortly after that, many studies focused on developing
94 techniques to gain more reliable NH₃ columns (Whitburn et al., 2016a;Van Damme et al., 2014b),
95 validating the retrieved NH₃ columns using the ground measurements (Van Damme et al.,
96 2014a;Dammers et al., 2016) and comparing the data with the results of the atmospheric chemistry
97 transport models (Van Damme et al., 2014c;Whitburn et al., 2016a), and the estimated NH₃ columns
98 obtained from Fourier transform infrared spectroscopy (FTIR) (Dammers et al., 2016). The retrieval
99 algorithm of obtaining IASI NH₃ columns was based on the method described in Whitburn et al. (2016).
100 Two main steps were performed to derive the NH₃ columns from the satellite measurements. First,
101 derive the spectral hyperspectral range index (HRI) based on each IASI observations (Walker et al.,
102 2011;Van Damme et al., 2014b). Second, convert HRI to NH₃ columns based on a constructed neural
103 network with input parameters including vertical NH₃ profile, satellite viewing angel, surface
104 temperature and so on (Whitburn et al., 2016a). The progresses made on the satellite techniques
105 provide possibility for understanding both the spatial and temporal variations of NH₃ and NO₂ in the
106 atmosphere.
107 In addition to satellite observations, the emission data are also very important for investigating the
108 temporal trends of NH₃ and NO₂ such as the IIASA inventory (Cofala et al., 2007), EDGAR (Emission
109 Database for Global Atmospheric Research, RAINS-Asia (Regional Air Pollution Information and

110 Simulation) and Asia REAS (Regional Emission inventory in Asia). REAS is considered as the first
111 inventory by integrating historical, current and future emissions data for Asia based on a consistent
112 methodology (Ohara et al., 2007), and EDGAR is the global emission data with 0.1 by 0.1 grid, which
113 has the highest spatial resolution among different datasets mentioned above. Thus, REAS and EDGAR
114 are used to analyze the historical trends of NH₃ and NO₂ during 1980-2010 in this study. Based on the
115 EDGAR emission data, a widely used atmospheric transport model named as the Model for Ozone and
116 Related chemical Tracers, version 4 (MOZART-4) was also used to model the temporal trend of NH₃
117 and NO₂ columns during 2008-2015 in comparison with the temporal trends of NH₃ and NO₂ columns
118 measured by satellite instruments.

119 We aim at getting an overall insight on the temporal trends of both NO₂ and NH₃ since 1980 based on
120 the multiple datasets including the emission data, satellite observations and atmospheric transport
121 modeling. We herein show the Chinese national trend of REAS and EDGAR NH₃ and NO_x emission
122 data during 1980-2010, satellite-retrieved NH₃ during 2008-2015 and NO₂ columns (2005-2015), and
123 atmospheric transport chemistry modeling NH₃ and NO₂ columns (2008-2015). It should be noted here
124 that the satellite NH₃ columns were retrieved from the IASI, and can only be obtained since 2008. It is
125 beneficial to analyze the temporal variations of both NH₃ and NO₂, hence providing a scientific basis
126 for policy makers to reduce N-enriched environmental pollution in China.

127 **2. Materials and methods**

128 **2.1. NH₃ and NO₂ Emissions**

129 We examined the emission inventory dataset for Asia REAS (Regional Emission inventory in Asia)
130 with 0.5 °× 0.5 °resolution for the period 1980-2010, and analyzed the temporal trends of NO_x and NH₃
131 over China. REAS v1.1 is believed to be the first inventory of integrating past, present and future

132 dataset in Asia based on a consistent methodology. The REAS datasets have been validated by several
133 emissions, and denote agreement with the recent growth status in Chinese emissions (Ohara et al.,
134 2007). We also collected NO_x and NH₃ emission data from EDGAR (Emissions Database for Global
135 Atmospheric Research) v4.3.1, which was developed by the Netherlands Environmental Assessment
136 Agency and European Commission Joint Research Centre (Jgj et al., 2002). The EDGAR emissions are
137 calculated on the basis of a point emissions inventory conducted by the International Energy Agency.
138 EDGAR also has a long time period 1980-2010 with the highest spatial resolution globally (0.1 °×0.1 °
139 (<http://edgar.jrc.ec.europa.eu/overview.php?v=431>).

140 **2.2. Satellite observations**

141 IASI is a passive remote-sensing instrument operating in nadir mode and measures the infrared
142 radiation emitted by the Earth's surface and the atmosphere (Clarisson et al., 2009). It covers the entire
143 globe twice a day, crossing the equator at a mean solar local time of 9:30 A.M. and P.M. and has an
144 elliptical footprint of 12 by 12 km up to 20 by 39 km depending on the satellite-viewing angle. In this
145 study we use daytime satellite observations as these are more sensitive to NH₃ and are associated with a
146 large positive thermal contrast and a significant amount of NH₃ (Van Damme et al., 2014b; Whitburn et
147 al., 2016a). The availability of measurements is mainly driven by the cloud coverage as only
148 observations with cloud coverage lower than 25% are processed to be a good compromise between the
149 number of data kept for the analysis and the bias due to the effect of clouds. As the amount of daily
150 data is not always sufficient to obtain meaningful distributions (due to cloud cover or the availability of
151 the temperature profiles from the EUMETSAT operational processing chain) (Van Damme et al.,
152 2014b), it is more appropriate to consider monthly or yearly averages for this trend analysis. We
153 consider IASI observations with a relative error below 100% or an absolute error below 5×10^{15} molec.

154 cm^{-2} for analysis over China. For the error, the filtering depends on the use of the data. Doing this, low
155 columns typical for background conditions with a large relative error but a small absolute error are also
156 taken into account. For other applications, such as comparing with ground measurements, we would
157 recommend to use a threshold of 75% or even 100% relative error. We gained the data upon request
158 from the Atmospheric Spectroscopy Group at Université Libre De Bruxelles
159 (<http://www.ulb.ac.be/cpm/atmosphere.html>). This data can be gridded on $0.1^\circ \text{latitude} \times 0.1^\circ \text{longitude}$
160 (Dammers et al., 2016), $0.25^\circ \text{latitude} \times 0.25^\circ \text{longitude}$ (Whitburn et al., 2016a) and $0.5^\circ \text{latitude} \times 0.5^\circ$
161 longitude (Whitburn et al., 2016b) or even coarser resolutions depending on the usage of the data. For
162 IASI NH₃, we firstly divided China into $0.5^\circ \text{latitude} \times 0.5^\circ \text{longitude}$ grid. For each grid cell, we
163 calculated the monthly arithmetic mean by averaging the daily values with observations points within
164 the grid cell. Similarly, we calculated the annual arithmetic mean by averaging the daily values with
165 observations points within the grid cell over the whole year.

166 The NO₂ columns are obtained from the OMI instrument on NASA's EOS Aura satellite globally
167 everyday. We used the generated products by the project "Derivation of Ozone Monitoring Instrument
168 tropospheric NO₂ in near-real time" (DOMINO) to analyze the temporal trends of NO₂ columns over
169 China. In DOMINO products, only the observations with a cloud radiance fraction below 0.5 were
170 processed for analysis. The retrieval algorithm is described in detail in the previous work (Boersma et
171 al., 2007) and recent updates can be found in the DOMINO Product Specification Document
172 (http://www.temis.nl/docs/OMI_NO2_HE5_1.0.2.pdf). We used tropospheric NO₂ retrievals from the
173 DOMINO algorithm v2.0. The retrieval quality of NO₂ products is strongly dependent on different
174 aspects of air mass factors, such as radiative transfer calculations, terrain heights and surface albedo.
175 The OMI v2.0 data were mainly improved by more realistic atmospheric profile parameters, and

176 include more surface albedo and surface pressure reference points than before (Boersma et al.,
177 2011;Boersma et al., 2016). The DOMINO NO₂ datasets are available from
178 <http://www.temis.nl/airpollution/no2.html>. We should state in particular that we used directly the
179 DOMINO v2.0 products of monthly means from 2005 to 2015 over China for the trend analysis. The
180 DOMINO NO₂ columns were gridded at a resolution of 0.125 °latitude×0.125 °longitude grid globally,
181 which has been widely used for scientific applications (Ma et al., 2013;Ialongo et al., 2016;Castellanos
182 et al., 2015).

183 To illustrate measurement availability, we presented here some measurement statistics. A total number
184 of cloud-free daytime observations as characterized by the operational IASI processor by year were
185 retrieved in China during 2008-2015 for NH₃ (Fig. 1b). We retrieved more observation numbers after
186 2010 than those during 2008-2009. In 2010, the update of the improved air temperature profiles, cloud
187 properties products and cloud detection, which are important for calculating the thermal contrast,
188 increased the quality of retrieval (Van Damme et al., 2014b;Van Damme et al., 2014c). In September
189 2014, there was another update of the air temperature profiles, cloud properties products and cloud
190 detection for calculating the thermal contrast. The version of IASI NH₃ columns used in the present
191 work was based on the method described in Whitburn et al. (2016). We did not use the IASI NH₃ after
192 September 30 in 2014 for the trend analysis because an update of the input meteorological data on 30
193 September 2014 has caused a substantial increase of the retrieved atmospheric NH₃ columns. For the
194 updates of the IASI-NH₃ data, you can refer to Van Damme et al. (2014b), Van Damme et al. (2014c)
195 and Whitburn et al. (2016). The monthly observation numbers are also presented in Fig. 1a, showing
196 that spring (Mar, Apr and May), summer (Jun, Jul and Aug), autumn (Sep, Oct and Nov) and winter
197 (Dec, Jan and Feb) months represent 29% , 26%, 23% and 21%, respectively. Compared with large

198 variations of observation numbers for NH₃, the observation numbers for NO₂ varied less by year;
199 winter season had the least, while other seasons varied little.

200 **2.3. Atmospheric transport chemistry model**

201 Atmospheric transport chemistry model is also of central importance in modeling the tropospheric NO₂
202 and NH₃. We applied a widely used atmospheric global atmospheric transport chemistry model named
203 as the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4) to simulate the
204 tropospheric NO₂ and NH₃ columns during 2008-2015 in accordance with the time period of IASI NH₃
205 measurements.

206 The MOZART-4 model is driven by the meteorological data from the NASA Goddard Earth Observing
207 System Model, Version 5 (GEOS-5) at a resolution of 1.9 ° latitude × 2.5 ° longitude spatially. The
208 emission data applied for driving the simulations are based on the updated EDGAR emission
209 inventories. 12 bulk aerosol compounds, 39 photolysis, 85 gas species as well as 157 gas-phase
210 reactions were integrated in MOZART-4. The chemical mechanism on N compounds including the NO₂,
211 NH₃ and aerosols are detailedly integrated to MOZART-4, which is considered to be suitable for
212 tropospheric chemical compositions (Emmons et al., 2010;Pfister et al., 2008;Sahu et al., 2013). The
213 output data used in the current work are temporally varying six hours every day, which were upon
214 request by Louisa Emmons at National Center for Atmospheric Research (NCAR). The monthly means
215 of NO₂ and NH₃ columns were averaged by the daily data, and then used for the trend analysis over
216 China. For more details about MOZART-4, the reader should refer to previous studies (Emmons et al.,
217 2010;Brasseur et al., 1998;Beig and Singh, 2007).

218 **3. Results and discussions**

219 **3.1. NH₃ and NO_x emissions during 1980-2010**

220 We conducted the temporal analysis of NH₃ and NO_x emissions since 1980 based on REAS and
221 EDGAR. Both significant continuous increasing trends of NH₃ and NO_x were observed from REAS
222 (for NH₃ 0.17 kg N ha⁻¹ y⁻² and for NO_x 0.16 kg N ha⁻¹ y⁻²) and EDGAR (for NH₃ 0.24 kg N ha⁻¹ y⁻²
223 and for NO_x 0.17 kg N ha⁻¹ y⁻²) over China (Fig. 2). We found a relatively consistent increase in NO_x
224 emission from EDGAR and REAS over China, i.e. 0.17 kg N ha⁻¹ y⁻² vs 0.16 kg N ha⁻¹ y⁻², but
225 inconsistency in the magnitude of NH₃ emissions from EDGAR and REAS over China, i.e. 0.24 kg N
226 ha⁻¹ y⁻² vs 0.17 kg N ha⁻¹ y⁻². The increase rate in NH₃ emissions over China from EDGAR was much
227 higher than that from REAS, indicating the magnitude of increase trend in NH₃ over China remains a
228 debate, although their thread values (the slope in Fig. 2) of 0.24 kg N ha⁻¹ y⁻² (EDGAR) vs 0.17 kg N
229 ha⁻¹ y⁻² (REAS) both reflected a continuous increasing trend (in this regard they are consistent). It
230 implies that, at least, the NH₃ emissions are indeed increasing during 1980-2010. We also conducted a
231 simple correlation analysis of the NH₃ (Fig. 2a) and NO_x (Fig. 2b) from REAS and EDGAR, showing
232 agreement in the magnitude (slope=1.06) and temporal trend ($R^2=0.96$) for NO_x, but some
233 inconsistency in the increase rate (slope=1.33) for NH₃.
234 The discrepancy in the magnitude of NH₃ increase rate from REAS and EDGAR (0.24 kg N ha⁻¹ y⁻² vs
235 0.17 kg N ha⁻¹ y⁻²) in China since 1980 may be caused by the different emission factors considered for
236 estimating NH₃ emissions. The EDGAR v4.3.1 NH₃ emissions were calculated based on a variety of
237 sectors including agriculture, shipping, waste solid and wastewater, energy for buildings, process
238 emissions during production and application, power industry, oil refineries, transformation industry,
239 combustion for manufacturing, road transportation, railways, pipelines and off-road transport, while the

240 REAS v1.1 NH₃ emissions focused mainly on the agriculture source (i.e., manure management of
241 livestock and fertilizer application) (Crippa et al., 2015;Ohara et al., 2007). Moreover, the fundamental
242 methodology on estimating the REAS v1.1 NH₃ emissions did not consider the seasonal agricultural
243 variations compared with that of EDGAR v4.3.1 NH₃ emissions (Kurokawa et al., 2013), and the
244 removal efficiency (as a key element to estimate NH₃ emissions) was also reported to be much higher
245 in REAS v1.1 than in EDGAR v4.3.1 (Kurokawa et al., 2013).

246 A previous study (Liu et al., 2013) summarized published data on the national anthropogenic NH₃ and
247 NO_x emissions with multi-periods in China (Wang et al., 2009;Wang et al., 1997;Streets et al.,
248 2003;Klimont et al., 2001;Sun and Wang, 1997;Olivier et al., 1998;FRCGC, 2007), and also analyzed
249 the temporal pattern of NH₃ emissions. Their results showed that the NH₃ emissions had increased at an
250 annual average rate of 0.32 Tg N y⁻² (about 0.33 kg N ha⁻¹ y⁻²). The increase rate of NH₃ emissions
251 (0.33 kg N ha⁻¹ y⁻²) by Liu et al. (2013) was double that in REAS (0.17 kg N ha⁻¹ y⁻²), implying that the
252 NH₃ increase rate in China is still an open question, and should be further studied.

253 **3.2. Satellite NH₃ and NO₂ over China in the recent decade**

254 **3.2.1. Temporal trends**

255 We referred to the method of a previous study (Russell et al., 2012) to conduct the temporal trend
256 analysis by calculating the average values during cold months (October-March) and warm months
257 (April-September) respectively. We herein concentrated more on the temporal analysis of satellite
258 observations during warm months because of the relatively lower uncertainty in comparison with that
259 during cold months. Fig. 3 shows the temporal trend of NO₂ columns during warm and cold months
260 between 2005 and 2015 as well as monthly average values. From satellite observations, the NO₂
261 columns over China increased with a slope of 0.063×10^{15} molec. cm⁻² y⁻¹ (4.07% y⁻¹) in warm months

262 from 2005 to 2011 and then decreased with a slope of $-0.072 \text{ molec. cm}^{-2}$ in warm months ($-3.62\% \text{ y}^{-1}$)
263 from 2011 to 2015 (Fig. 3). The decreasing trends were consistent with NO_x emissions since 2011 over
264 China (decreasing from $24.04 \times 10^6 \text{ ton}$ in 2011 to $20.78 \times 10^6 \text{ ton}$ in 2014, China Statistical Yearbook,
265 <http://www.stats.gov.cn/>). During the Chinese 11th Five-Year-Plan (FYP) period (2006-2010), Chinese
266 government undertook a series of strategies to increase energy efficiency and to reduce NO_x emissions,
267 but NO_x emissions were not successfully restrained, which created a big challenge for improving air
268 quality over the country (Xia et al., 2016). During the 12th FYP period (2011-2015), more stringent
269 strategies were implemented to control NO_x emissions, including the application of selective
270 catalytic/non-catalytic reduction (SCR/SNCR) systems in the power sector, staged implementation of
271 tighter vehicle emission standards and a series of standards with aggressive emission limits for power,
272 cement, and the iron and steel industries. These strategies are believed to have helped achieve national
273 targets of NO_x emission abatement (Xia et al., 2016).

274 However, the satellite-retrieved NH_3 columns increased with a slope of $0.118 \times 10^{15} \text{ molec. cm}^{-2} \text{ y}^{-1}$
275 ($2.37\% \text{ y}^{-1}$) in warm months from 2008 to 2014 (Fig. 3). The percent increase rate for NH_3 by year
276 ($2.37\% \text{ y}^{-1}$) from 2008 to 2014 is lower than that for NO_2 ($4.07\% \text{ y}^{-1}$) from 2005 to 2011, although the
277 absolute NH_3 increase rate of $0.118 \times 10^{15} \text{ molec. cm}^{-2} \text{ y}^{-1}$ from 2008 to 2014 was higher than absolute
278 NO_2 increase rate of $0.063 \times 10^{15} \text{ molec. cm}^{-2} \text{ y}^{-1}$ from 2005 to 2011. An increase in NH_3 columns from
279 IASI may be due to decreased NH_3 removal leading to a larger fraction maintaining in gaseous state for
280 a long time rather than changing to the condensed phase. Specifically, NH_3 is considered as an
281 important alkaline gas that is abundant in the atmosphere, and is able to neutralize acidic components
282 including HNO_3 and H_2SO_4 through the oxidation of NO_x and SO_2 , respectively (Li et al., 2014; Liu et
283 al., 2011; Liu et al., 2017c; Xu et al., 2015). The decreased NH_3 removal to some degree can be

284 attributed to continuous decreased acidic gases including the NO₂ and SO₂ over China under strong
285 control policy in 12-th FYP, which can largely decrease the fraction of the chemical conversion to
286 (NH₄)₂SO₄ and NH₄NO₃ in the atmosphere. Increasing trend in NH₃ columns may be associated with
287 continuous N fertilizer use for guaranteeing increase of crop productions (Erisman et al., 2008).
288 Although there was no strong NH₃ emission control regulation, N fertilizer efficiency should be further
289 improved over China. In 2015, the Ministry of Agriculture formally announced a “Zero Increase Action
290 Plan” for national fertilizer use by 2020, which requires the annual increase in total fertilizer use will be
291 less than 1% from 2015 to 2019, with no further increment from 2020 (Liu et al., 2015).
292 If the “Zero Increase Action Plan” for N fertilizer can be effective, future NH₃ emissions should be
293 consistent with the current NH₃ emissions. In addition, due to strong emission control of NO_x, the NO_x
294 emissions were believed to decrease significantly from 2011 to 2015. We can reasonably make two
295 major conclusions. First, the atmospheric NO₂, as a key indicator of oxidized N compounds (NO₂,
296 HNO₃ and NO₃⁻), decreased since 2011, and will continue to decrease under the current policy. Second,
297 the atmospheric NH₃, as a key indicator of reduced N (NH₃ and particulate NH₄⁺), will slightly increase
298 or stay at the current level in the future with the “Zero Increase Action Plan”. Thus, due to a decreasing
299 trend of oxidized N (NO_x-N), ammonia N (NH_x-N) should still dominate Nr deposition (oxidized N
300 plus reduced N) in China, and is expected to play a more significant role in Nr deposition. Therefore,
301 monitoring the reduced N on a regional scale is encouraged to assist in enacting effective measures to
302 protect the environments and public health, with respect to air, soil and water quality.

303 **3.2.2. Spatial pattern**

304 High NH₃ columns were found in Beijing, Hebei, Henan, Shandong, Hubei and Jiangsu provinces and
305 in Eastern Sichuan province (Fig. 4a), which were consistent with their high NH₃ emissions due to

306 intensive fertilizer application and livestock (Huang et al., 2012). Guangdong, Guangxi, Hunan and
307 Jiangxi provinces also showed high NH_3 columns, due to high volatilization from paddy fields in these
308 regions, with rice being the dominant crop and contributing the most emissions. High NH_3 columns in
309 southern China are in agreement with the high percent paddy farmland area (Fig. S1a) and the high
310 NH_3 columns in northern China are in agreement with the high percent dry farmland area (Fig. S1b). In
311 addition, the NH_3 emissions from vehicles in urban areas could also contribute to the observed high
312 NH_3 columns. For example, in Beijing, the contribution of vehicles equipped with catalytic converters,
313 particularly since the introduction of three-way-catalysts, to non-agricultural NH_3 emissions has
314 recently been considered and might be the most important factor influencing NH_3 concentrations in
315 urban cities (Meng et al., 2011;Xu et al., 2017). In addition, Xinjiang province also emits remarkable
316 NH_3 emissions related to sheep manure management (Huang et al., 2012;Kang et al., 2016;Zhou et al.,
317 2015;Liu et al., 2017a). The lower NH_3 columns are located mostly in the Tibet Plateau area, where
318 there is a minimal amount of arable land and low use of synthetic nitrogenous fertilizers.
319 NO_2 columns (Fig. 4b) show significantly higher values over vast areas covering North China, East
320 China, and the Sichuan Basin. The NO_2 columns also show high values over the Pearl River Delta, the
321 southern part of Northeast China, and some areas in Northwest China. High NO_2 columns are mostly
322 distributed in populated areas (Fig. S2), where there is a mix of various anthropogenic NO_x sources,
323 such as vehicles and industrial complexes (Wang et al., 2012;Xu et al., 2015;Meng et al., 2010). It
324 should be noted that an enhanced emission intensity from transportation is confirmed since 2005, even
325 with staged implementation of tightened emission standards for on-road vehicles (Wang et al., 2012).
326 For example, NO_x emissions from transportation grew to 30% for the whole country in 2014, and the
327 values reached 44%, 55%, and 33% for Beijing, Shanghai, and Guangdong, respectively (Xia et al.,

328 2016). Therefore, transportation is believed to play an increasingly important role in regional NO₂
329 pollution, especially when emissions from stationary sources are gradually controlled through increased
330 penetration of selective catalytic/non-catalytic reduction (SCR/SNCR) systems.

331 **3.2.3. Limitations of satellite observations**

332 It is difficult to gain whole coverage over China based on the daily data for both IASI NH₃ and OMI
333 NO₂. For daily NO₂, the spatial coverage gained by OMI were influenced by cloud radiance fractions,
334 surface albedo, solar zenith angles, row anomaly and so on (Russell et al., 2011;De Smedt et al., 2015).

335 "Row anomaly" issue resulting from the OMI instrumental problem had an impact on approximately
336 half of the rows undergoing unpredictable patterns in cross-track directions relying on latitudes and
337 seasons and prevented obtaining convincing daily product with continuous coverage (Boersma et al.,

338 2011;Boersma et al., 2016). For NH₃, the satellite instruments were strongly dependent on the
339 meteorological conditions such as cloud fractions or the availability of the temperature profiles (Van

340 Damme et al., 2014b;Boersma et al., 2011), and we cannot retrieve the whole coverage based on daily
341 data over China. It will be beneficial to analyze a very local region with enough numbers of
342 observations, but not appropriate to analyze such large coverage over China.

343 Facing this big challenge, we used the monthly data for the trend analysis over China. The uncertainty
344 of DOMINO v2.0 NO₂ columns has been well documented in Boersma et al. (2011), and the relative
345 error is reported lower than 20-30% in East Asian by an improved altitude-dependent air mass factor
346 look-up table, a more realistic atmospheric profile, an increased number of reference vertical layers and
347 advanced surface albedos (Boersma et al., 2011). The reader is strongly suggested to refer to Boersma
348 et al. (2011) for more details on the uncertainty analysis.

349 The potential uncertainty of IASI NH₃ columns resulted from IASI observation instruments and

350 retrieval algorithms. In this paper, the NH₃ datasets were generated based on the recent-updated robust
351 and flexible NH₃ retrieval algorithms, which were designed to overcome some shortcomings of the
352 current algorithms (Whitburn et al., 2016a). The current algorithms were designed firstly to calculate
353 the hyperspectral range index (HRI), a measure for the NH₃ signature strength in the spectrum, and
354 then converted to IASI NH₃ columns by using the thermal contrast (TC) and lookup tables (LUT) of
355 (HRI, TC) pair corresponding to NH₃ columns. The retrieval of HRIs is strongly dependent on the
356 amount of NH₃ and the thermal state of the atmosphere (Whitburn et al., 2016a). The quality of the
357 IASI NH₃ product has been validated by atmospheric chemistry transport models, ground-based and
358 airborne measurements, and NH₃ total columns obtained with ground-based Fourier transform infrared
359 spectroscopy (FTIR). A first validation of the IASI NH₃ using the LOTOS-EUROS model was
360 conducted over Europe, indicating the respective consistency of IASI measurements and model
361 simulations (Van Damme et al., 2014c). A first evaluation of IASI NH₃ dataset using ground-based
362 measurements was made worldwide, presenting consistency with the available ground-based
363 observations and denoting promising results for evaluation by using independent airborne data (Van
364 Damme et al., 2014a). A first validation of of IASI NH₃ dataset using ground-based FTIR derived NH₃
365 total columns was evaluated, demonstrating a mean relative difference of $-32.4\pm(56.3)\%$, a correlation
366 r of 0.8 with a slope of 0.73 (Dammers et al., 2016).

367 **3.3. Atmospheric chemistry transport model NO₂ and NH₃ columns since 2008**

368 Satellite NO₂ and NH₃ columns were observed at overpass time as an instantaneous point in a day (at
369 9:30 A.M. for IASI NH₃ and at 1:45 P.M. for OMI NO₂ local time). These instantaneous satellite
370 observations may not be representative for the temporal trend analysis over China. We further retrieved
371 the monthly variations of NO₂ and NH₃ columns since 2008 from MOZART varying 6 hours every day

372 (00, 06, 12, 18 h). We compared the temporal trend analysis of NO₂ from MOZART at 12 h with that
373 gained from satellite at the overpass time (OMI 1:45 P.M. local time) as well as for NH₃.

374 Fig. 5 shows the NO₂ columns at 12:00 during warm and cold months between 2008 and 2015 from
375 MOZART. The percent increase rate for NO₂ columns at 12:00 during warm months (April-September)
376 between 2008 and 2011 was 4.02% y⁻¹ (Fig. 5), which was comparable with that (4.23% y⁻¹) derived
377 from OMI (Fig. 3). During 2011-2015, we found a slightly lower decrease rate (-2.93% y⁻¹) in NO₂
378 columns during warm months at 12:00 from MOZART (Fig. 5) than that (-3.62% y⁻¹) gained from OMI
379 at 13:45 (Fig. 3). The temporal variations of NO₂ columns at 12:00 from MOZART were generally in
380 accord with those from OMI at 13:45 P.M. local time. Fig. 5 also demonstrates the average NO₂
381 columns (averaged at 00, 06, 12 and 18 h) during warm and cold months between 2008 and 2015. We
382 found a close increase rate at 12:00 (4.02%) with that averaged at 00, 06, 12 and 18 h (4.23%) before
383 2011, as well as a similar decrease rate at 12:00 (-2.93%) and the average (-3.07%), implying that the
384 temporal trend analysis at 12:00 vs. that averaged at 00, 06, 12 and 18 h can be considered mostly
385 consistent over China from MOZART.

386 For NH₃, we found the percent increase rate at 12:00 during warm months between 2008 and 2015 was
387 1.30% y⁻¹ from MOZART (Fig. 5), which was lower than that (2.37% y⁻¹) from IASI during 2008-2014.
388 The percent increase rate by daily average (at 00, 06, 12 and 18 h) during warm months between 2008
389 and 2015 was 1.36% y⁻¹ from MOZART (Fig. 5). In MOZART-4, the alkaline gaseous NH₃ and the
390 acidic gaseous NO₂ (the precursor for HNO₃) and SO₂ are very important precursors for bulk NH₄NO₃
391 and (NH₄)₂SO₄ particles, which form the primary system of gas-particle partitioning
392 (NH₃-NH₄⁺-NO_x-NO₃⁻-SO₂-SO₄²⁻). The chemical shifts between particulate NH₄NO₃ and gaseous NH₃
393 and NO_x are correlated with the abundance of NH₃ and NO_x and meteorological factors. The decreased

394 abundance of NO_x between 2011 and 2015 may also contribute to an increase in the NH₃ abundance in
395 the gas stage resulting from decreased conversion to particulate NH₄NO₃.

396 **3.4. Implications for estimating long-term Nr deposition datasets and recommendations for**
397 **future work**

398 We found both the NO_x and NH₃ over China increased continuously from 1980 to 2010 based on
399 emissions data from REAS and EDGAR. In recent years, based on satellite observations, we found an
400 increase of 2.37% y⁻¹ in NH₃ columns during 2008-2014. We also found high-level NO₂ columns over
401 China from 2005-2011 (4.07% y⁻¹) but a decrease from 2011 to 2015 (-3.62% y⁻¹). Despite the decline,
402 the NO₂ columns during 2011-2015 were still in high level with an average of 1.87×10^{15} molec. cm⁻²
403 y⁻¹ compared with that (1.65×10^{15} molec. cm⁻² y⁻¹) during 2005-2010. Notably, these emissions
404 certainly lead to the deposition of atmospheric Nr in form of dry and wet processes into aquatic
405 ecosystems and terrestrial, with implications affecting ecosystem and human health, biological
406 diversity and greenhouse gas balances (Lu et al., 2016). Hence, it is very crucial to estimate Nr
407 deposition with high spatiotemporal resolutions in order to drive ecological models such as the
408 Denitrification-Decomposition (DNDC) model and Integrated BIosphere Simulator (IBIS), to assess its
409 impact on soil, forest, water and greenhouse balance. Here, we call for a long-term dataset of Nr
410 depositions both regionally and globally to investigate how the N emissions affect the environment.
411 Challenge still exists in estimating both the dry (NO₂, HNO₃ particulate NO₃⁻, NH₃ and particulate NH₄⁺)
412 and wet (NH₄⁺ and NO₃⁻ in precipitation) depositions for a long-term dataset such as since 1980 or
413 earlier possibly due to the complex scheme of N transformations and transportation or limited available
414 data both from emissions, satellites and a limited number of ground measurements.
415 Satellite observations provide a new perspective of estimating Nr depositions regionally, and have been

416 used to improve the estimation performance. For example, to improve the modeling performance in dry
417 gaseous NO_2 depositions from GEOS-Chem (Goddard Earth Observing System chemical transport
418 model), Nowlan et al. (2014) applied the OMI NO_2 columns to calibrate the simulated ground NO_2
419 concentrations, and then estimated the deposition between 2005 and 2007. Our previous work focusing
420 on the dry particulate NO_3^- deposition over China was also based on the OMI NO_2 columns, MOZART
421 simulations and monitored-based sources (Liu et al., 2017b). Geddes et al. (2017) used the satellite
422 NO_2 columns from GOME, GOME-2 and SCIAMACHY instruments to calibrate the NO_x emissions in
423 GEOS-Chem to estimate the NO_x depositions since 1996. The simulations combining the satellite
424 measurements and CTM models to derive Nr depositions (Geddes and Martin, 2017;Nowlan et al.,
425 2014) in recent years will provide relatively accurate datasets (certainly need to be validated and
426 modified by ground measurements).

427 Despite progress in satellite techniques in recent decades (for NO_2 since 1997 by GOME and for NH_3
428 since 2008 by IASI), we can hardly tracked studies concerning Nr depositions before 1997 based on
429 satellite observations. Thus, with the help of emissions data such as REAS and EDGAR, we can derive
430 long-term Nr depositions, especially before 1997. Long-term emissions data such as REAS and
431 EDGAR will provide valuable dataset to expand the modeling Nr depositions in recent years. In order
432 to derive the Nr depositions from the emission data, CTMs are frequently used through modeling the
433 wet (simplified as the product of scavenging efficiency and precipitation amount) and dry process
434 (simplified as the inferential method by multiplying the deposition velocity and gaseous or particulate
435 concentrations). However, we still lack a comprehensive dataset of gridded long-term Nr depositions
436 including both the dry (NO_2 , HNO_3 particulate NO_3^- , NH_3 and particulate NH_4^+) and wet (NH_4^+ and
437 NO_3^- in precipitation) processes over China, which will be addressed in future work.

438 Another gap is that, all the above mentioned studies focused on the NO_x depositions and did not derive
439 the NH_y (NH₃ and NH₄⁺) depositions over China. Our recent work (Liu et al., 2017a) using IASI NH₃
440 columns combining the vertical profiles from MOZART benefits our understanding of the ground NH₃
441 concentrations over China, and the satellite-derived ground NH₃ concentrations were generally in
442 accord with the national measurements from NNDMN. To date, there are still no reports of using the
443 satellite NH₃ columns to derive the temporal and regional NH_y depositions over China, which
444 dominated the total Nr depositions (NO_x plus NH_y) (Liu et al., 2016b;Liu et al., 2013). The gaps of
445 modeling NH_y depositions by applying the satellite observations combining the CTMs simulations
446 require more efforts and further research.

447 **4. Conclusion**

448 Atmospheric ammonia (NH₃) and nitrogen dioxide (NO₂) play an important role in determining air
449 quality, environmental degradation and climate change. The emission data, satellite observations and
450 atmospheric transport modeling have great potential for understanding the temporal variations of
451 atmospheric NH₃ and NO₂ on a regional scale, with high spatial and temporal resolutions. This study
452 analyzed the characteristics of atmospheric NH₃ and NO₂ over China since 1980 based on the multiple
453 datasets. The major findings were as follows:

- 454 1. Based on emission data, both significant continuous increasing trend of NH₃ and NO_x were observed
455 from REAS (for NH₃ 0.17 kg N ha⁻¹ y⁻² and for NO_x 0.16 kg N ha⁻¹ y⁻²) and EDGAR (for NH₃ 0.24 kg
456 N ha⁻¹ y⁻² and for NO_x 0.17 kg N ha⁻¹ y⁻²) over China during 1980-2010.
- 457 2. Based on the satellite observations, we found high-level NH₃ columns with the percent increase rate
458 of 2.37% y⁻¹ from 2008 to 2014. For NO₂, we found continuous high-level NO₂ columns over China
459 from 2005-2011 but a decrease from 2011 to 2015 (still in high level). The decrease of NO₂ columns

460 may result from more stringent strategies taken to control NO_x emissions during the 12th
461 Five-Year-Plan, including successful application of SCR/SNCR systems in the power sector, tighter
462 emission standards on vehicles and a series of standards with aggressive emission limits. Increasing
463 trend of NH₃ columns may be due to continuous N fertilizer use for guaranteeing continuous increase
464 of the crop productions. An increase in NH₃ columns may be due to decreased NH₃ removal leading to
465 a larger fraction maintaining in gaseous state for a long time rather than changing to the condensed
466 phase, which may be related with continuous decreased acidic gases including the NO₂ and SO₂ over
467 China under strong control policy in 12-th FYP.

468 3. Based on MOZART simulations, the temporal variations of NO₂ columns at 12:00 from MOZART
469 were generally in accord with those from OMI at 13:45 P.M. local time. We also found a close increase
470 rate at 12:00 (4.02%) with that averaged at 00, 06, 12 and 18 h (4.23%) before 2011, as well as a
471 similar decrease rate at 12:00 (-2.93%) and the average (-3.07%). For NH₃, we found a lower percent
472 increase rate from MOZART (1.30% y⁻¹) than IASI (2.37% y⁻¹) between 2008 and 2014.

473 4. The multiple datasets used in the current work have implications for estimating long-term Nr
474 deposition datasets. The simulations combining the satellite measurements and CTM models to derive
475 Nr depositions will provide relatively accurate datasets, and the REAS and EDGAR emissions have
476 potential to expand the modeling Nr depositions to long-term datasets. In particular, modeling NH_y
477 depositions by applying the satellite observations combining the CTMs simulations require more
478 efforts and further research.

479 **Acknowledgements**

480 We acknowledge the free use of tropospheric NO₂ column data from the OMI sensor from
481 www.temis.nl. The NH₃ data have been obtained by the Atmospheric Spectroscopy Group at Université

482 Libre de Bruxelles (ULB) (<http://www.ulb.ac.be/cpm/atmosphere.html>). S. Whitburn and M. Van
483 Damme are acknowledged for making the data available and for their help in how to use them. We also
484 thank Louisa Emmons from National Center for Atmospheric Research (NCAR) for providing the
485 MOZART output data for the trend analysis. This study is supported by the National Natural Science
486 Foundation of China (No. 41471343, 40425007 and 41101315).

487 **Reference**

488 Basto, S., Thompson, K., Phoenix, G., Sloan, V., Leake, J., and Rees, M.: Long-term nitrogen
489 deposition depletes grassland seed banks, *Nature Communication*, 6, 1-6, 10.1038/ncomms7185, 2015.

490 Beer, R., Shephard, M. W., Kulawik, S. S., Clough, S. A., Eldering, A., Bowman, K. W., Sander, S. P.,
491 Fisher, B. M., Payne, V. H., Luo, M., Osterman, G. B., and Worden, J. R.: First satellite observations of
492 lower tropospheric ammonia and methanol, *Geophysical Research Letters*, 35, n/a-n/a,
493 10.1029/2008GL033642, 2008.

494 Beig, G., and Singh, V.: Trends in tropical tropospheric column ozone from satellite data and MOZART
495 model, *Geophysical Research Letters*, 34, 2007.

496 Boersma, K., Eskes, H., Veefkind, J. P., Brinksma, E., Van Der A, R., Sneep, M., Van Den Oord, G.,
497 Levelt, P., Stammes, P., and Gleason, J.: Near-real time retrieval of tropospheric NO₂ from OMI,
498 *Atmospheric Chemistry and Physics*, 7, 2103-2118, 2007.

499 Boersma, K. F., Eskes, H. J., Dirksen, R. J., van der A, R. J., Veefkind, J. P., Stammes, P., Huijnen, V.,
500 Kleipool, Q. L., Sneep, M., Claas, J., Leitão, J., Richter, A., Zhou, Y., and Brunner, D.: An improved
501 tropospheric NO₂ column retrieval algorithm for the Ozone Monitoring Instrument, *Atmospheric
502 Measurement Techniques*, 4, 1905-1928, 10.5194/amt-4-1905-2011, 2011.

503 Boersma, K. F., Vinken, G. C. M., and Eskes, H. J.: Representativeness errors in comparing chemistry

504 transport and chemistry climate models with satellite UV–Vis tropospheric column retrievals, Geosci.
505 Model Dev., 9, 875-898, 10.5194/gmd-9-875-2016, 2016.

506 Brasseur, G., Hauglustaine, D., Walters, S., Rasch, P., Müller, J. F., Granier, C., and Tie, X.: MOZART,
507 a global chemical transport model for ozone and related chemical tracers: 1. Model description, Journal
508 of Geophysical Research: Atmospheres (1984–2012), 103, 28265-28289, 1998.

509 Canfield, D. E., Glazer, A. N., and Falkowski, P. G.: The Evolution and Future of Earth’s Nitrogen
510 Cycle, Science, 330, 192-196, 10.1126/science.1186120, 2010.

511 Castellanos, P., Boersma, K. F., Torres, O., and De Haan, J. F.: OMI tropospheric NO₂ air mass factors
512 over South America: effects of biomass burning aerosols, Atmospheric Measurement Techniques, 8,
513 2683-2733, 2015.

514 Clarisse, L., Clerbaux, C., Dentener, F., Hurtmans, D., and Coheur, P.-F.: Global ammonia distribution
515 derived from infrared satellite observations, Nature Geoscience, 2, 479-483, 2009.

516 Cofala, J., Amann, M., Klimont, Z., Kupiainen, K., and Höglund-Isaksson, L.: Scenarios of global
517 anthropogenic emissions of air pollutants and methane until 2030, Atmospheric Environment, 41,
518 8486-8499, <http://dx.doi.org/10.1016/j.atmosenv.2007.07.010>, 2007.

519 Coheur, P.-F., Clarisse, L., Turquety, S., Hurtmans, D., and Clerbaux, C.: IASI measurements of
520 reactive trace species in biomass burning plumes, Atmospheric Chemistry and Physics, 9, 5655-5667,
521 2009.

522 Crippa, M., Janssensmaenhout, G., Dentener, F., Guizzardi, D., Sindelarova, K., Muntean, M., Van
523 Dingenen, R., and Granier, C.: Forty years of improvements in European air quality: the role of EU
524 policy-industry interplay, Atmospheric Chemistry & Physics, 15, 322-337, 2015.

525 Dammers, E., Palm, M., Van Damme, M., Vigouroux, C., Smale, D., Conway, S., Toon, G. C., Jones,

526 N., Nussbaumer, E., Warneke, T., Petri, C., Clarisse, L., Clerbaux, C., Hermans, C., Lutsch, E., Strong,
527 K., Hannigan, J. W., Nakajima, H., Morino, I., Herrera, B., Stremme, W., Grutter, M., Schaap, M.,
528 Wichink Kruit, R. J., Notholt, J., Coheur, P. F., and Erisman, J. W.: An evaluation of IASI-NH₃ with
529 ground-based Fourier transform infrared spectroscopy measurements, *Atmos. Chem. Phys.*, 16,
530 10351-10368, 10.5194/acp-16-10351-2016, 2016.

531 De Smedt, I., Stavrakou, T., Hendrick, F., Danckaert, T., Vlemmix, T., Pinardi, G., Theys, N., Lerot, C.,
532 Gielen, C., and Vigouroux, C.: Diurnal, seasonal and long-term variations of global formaldehyde
533 columns inferred from combined OMI and GOME-2 observations, *Atmospheric Chemistry & Physics*,
534 15, 12241-12300, 2015.

535 Emmons, L., Walters, S., Hess, P., Lamarque, J.-F., Pfister, G., Fillmore, D., Granier, C., Guenther, A.,
536 Kinnison, D., and Laepple, T.: Description and evaluation of the Model for Ozone and Related
537 chemical Tracers, version 4 (MOZART-4), *Geoscientific Model Development*, 3, 43-67, 2010.

538 Erisman, J. W., Sutton, M. A., Galloway, J., Klimont, Z., and Winiwarter, W.: How a century of
539 ammonia synthesis changed the world, *Nature Geoscience*, 1, 636-639, 2008.

540 Foy, B. D., Lu, Z., and Streets, D. G.: Satellite NO₂ retrievals suggest China has exceeded its
541 NO_x reduction goals from the twelfth Five-Year Plan, *Scientific Reports*, 6, 35912, 2016.

542 Regional Emission Inventory in Asia: <http://www.jamstec.go.jp/frsgc/research/d4/emission.htm>, 2007.

543 Fu, B., Li, S., Yu, X., Yang, P., Yu, G., Feng, R., and Zhuang, X.: Chinese ecosystem research network:
544 Progress and perspectives, *Ecological Complexity*, 7, 225-233,
545 <http://dx.doi.org/10.1016/j.ecocom.2010.02.007>, 2010.

546 Galloway, J. N., Dentener, F. J., Capone, D. G., Boyer, E. W., Howarth, R. W., Seitzinger, S. P., Asner,
547 G. P., Cleveland, C. C., Green, P. A., Holland, E. A., Karl, D. M., Michaels, A. F., Porter, J. H.,

548 Townsend, A. R., and Vöosmarty, C. J.: Nitrogen Cycles: Past, Present, and Future, *Biogeochemistry*,
549 70, 153-226, 10.1007/s10533-004-0370-0, 2004.

550 Galloway, J. N., Townsend, A. R., Erisman, J. W., Bekunda, M., Cai, Z., Freney, J. R., Martinelli, L. A.,
551 Seitzinger, S. P., and Sutton, M. A.: Transformation of the Nitrogen Cycle: Recent Trends, Questions,
552 and Potential Solutions, *Science*, 320, 889-892, 10.1126/science.1136674, 2008.

553 Geddes, J. A., and Martin, R. V.: Global deposition of total reactive nitrogen oxides from 1996 to 2014
554 constrained with satellite observations of NO₂ columns, *Atmos. Chem. Phys. Discuss.*, 2017, 1-44,
555 10.5194/acp-2016-1100, 2017.

556 Huang, X., Song, Y., Li, M., Li, J., Huo, Q., Cai, X., Zhu, T., Hu, M., and Zhang, H.: A high resolution
557 ammonia emission inventory in China, *Global Biogeochemical Cycles*, 26, 1-14, 2012.

558 Ialongo, I., Herman, J., Krotkov, N., Lamsal, L., Boersma, K. F., Hovila, J., and Tamminen, J.:
559 Comparison of OMI NO₂ observations and their seasonal and weekly cycles with ground-based
560 measurements in Helsinki, 1-13, 2016.

561 Jgj, O., Jjm, B., Jahw, P., Bakker, J., Ajh, V., and Jpj, B.: Applications of EDGAR Emission Database
562 for Global Atmospheric Research, *Rijksinstituut Voor Volksgezondheid En Milieu Rivm*, 2002.

563 Kang, Y., Liu, M., Song, Y., Huang, X., Yao, H., Cai, X., Zhang, H., Kang, L., Liu, X., Yan, X., He, H.,
564 Zhang, Q., Shao, M., and Zhu, T.: High-resolution ammonia emissions inventories in China from 1980
565 to 2012, *Atmos. Chem. Phys.*, 16, 2043-2058, 10.5194/acp-16-2043-2016, 2016.

566 Klimont, Z., Cofala, J., Schöpp, W., Amann, M., Streets, D. G., Ichikawa, Y., and Fujita, S.: Projections
567 of SO₂, NO_x, NH₃ and VOC Emissions in East Asia Up to 2030, *Water, Air, & Soil Pollution*, 130,
568 193-198, 2001.

569 Kurokawa, J., Ohara, T., Morikawa, T., and Hanayama, S.: Emissions of air pollutants and greenhouse

570 gases over Asian regions during 2000–2008: Regional Emission inventory in ASia (REAS) version 2,
571 Atmospheric Chemistry & Physics, 13, 10049-10123, 2013.

572 Lamsal, L. N., Duncan, B. N., Yoshida, Y., Krotkov, N. A., Pickering, K. E., Streets, D. G., and Lu, Z.:
573 U.S. NO₂ trends (2005–2013): EPA Air Quality System (AQS) data versus improved observations from
574 the Ozone Monitoring Instrument (OMI), Atmospheric Environment, 110, 130-143,
575 <http://dx.doi.org/10.1016/j.atmosenv.2015.03.055>, 2015.

576 Lan, Z., Jenerette, G. D., Zhan, S., Li, W., Zheng, S., and Bai, Y.: Testing the scaling effects and
577 mechanisms of N-induced biodiversity loss: evidence from a decade-long grassland experiment,
578 Journal of Ecology, 103, 750-760, 10.1111/1365-2745.12395, 2015.

579 Levelt, P., Stammes, P., Gleason, J., and Bucsela, E.: Near-real time retrieval of tropospheric NO₂ from
580 OMI, Atmospheric Chemistry and Physics, 7, 2103-2118, 2007.

581 Li, Y., Schwandner, F. M., Sewell, H. J., Zivkovich, A., Tigges, M., Raja, S., Holcomb, S., Molenar, J.
582 V., Sherman, L., and Archuleta, C.: Observations of ammonia, nitric acid, and fine particles in a rural
583 gas production region, Atmospheric Environment, 83, 80-89, 2014.

584 Li, Y., Schichtel, B. A., Walker, J. T., Schwede, D. B., Chen, X., Lehmann, C. M., Puchalski, M. A.,
585 Gay, D. A., and Collett, J. L.: Increasing importance of deposition of reduced nitrogen in the United
586 States, Proceedings of the National Academy of Sciences, 113, 5874-5879, 2016a.

587 Li, Y., Thompson, T. M., Van Damme, M., Chen, X., Benedict, K. B., Shao, Y., Day, D., Boris, A.,
588 Sullivan, A. P., Ham, J., Whitburn, S., Clarisse, L., Coheur, P. F., and Collett Jr, J. L.: Temporal and
589 Spatial Variability of Ammonia in Urban and Agricultural Regions of Northern Colorado, United States,
590 Atmos. Chem. Phys. Discuss., 2016, 1-50, 10.5194/acp-2016-1008, 2016b.

591 Liu, F., Zhang, Q., Ronald, J. v. d. A., Zheng, B., Tong, D., Yan, L., Zheng, Y., and He, K.: Recent

592 reduction in NO x emissions over China: synthesis of satellite observations and emission inventories,
593 Environmental Research Letters, 11, 114002, 2016a.

594 Liu, L., Zhang, X., Wang, S., Lu, X., and Ouyang, X.: A Review of Spatial Variation of Inorganic
595 Nitrogen (N) Wet Deposition in China, PloS one, 11, e0146051, 2016b.

596 Liu, L., Zhang, X., Xu, W., Liu, X., Lu, X., Wang, S., Zhang, W., and Zhao, L.: Ground Ammonia
597 Concentrations over China Derived from Satellite and Atmospheric Transport Modeling, Remote
598 Sensing, 9, 467, 2017a.

599 Liu, L., Zhang, X., Zhang, Y., Xu, W., Liu, X., Zhang, X., Feng, J., Chen, X., Zhang, Y., Lu, X., Wang,
600 S., Zhang, W., and Zhao, L.: Dry Particulate Nitrate Deposition in China, Environmental Science &
601 Technology, 10.1021/acs.est.7b00898, 2017b.

602 Liu, X., Duan, L., Mo, J., Du, E., Shen, J., Lu, X., Zhang, Y., Zhou, X., He, C., and Zhang, F.: Nitrogen
603 deposition and its ecological impact in China: An overview, Environmental Pollution, 159, 2251-2264,
604 <http://dx.doi.org/10.1016/j.envpol.2010.08.002>, 2011.

605 Liu, X., Zhang, Y., Han, W., Tang, A., Shen, J., Cui, Z., Vitousek, P., Erisman, J. W., Goulding, K., and
606 Christie, P.: Enhanced nitrogen deposition over China, Nature, 494, 459-462, 2013.

607 Liu, X., Vitousek, P., Chang, Y., Zhang, W., Matson, P., and Zhang, F.: Evidence for a Historic Change
608 Occurring in China, Environmental Science & Technology, 50, 505-506, 2015.

609 Liu, X., Xu, W., Duan, L., Du, E., Pan, Y., Lu, X., Zhang, L., Wu, Z., Wang, X., and Zhang, Y.: Erratum
610 to: Atmospheric Nitrogen Emission, Deposition, and Air Quality Impacts in China: an Overview,
611 Current Pollution Reports, 1-1, 2017c.

612 Lu, X., Jiang, H., Liu, J., Zhang, X., Jin, J., Zhu, Q., Zhang, Z., and Peng, C.: Simulated effects of
613 nitrogen saturation on the global carbon budget using the IBIS model, Scientific Reports, 6, 39173,

614 10.1038/srep39173, 2016.

615 Ma, J. Z., Beirle, S., Jin, J. L., Shaiganfar, R., Yan, P., and Wagner, T.: Tropospheric NO₂ vertical
616 column densities over Beijing: results of the first three years of ground-based MAX-DOAS
617 measurements (2008–2011) and satellite validation, *Atmospheric Chemistry & Physics*, 13, 1547-1567,
618 2013.

619 Meng, Z.-Y., Xu, X.-B., Wang, T., Zhang, X.-Y., Yu, X.-L., Wang, S.-F., Lin, W.-L., Chen, Y.-Z., Jiang,
620 Y.-A., and An, X.-Q.: Ambient sulfur dioxide, nitrogen dioxide, and ammonia at ten background and
621 rural sites in China during 2007–2008, *Atmospheric Environment*, 44, 2625-2631,
622 <http://dx.doi.org/10.1016/j.atmosenv.2010.04.008>, 2010.

623 Meng, Z., Lin, W., Jiang, X., Yan, P., Wang, Y., Zhang, Y., Jia, X., and Yu, X.: Characteristics of
624 atmospheric ammonia over Beijing, China, *Atmospheric Chemistry and Physics*, 11, 6139-6151, 2011.

625 Nowlan, C., Martin, R., Philip, S., Lamsal, L., Krotkov, N., Marais, E., Wang, S., and Zhang, Q.:
626 Global dry deposition of nitrogen dioxide and sulfur dioxide inferred from space - based measurements,
627 *Global Biogeochemical Cycles*, 28, 1025-1043, 2014.

628 Ohara, T., Akimoto, H., Kurokawa, J., Horii, N., Yamaji, K., Yan, X., and Hayasaka, T.: An Asian
629 emission inventory of anthropogenic emission sources for the period 1980–2020, *Atmos. Chem.
630 Phys.*, 7, 4419-4444, 10.5194/acp-7-4419-2007, 2007.

631 Olivier, J. G. J., Bouwman, A. F., Hoek, K. W. V. D., and Berdowski, J. J. M.: Global air emission
632 inventories for anthropogenic sources of NO_x, NH₃ and N₂O in 1990, *Environmental Pollution*,
633 102, 135-148, 1998.

634 Pan, Y., Wang, Y., Tang, G., and Wu, D.: Wet and dry deposition of atmospheric nitrogen at ten sites in
635 Northern China, *Atmospheric Chemistry and Physics*, 12, 6515-6535, 2012.

636 Pfister, G., Emmons, L., Hess, P., Lamarque, J. F., Orlando, J., Walters, S., Guenther, A., Palmer, P., and
637 Lawrence, P.: Contribution of isoprene to chemical budgets: A model tracer study with the NCAR CTM
638 MOZART - 4, *Journal of Geophysical Research: Atmospheres* (1984–2012), 113, 2008.

639 Russell, A., Valin, L., and Cohen, R.: Trends in OMI NO₂ observations over the United States: effects
640 of emission control technology and the economic recession, *Atmospheric Chemistry and Physics*, 12,
641 12197-12209, 2012.

642 Russell, A. R., Perring, A. E., Valin, L. C., and Bucsela, E. J.: A high spatial resolution retrieval of NO
643 2 column densities from OMI: method and evaluation, *Atmospheric Chemistry & Physics*, 11,
644 12411-12440, 2011.

645 Sahu, L., Sheel, V., Kajino, M., Gunthe, S. S., Thouret, V., Nedelec, P., and Smit, H. G.: Characteristics
646 of tropospheric ozone variability over an urban site in Southeast Asia: A study based on MOZAIC and
647 MOZART vertical profiles, *Journal of Geophysical Research: Atmospheres*, 118, 8729-8747, 2013.

648 Shi, Y., Cui, S., Ju, X., Cai, Z., and Zhu, Y.-G.: Impacts of reactive nitrogen on climate change in China,
649 *Scientific Reports*, 5, 8118, 10.1038/srep08118

650 <http://www.nature.com/articles/srep08118#supplementary-information>, 2015.

651 Streets, D. G., Bond, T. C., Carmichael, G. R., Fernandes, S. D., He, D., Klimont, Z., Nelson, S. M.,
652 Tsai, N. Y., and Wang, M. Q.: An inventory of gaseous and primary aerosol emissions in Asia in the
653 year 2000, *Journal of Geophysical Research Atmospheres*, 108, GTE 30-31, 2003.

654 Sun, Q., and Wang, M.: Ammonia Emission and Concentration in the Atmosphere over China, *Scientia
655 Atmospherica Sinica*, 1997.

656 Van Damme, M., Clarisse, L., Dammers, E., Liu, X., Nowak, J., Clerbaux, C., Flechard, C.,
657 Galy-Lacaux, C., Xu, W., and Neuman, J.: Towards validation of ammonia (NH₃) measurements from

658 the IASI satellite, Atmospheric Measurement Techniques, 7, 12125-12172, 2014a.

659 Van Damme, M., Clarisse, L., Heald, C., Hurtmans, D., Ngadi, Y., Clerbaux, C., Dolman, A., Erisman,

660 J. W., and Coheur, P.-F.: Global distributions, time series and error characterization of atmospheric

661 ammonia (NH₃) from IASI satellite observations, Atmospheric Chemistry and Physics, 14, 2905-2922,

662 2014b.

663 Van Damme, M., Wichink Kruit, R., Schaap, M., Clarisse, L., Clerbaux, C., Coheur, P. F., Dammers, E.,

664 Dolman, A., and Erisman, J.: Evaluating 4 years of atmospheric ammonia (NH₃) over Europe using

665 IASI satellite observations and LOTOS - EUROS model results, Journal of Geophysical Research:

666 Atmospheres, 119, 9549-9566, 2014c.

667 Walker, J. C., Dudhia, A., and Carboni, E.: An effective method for the detection of trace species

668 demonstrated using the MetOp Infrared Atmospheric Sounding Interferometer, Atmos. Meas. Tech., 4,

669 1567-1580, 10.5194/amt-4-1567-2011, 2011.

670 Wang, S., Zhang, Q., Streets, D., He, K., Martin, R., Lamsal, L., Chen, D., Lei, Y., and Lu, Z.: Growth

671 in NO_x emissions from power plants in China: bottom-up estimates and satellite observations,

672 Atmospheric Chemistry and Physics, 12, 4429-4447, 2012.

673 Wang, S. W., Liao, J. H., Yu-Ting, H. U., and Yan, X. Y.: A Preliminary Inventory of NH₃-N Emission

674 and Its Temporal and Spatial Distribution of China, Journal of Agro-Environment Science, 2009.

675 Wang, W. X., Lu, X. F., Pang, Y. B., Tang, D. G., and Zhang, W. H.: Geographical distribution of NH₃

676 emission intensities in China, Actaentiae Circumstantiae, 1997.

677 Warner, J. X., Dickerson, R. R., Wei, Z., Strow, L. L., Wang, Y., and Liang, Q.: Increased atmospheric

678 ammonia over the world's major agricultural areas detected from space, Geophysical Research Letters,

679 n/a-n/a, 10.1002/2016GL072305, 2017.

680 Whitburn, S., Van Damme, M., Clarisse, L., Bauduin, S., Heald, C. L., Hadji-Lazaro, J., Hurtmans, D.,
681 Zondlo, M. A., Clerbaux, C., and Coheur, P. F.: A flexible and robust neural network IASI-NH₃
682 retrieval algorithm, *Journal of Geophysical Research: Atmospheres*, 121, 6581-6599,
683 10.1002/2016JD024828, 2016a.

684 Whitburn, S., Van Damme, M., Clarisse, L., Turquety, S., Clerbaux, C., and Coheur, P. F.: Doubling of
685 annual ammonia emissions from the peat fires in Indonesia during the 2015 El Niño, *Geophysical*
686 *Research Letters*, 43, 11,007-011,014, 10.1002/2016GL070620, 2016b.

687 Wichink Kruit, R. J., Schaap, M., Sauter, F. J., van Zanten, M. C., and van Pul, W. A. J.: Modeling the
688 distribution of ammonia across Europe including bi-directional surface-atmosphere exchange,
689 *Biogeosciences*, 9, 5261-5277, 10.5194/bg-9-5261-2012, 2012.

690 Xia, Y., Zhao, Y., and Nielsen, C. P.: Benefits of China's efforts in gaseous pollutant control indicated
691 by the bottom-up emissions and satellite observations 2000–2014, *Atmospheric Environment*, 136,
692 43-53, <http://dx.doi.org/10.1016/j.atmosenv.2016.04.013>, 2016.

693 Xie, Y., Zhao, B., Zhang, L., and Luo, R.: Spatiotemporal variations of PM_{2.5} and PM₁₀
694 concentrations between 31 Chinese cities and their relationships with SO₂, NO₂, CO and O₃,
695 *Particuology*, 20, 141-149, <http://dx.doi.org/10.1016/j.partic.2015.01.003>, 2015.

696 Xu, W., Luo, X. S., Pan, Y. P., Zhang, L., Tang, A. H., Shen, J. L., Zhang, Y., Li, K. H., Wu, Q. H., Yang,
697 D. W., Zhang, Y. Y., Xue, J., Li, W. Q., Li, Q. Q., Tang, L., Lv, S. H., Liang, T., Tong, Y. A., Liu, P.,
698 Zhang, Q., Xiong, Z. Q., Shi, X. J., Wu, L. H., Shi, W. Q., Tian, K., Zhong, X. H., Shi, K., Tang, Q. Y.,
699 Zhang, L. J., Huang, J. L., He, C. E., Kuang, F. H., Zhu, B., Liu, H., Jin, X., Xin, Y. J., SHi, X. K., Du,
700 E. Z., Dore, A. J., Tang, S., Collett Jr, J. L., Goulding, K., Sun, Y. X., Ren, J., Zhang, F. S., and Liu, X.
701 J.: Quantifying atmospheric nitrogen deposition through a nationwide monitoring network across China,

702 Atmospheric Chemistry and Physics, 15, 12345-12360, 2015.

703 Xu, W., Song, W., Zhang, Y., Liu, X., Zhang, L., Zhao, Y., Liu, D., Tang, A., Yang, D., and Wang, D.:

704 Air quality improvement in a megacity: implications from 2015 Beijing Parade Blue pollution control

705 actions, Atmospheric Chemistry and Physics, 17, 31-46, 2017.

706 Zhao, C., and Wang, Y.: Assimilated inversion of NO_x emissions over east Asia using OMI NO₂

707 column measurements, Geophysical Research Letters, 36, 1-5, 2009.

708 Zhou, Y., Shuiyuan, C., Lang, J., Chen, D., Zhao, B., Liu, C., Xu, R., and Li, T.: A comprehensive

709 ammonia emission inventory with high-resolution and its evaluation in the Beijing–Tianjin–Hebei

710 (BTH) region, China, Atmospheric Environment, 106, 305-317,

711 <http://dx.doi.org/10.1016/j.atmosenv.2015.01.069>, 2015.

712

Fig. 1. The satellite-derived observation numbers for NO_2 and NH_3 . (a) denotes the percentages of observations in each month in 2010 for NO_2 and in 2015 for NH_3 and (b) represents the total observation numbers for NO_2 and NH_3 over China. Notably, the NO_2 observation numbers were gained from DOMINO products with a cloud radiance fraction below 0.5, while the IASI observations with a relative error below 100% or an absolute error below 5×10^{15} molec. cm^{-2} were processed for analysis over China.

720

721 **Fig. 2.** The NO_2 and NH_3 emissions over China. (a) denotes the NO_2 and NH_3 emissions over China from 1980 to 2010 from
 722 REAS, (b) represents the NO_2 and NH_3 emissions over China from 1980 to 2010 from EDGAR, (c) demonstrates the relationship
 723 of NO_2 emissions over China from REAS and EDGAR and (d) shows the relationship of NH_3 emissions over China from REAS
 724 and EDGAR.

725

(a) OMI NO₂ at 13:45 P.M.

(b) IASI NH₃ at 9:30 A.M.

726

727 **Fig. 3.** Time series of average OMI NO₂ and IASI NH₃ columns over China during warm months (April-September) and cold
 728 months (October-March). The time period of NO₂ columns was from 2005 to 2015, while the timespan of NH₃ columns was from
 729 2008 to 2015 over China. The associated mean error for each period is presented here as error bars. The percent increase or
 730 decrease rate (%) was the long term mean calculated by $100 \times \left(\frac{Y_2 - Y_1}{Y_1} + \frac{Y_3 - Y_2}{Y_2} + \dots + \frac{Y_{n+1} - Y_n}{Y_n} \right) \times \frac{1}{n}$.

731

732 **Fig. 4.** Spatial distribution of the annual NH_3 (a) and NO_2 (b) columns ($\text{molecules cm}^{-2} \text{ year}^{-1}$). The successfully full provincial
 733 names are Beijing (BJ), Tianjin (TJ), Hebei (HeB), Shandong (SD), Shanxi (SX), Henan (HeN), Shaanxi (SaX), Liaoning (LN),
 734 Jilin (JL), Heilongjiang (HLJ), Neimenggu (NMG), Gansu (GS), Ningxia (NX), Xinjiang (XJ), Shanghai (SH), Jiangsu (JS),
 735 Zhejiang (ZJ), Anhui (AH), Hubei (HuB), Hunan (HuN), Jiangxi (JX), Fujian (FJ), Guangdong (GD), Hainan (HaN), Yunnan
 736 (YN), Guizhou (GZ), Chongqing (CQ), Sichuan (SC), Guangxi (GX), Xizang (XZ) and Qinghai (QH).
 737

739

740 **Fig. 5.** Time series of MOZART NO₂ and NH₃ columns over China during average warm months (April-September) and cold
 741 months (October-March) from 2008 to 2015. The mean columns were calculated by averaging the columns at 00, 6, 12 and 18 h.
 742 The associated mean error for each period is presented here as error bars.

743

744