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ABSTRACT 16 

Soil moisture and water stress play a pivotal role in regulating stomatal behaviour of plants; however, 17 

in the last decade, the role of water availability was often neglected in atmospheric chemistry 18 

modelling studies as well as in integrated risk assessments, despite through stomata plants remove a 19 

large amount of atmospheric compounds from the lower troposphere.   20 

The main aim of this study is to evaluate the effect of soil water limitation on stomatal conductance 21 

and assess the resulting changes in atmospheric chemistry testing various hypotheses of water uptake 22 

by plants in the rooting zone; following the main assumption that roots maximize water uptake, i.e. 23 

they adsorb water at different soil depths depending on the water availability, we improve the dry 24 

deposition scheme within the chemistry transport model CHIMERE.  25 

Results highlight how dry deposition significantly declines when soil moisture is used to regulate the 26 

stomatal opening, mainly in the semi-arid environments: in particular, over Europe the amount of 27 

ozone removed by dry deposition in one year without considering any soil water limitation to stomatal 28 
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conductance is about 8.5 TgO3, while using a dynamic layer that ensures plants to maximize the water 29 

uptake from soil, we found a reduction of about 10% in the amount of ozone removed by dry 30 

deposition (~7.7 TgO3). Despite dry deposition occurs from top of canopy to ground level, it affects the 31 

concentration of gases remaining into the lower atmosphere with a significant impact on ozone 32 

concentration (up to 4 ppb) extending from the surface to the upper troposphere (up to 650 hPa).  33 

Our results shed light on the importance of improving the parameterizations of processes occurring at  34 

plant level (i.e. from the soil to the canopy) as they have significant implications on concentration of 35 

gases in the lower troposphere. 36 

 37 

1. Introduction 38 

Plant-level water cycling and exchange of air pollutants between atmosphere and vegetation are 39 

intimately coupled (Eamus, 2003; Domec et al., 2010), thus any factor affecting root water absorption 40 

by plants is expected to impact the concentration of gases in the lower troposphere by changing 41 

deposition rates. In fact, atmospheric gases, including air pollutants, are primarily removed from the 42 

troposphere by dry deposition to the Earth’s surface (Hardacre et al., 2015; Monks et al., 2015). A 43 

major part of dry deposition to vegetation is regulated by stomata opening which strongly depends on 44 

the amount of water available in the soil (Büker et al., 2012). Therefore a proper quantification of soil 45 

water content as well as a proper understanding of stomatal response to soil moisture are required for 46 

correctly quantifying the concentration of gases in the atmosphere, particularly in water-limited 47 

ecosystems (dry and semidry environments) which cover 41% of Earth’s land surface (Reynolds et al., 48 

2007). 49 

Among common air gasses, ozone (O3) plays a pivotal role in the Earth system: in fact, it affects 50 

climate with a direct radiative forcing of 0.2-0.6 W m-2 (Shindell et al., 2009, 2012; Ainsworth et al., 51 

2012; Myhre et al., 2013) and the ecosystems, causing a reduction of carbon assimilation by vegetation 52 

(Wittig et al., 2009) that accelerates the rate of rise in CO2 concentrations with indirect implications for 53 

climate change (Sitch et al., 2007). In addition, O3 accelerates leaf senescence (Gielen et al., 2007), 54 

changes plants susceptibility to abiotic and biotic stress factors (Karnosky et al., 2002) and makes 55 

sluggish or impaired response of stomata to environmental stimuli (Hoshika et al., 2015). 56 

At European level, the model currently parameterized for European vegetation and developed to 57 

estimate surface O3 fluxes is the DO3SE (Deposition of O3 and Stomatal Exchange) model (Emberson 58 

et al., 2000); it is widely used embedded within chemistry transport models (CTMs) (Tuovinen et al., 59 

2004; Simpson et al., 2007,2012; Menut et al., 2013) to estimate dry deposition rates as well as stand-60 
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alone for O3 risk assessment (Emberson et al., 2007; Tuovinen et al., 2009; Klingberg et al., 2014; 61 

Anav et al., 2016; Sicard et al., 2016; Karlsson et al., 2017). The DO3SE model is based on the 62 

multiplicative Jarvis’ algorithm for calculation of stomatal conductance (Jarvis 1976), which integrates 63 

the effects of multiple climatic factors, vegetation characteristics and local features (Emberson et al., 64 

2000). The leaf-level stomatal conductance is estimated considering the variation in the maximum 65 

stomatal conductance (gmax) with photosynthetic photon flux density, surface air temperature, and 66 

vapour pressure deficit. However, this original formulation of the DO3SE model presented a main 67 

limitation (Simpson et al., 2007; Tuovinen et al., 2009; Mills et al., 2011): for both forests and crops 68 

the model did not take into account the limitation due to soil water content. This approach ensured that 69 

stomatal fluxes were maximized, corresponding to conditions expected for irrigated areas (Simpson et 70 

al., 2007), but, in semi-arid environments, like the Mediterranean basin, the amount of atmospheric 71 

gases entering the leaves might be compromised by the exclusion of the influence of drought on 72 

stomatal conductance (Tuovinen et al., 2009; Mills et al., 2011; Büker et al., 2012; Anav et al., 2016; 73 

De Marco et al., 2016). Following this assumption, the role of soil moisture on stomatal O3 fluxes has 74 

been often neglected in risk assessment studies because soil water is very difficult to model accurately 75 

in large-scale models, as it depends on parameters (such as soil texture, vegetation characteristics and 76 

rooting depth) that are not easily available in the frame of large scale models (Simpson et al., 2007; 77 

Büker et al., 2012; Simpson et al., 2012).  78 

However, in the last decade the importance of soil water stress on vegetation has been well 79 

demonstrated in several studies reporting a large reduction in the amount of air gases up-taken from the 80 

atmosphere during heat waves or drought years (e.g. Ciais et al., 2005; Granier et al., 2007; Reichstein 81 

et al., 2007) with species responding in different ways to scarce water availability, depending on eco-82 

hydrological properties (Granier et al., 1996; Pataki et al., 2000; Pataki and Oren, 2003) and drought 83 

avoidance and tolerance strategies (Martinez-Ferri et al., 2000; Bolte et al., 2007). For instance, 84 

drought-avoiding species (e.g. Pinus spp.) prevent damage by an early stomatal closure that leads to a 85 

sharp carbon assimilation inhibition, whereas drought-tolerant species (e.g. Quercus spp.) exhibit a 86 

simultaneous decrease in stomatal conductance and water potential (Guehl et al,. 1991, Picon et al., 87 

1996) that does not significantly limit carbon assimilation. Nevertheless, both strategies have severe 88 

implications on the concentration of gases in the lower troposphere.  89 

Moreover, it is important to take into account that soil drying does not occur at the same rate at 90 

different depths, and the drying rate is more pronounced in the superficial soil layers than in the deeper 91 

ones. Overall, deep-rooted forest systems take up water from deep to shallow soil horizons (Aranda et 92 
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al., 2012). In contrast, shallow-rooted grass normally adsorbs available soil water from top−middle 93 

soil, while shrubs can take up soil water adaptively from top to deep soil layers, with increased use of 94 

top-soil water under non-drought stress and a tendency of using water from deeper soil under drought 95 

stress (Wu et al., 2017). Thus, plants able to develop a deeper root system usually are more tolerant to 96 

low water availability than plants with a more superficial root system (Canadell et al., 1996). Jackson 97 

et al. (2000) showed that differences in rooting depth patterns vary between world's major plant 98 

biomes, with plants of xeric environments having deeper root-depth distributions than plants in more 99 

humid environments. In contrast, Schenk and Jackson (2002) found that maximum rooting depths tend 100 

to be shallowest in arid regions and  deepest  in  sub-humid  regions.  101 

Consequently, the role of root systems is fundamental in stomatal conductance regulation and thus in 102 

atmospheric chemistry modeling. For these reasons, recently the DO3SE model has been improved to 103 

account for the soil moisture limitation to stomatal conductance (Büker et al., 2012; Simpson et al., 104 

2012). 105 

Chemistry transport models are widely used to estimate the concentration of gases in atmosphere at 106 

both regional and global scale; in these models the concentration of a given gas-species is mainly 107 

regulated and parameterized by three different processes: atmospheric transport, chemical 108 

production/destruction and losses to surface by dry deposition (Monks et al., 2015). Within these 109 

models, the dry deposition is generally simulated through an electrical resistance analogy (Wesely 110 

1989; Monk et al., 2015), namely the transport of material to the surface is assumed to be controlled by 111 

three different resistances: the aerodynamic resistance (Ra), the quasi-laminar layer resistance (Rb), and 112 

the surface resistance (Rc). The surface resistance is regulated by the stomatal uptake, which relies on 113 

stomatal conductance, as well as external plant surfaces like the soil underlying the vegetation. 114 

In this study, we improve the dry deposition scheme within the chemistry transport model CHIMERE 115 

considering the effect of soil water limitation to stomatal conductance. Our main aim was to perform 116 

several different simulations testing various hypotheses of water uptake by plants at different soil 117 

depths in the rooting zone, based on the main assumption that roots maximize water uptake to fulfill 118 

resource requirements adsorbing water at different depths depending on the water availability. Finally 119 

we show and discuss the resulting effects on O3 dry deposition and concentration, in order to stress the 120 

need of a proper parameterization of root-depth soil moisture when evaluating the stomatal feedbacks 121 

on the atmosphere and for a thorough O3 risk assessment.   122 

 123 

 124 
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2. Methodology 125 

2.1. The multi-model framework 126 

We use a multi-model system to reproduce the meteorological conditions and the concentration of 127 

gases in the troposphere; this framework is composed by the WRF (Weather Research and Forecast 128 

Model) regional meteorological model and the CHIMERE chemistry-transport model.  129 

In this study, in order to have a large latitudinal gradient and assess the role of soil moisture across 130 

different climate zones, we selected a domain extending over all Europe (except Iceland). For both 131 

WRF and CHIMERE we performed a simulation for the whole year 2011, with a spin up of 2 months 132 

to initialize all the fields. 133 

 134 

2.1.1. The meteorological model WRF 135 

Meteorological  variables  are  simulated  with  the  WRF regional model (v 3.6); it is a limited-area, 136 

non-hydrostatic, terrain-following eta-coordinate mesoscale model (Skamarock et al., 2008) widely 137 

used worldwide for climate studies. In our configuration, the model domain is projected on a regular 138 

latitude-longitude grid with a spatial resolution of 16 km and with 30 vertical levels extending from 139 

land surface to 50 hPa. The initial and boundary meteorological conditions required to run the WRF 140 

model are provided by the European Centre for Medium-range Weather Forecast (ECMWF) analyses 141 

with a horizontal resolution of 0.7° every 6 hours (Dee et al., 2011). 142 

The exchange of heat, water and momentum between soil‐vegetation and atmosphere is calculated 143 

using the Noah land surface model (Chen and Dudhia, 2001); in our configuration the soil has a 144 

vertical profile with a total depth of 2 m below the surface and it is partitioned into four layers with 145 

thicknesses of 10, 30, 60, and 100 cm (giving a total of 2 m). The root zone is fixed at 100 cm (i.e. 146 

including the top three soil layers). Thus, the lower 100 cm of soil layer acts as a reservoir with gravity 147 

drainage at the bottom (Al-Shrafany et al., 2013).  148 

For each soil layer Noah calculates the volumetric soil water content (θ) from the mass conservation 149 

law and the diffusivity form of Richards’ equation (Chen and Dudhia, 2001): 150 

 151 

K
D F

t z z z


      
   

      

  (1) 152 

where D is the soil water diffusivity, K is the hydraulic conductivity, Fθ represents additional sinks and 153 

sources of water (i.e., precipitation, evaporation and runoff), t is time and z is the soil layer depth 154 
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(Chen and Dudhia, 2001; Al-Shrafany et al., 2013; Greve et al., 2013). Integrating Eq. (1) over four 155 

soil layers and expanding Fθ, we can calculate the volumetric soil water content for each soil layer 156 

(Chen and Dudhia, 2001; Al-Shrafany et al., 2013): 157 

 158 
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 163 

where, dzi is the thickness of the ith soil layer, Pd is the precipitation not intercepted by the canopy, Eti 164 

represents the canopy transpiration taken by the canopy root in the ith layer within the root zone, Edir is 165 

the direct evaporation from the top surface soil layer, and R is the surface runoff, calculated using the 166 

Simple Water Balance (SWB) model (Schaake et al., 1996). In the deeper soil layer (i.e. 4th) the 167 

hydraulic diffusivity is assumed to be zero, so that the soil water flux is due only to the gravitational 168 

percolation term Kz4 (i.e. drainage). A full and detailed description of the above mentioned 169 

parameterizations used by the Noah scheme can be found in Chen and Dudhia (2001). 170 

For the definition of vegetation and land cover WRF uses the United States Geological Survey (USGS) 171 

land cover dataset, which has a resolution of 1km with 24 categories (Loveland et al., 2000; Hibbard et 172 

al., 2010; Sertel et al., 2010); this  land  cover dataset is derived from the 1 km satellite Advanced Very 173 

High Resolution Radiometer (AVHRR) data. In addition to land cover, WRF defines 12 soil types and 174 

four non-soil types, including organic material, water, bedrock, and ice. Soil types are classified based 175 

on the percentage of sand, silt, and clay in the soil (Dy and Fung, 2016); for each soil type, WRF has a 176 

default soil parameter table that generalizes the hydraulic and thermal properties of the soil. Soil 177 

texture data are derived from the 5-minute Food and Agriculture Organization’s (FAO) 16 categories 178 

soil types. 179 

One useful capability of WRF is its flexibility in choosing different dynamical and physical schemes; 180 

Table 1 lists the main options used in this study for physical schemes. 181 

 182 
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Table 1. WRF 3.6 physical configurations used in the model simulations. 183 

   

Process Configuration Reference 
   

   

Microphysics Single Moment-3 class (mp_physics = 3)* Hong et al. (2004) 

Cumulus Parameterization Kain–Fritsch (cu_physics = 1)* Kain (2004) 

Shortwave Radiation RRTM (ra_sw_physics = 1)* Mlawer et al. (1997) 

Longwave Radiation RRTM (ra_lw_physics = 1)* Mlawer et al. (1997) 

Land-surface Noah land model (sf_surface_physics = 2)* Chen and Dudhia (2001) 

Planetary Boundary Layer YSU (bl_pbl_physics = 1)* Hong et al. (2006) 
   

*A complete description of parameterizations and model’s flags is given in the WRF 3 user guide 184 

(http://www2.mmm.ucar.edu/wrf/users/docs/user_guide_V3.6/ARWUsersGuideV3.6.1.pdf) 185 

 186 

2.1.2. The chemistry-transport model CHIMERE 187 

The chemistry transport model used in this study is CHIMERE (v2014b), an Eulerian model developed 188 

to simulate gas-phase chemistry, aerosol formation, transport and deposition at regional scale (Menut 189 

et al., 2013).  190 

The gas-phase chemical mechanism used by CHIMERE is MELCHIOR2 (Lattuati, 1997), which 191 

consists of a simplified version (40 chemical species, 120 reactions) of the full chemical mechanism 192 

MELCHIOR; this latter describes more than 300 reactions of 80 species. Photolysis rates are explicitly 193 

calculated using the FastJ radiation module (Wild et al., 2000), as described by Mailler et al. (2016; 194 

2017). External meteorological forcing required by CHIMERE to calculate the atmospheric 195 

concentrations of gas-phase and aerosol species are directly provided by the WRF simulation. In 196 

addition, to accurately reproduce the gas-phase chemistry, emissions must be provided every hour for 197 

the specific species of the chemical mechanism. For studies over Europe, the EMEP inventory 198 

(Vestreng et al., 2009) is usually used for anthropogenic emissions of NOx, CO, SO2, PM2.5 and PM10. 199 

Biogenic emissions of six species (isoprene, α-pinene, β-pinene, limonene, ocimene, and NO) are 200 

calculated through the MEGAN model (Guenther et al., 2006). This model parameterizes the bulk 201 

effect of changing environmental conditions using three time-dependent input variables: surface air 202 

temperature, radiation and foliage density (i.e. LAI). In the standard version of CHIMERE, LAI 203 

database is given as a monthly mean product derived from MODIS observations, referred to base year 204 

2000 (Menut et al., 2013). However, as climate change leads to a widespread greening of Earth surface 205 

(Zhu et al., 2016), a mean climatological LAI referred to year 2000 could not be adequate to correctly 206 

simulate biogenic emissions during our simulation (year 2011). Thus, here we replaced the original 207 

LAI data with mean monthly GIMMS-LAI3g data (Zhu et al., 2013) for the year 2011.    208 
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Boundary conditions are provided as a monthly climatology of the LMDz-INCA global chemistry-209 

transport model (Hauglustaine et al., 2004; Folberth et al., 2006) for gaseous species and the GOCART 210 

model (Ginoux et al., 2001) for aerosol species. More details regarding the parameterizations of the 211 

above mentioned processes are described in Menut et al. (2013). 212 

 213 

2.1.3. Dry deposition: the DO3SE model 214 

The leaf-level stomatal conductance is estimated by CHIMERE using the DO3SE model (Emberson et 215 

al., 2000). As already introduced above, this model integrates the effects of multiple climatic factors, 216 

vegetation characteristics and local features through some limiting functions (e.g. Emberson et al., 217 

2000). The limiting functions consider the variation in the maximum stomatal conductance (gmax) with 218 

photosynthetic photon flux density (flight), surface air temperature (ftemp) and vapour pressure deficit 219 

(fVPD) (Mills et al., 2011; Büker et al., 2012); they vary between 0 and 1, with 1 meaning no limitation 220 

to stomatal conductance (e.g. Emberson et al., 2000; Mills et al., 2011). In addition, the DO3SE model 221 

requires another function describing the phenology of vegetation (fphen); this function is used to 222 

compute the duration of growing season during which plants can uptake gases from atmosphere (Anav 223 

et al., 2017).  224 

Here, we improve the DO3SE scheme within CHIMERE considering also the soil water content (SWC) 225 

limitation to stomatal conductance; the soil-water limitation function is defined as: 226 

 227 

minmin 1,max ,SWC

SWC WP
f f

FC WP

   
       

 (6) 228 

where WP and FC are the soil water content at wilting point and at field capacity, respectively; these 229 

two parameters are constant and depend on the soil type. Given the above-mentioned limiting 230 

functions, the stomatal conductance is computed as following:  231 

 232 

max min* * *max( , * * )sto phen light temp VPD SWCg g f f f f f f   (7) 233 

 234 

where gmax is the maximum stomatal conductance of a plant species to O3 and fmin is the minimum 235 

stomatal conductance expressed as a fraction of gmax (Emberson et al., 2000). 236 
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Meteorological fields required by the DO3SE model, such as 2m air temperature, relative humidity, 237 

short wave radiation and soil moisture, are directly provided by WRF. As already discussed above, 238 

WRF computes soil moisture over four soil  layers of different thicknesses. For the integrated risk 239 

assessment studies, some authors make use of 1m soil layer to compute the stomatal O3 flux and dry-240 

deposition (e.g. Simpson et al., 2012), while other authors use a shallower soil moisture layer (e.g. De 241 

Marco et al., 2016) as most of the absorbing fine roots concentrate in the top soil layer (Jackson et al., 242 

1996; Vinceti et al., 1998). Here we perform five different simulations testing various hypotheses: 1) 243 

no soil moisture limitation to stomatal conductance (henceforth NO_SWC), 2) soil moisture from first 244 

soil layer (i.e. 0-10 cm depth, henceforth SWC_10cm), 3) soil moisture from middle soil (i.e., 10-40 cm 245 

depth, henceforth SWC_40cm), 4) soil moisture from the deeper soil layer of rooting zone (i.e., 0.4-1 m 246 

depth, henceforth SWC_1m) and 5) a dynamic layer (henceforth SWC_DYN) supporting the hypothesis 247 

that plants adsorb water at the depth with the higher water content availability.     248 

As the original version of CHIMERE does not account for any limitation of soil moisture to stomatal 249 

conductance, in the following analysis we use the simulation NO_SWC as reference; thus we show and 250 

discuss models’ changes with respect to this original configuration (Menut et al., 2013).  251 

 252 

2.2. Measurement data and statistical analysis 253 

In order to assess how the new parameterization of dry deposition changes the ability of CHIMERE to 254 

reproduce the spatial distribution of surface O3 concentration, we compare the simulated data at 255 

surface level against in-situ measurements. Station data were obtained from the European air quality 256 

database (AirBase) and maintained by the European Environment Agency (EEA) 257 

(http://acm.eionet.europa.eu/databases/airbase/).  258 

For the validation of O3 bias, computed comparing hourly simulated O3 concentrations with AirBase 259 

data, we use the root-mean-square error (RMSE), while to assess the agreement in the phase (i.e. 260 

hourly cycle) we use the correlation coefficient.  261 

Considering the soil moisture, we retrieve precipitation data over four forested eddy covariance sites 262 

belonging to the European flux network (http://www.europe-fluxdata.eu); in fact, a good representation 263 

of precipitation simulated by the model is mandatory to correctly reproduce the dynamics of water in 264 

the soil. The choice of these specific sites is due to the multiple requirements of having full year data 265 

coverage with different climatic zones. Specifically, the sites cover a continental climate typical of 266 

central Europe, where soil moisture barely limits the stomatal opening, and Mediterranean sites 267 

characterized by scarce water availability during summer months. Unfortunately, despite soil moisture 268 
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is measured in these sites, the depth of measurements is not consistent with model’s layers and also it 269 

does not reach the same depth of the model making thus awkward any comparison of the vertical 270 

distribution of water in the soil. 271 

 272 

3. Results 273 

3.1. Seasonal changes in soil water content  274 

Figure 1 shows the seasonal variation of simulated soil water content at four different locations; in 275 

order to assess the reliability of vertical soil moisture profiles we also evaluate models skills in 276 

capturing precipitation events by comparing the simulated precipitation with data collected over the 277 

four measurements stations.  278 

The first site, Leinefelde in Germany, is characterized by a temperate/continental climate with mean 279 

annual precipitation ranging between 700 and 750 mm, covered by a beech forest (Fagus sylvatica). 280 

Overall, compared to in-situ observations, WRF well reproduces both the rainfall events and their 281 

intensity (Figure 1a). Considering the soil moisture, at the beginning of the year, the soil is at field 282 

capacity, and rapidly becomes saturated down to 40 cm, while below 1m depth from end of January to 283 

mid-April the soil is close to the field capacity. After mid-April, soil remarkably dries out at all depths, 284 

and water content oscillates between 0.28 and 0.36 m3∙m-3 until October, when decreasing evaporative 285 

demand and weak rain events caused a transient partial recovery around 0.33 m3∙m-3. Then, the new 286 

rainfall events at the end of November lead to rising soil water content above the field capacity until 287 

the end of the year (Figure 1a). 288 

The second temperate site, covered by a spruce forest (Picea abies), is Oberbärenburg in Germany; it is 289 

characterized by a mean annual precipitation of about 1000 mm. Noteworthy, WRF captures most of 290 

the rainfall events, despite it slightly underestimates their intensity during the period May-August. 291 

Here, in the rooting zone, the soil is constantly above the field capacity and near saturation until mid-292 

March; then it rapidly drains, and soil water content remains in the range 0.24–0.26 m3∙m-3, with short-293 

term increases following precipitation events, until December, when it increased to above 0.28 m3∙m-3 294 

(Figure 1b). 295 

In Collelongo, a Fagus sylvatica mountain forest site in central Italy, the mean annual precipitation is 296 

about 1200 mm. From the beginning of the year to the end of June, the soil water content is above 0.3 297 

m3∙m-3, with short term increases above field capacity from 10 cm to 1m and a stable content above 298 

field capacity below 1m depth; then, in July, soil moisture progressively decreases to about 0.20 m3∙m-299 

3 with a short term rainfall resupply at the end of the month. From August to November, because of 300 
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high evapotranspiration rates and weak precipitation events, soil moisture sharply drops to 0.15 m3∙m-3 301 

or less, and, at 1m depth, it appears to have been constantly at wilting point from end of September to 302 

early November. Finally, in December, soil moisture rapidly increases in the upper layers, reaching 303 

near saturation in late December, but remains low around 1m depth until the end of the year (Figure 304 

1c). 305 

The fourth station is San Rossore, a Mediterranean Pinus spp. forest located on the coastal region of 306 

central Italy and characterized by a mean annual precipitation of 920 mm. Here the pattern is 307 

substantially similar to Collelongo: soil water content is lower in spring, when rainfall infiltrates faster 308 

and deeper and less water is retained; the fall drought at 1m depth is less pronounced and of shorter 309 

duration, but water recharge towards the end of the year was again slower (Figure 1d). 310 

Overall, these results suggest that soil water availability was higher from April to September for the 311 

two Central European sites, where soil water content remained above 50% of total available water 312 

capacity. In the Mediterranean sites, water availability declined from spring onwards, but remained 313 

above 40% total available water capacity until late August, while effective drought conditions occurred 314 

in October. 315 

 316 

3.2. Changes in O3 dry deposition  317 

The inclusion of soil water limitation in the stomatal conductance parameterization affects, at first, the 318 

surface resistance, that, in turn, affects the dry deposition velocity and thus the amount of air pollutants 319 

removed from the surface layer by dry deposition (Seinfeld and Pandis, 2016; Hardacre et al., 2015; 320 

Monks et al., 2015). Figure 2 shows the mean percentage of change in O3 dry deposition during the 321 

periods April-May-June (AMJ) and July-August-September (JAS) between the reference simulation 322 

(i.e. NO_SWC) and the simulations that take into account the soil moisture limitation to stomatal 323 

conductance. Clearly, as the inclusion of soil water stress leads to a reduction of stomatal conductance, 324 

the amount of O3 removed by dry deposition is always larger in the NO_SWC simulation than in the 325 

other simulations; this explains the negative pattern in the percentage of change in O3 dry deposition in 326 

both the analyzed seasons. Looking at the spatial pattern (Figure 2), we find the weaker differences in 327 

Norway, where soil moisture is barely limiting the stomatal conductance, while the larger differences 328 

occur in the Mediterranean basin (i.e. Spain, South France, Italy, Greece and Turkey). In fact, in these 329 

semi-arid regions the soil dries out quickly, especially during summer (Figure 1), and plants close 330 

their stomata during the warmer hours of the day to prevent water loss, leading to a smaller amount of 331 

O3 entering the leaves and thus removed by vegetation. This process is well displayed during JAS in 332 
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the SWC_10cm simulation and to a lesser extent in the SWC_40cm, SWC_1m and SWC_DYN 333 

simulations: specifically, in Southern Europe the upper soil layer (i.e. 10 cm) dries out faster than the 334 

deeper ones during the warm and dry season, consequently, in the SWC_10cm simulation we find the 335 

stronger limitation of soil moisture to stomatal conductance and the highest reduction in O3 dry 336 

deposition. In the other simulations we use a deeper rooting zone where plants can uptake water from 337 

the soil; during summer these layers are generally moister than the shallow layer, thus the stomatal 338 

conductance will be less limited by soil moisture and the vegetation removes a larger amount of O3. In 339 

addition to the larger stomatal conductance, during JAS, compared to AMJ, the higher leaf area index 340 

(LAI) increases the surface resistance and thus the amount of O3 removed from the surface layer; this 341 

explains the larger O3 dry deposition values found during summer. Overall, during the whole year the 342 

amount of O3 removed by dry deposition (sum of stomatal and non-stomatal deposition) integrated 343 

over the only land points of domain is 8.568 TgO3 in the NO_SWC simulation, 7.576 TgO3 (-11.8%) in 344 

the SWC_10cm, 7.618 TgO3 (-11.1%) in the SWC_40cm, 7.617 TgO3 (-11.1%) in the SWC_1m, and 345 

7.693 TgO3 (-10.2%) in the SWC_DYN. 346 

 347 

3.3. Changes in O3 concentration 348 

As plants uptake atmospheric gases when stomata are open (Cieslik et al., 2009), changes in stomatal 349 

behavior, and thus in dry deposition velocity, affect, in turn, the concentration of compounds 350 

remaining in the lower atmosphere; Figure 3 shows the mean percentage of change in O3 351 

concentration in the lowest model layer (20-25 meters in our case) between the reference simulation 352 

(i.e. NO_SWC) and the other simulations. Unlike Figure 2, where we found a systematic negative 353 

percentage of change in the amount of O3 removed by dry deposition, Figure 3 shows a systematic 354 

positive percentage of change, i.e. a higher concentration of O3 remaining in the atmosphere in the 355 

simulations where soil moisture limits the stomatal conductance. In addition, the higher (i.e. more 356 

negative) is the percentage of change of O3 removed by deposition, the more is the concentration of O3 357 

remaining in the air: Figure 3 clearly shows how the larger differences in surface O3 concentration are 358 

found during summer (JAS) in the SWC_10cm simulation, i.e. the experiment where soil moisture 359 

plays the strongest limitation to stomatal conductance. 360 

Similarly, the vertical mixing in surface layers, largely driven by wind and its interaction with 361 

frictional drag at the surface (Monks et al., 2015), propagates the changes in O3 concentration from the 362 

surface layer to upper layers. Figure 4 shows the O3 anomaly between the reference simulation and the 363 

simulations with soil water limitation, averaged over the plant growing season, i.e. April-September 364 
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(Anav et al., 2017); here we show only grid points with a significant change in O3 concentration (t-test, 365 

95% confidence), while we mask out points where the anomaly is not significant. The larger anomaly 366 

in O3 concentration (up to 4 ppb) is found in the whole Mediterranean basin for the SWC_10cm 367 

simulation; interestingly, the anomaly is significant in almost all the grid points except Ireland and 368 

Scotland, which are characterized by high soil moisture levels even during summer, and up to 800 hPa 369 

where we find an O3 anomaly larger than 1 ppb.    370 

 371 

3.4. Changes in the model performances 372 

As discussed above, the inclusion of soil water limitation to stomatal conductance leads to increased 373 

O3 concentration due to the reduced dry deposition rates; this clearly affects the model performances in 374 

reproducing both the phase and amplitude of hourly O3 concentration. Therefore, here we validate the 375 

simulated O3 against AirBase measurements.  376 

Figure 5 (upper panels) shows how the inclusion of the new parameterization leads to an increase of 377 

model-data misfit during the temporal period April-September, being the percentage of change in 378 

RMSE positive in all the ground stations. Overall, the mean RMSE (average over all the stations) 379 

computed comparing hourly data is 17.8 ppb for the NO_SWC simulation, 19.5 ppb in the SWC_10cm 380 

and SWC_40cm, and 19 ppb in the SWC_1m and SWC_DYN simulations. 381 

Conversely, the new parameterization improves the model skills in reproducing the observed hourly 382 

cycle (Figure 5, lower panels), being the percentage of change in correlation coefficient positive in all 383 

the stations. Overall, the mean correlation computed from hourly data is 0.6 for the NO_SWC 384 

simulation, 0.62 in the SWC_10cm and 0.64 in the SWC_40cm, SWC_1m and SWC_DYN simulations. 385 

 386 

4. Summary and conclusion 387 

In this study, we incorporated the soil moisture limitation into the dry deposition parameterization of 388 

CHIMERE model and tested different hypotheses of water uptake by roots. Model simulations with the 389 

improved parameterization indicate that O3 dry deposition significantly declines when soil moisture 390 

regulates the stomatal opening, particularly in Southern Europe where soil is close to the wilting point 391 

during the dry summer. This mechanism, occurring within the soil, in turn, affects the concentration of 392 

gases remaining into the lower atmosphere and, considering the vertical mixing in the boundary layer 393 

and the long-lived species such as O3, has an impact on O3 concentration extending from the plants 394 

canopy to the upper troposphere and decreasing with height; the influence on O3 concentration then 395 

quickly vanishes above the boundary layer, becoming no more significant above 650 hPa.  396 
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The analysis of simulated soil moisture suggests that actual water availability from April to September, 397 

even in the Mediterranean sites, is higher than conventionally assumed; according to Allen et al. 398 

(1998) and Martínez-Fernández et al. (2015), soil water content values corresponding to 40-50% of 399 

total available water (TAW, FC-WP) often correspond to low stress conditions for cultivated plants. As 400 

the stress threshold lowers with rooting depth (Allen et al 1998), it appears likely that the effect of 401 

water deficit on forest vegetation is limited in these conditions. As in the modified DO3SE model the 402 

effect of soil water content on stomatal aperture is modeled as a linear function of SWC-WP (eq. 6), it 403 

is possible that the actual reduction in stomatal conductance is overestimated for SWC values above 404 

40-50% of TAW, i.e. the most common condition predicted by WRF in the April–September period 405 

over the analyzed sites. 406 

With the modified parameterization, CHIMERE shows increased bias in the prediction of surface 407 

hourly O3 concentrations across Europe with improved representation of the phase of the hourly cycle. 408 

Therefore the new parameterization increases the well-known systematic overestimation of O3 409 

concentrations (e.g. Anav et al., 2016), which derives from initial and lateral boundary conditions 410 

provided by the global chemistry-transport model LMDz-INCA that overestimate the observed 411 

background concentrations (Terrenoire et al., 2015) as well as from bias in anthropogenic and biogenic 412 

emissions.  413 

It should also be noted that the model comparison to satellite retrievals is not obvious in this study: in 414 

fact, here we mainly focus on O3 changes in the boundary layer and lower troposphere, which 415 

correspond to the part of the atmosphere where satellite data are not robust: as shown by Boynard et al. 416 

(2016), the O3 vertical profiles inversions begin to be efficient in the upper troposphere and in the 417 

stratosphere, where our changes become to be negligible. Therefore, it would be largely uncertain to 418 

extract the signal close to the surface and assess how much our different hypotheses improved the total 419 

O3 column. Similarly, the comparison with vertical soundings would display the simulated vertical 420 

profiles very close each other. 421 

Nevertheless our results can be used to improve the representation of soil moisture stress on vegetation 422 

within chemistry transport models and to better describe the biogeochemical and biophysical feedbacks 423 

between the complex soil-plant-atmosphere system in response to a changing climate toward warmer 424 

and drier conditions. As the soil water uptake is mainly related to different rooting systems (Wu et al., 425 

2017), chemistry models would benefit from the inclusion of species-specific parameterizations which 426 

ensure a water uptake depending on species-specific eco-hydrological properties. In general, plants in 427 

water-limited regions can adapt to dry environments by accessing ground water (Craine et al., 2013) 428 
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based on the depth and density of the root system (Wu et al., 2017), while deep-rooted forests can take 429 

up available water from deep soil during extreme drought events (Schwinning et al., 2005; Teuling et 430 

al., 2010). Although some of these processes are already well resolved within land surface models used 431 

by climate models, a better description of different rooting systems within the dry deposition schemes 432 

might have significant implication for stomatal regulation and thus atmospheric chemistry. We also 433 

believe that it is challenging for the near future the use of coupled land surface-chemistry models (e.g. 434 

Anav et al., 2012) which allow to account for the different feedbacks between land surfaces and 435 

atmospheric chemistry and physics. 436 

 437 

Code availability. The model used in this study is freely available and provided under the GNU 438 

general public license 4. The source code along with the corresponding technical documentation can be 439 

obtained from the CHIMERE web site at http://www.lmd.polytechnique.fr/chimere/. All   440 

measurement data are publicly available 441 
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