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Abstract. In this paper, we present ship-based Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) 

measurements of tropospheric trace gases distribution along Yangtze River during winter 2015. The measurements were 15 

performed along Yangtze River between Shanghai and Wuhan covering major industrial areas in eastern China. 

Tropospheric vertical column densities (VCDs) of nitrogen dioxide (NO2), sulfur dioxide (SO2), and formaldehyde (HCHO) 

were retrieved using air mass factor calculated by radiative transfer model. Enhanced tropospheric NO2 and SO2 VCDs were 

detected over downwind areas of industrial zones over Yangtze River. In addition, spatial distributions of atmospheric 

pollutants are strongly affected by meteorological conditions, i.e., positive correlations were found between concentration of 20 

pollutants and wind speed over these areas indicating strong influence of transportation of pollutants from high-emission 

upwind areas along Yangtze River. Comparison of tropospheric NO2 VCDs between ship-based MAX-DOAS and OMI 

satellite observations shows good agreement with each other with Pearson correlation coefficient (R) of 0.82. In this study, 

NO2/SO2 ratio was used to estimate the relative contributions of industrial sources and vehicle emissions to ambient NO2 

levels. Analysis results of NO2/SO2 ratio shows that higher contribution of industrial NO2 emissions in Jiangsu province, 25 

while NO2 levels in Jiangxi and Hubei provinces are mainly related to vehicle emissions. These results indicate that different 

pollution control strategies should be applied in different provinces. In addition, multiple linear regression analysis of 

ambient carbon monoxide (CO) and odd oxygen (Ox) indicated that the primary emission and secondary formation of HCHO 

contribute 54.4 ± 3.7% and 39.3 ± 4.3% to the ambient HCHO, respectively. The largest contribution from primary 

emissions in winter suggested that photochemically induced secondary formation of HCHO is reduced due to lower solar 30 



irradiance in winter. Our findings provide an improved understanding of major pollution sources along the eastern part of 

Yangtze River which are useful for designing specific air pollution control policies. 

1 Introduction 

Nitrogen dioxide (NO2), sulfur dioxide (SO2), and formaldehyde (HCHO) are important atmospheric constituents 

playing important roles in tropospheric chemistry. Nitrogen oxides (NOx), defined as the sum of nitric oxide (NO) and NO2, 35 

is one of the major pollutant in the troposphere, playing a key role in both tropospheric and stratospheric chemistry. It takes 

part in the catalytic formation of tropospheric ozone (O3), while being a catalyst for the destruction of stratospheric O3 

(Crutzen, 1970). Major sources of NOx are high-temperature combustions (e.g. fossil fuel burning, biomass burning) and 

natural processes (e.g. soil microbial activity, lightning events (Lee et al., 1997)). NO2 in high concentration is harmful to 

human health, especially for immune and respiratory systems. In addition, NO2 can lead to the formation of nitrate aerosols, 40 

which is an important component of fine suspended particles in the urban environment. Sulfur dioxide (SO2) is the most 

abundant anthropogenic sulfur containing air pollutant. In urban areas, SO2 is produced mainly through the combustion of 

sulfur-containing fossil fuels for power generation and domestic heating, which accounts for more than 75% of the total SO2 

emissions (Chin et al., 2000). Atmospheric SO2 causes similar environmental problems as NO2, such as acidification of the 

natural aqua system, formation of secondary aerosols and causing negative impacts on human health (Chiang et al., 2016). 45 

The atmospheric lifetime of both NO2 and SO2 are relatively short, ranging from few hours up to few days (Krotkov et al., 

2016), therefore, their spatial distributions are highly influenced by the emission sources. 

Formaldehyde (HCHO) is one of most abundant volatile organic compounds (VOCs) in the atmosphere, playing an 

important role in air quality and atmospheric photochemistry. Incomplete combustion processes including industrial 

emissions and vehicle exhaust have been identified as the major HCHO sources in the urban atmosphere (Garcia et al., 2006). 50 

Formaldehyde can also be produced from the atmospheric photochemical oxidation of methane (CH4) and non-methane 

hydrocarbons (NMHCs) (Miller et al., 2008). In the polluted regions, terminal alkenes such as isoprene, ethene and propene 

are the most important HCHO precursors (Goldan et al., 2000). The major sinks of HCHO are photolysis, reaction with OH 

radical and wet deposition in the atmosphere (Lei et al., 2009). The short atmospheric lifetime of HCHO under sunlight is 

typically very short (2-4 h), indicating that the daytime ambient HCHO are mostly produced locally (Arlander et al., 1995). 55 

Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) is a passive remote sensing technique 

providing indispensable information of atmospheric aerosols and trace gases (Platt and Stutz, 2008). Information of 

tropospheric trace gases are obtained from the molecular absorption in the ultraviolet and visible wavelength bands by 

applying the differential optical absorption spectroscopy (DOAS) method to the observations of scattered sun light spectra in 

several different viewing directions. This method has been widely used for atmospheric NO2, SO2, and HCHO in the past 60 

decades (Lee et al., 1997;Heckel et al., 2005;Wang et al., 2014;Hendrick et al., 2014;Chan et al., 2015). MAX-DOAS 

observations are not only limited to ground based application, but also can be performed on different mobile platforms like 



cars (Johansson et al., 2009;Ibrahim et al., 2010;Shaiganfar et al., 2011), aircrafts (Baidar et al., 2013;Dix et al., 2016) or 

ships (Sinreich et al., 2010;Peters et al., 2012;Takashima et al., 2012;Schreier et al., 2015). In this study, ship-based MAX-

DOAS measurements of NO2, SO2, and HCHO were performed along the Yangtze River. Previous ship-based MAX-DOAS 65 

measurements were mainly focused on remote and coastal marine environments to obtain boundary layer background 

concentrations of trace gases, such as in the Indian and Pacific Ocean. In this study, we performed ship-based MAX-DOAS 

observations along the Yangtze River, the busiest navigable inland waterway in the world to obtain insight spatial 

distribution information of trace gases in eastern China. 

Yangtze River delta (YRD) is one of the most populated regions in China. Due to the rapid industrialization and 70 

urbanization in the past two decades, Yangtze River delta (YRD) is facing a series of air pollution problems. As emission 

sources are not well characterized and the atmospheric processes are rather complex, it is important to measure the spatial 

distribution of atmospheric pollutants, i.e., NO2, SO2, and HCHO, in YRD for the investigation of emission sources and 

atmospheric processes and provides scientific supports for the prevention and designing control measures of air pollution. In 

this study, spatial distribution of tropospheric NO2, SO2, and HCHO were retrieved from ship-based MAX-DOAS 75 

observations along the Yangtze River between Shanghai and Wuhan. The experiment aims to provide improved 

understanding of emission sources and atmospheric processes over eastern China, which is potentially useful for the 

formulation of strategic air pollution control and identification of the effectiveness of air pollution control policies. 

In this paper, we present ship-based Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) 

measurements of tropospheric trace gases distribution along the Yangtze River during winter 2015. The measurements were 80 

performed along the Yangtze River between Shanghai and Wuhan covering the major industrial areas in eastern China. 

Details of the experimental setup, spectral analysis and trace gases retrieval of the ship-based MAX-DOAS measurement is 

presented in section 2. Comparison with OMI NO2 and the contribution of major emission sources to NO2 levels along the 

Yangtze River, as well as the contribution of primary and secondary sources of HCHO are shown in section 3. 

2 Methodology 85 

2.1 The Yangtze River measurement campaign  

The Yangtze River campaign took place in winter 2015 along the Yangtze River over eastern China within the 

framework of the “Regional Transport and Transformation of Air Pollution in Eastern China”. The aims of Yangtze River 

campaign are to provide better understanding of the transportation and transformation of atmospheric pollution, and to 

identify the potential impacts on air quality and climate. 90 

Ship-based measurement campaign was carried out along the eastern part of Yangtze River between Shanghai and 

Wuhan. The campaign includes a departing journey (from Shanghai to Wuhan) and a returning journey (from Wuhan to 

Shanghai). The measurement campaign started on 21 November 2015 at 19:30 LT from Shanghai (31.36°N, 121.62°E), a 

major industrial and commercial hub of eastern China, and arrived in Wuhan (30.62°N, 114.32°E) on 29 November 2015 at 



15:42 LT. The measurement ship was then directly sailing back and finally arrived in Shanghai on 4 December 2015 at 95 

20:30 LT. The journey covered most of the major industrial areas in eastern China including several population dense 

metropolitan cities, such as Nanjing, Wuhu, and Jiujiang. Detail of the cruise track is shown in Fig. 1. 

The ship-based MAX-DOAS instrument was part of the air quality monitoring framework of the Yangtze River 

measurement campaign. The instrument was installed at the beginning of the measurement campaign and started to provide 

atmospheric observations on 22 November 2015. A summary of the meteorological conditions during the Yangtze River 100 

campaign are shown in Table 1. 

2.2 MAX-DOAS measurements 

2.2.1 Experimental setup 

Ship-based MAX-DOAS measurements were performed during Yangtze River campaign. The ship-based MAX-DOAS 

instrument was developed at the Anhui Institute of Optics and Fine Mechanics (AIOFM), Chinese Academy of Sciences 105 

(CAS) which consists of a telescope, a spectrometer and a computer acting as controlling and data acquisition unit. Viewing 

directions of the telescope are controlled by a stepping motor, scattered sunlight collected by the telescope is redirected to 

the spectrometer for spectral analysis through an optical fiber bundle. The field of view of the telescope is estimated to be 

less than 1°. An imaging spectrometer (Princeton instrument), equipped with a charge-coupled device (CCD) detector (512 × 

2048 pixels) is used to measure spectra in the ultraviolet (UV) wavelength range from 303 nm to 370 nm with a spectral 110 

resolution of 0.35 nm full width half maximum (FWHM). Spectral data recorded by the imaging spectrometer were average 

along the first dimension of the CCD in order to get a better signal to noise ratio. During the measurement campaign, the 

viewing azimuth angle of the telescope was adjusted to 90° (right) relative to the heading direction of the ship (see Fig. S1). 

A full measurement sequence includes elevation angles (α) of 30° and 90° (zenith). The exposure time of each measurement 

is set to 100 ms. 115 

2.2.2 Data processing and filtering 

Although the instrument was positioned in front of the exhaust stack (see Fig. S1), the MAX-DOAS measurements 

could still be influenced by the exhaust from the ship. Therefore, measurement data contaminated by the ship exhaust were 

filtered out in our analysis. Individual measurements taken under unfavorable wind directions (relative wind directions 

between 150° and 270° with respect to the heading of the ship) were discarded in the following analysis. Due to the stronger 120 

absorptions of stratospheric species and low signal to noise ratio at large SZAs, only measurements with solar zenith angle 

smaller than 75° were taken into account for the DSCDs retrieval. With these filtering criterions (unfavorable wind 

directions and SZAs), 5.4% and 15.8% of all data were rejected before DSCDs retrieval, respectively. 

As the viewing elevation angles of the measurements were relatively high (30° and 90°), therefore, they are insensitivity 



to the instability or the movement of the ship. In addition, the exposure time of a measurement is rather short (100 ms), the 125 

change of measurement elevation and azimuth angle during one measurement is negligible. 

2.2.3 DOAS retrieval 

Differential slant column densities (DSCDs) of trace gases are derived from the measurement spectra by applying the 

differential optical absorption spectroscopy (DOAS) technique (Platt and Stutz, 2008). In this study, MAX-DOAS spectra 

are analyzed using the QDOAS spectral fitting software suite developed by BIRA-IASB (http://uv-130 

vis.aeronomie.be/software/QDOAS/). The wavelength calibration was performed by using a high resolution solar reference 

spectrum (Chance and Kurucz, 2010). Dark current (DC) spectrum was taken with exposure time of 3000 ms and number of 

scan of 20 scans while electronic offset spectrum (OFFSET) was taken with exposure time of 3 ms and number of scan of 

20000 scans. The dark current and offset spectra were used to correct measurement spectra prior to the spectra analysis. 

Several trace gas absorption cross sections (Vandaele et al., 1998;Vandaele et al., 2009;Meller and Moortgat, 135 

2000;Serdyuchenko et al., 2014;Thalman and Volkamer, 2013;Fleischmann et al., 2004), the Ring spectrum, a Frauenhofer 

reference spectrum and a low order polynomial are included in the DOAS fit. Details of the DOAS fit settings are shown in 

Table 2. In this study, zenith measurement spectrum with the lowest pollutant concentration was selected as the Frauenhofer 

reference spectrum for the retrieval of measurement spectra taken during the measurement campaign. Similar reference 

spectrum selection approaches have been used in different mobile measurements studies (Wu et al., 2013;Li et al., 2015). 140 

Figure 2 shows an example of the DOAS analysis of a spectrum recorded on 1 December 2015 at 14:02 LT with an 

elevation of 30°. The retrieved NO2 (Fig. 2a), SO2 (Fig. 2b), and HCHO (Fig. 2c) DSCDs are 1.40 × 1017, 6.25 × 1016, and 

3.51 × 1016 molec/cm2, respectively. In this study, only data with root mean square (RMS) of residuals smaller than 3.0×10-3 

are considered. This filtering criterion (RMS) removed 18.7%, 20.2%, and 25.2% of data for NO2, SO2, and HCHO, 

respectively. 145 

2.2.4 Determination of the tropospheric VCD 

The DOAS spectral retrieval results are the differential slant column densities (DSCDs) which are defined as the 

difference between the slant column density (SCD) of the measured spectrum and the Frauenhofer reference spectrum: 

Fraunhofermeasmeas SCDSCD=DSCD －                  (1) 

The SCD is the integrated trace gas concentration along the light path through the atmosphere, which includes both 150 

tropospheric and stratospheric part (SCDmeas = SCDtrop + SCDstrat). As scattering of photons most likely takes place in the 

troposphere, it can be assumed that the light path in the stratosphere for zenith and off zenith measurements are very similar, 

i.e. SCDstrat(α)≈SCDstrat(90°). Then Eq. (1) can be written as: 

http://uv-vis.aeronomie.be/software/QDOAS/
http://uv-vis.aeronomie.be/software/QDOAS/
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where DSCDtrop(α) represents the tropospheric DSCD measured at elevation angle of α. 155 

As the measured DSCDs are dependent on the absorption path in the atmosphere, the measurement has to convert to 

vertical column density (VCD) in order to compare with each other. For this purpose, a concept so-called air mass factor 

(AMF) is applied (Solomon et al., 1987), and the tropospheric vertical column density (VCDtrop) can be expressed as follows: 

)α(AMF
)α(SCD

=VCD
trop

trop
optr                    (3) 

Assuming scattering happens above the trace gas layer, the AMF for the zenith and the off-axis view can be estimated as 1 160 

and 1/sinα, respectively (Hönninger et al., 2004). This method is so-called “geometric approximation”. However, geometric 

approximation of AMF could result in large errors under high aerosol load conditions (Wagner et al., 2007). In addition, 

relative azimuth angle, defined as the angle between the viewing direction and the sun, also plays an important role in the 

AMF calculation. This effect is particularly important for mobile observations (Wagner et al., 2010). For this reason, we 

adapted the simultaneous lidar measurement of aerosol profiles for the radiative transfer calculation of AMFs. 165 

In this study, AMFs for SCD to VCD conversion were calculated using the radiative transfer model SCIATRAN 2.2 

(Rozanov et al., 2005). Compared to the geometric approach, radiative transfer calculation of AMF is more computational 

expensive. Vertical distribution profiles of aerosols and trace gases are also important for the AMF calculation. In this study, 

trace gas profiles (e.g., O3, NO2, SO2, and HCHO) and vertical profiles of pressure and temperature are taken from the 

Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) simulations for AMF calculations (Liu et 170 

al., 2016). Atmospheric profiles obtained from the model simulation were then interpolated in both spatial and temporal 

dimension to MAX-DOAS measurements location and time for AMF calculation. Hourly averaged aerosol extinction 

coefficients in the lowest 2 km of the troposphere were taken from the Mie lidar measurements while aerosols above 2 km 

were not considered in the radiative transfer simulations. Aerosols below the lidar overlap height are considered to be 

homogeneous in the AMF calculation. In order to estimate the influence of aerosol above 2 km on the AMF calculation, we 175 

compared AMFs calculated with and without considering aerosols above 2 km. As the lidar measurement above 2 km has 

larger uncertainty, aerosols extinction information above 2 km is taken from WRF-Chem simulations. Comparison results 

show that AMFs calculated with considering aerosol above 2 km are on average 2-4% lower than AMFs without considering 

aerosol at upper altitudes. The result indicates that ignoring aerosols above 2 km only cause a negligible error on the AMF 

calculation. Tropospheric AMFs of NO2, SO2, and HCHO were calculated at the central wavelength of their DOAS fitting 180 

windows which are 354 nm, 311 nm, and 347 nm, respectively. The aerosol extinction profiles obtained from the Mie lidar 

are converted to MAX-DOAS retrieval wavelengths assuming a fix Ångström coefficient (Ångström, 1929) of 1. The 

aerosol extinction profiles at 354 nm, 311 nm, and 347 nm can be derived using the following formula: 
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where α(λx, z) is the aerosol extinction coefficient at wavelength λx; α(λ532, z) is the aerosol extinction coefficient at 532 nm; 185 

υ is the Ångström coefficient which is assigned to a fix value (υ=1) in this study. 

A fix set of single scattering albedo (SSA) of 0.95, asymmetry parameter of 0.68 and surface albedo of 0.06 is assumed in 

the radiative transfer calculations (Chen et al., 2009;Pinker et al., 1995). In this study, all radiative transfer calculations were 

performed by using the radiative transfer model SCIATRAN 2.2 (Rozanov et al., 2005). Previous studies show that the 

uncertainties caused by aerosol single scattering albedo (SSA), aerosol asymmetry parameter (AP) and surface albedo 190 

assumptions are less than 10% (Chen et al., 2009;Wang et al., 2012b). Uncertainty of lidar measurement of aerosol 

extinction profiles also contributes to the uncertainty in the AMF calculations. A sensitivity study was performed with 

aerosol profiles with different AODs (i.e., 0.4, 0.6, 0.8, 1.0, and 1.2) and a single trace gas profile with a constant NO2, SO2, 

and HCHO concentration of 5.4 × 1011 molecules cm-3 (equal to 20 ppb at the ground level) to quantify the uncertainty 

caused by aerosol profiles used in the AMF calculation at different wavelengths. In the sensitivity analysis, aerosols and 195 

trace gases are assumed well mixed in the lowest 0.8 km, following an exponential decrease with height. The result shows 

that the variation of AMFs with different aerosol profiles (SZAs smaller than 75°) are 11%, 13%, and 11% for NO2, SO2, 

and HCHO, respectively (see Fig. S2). Considering the uncertainties caused by the assumptions of SSA, AP and surface 

albedo and uncertainties of aerosol load in the radiative transfer calculations, we estimated the uncertainties of tropospheric 

AMFs are ranging between 30-43% for SZAs smaller than 75°. 200 

As the DOAS analysis results are DSCDs, we have to apply the concept of differential air mass factor (DAMF) to 

convert the measurement to vertical columns as follows: 
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          (5) 

where DAMF is defined as the difference of air mass factor (AMF) between α≠90° and α=90°  

( )°90(AMF)α(AMF=)α(DAMF troptroptrop － ). This equation (Eq. 5) is regard as the standard method for the determination of 205 

the tropospheric trace gas VCDs from MAX-DOAS observations. 

Mobile MAX-DOAS observations are strongly influenced by rapid change of air masses and radiative transfer 

conditions along the navigating route. The standard method (Eqs. 1 to 5) to calculate tropospheric VCDs can result in large 

errors. An alternative method has been suggested for mobile MAX-DOAS measurements (Wagner et al., 2010). This method 

has been applied in previous mobile MAX-DOAS observations (Ibrahim et al., 2010;Wu et al., 2015) and reported to be 210 

better than the standard method for mobile platforms. Therefore, we adapted the new method in this study for tropospheric 

VCDs conversion. The VCDtrop can be expressed as follows (combining Eqs. 1 and 3): 
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where SZA denotes the solar zenith angle. We refer to the difference of the two unknowns SCDref and SCDstrat (SZA) as 

DSCDoffset(SZA) and can be written as follows: 215 

)SZA(SCDSCD=)SZA(DSCD stratrefoffset －                (7) 

The expressions for VCDtrop in Eqs. 5 and 6 are set equal: 

)α(AMF
)SZA(SCDCDS+)α(SCDD

=

)°90(AMF)α(AMF
)°90(DSCD)α(DSCD

trop

stratrefmeas

troptrop

measmeas

－

－

－

               (8) 

This equation can be solved for DSCDoffset(SZA) as defined in Eq. 7: 
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Since DSCDoffset(SZA) is a smooth function of the SZA or time, we can fit the time series of calculated DSCDoffset(SZA or ti) 

by a low order polynomial (second order). ti indicates the time between the two selected measurements from one elevation 

sequence i, the time series of the calculated DSCDoffset(SZA) can be written as: 

)t,°90(AMF)t,α(AMF
)t,°90(DSCD×)t,α(AMF)t,α(DSCD×)t,°90(AMF
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)t(DSCD

itropitrop
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－

－           (10) 

The fitted polynomial represents the approximation of DSCDoffset(ti) and can be inserted into Eq. 8. In this way we can obtain 225 

a time series of tropospheric trace gas VCDs essentially without errors introduced by the spatio-temporal variations of the 

trace gas field (example is shown in Figs. S3-5). The detailed description of the method can be found in Wagner et al. (2010). 

2.3 OMI Satellite observations 

The Ozone Monitoring Instrument (OMI) was launched onboard the NASA Earth Observing System (EOS)-Aura 

satellite on 15 July 2004 (Levelt et al., 2006). It is a nadir-viewing imaging spectrometer measuring direct and Earth's 230 

reflected sunlight in the ultra violet (UV) and visible (VIS) range from 270 to 500 nm. OMI aims to monitor global 

atmospheric trace gases distribution with high spatial (up to 13 × 24 km) and temporal (daily global coverage) resolution. 

The local overpass time of OMI is between 13:40 and 13:50 (local time) on the ascending node. In this study, USTC's OMI 

tropospheric NO2 product is used, which is developed based on OMI's primary product and has proven to be more suitable 



for the atmospheric conditions in China (Liu et al., 2016;Xing et al., 2017;Su et al., 2017). Slant column densities (SCDs) of 235 

NO2 are retrieved by applying the DOAS fit to OMI spectra (data source: OMI Level 1B VIS Global Radiances Data product 

(OML1BRVG) (https://disc.gsfc.nasa.gov/Aura/data-holdings/OMI/oml1brvg_v003.shtml)). Separation of stratospheric and 

tropospheric columns is achieved by the local analysis of the stratospheric field over unpolluted areas (Bucsela et al., 

2013;Krotkov et al., 2017).The OMI NO2 SCDs are converted to VCDs by using the concept of air mass factor (AMF). The 

AMFs are calculated based on the NO2 and atmospheric profiles derived from WRF-Chem chemistry transport model 240 

simulations with a horizontal resolution of 20 × 20 km over eastern China (17-49 °N, 95-124°E) and 26 vertical layers from 

the ground level to the height with a pressure of 50 hPa. In this study, the National Centers for Environmental Prediction 

(NCEP) Final operational global analysis (FNL) meteorological data are used to drive the WRF-Chem simulations. Details 

of the chemistry transport model simulation as well as the satellite data retrieval process can be found in Liu et al. (2016). 

2.4 Ancillary data 245 

Lidar observations of aerosol vertical distribution were also carried out during the campaign. The lidar system is 

equipped with a diode-pumped frequency doubled Nd:YAG laser emitting laser pulses at 532 nm. The typical pulse energy 

of the laser is about 20 mJ with a pulse repetition frequency of 20 Hz. The laser beam is emitted with divergence of 1 mrad 

and 200 mm off-axis to the receiving telescope with a field of view of 2 mrad, resulting in an overlap height of about 195 m. 

A constant lidar ratio (Sp, extinction to backscatter ratio) of 50 sr was assumed in the lidar retrieval. Details of the lidar 250 

system and the data retrieval can be found in (Chen et al., 2017;Fan et al., 2018). 

Meteorological parameters such as wind direction and wind speed were obtained from an automatic weather station on 

board the measurement ship. In-situ trace gas measurements, such as CO, O3, and NO2 were performed using Sensor 

Networks for Air Quality (SNAQ) during the campaign. SNAQ is a highly portable and low-cost air quality measurement 

network methodology incorporating electrochemical gas sensors which can be used for high resolution air quality studies at 255 

ppbv levels (Mead et al., 2013). CO, O3, and NO2 were monitored by SNAQ with a 20s resolution, and the detection limit of 

CO, O3, and NO2 were 3 ppbv+5% of measured CO, 2 ppbv+5% of measured O3, and 2 ppbv+5% of measured NO2, 

respectively, and in special cases 5% of measured values can increase to 10%. 

3 Results and discussion 

MAX-DOAS measurements were conducted during the campaign period from 22 November to 4 December 2015. The 260 

measurements were interrupted occasionally due to power failure of the measurement ship and instrumental problems, 

details of the measurement period are listed in Table 1. All the times reported herein are local time (LT=UTC+8). 

Measurement spectra taken during daytime between 08:00 and 16:00 (SZAs smaller than 75°), corresponding to the sunshine 

period during wintertime in China were used for analysis. In order to avoid unnecessary uncertainties introduced during the 



VCD conversion, we use the radiative transfer model with lidar aerosol profiles as input for the AMF calculation to convert 265 

all the measurements to VCDs. 

3.1 General characteristics of tropospheric NO2, SO2, and HCHO 

Time series of tropospheric NO2, SO2, and HCHO vertical column densities (VCDs) for the entire campaign from 22 

November to 4 December, 2015 are shown in Figs. 3-4. Missing data are due to power failure of the measurement ship and 

instrumental problems, measurements taken under unfavorable wind directions and SZAs larger than 75°. The mean NO2 270 

VCD of the entire campaign is 2.27 × 1016 molec/cm2, with an exceptionally large variation range from 1.31 × 1015 molec/ 

cm2 to 7.72 × 1016 molec/cm2. About half of the NO2 VCDs are in the range of 5-20 (× 1015 molec/cm2) and high NO2 VCDs 

(i.e., > 5 × 1016 molec/cm2, about the 95th percentile value) are about 2.2 times higher than mean value (Fig. S6a). The mean 

SO2 VCD of the entire campaign is 2.14 × 1016 molec/cm2 with a range from 1.05 × 1015 molec/cm2 to 9.29 × 1016 molec/cm2. 

Although more than half of the values are in the range of 10-25 (× 1015 molec/cm2), high SO2 VCDs (i.e., > 5.5 × 1016 275 

molec/cm2, about the 95th percentile value) are about 2.5 times higher than mean value (Fig. S6b). It should be noted that 

three elevated tropospheric NO2 and SO2 VCDs events have been observed which are highlighted in gray in Fig. 4. Pollution 

events were identified with both NO2 and SO2 VCDs reached or above the threshold value of 4.0 × 1016 molec/cm2. The 

mean HCHO VCDs of the entire campaign is 9.61 × 1015 molec/cm2, ranging from 1.05 × 1015 molec/cm2 to 5.37 × 1016 

molec/cm2. Most of the HCHO VCDs lie between 1-14 (× 1015 molec/cm2) and high HCHO VCDs (i.e., >2.6 × 1016 280 

molec/cm2, about the 95th percentile value) are about 2.7 times higher than mean value (see Fig. S6c). 

The spatial distribution of NO2, SO2, and HCHO VCDs along the eastern part of the Yangtze River are shown in Fig. 5. 

Three elevated tropospheric NO2 and SO2 VCDs events over Yangtze River were detected around three major industrial 

cities with large number of heavy emission sources, i.e., Jiujiang (#1), an industrial city located on the southern shores of the 

Yangtze River in northwest Jiangxi Province, China; Nanjing (#2), the provincial capital and the most populous city in 285 

Jiangsu province, Eastern China; and Shanghai (#3), a metropolis located in the Yangtze River Delta with the busiest 

container port in the world. 

The variations of the NO2 and SO2 VCDs are closely linked to the spatial distribution of emission sources around 

industrial cities as well as meteorological conditions (e.g., wind speed and wind direction). Most of the previous studies 

show an inverse relationship between wind speed and air quality, i.e., the lower the wind speed the higher the pollution level, 290 

which suggesting that low wind speed condition is limiting the mixing and dispersion of atmospheric pollutants, and thus in 

favors of accumulation of local emissions (Chan et al., 2012;Wang et al., 2012b;Chan et al., 2014;Chan et al., 2017;Wang et 

al., 2017). However, positive correlations (p < 0.05, t-test) were found between the mobile MAX-DOAS NO2 and SO2 VCDs 

(red circle and blue square, respectively) and wind speed during these three events (Fig. 6a-6c). The result suggested that 

these episodes are most likely not related to accumulation of local emission. We further investigated the possible influence 295 

of transport on the NO2 spatial distribution by looking into the backward trajectories during these episodes. We calculated 



24h backward trajectories of air masses using the HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory) 

model which is developed by the National Oceanic and Atmospheric Administration-Air Resource Laboratory (NOAA-ARL) 

(Stein et al., 2015) (http://ready.arl.noaa.gov/HYSPLIT.php). Meteorological data from the Global Data Assimilation System 

(GDAS) with a spatial resolution of 1°×1° and 24 vertical levels was used in the model for the trajectory simulations. The 300 

24h backward trajectories (green markers indicate the trajectory point of −6, −12, −18 and −24 h) were calculated for each 

hour during three pollution episodes using the NOAA HYSPLIT model with end point altitude of 500 m a.g.l.. The result is 

shown in Fig. 6d. As indicated by the 24h back-trajectories, NO2 VCDs on 1 December 2015 (Event #1) are prominent when 

under southwesterly wind condition. This is probably due to an industrial city (Jiujiang) is located on the southern shores of 

the Yangtze River at the upwind areas of the ship. Backward trajectories (Events #2 and #3, Fig. 6d) indicated prevailing 305 

northwesterly wind during 3-4 December 2015. In addition, the backward trajectory analysis suggested that rapid transport 

of air masses carries significant amount of pollutants from polluted areas in northern China (Krotkov et al., 2016) across the 

Yangtze River, resulting in higher NO2 and SO2 VCDs. The higher the wind speed the higher the NO2 and SO2 VCDs under 

northwesterly wind conditions (Figs. 6b and 6c), which means that the transport from distant sources is more significant than 

of the contribution from local emission sources. These results suggested that the spatial distributions of pollutants along the 310 

Yangtze River are strongly influenced by the meteorological condition. In comparison to these high VCDs events, relatively 

low NO2 and SO2 VCDs were observed in the first few days of the campaign (22 to 25 November), which might due to 

occasional showers during these days removed pollutants through wet deposition. 

Elevated tropospheric HCHO VCDs (up to 2 × 1016 molec/cm2) are observed mostly during clear days (e.g., 26 

November, 3 and 4 December), with good visibility and low cloud coverage (see Table 1). This is probably due to the 315 

enhancement of photochemical formation of atmospheric HCHO under strong solar irradiation. In contrast, lower HCHO 

VCDs were observed mainly on rainy, cloudy and haze days, which might be due to stronger wet deposition and weaker 

solar irradiation during these days. Elevated HCHO VCDs in the HCHO time series was found on 3 December 2015 when 

the ship was anchored at Yizheng Marine department (32.25°N, 119.15°E). This day is mostly cloud-free with good 

visibility. In addition, HCHO VCDs show a diurnal pattern with low values in the morning and late afternoon and peaks 320 

around noontime. This diurnal pattern indicates the significant contribution of photochemical formation of HCHO. Detailed 

analysis of the primary sources and secondary formation of HCHO for 3 December 2015 is shown in section 3.4. 

3.2 Comparison with OMI NO2 

In order to compare the ship-based MAX-DOAS measurements to OMI observations, the ship-based MAX-DOAS data 

are temporally averaged around the OMI satellite overpass time from 12:00 to 14:00 (LT). For 22, 25, and 26 November, no 325 

MAX-DOAS data were available during the OMI overpass time due to power failure of the measurement ship and 

instrumental problems (see Table 1). All OMI measurement within 20 km (ship speed: ~10-20 km/h) radius of the ship's 

averaged position from 12:00 to 14:00 (LT) are averaged and compared to the averaged ship MAX-DOAS data. For 29 

http://ready.arl.noaa.gov/HYSPLIT.php


November and 1, 3 December, no satellite observations were available at the corresponding ship's location. As a result, 7 

days (Nov 23, 24, 27, 28 and 30 and Dec 2 and 4) of measurements from both OMI and ship-based MAX-DOAS are used 330 

for data comparison. 

Scatter plot of the ship MAX-DOAS and OMI NO2 measurements is shown in Fig. 7a. The NASA's OMI NO2 VCDs 

are also shown as reference. Compared to the NASA's standard product, the USTC's OMI tropospheric NO2 VCD agrees 

better with ground measurements a Pearson correlation coefficient (R) of 0.82 while the correlation between MAX-DOAS 

and the NASA OMI product is 0.76. However, the regression analysis indicated that the USTC's and NASA's OMI data 335 

underestimated the tropospheric NO2 VCD by about 10% and 27%, respectively. Time series of ship-based MAX-DOAS 

and OMI NO2 VCDs is shown in Fig. 7b. The ship-based MAX-DOAS data were higher than the OMI values for most of the 

time. Underestimation of tropospheric NO2 VCDs for OMI might attribute to the averaging effect over large OMI pixel. 

Unpolluted or less polluted areas are also included in the OMI pixel and resulting in low values over pollution hotspots. 

In order to have a better insight of the spatial distribution pattern of tropospheric NO2 along the Yangtze River, NO2 340 

VCDs measured by both ship-based MAX-DOAS and OMI are plot on same map which is shown in Fig. 8. OMI 

tropospheric NO2 VCDs are gridded onto a 0.02° × 0.02° grid using the parabolic spline gridding algorithm (Kuhlmann et al., 

2014;Chan et al., 2015;Chan et al., 2017). The gridding routine was reported to provide more realistic continuous spatial 

distributions of NO2 while preserving the details of emission hotspots (Chan et al., 2015;Chan et al., 2017). During clear 

days (27 November and 4 December, 2015), both ship-based MAX-DOAS and OMI capture similar NO2 spatial pattern (Fig. 345 

8a and 8d). However, a significant enhancement of NO2 close to the exit of the Yangtze River was observed by ship-based 

MAX-DOAS observation, as shown in Fig. 8d which does not show up in the OMI observation. This is probably due to the 

mismatch of OMI overpass time and the ship-based MAX-DOAS measurement time. The spatial coverage of OMI 

observation was limited on 30 November 2015 due to cloudy sky condition. On the other hand, NO2 hotspots can be 

observed from the ship-based measurement as shown in Fig. 8b. These NO2 peaks cannot be detected by OMI as cloud 350 

shield NO2 at the lower troposphere. Different spatial patterns were detected by the ship-based MAX-DOAS and OMI 

satellite on 2 December 2015 which was a haze day (Fig. 8c). In order to estimate the influence of ignoring aerosols in 

satellite AMF calculation on NO2 retrieval, we compared OMI NO2 VCDs calculated with and without considering aerosol 

in the satellite AMF calculations. Significant enhancement of OMI NO2 VCDs is observed over some areas when aerosol is 

considered in the satellite retrieval. However, the spatial pattern observed by ship MAX-DOAS and OMI are still quite 355 

different. The result indicates the impact of aerosol could not fully explain the discrepancy between MAX-DOAS and OMI 

on this day. On the other hand, the MAX-DOAS and OMI observations agree better during OMI overpass time (black star in 

Fig. 8) and the agreement decay when the time differences between MAX-DOAS and OMI measurements become larger. 

This implies a strong temporal variability of NO2 on this day and leads to larger differences of NO2 spatial distribution 

between OMI and ship MAX-DOAS measurements. 360 

Ship-based MAX-DOAS is more sensitivity to near surface NO2, however, the measurement is only limited to the area 

along the Yangtze River. In order to have a broader coverage of tropospheric NO2 distribution over Yangtze River delta, 



OMI tropospheric NO2 product is used in this study. Figure 9 shows the averaged tropospheric NO2 VCDs along Yangtze 

River and its surrounding regions (26°-34°N, 112°-124°E). Enhanced NO2 VCDs appeared at the exit of Yangtze River. This 

area includes southern Jiangsu, eastern Anhui, and northern Zhejiang. It is obvious that the pollution level along Yangtze 365 

River (white line in Fig. 9) is higher than surrounding areas, especially areas from Wuhu to Wuhan. This is probably 

resulting from the fact that most of the industrial activities are concentrated along Yangtze River as the logistic is much more 

convenience and cost efficient through water transportation. Our observation implies that specific emission control measures 

should be applied on the highly polluted industry along Yangtze River. 

3.3 Possible contributions to ambient NO2 levels 370 

Fossil fuel consumption is the major source of anthropogenic NOx emissions, especially in highly industrialized and 

urbanized regions. Industrial sources (including power plants, other fuel combustion facilities, and non-combustion 

processes) and vehicle emissions are the two major contributors, which together composed about 90% of the total 

anthropogenic NOx emissions in China (Huang et al., 2011;Shi et al., 2014). Understanding the individual contributions of 

industrial sources and vehicle exhaust to ambient NO2 is important for designing suitable emission control strategies in 375 

polluted areas, like Yangtze River delta. In this study, we estimated contribution of different emission sources to NO2 levels 

along the Yangtze River by analyzing the ratio between ambient NO2 and SO2. 

Figure 1 (green dots) shows a number of power plants are located along the Yangtze River between Shanghai and 

Wuhan. Industrial zones can also be found close to these power plants along the Yangtze River due to the logistically 

convenience. Emissions of NO2 and SO2 from coal-fired power plants are significant air pollution sources. As the 380 

atmospheric lifetime of NO2 and SO2 is roughly the same (Krotkov et al., 2016), the ambient NO2/SO2 ratio is approximately 

equal to the emission ratio of NO2/SO2. In addition, vehicles mainly emit NOx and their SO2 emissions are trivial, while coal-

fired power plants, heavy industries and ships mostly use sulfur-containing fossil fuels which emit both NOx and SO2. 

Therefore, lower NO2/SO2 ratio implies larger contribution from industrial sources (Zhang et al., 2017), while higher 

NO2/SO2 ratios indicate larger contribution from vehicle exhaust sources toward NO2 levels (Mallik and Lal, 2014;Krotkov 385 

et al., 2016). It should be noted that it is difficult to separate local ship emissions from industrial emissions due to their 

similar emission components, so industrial sources in this paper including not only coal-fired power plants and heavy 

industries but also ship emissions. In this study, we analyzed NO2/SO2 ratios around coal-fired power plants along the 

Yangtze River. NO2/SO2 ratios are determined by linear regression of NO2 and SO2 measurements around power plants 

which is shown in Fig. 10. NO2 and SO2 VCDs measured within 2 km of the power plants (adjacent industrial zones and 390 

ships are included) are used for the analysis. Good correlation was found between NO2 and SO2 VCDs measured around 

coal-fired power plants (R = 0.91, N = 195) which implies the ambient NO2 and SO2 are mostly emitted from similar sources 

(i.e., coal combustion). The slope of linear regression is 0.56 ± 0.02. Relatively low NO2/SO2 ratio indicates large 

contributions from combustion of high sulfur containing fuel, e.g. coal, which is mainly used for power generation. In 



addition, the desulfurization filters installed in these power plants are either ineffective or maybe even deactivated during the 395 

time. 

Assuming the ambient NO2 is mostly emitted from industrial sources (mainly from power plants, and ship emissions are 

also included) and vehicle exhaust, other anthropogenic sources like biomass burning and natural sources are negligible. The 

NO2/SO2 ratio (slope) and intercept (offset) of the linear regression of data measured around the power plants can be used to 

estimate the source contributions of industrial sources and vehicle exhaust to the ambient NO2 concentration. Assuming the 400 

NO2/SO2 ratio for industrial emission is constant, we can estimate the industrial and vehicle contribution by using the 

following equations: 
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where SO2 represents the SO2 VCDs, NO2(total) denotes the NO2 VCDs, the slope and the intercept of the linear regression 405 

are 0.56 and 1.86 (unit: 1015 molec/cm2), respectively. 

During the campaign, the route covered four provinces along the Yangtze River, i.e., Jiangsu, Anhui, Jiangxi, and 

Hubei. Figure 11 shows the relative contributions of industrial sources and vehicle exhaust to the ambient NO2 levels over 

the four provinces. In Jiangsu province, a higher contribution from power generation to NO2 level was found, which is 

mainly due to large number of power plant located along the Yangtze River in Jiangsu province. The NOx emission over the 410 

eastern China, including Jiangsu province (15.41 t/(km2·y)) (Shi et al., 2014), is more intensive than other parts of China. In 

addition, Jiangsu province is one of the province in China with maximum annual NOx emissions from coal-fired power 

plants (Zhao et al., 2008;Wang et al., 2012a). In contrast, the contribution of vehicle exhaust to NO2 level was higher than 

that of coal-fired power plants in Jiangxi and Hubei provinces, suggesting that traffic emissions have larger impacts on the 

NO2 level in these provinces. Previous study shows a dramatic growth of the number of vehicle plays an increasingly 415 

significant role for regional NO2 pollution over past years (Xia et al., 2016). For Jiangxi and Hubei provinces, the number of 

power plant is less than Jiangsu province. Therefore, the contribution of vehicle exhaust to NO2 level is expected to be more 

pronounced along with the dramatic growth of vehicle number. In Anhui province, the contributions of coal-fired power 

plants and vehicle exhaust to NO2 level were about the same. Our result suggests that different pollution controlling strategy 

should be applied in different province: power generation emissions are the major reduction target for Jiangsu province; 420 

while more specific control policies are need to reduce the vehicle exhaust pollution in Jiangxi and Hubei provinces. 



3.4 Estimation of primary and secondary sources of ambient HCHO 

Industrial zones are mainly located along the Yangtze River due to the logistically convenience. Observations along the 

Yangtze River were constantly influenced by plumes originating from various industrial activities, such as coal burning, 

crude oil refining and plastic and rubber syntheses. Besides the direct primary emissions, ambient HCHO can also formed 425 

through secondary atmospheric processes. Therefore, it is important to quantify the contribution of primary and secondary 

HCHO in order to better understand the atmospheric processes as well as the corresponding impacts on the local air quality. 

CO is directly emitted to the atmosphere through combustion processes (e.g., incomplete combustion of vehicle engines) 

and therefore can be use as a tracer for primary emission of HCHO (Friedfeld et al., 2002;Garcia et al., 2006). On the other 

hand, O3 reacts with NO emitted from automobiles to form NO2. Thus, the odd oxygen Ox (Ox = O3 + NO2) is often used as a 430 

tracer for photochemical processes in urban atmosphere (Wood et al., 2010). In this study, we use CO as the tracer of 

primary HCHO while Ox being an indicator of secondary HCHO formation. The CO and Ox data were measured by Sensor 

Networks for Air Quality (SNAQ) during this campaign. In addition, a simplified formula was used to convert mean HCHO 

DSCDs to mixing ratios (ppbv) (Lee et al., 2008) (detailed formula and parameters are shown in the supplement). Previous 

study shows that a linear model can be used for the source appointment analysis of ambient HCHO (Garcia et al., 2006). The 435 

measured HCHO was apportioned by a multiple linear regression model which parameterized by the following equation: 

]O[β+]CO[β+β=]HCHO[ x210                  (15) 

where β0, β1, and β2 are the fit coefficients obtained from the multiple linear regression. The analysis was done in daily bases. 

The relative contributions of primary emission, photochemical formation and atmospheric background HCHO to the 

total atmospheric HCHO are calculated according to the tracer concentrations and corresponding fit coefficients by the 440 

following equations: 
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where PPrimary represents the contribution from primary sources (vehicle and industrial emissions); PSecondary is the 445 

contribution of secondary HCHO (photochemical oxidation); and PBackground indicates the background HCHO which is neither 

classified as primary nor secondary HCHO. According to previous studies in YRD (Wang et al., 2015;Ma et al., 2016), the 

background level of HCHO is limited to 1 ppbv. Therefore, the regression parameter β0 is fixed at 1 ppbv in this analysis. 

[CO]i and [Ox]i represent the concentrations of CO and Ox at time i, respectively. β1 and β2 are the regression coefficients 

obtained from multiple linear regressions. 450 

As other factors (e.g., meteorological conditions) can also affect the atmospheric HCHO concentration, in order to make 



sure the regression model is representative for atmospheric conditions, only data fulfilling the following criteria are used in 

the analysis (a) correlation coefficient (R) larger than 0.75 (Li et al., 2010) and (b) significance value lower than 0.05. Of the 

12 days of measurements, only 2 days fulfill the criteria to be considered in this analysis. The parameters of the multiple 

linear regression fit and the linear Pearson correlation coefficient (R) for the measured and modeled HCHO are shown in 455 

Table 3. 

Time series of measured and modeled HCHO of 3 December 2015 is shown in Fig. 12a. Both the measured and 

modeled HCHO concentrations show similar temporal development with a rising trend in the morning and reached the peak 

value at noon, then followed by a decrease in the afternoon. The linear regression between measured and modeled HCHO 

shows a reasonably good agreement with slope of 0.98 and Pearson correlation coefficient (R) of 0.78 on December 3, 2015 460 

(see Fig. 12b). All measurements lie within the 95% prediction interval indicating the best estimate of modeled HCHO. The 

regression model could not fully reconstruct the measurements, indicating there are other factors influencing the atmospheric 

HCHO levels. Due to the complexity of emission sources, a constant CO/HCHO factor might not be good enough to 

represent the HCHO emission from all primary sources. A number of petrochemical-related manufactures and organic 

synthesis processes industry located along the Yangtze River resulting in higher HCHO emissions and the CO emission 465 

factor varies with their emission processes. In addition, as we were measuring on a mobile platform, the composition of 

emission could change with the measurement location. Future investigation could focus on characterizing the primary 

industrial emissions of HCHO by different sector. 

The diurnal variation of HCHO contribution from primary sources, secondary formation and background contributions 

on 3 December 2015 is shown in Fig. 13. Background HCHO only accounts for a small portion (6.2 ± 0.8%, average ± S.D.) 470 

of the total ambient HCHO, while the primary sources contribute the largest fraction of the ambient HCHO, with an average 

percentage of 54.4 ± 3.7%. The primary sources contributions were relatively stable, which might be due to industrial 

emission does not show a significant diurnal pattern. The contribution associated with secondary formation accounted for 

roughly 39.3 ± 4.3% of the total HCHO on daily average. Secondary formation of HCHO shows two peak values around 

10:00 LT and noon time (11:00-14:00 LT). The 24 h backward trajectories on 3 December (Fig. 6d) suggested that rapid 475 

transport of air masses carries significant amount of pollutants including formaldehyde precursor from polluted area in 

northern China. Thus, the peak of relative contribution of secondary sources around 10:00 LT is probably resulted from the 

transportation of formaldehyde precursor. On the other hand, the peak value of secondary formation of HCHO during noon 

time (11:00-14:00) is mainly due to enhancement of photochemical reaction during noon time. Our result is consistence with 

a similar study in Rome, Italy, which the secondary contribution of HCHO is about 35% during winter time (Possanzini et al., 480 

2002). While secondary formation of HCHO has been reported as the largest ambient HCHO source in summer (Parrish et 

al., 2012;Ling et al., 2017). Reduced photochemical reaction in winter resulting in lower formation rate of HCHO, and 

therefore, primary emissions become the major source of ambient HCHO in winter. 



4 Summary 

In this paper, we present the ship-based MAX-DOAS measurements along Yangtze River from Shanghai to Wuhan 485 

(22 November to 4 December, 2015). Scattered sunlight spectra were measured to retrieve differential tropospheric slant 

column densities (DSCDs) of NO2, SO2, and HCHO. DSCDs of NO2, SO2, and HCHO were converted to tropospheric 

vertical column densities (VCDs) using AMF computed by Radiative Transfer Model with lidar aerosol profile as input. 

During the campaign, three significantly enhanced tropospheric NO2 and SO2 VCDs events were detected over the 

downwind areas of industrial zones. Spatial distributions of atmospheric pollutants are strongly affected by meteorological 490 

conditions, i.e., positive correlations were found between the ship-based MAX-DOAS data and wind speed for these three 

events, which indicates that the transportation of pollutants from the high-emission areas have a strong influence on the NO2 

and SO2 distribution along Yangtze River. Comparison of tropospheric NO2 VCDs between ship-based MAX-DOAS and 

OMI satellite observations shows good agreement with Pearson correlation coefficient (R) of 0.82. However, OMI 

underestimated tropospheric NO2 by 10% which is mainly due to the averaging effect over large OMI pixels. In addition, 495 

satellite observations have lower sensitivity to near-surface pollutants compared to ground-based measurements. 

In this study, NO2/SO2 ratio is used to quantify relative contributions of industrial sources and vehicle emissions to 

ambient NO2 levels. The result shows that Jiangsu province has a higher contribution from industrial sources due to the large 

number of power plants situated along the Yangtze River in Jiangsu. In contrast, contributions from vehicle emissions to 

NO2 level are higher than that of industrial sources in Jiangxi and Hubei provinces. Our result suggested that traffic volume 500 

has large impact on NO2 level in these provinces. These results indicate that different NO2 pollution control strategy should 

be applied in different provinces. In addition, we estimated the contributions of primary and secondary emission sources to 

ambient HCHO levels using a multiple linear regression method. Result from 3 December 2015 indicated that primary 

sources have the largest contribution to the ambient HCHO (54.4 ± 3.7%), while secondary formation contributes 39.3 ± 

4.3% of the total ambient HCHO. The remaining fraction 6.2 ± 0.8% is attributed to the background. The largest contribution 505 

from primary sources in winter suggested that photochemically induced secondary formation of ambient HCHO is reduced 

due to lower solar irradiance in winter. This study provides an improved understanding of the impacts of different emission 

sources in different provinces along the eastern part of Yangtze River to the local air quality. Our findings are useful for 

designing specific air pollution control and environmental policies. 
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Table 1. Weather and viewing conditions during Yangtze River campaign from 22 November to 4 December, 2015. 

Interruption of the ship based MAX-DOAS is also listed.  

Period Conditions 

22-25 November Rain and occasional fog occurred in the morning and night 

26-27 November Improving weather and viewing conditions, sunny 

28 November Occasional light rain and partly cloudy around noon 

29 November Haze 

30 November Partly cloudy 

1-2 December Haze 

3-4 December Good viewing conditions, almost clear sky 

Interruption event Start time (yyyy/mm/dd, 

UTC + 8 h) 

End time (yyyy/mm/dd, 

UTC + 8 h) 

Reason for interruption 

1 2015/11/22 11:00 2015/11/22 14:25 power outages 

2 2015/11/25 7:00 2015/11/25 18:00 frequent power outages all day long  

3 2015/11/26 11:40 2015/11/26 15:00 instrumental problems 

 720 



Table 2. Summary of the DOAS retrieval settings used for the NO2, SO2, and HCHO slant column densities retrieval. 

*Solar I0-correction (Aliwell et al., 2002) 

Parameter Data source 
Fitting internal (nm) 

       NO2        SO2 HCHO 

Wavelength range  338-368 nm 308-314 nm 336.5-359 nm 

NO2 Vandaele et al. (1998), 220K, 294K,  I0-correction* 

(SCD of 1017 molecules/cm2) 

√ √ (only 294K) √ (only 294K) 

SO2 Vandaele et al. (2009), 298K × √ × 

HCHO Meller and Moortgat (2000), 297K √ × √ 

O3 Serdyuchenko et al. (2014), 223K, 243K, I0-

correction* (SCD of 1020 molecules/cm2) 

√ √ √ 

O4 Thalman and Volkamer (2013), 293K √ × √ 

BrO Fleischmann et al. (2004), 223K √ × √ 

Ring Ring spectra calculated with QDOAS according to 

Chance and Spurr (1997) 

√ √ √ 

Polynomial degree  Order 5 Order 5 Order 5 

Intensity offset  Constant Order 1 Order 1 

Wavelength 

calibration 

Based on a high resolution solar reference spectrum (SAO2010 solar spectra) (Chance and Kurucz, 2010) 



Table 3. Coefficients of the multiple linear regression and the correlation coefficient (R) for the measured and modeled 725 

HCHO in Eq. (15). β1 represents the emission ratio of HCHO with respect to CO. β2 denotes the portion of HCHO from 

photochemical production, while β0 represents HCHO background concentration which is fixed to 1 ppbv. 

 

 

730 

Date (yyyy/mm/dd) β1 β2 β0 R N.Obs 

2015/11/26 0.0165±0.0083 0.0765±0.0323 1.0 0.7937 80 

2015/12/03 0.0312±0.0097 0.1149±0.0514 1.0 0.7746 139 



 
Figure 1. The ship tracks of (a) the departing journey (from Shanghai to Wuhan) and (b) the returning journey (from Wuhan 

to Shanghai). The sections of the cruise track highlighted in orange indicate the period of MAX-DOAS observations. The 

green dots represent the major power plants along the Yangtze River. 
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Figure 2. An example of DOAS fit for (a) NO2, (b) SO2, and (c) HCHO. The spectrum was taken on 1 December 2015 at 

14:02 LT with elevation angle of 30°. Red lines show the measured atmospheric spectrum after all other absorbers have been 

subtracted, and the black line shows the scaled reference absorption cross section. 
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Figure 3. Time series of tropospheric NO2 (upper panels), SO2 (middle panels), and HCHO (lower panels) vertical column 

densities (VCDs) from 22 November to 28 November. The error bars refer to the 1σ variation of the measurement.  

Notes: The data were half-hour averages and individual measurements taken under unfavorable wind directions have been 

filtered before averaging. No data presented on 25 November due to frequent power outages. The y-axis scale of HCHO on 745 

26 November is different (y-axis scale in red). 



 
Figure 4. Continue of  Fig. 3, but for the time series of tropospheric NO2 (upper panels), SO2 (middle panels), and HCHO 

(lower panels) vertical column densities (VCDs) from 22 November to 28 November. The gray area highlighted the episode 750 

periods which NO2 and SO2 showed synchronous growth.  

Notes: The y-axis scale of HCHO on 3-4 December is different (y-axis scale in red). 



 
Figure 5. Spatial distribution of tropospheric NO2 (upper panels), SO2 (middle panels), and HCHO (lower panels) VCDs 755 

along the departing route (left panels, from Shanghai to Wuhan) and returning route (right panels, from Wuhan to Shanghai). 

Notes: The ship was anchored at Yizheng Marine department on 3 December 2015. 



 
Figure 6. (a-c) Correlation analysis of ship-based MAX-DOAS VCDs (red circle shows the NO2 VCDs and blue square 760 

shows the SO2 VCDs) and wind speed for three high VCDs events. (d) Yangtze River Cruise Track and 24 h backward 

trajectories calculated by the NOAA HYSPLIT model for three events (green marks indicate starting point, −6, −12, −18 and 

−24 h, respectively). The data were half-hour averages. The error bars show the 1σ standard deviations of mobile DOAS 

VCDs and wind speed. 
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Figure 7. (a) Correlation analysis and (b) time series of tropospheric NO2 VCDs measured by ship-based MAX-DOAS and 

OMI during Yangtze River campaign. MAX-DOAS data (black markers) are temporally averaged around the USTC OMI 

and NASA OMI overpass time (red and blue markers, respectively), while the OMI data are spatially averaged within 20 km 

radius around the ship's averaged position. The error bars show the 1σ standard deviations of ship-based MAX-DOAS and 770 

OMI data. 



 
Figure 8. Spatial pattern of tropospheric NO2 VCD measured by ship-based MAX-DOAS and OMI during four typical days 

within the Yangtze River campaign. The color-coded circle indicates the ship-based MAX-DOAS observations. Each plot 775 

show example for relatively clear (a and d), cloudy (b), and haze (c) metrological conditions along Yangtze River. The star 

symbols indicate the ship position during the OMI overpass time (~13:45 LT). The colorbar scale of each panel is different. 



 
Figure 9. The spatial distribution of averaged tropospheric NO2 VCDs measured by OMI during Yangtze River campaign 780 

(22 November to 4 December, 2015).  



 
Figure 10. Scatter plot of NO2 and SO2 VCDs data around power plants along the Yangtze River. NO2 and SO2 VCDs 

measured within 2 km of the power plants are used for the analysis. 785 



 
Figure 11. Relative contributions of industrial sources and vehicle exhaust to the ambient NO2 levels over the four provinces. 

Notes: the bottom and top of the box represent the 25th and 75th percentiles, respectively; the line within the box represent 

the median; the dot represents the mean; the whiskers below and above the box stands for the 10th and 90th percentiles. 790 



 
Figure 12. Comparison of the measured and modeled HCHO values from multiple linear regression on 3 December 2015. 

The left panel shows the modeled and measured HCHO time series. The right panel shows the linear correlation between the 

modeled and measured HCHO concentrations. The black solid line indicates the linear regression. The red and pink areas 795 

denote the 95% confidence interval and the 95% prediction, respectively. 



 
Figure 13. Time series of absolute (upper) and relative (lower) contribution of primary source, secondary source, and 

atmospheric background to ambient HCHO level on 3 December 2015. The error bars refer to the 1σstandard variations of 800 

the absolute (upper, error bars with fill area) and relative (lower) contribution of primary source, secondary source, and 

atmospheric background to ambient HCHO. 



Responses to Anonymous Referee #1 
We thank the reviewer for the constructive suggestions and comments. We appreciate the 

reviewer’s comments and these comments are very helpful for improving the manuscript. We 

understand that the comments are positive on the scientific content of the manuscript while 

appropriate revisions and clarifications are necessary.  

We have addressed the reviewer’s comments on a point to point basis as below for consideration. 

General comments: 

1) The authors use lidar aerosol profile for AMF calculations to convert SCDs to VCDs for trace 

gases. However, only aerosol profile at the lowest 2 km is used and aerosol above 2 km are 

ignored. I think it is necessary to estimate the uncertainty due to ignoring aerosols above 2 km. In 

addition, the lidar has a blind height of 195m, so how the aerosols at the lowest 195m were 

treated? 

Response: A sensitivity study has been conducted to address the influence from aerosol above 

2km to the AMF calculation. Tropospheric NO2, SO2 and HCHO AMFs are calculated using lidar 

aerosol profile at the lowest 2km and WRF-Chem aerosol profile above 2km. The results are 

compared to AMFs calculated with only lidar aerosol profile at the lowest 2km. Comparison 

results show that AMFs calculated with considering aerosol above 2km are on average 2-4% lower 

than AMFs without considering aerosol at upper altitudes. The result indicates that ignoring 

aerosols above 2 km only cause a negligible error on the AMF calculation. In addition, aerosols at 

the lowest 195m are considered to be homogeneous in the AMF calculation. These information are 

now supplemented in the manuscript line 174 to 180. 

 

2) As described in Sect 2.2.4, the authors has finally employed the new method for VCD 

estimation in the mobile measurements, which is recommended by Wagner et al., 2010. Maybe the 

authors could shorten the introduction of the geometric approximation and standard method for 

the VCD estimation. Alternatively, I suggest the authors to provide the comparison of the 

retrieved VCD results between standard and suggested methods? For example, taking one day as 

an example, to present the time series of the DSCD_mea, DSCD_offset and AMF_trop as used in 

the E.q. (12). 



Response: We followed the reviewer suggestion and shortened the introduction of the geometric 

approximation and standard method for the VCD estimation. Changes are listed in the following: 

a) Line 149-150: we put the formula (SCDmeas = SCDtrop + SCDstrat) into the sentence 

b) Line 151-152: sentence combination: “it can be assumed that the light path in the stratosphere 

for zenith and off zenith measurements are very similar, i.e. SCDstrat(α)≈SCDstrat(90°)”  

c) Line 157-158: add description of VCDtrop: “and the tropospheric vertical column density 

(VCDtrop) can be expressed as follows”  

d) Line 193-195: remove this paragraph in the ACPD version 

In addition, we have compared the VCD retrieved with both standard and suggested method. Time 

series of the DSCD_meas, DSCD_offset, AMF_trop and VCD_trop on 28 Nov 2015 are shown in 

Figure R1. Fig. R1a shows the time series of NO2 DSCDs for both elevation angles. Higher 

DSCDs are obtained from the lower elevation angle. The offset caused by the NO2 absorption in 

the Fraunhofer reference spectrum and the stratospheric absorption (see Eq. 7 in the revised 

manuscript) are determined by a polynomial fit. DSCDoffset(t) is then calculated following Eq. 10. 

The tropospheric VCDs of NO2 calculated with both approaches (corresponding to Eq. 7 and Eq. 8 

in the revised manuscript) are shown in Fig. R1d. Comparing with standard method, the temporal 

development of tropospheric NO2 VCDs calculated by the new method is less noisy. Similar 

results can be found for SO2 and HCHO in Figs. R2-3. 

 

Figure R1. An example of determination of tropospheric NO2 from the spectra measured on 28 



November 2015. (a) NO2 DSCDs, (b) DSCDoffset (see Eq. 10) plotted as a function of time (green 

points), (c) Tropospheric NO2 AMFs calculated by the radiative transfer model SCIATRAN, (d) 

The tropospheric VCDs of NO2 calculated by new and standard method (corresponding to Eq. 7 

and Eq. 8). 

 

Figure R2. Same as Fig. R1, but for an example of determination of tropospheric SO2 from the 

spectra measured on 27 November 2015. 

 

Figure R3. Same as Fig. R1, but for an example of determination of tropospheric HCHO from the 

spectra measured on 2 December 2015. 



3) In this study, OMI VCDs are computed using atmospheric profiles from WRF-Chem 

simulations. It would be interesting to show how the VCDs are different from other operational 

products, e.g., NASA product. 

Response: In this study, the USTC’s OMI tropospheric NO2 product is used. This product has 

been reported to be more suitable for atmospheric conditions in China (Liu et al., 2016;Xing et al., 

2017;Su et al., 2017). Correlations of daily averaged tropospheric NO2 VCDs measured by 

MAX-DOAS with USTC OMI and NASA OMI satellite data are shown in Fig. R4. Compared to 

the NASA’s standard product, the USTC’s OMI tropospheric NO2 VCD agrees better with ground 

measurements a Pearson correlation coefficient (R) of 0.82 while the correlation between 

MAX-DOAS and the NASA OMI product is 0.76. The results suggested that accounting for the 

local atmospheric conditions and use the WRF-Chem model with measured climatology parameter 

and newest emission inventory to simulate trace gas profile in AMF calculation could improve the 

accuracy of OMI NO2 VCD products. The Figure 7 is replaced by Figure R4 in the revised 

manuscript. These information are now supplemented in the manuscript line 332 to 336. 

 

Figure R4. (a) Correlation analysis and (b) time series of tropospheric NO2 VCDs measured by 

ship-based MAX-DOAS and OMI during Yangtze River campaign. MAX-DOAS data (black 

markers) are temporally averaged around the USTC OMI and NASA OMI overpass time (red and 

blue markers, respectively), while the OMI data are spatially averaged within 20 km radius around 

the ship's averaged position. The error bars show the 1σ standard deviations of ship-based 

MAX-DOAS and OMI data.  

 

4) It is not clear how the pollution events are identified. From Figure 3, the NO2 VCD on 29 of 



Nov is also very high, however, this day is not identified as pollution event. The authors should 

provide more information on the criterion in selecting pollution events. 

Response: Pollution events were identified with both NO2 and SO2 VCDs reached or above the 

threshold value of 4.0×1016 molec/cm2. Although the NO2 VCD on 29 November is also very high, 

but the SO2 VCD is relatively low. Thus, 29 November is not included in the pollution events 

analysis. The threshold value for identifying the pollution events is supplemented in the 

manuscript line 278. 

 

5) In section 3.1, trajectories are calculated to assess the pollutant transportation. However, it is 

not clear that these backward trajectories are calculated at which altitude level. It would be much 

better to show the height of the backward trajectories as well, so that readers could better interpret 

how pollutants are transported. 

Response: Considering atmospheric pollutants are mainly concentrated in low altitudes during 

heavy pollution episodes, the trajectory arrival heights were set to 500 m and assumed to be 

representative for the entire boundary layer. In this study, 24 h back-trajectories were calculated by 

the HYSPLIT trajectory model. This information is now included in the manuscript line 302. 

 

6) It’s novel and interested to identify the industrial and vehicle contribution by E.q. 13 and 14, 

which provide the new insights for the sources appointment. As one of the most developed area in 

China, there were some more studies focusing on the emission inventories and source appointment 

for YRD areas. Maybe the authors can review previous results and compare with this study a little 

bit more in the discussion. 

Responses: We have updated the section referring to a recent publication (Xia et al., 2016), which 

show a dramatic growth of the number of vehicle plays an increasingly significant role for 

regional NO2 pollution over past years. For Hubei and Jiangxi provinces, the number of power 

plant is less than Jiangsu province. Therefore, the contribution from vehicle emission to ambient 

NO2 level is expected to be more pronounced with the dramatic growth of vehicle number. 

Changes are applied to line 415 to 418. 

 

7) For the estimation of primary and secondary sources of HCHO, I have two questions: 1) which 



kind of the measured HCHO concentrations was used in the regression model? Since the HCHO 

levels were determined by MAX-DOAS as VCDs, however, the ambient HCHO concentrations 

were used in the model. How the authors obtain the ground surface concentration HCHO from the 

VCDs? Otherwise, why the authors can make regression of the HCHO VCDs with in-situ CO, Ox? 

2) For the diurnal pattern, the authors inferred that secondary formation of HCHO shows a peak 

value during noon time (11:00-14:00), however, there was also another peak of relative 

contribution of secondary sources around 10:00 LT. How to consider this phenomenon? 

Response: (1) For the estimation of primary and secondary sources of HCHO, the measured 

HCHO used in the regression model is ground mixing ratios. Usually, surface HCHO mixing 

ratios can be obtained from the HCHO vertical profiles (e.g., 0-200 m layer) (Wang et al., 2014). 

As the viewing elevation angles of the MAX-DOAS measurements only include 30° and 90°, 

therefore, there is not enough information to retrieve HCHO vertical profiles. In this study, we use 

a simplified formula introduced by (Lee et al., 2008) to convert mean HCHO DSCDs to mixing 

ratios (ppbv). 
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where M is the mixing ratio, DSCD is the difference between the SCDs of the measured spectrum 

and that of the Fraunhofer reference spectrum, dAMF is a differential air mass factor 

(dAMF=AMF(α=30°)-AMF(α=90°)), and ΔP is the pressure difference between surface and 500 

m height of boundary layer. The AMFs for this study were calculated using the radiative transfer 

model SCIATRAN 2.2 as described in Section 2.2.4. 

(2) We agree with the reviewer that there is another peak of relative contribution of secondary 

sources at around 10:00 LT. The 24 h backward trajectories on 3 December (Fig. 6d in the revised 

manuscript) suggested that rapid transport of air masses carries significant amount of pollutants 

including formaldehyde precursor from polluted area in northern China. Thus, the peak of relative 

contribution of secondary sources around 10:00 LT is probably resulted from the transportation of 

formaldehyde precursor. The explanation of the diurnal pattern has been modified in the revised 

manuscript (Line 474-479 in the revised manuscript). 

 



Technical corrections: 

1) Introduce abbreviation on the first time used in the manuscript, e.g., line 169 WRFChem. 

Response: Abbreviation (WRF-Chem) is now introduced at the first time used in the manuscript 

(Line 170). 

 

2) Text on Figure 3-6 is too small to read. Considering the similarities of Fig.3 to Fig.5, I suggest 

to merge them together to show the time series of these three pollutants in each panel with a 

continuous X-axis. 

Response: We have merged Fig.3-5 so that the time series of three pollutants (NO2, SO2, and 

HCHO) in each panel with a continuous X-axis. Considering that a single plot covering all data is 

a bit difficult to read, so we have now separated it into 2 figures (Fig. 3&4 in the revised 

manuscript) for two periods (from Nov 22 to Nov 28 and from Nov 29 to Dec 4). In addition, we 

have enlarged the fonts in figure 6. 

 

3) Put error bars on Figure 13 and 14. 

Response: We have now included error bars in Figure 14 (Fig. 13 in the revised manuscript). 

 

4) Please uniform the units of VCDs. It’s different in Figures (molec/cm2) and manuscript text 

(molec cm-2) now. 

Response: We have uniformed the units of VCDs (molec/cm2) both in Figures and manuscript 

text. 
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Responses to Anonymous Referee #2 
We thank the reviewer for the constructive suggestions and comments. We appreciate the 

reviewer’s comments and these comments are very helpful for improving the manuscript. We 

understand that the comments are positive on the scientific content of the manuscript while 

appropriate revisions and clarifications are necessary.  

We have addressed the reviewer’s comments on a point to point basis as below for consideration. 

General comments: 

1) In section 2.2.2, how many percent of data are removed using the filter wind directions and 

SZAs? 

Response: The wind direction and SZA filtering criterions removed 5.4% and 15.8% of all data, 

respectively. This information is now supplemented in the revised manuscript line 122 to 123. 

 

2) The authors use the trace gas profiles and vertical profiles of pressure and temperature from 

WRF-Chem for AMF calculation. What is the spatial resolution and time resolution of the 

WRF-Chem profiles? Did the authors use a fixed trace gases profile for all the measurements or 

use the unique profile dependent on the measurement locations and time? 

Response: In this study, the WRF-Chem model (version 3.7) was used to simulate the vertical 

profile of aerosol and trace gases as well as other meteorological parameters. The simulation 

domain covers large part of East China (17-49 °N, 95-124°E) with a horizontal resolution of 20 × 

20 km and 26 pressure sigma level from ground level up to50 hPa. The time resolution of the 

model output is set to 1 h. Details of the configuration of the model can be found in (Liu et al., 

2016;Su et al., 2017). Atmospheric profiles obtained from the model simulation were then 

interpolated in both spatial and temporal dimension to MAX-DOAS measurements location and 

time for AMF calculation. Details of the model simulation and AMF calculation are now included 

in the manuscript line 171 to 172. 

 

3) The authors use the aerosol extinction coefficients measured by Mie lidar measurements for the 

AMF calculations. Did the authors use a fixed aerosol extinction profile (average the aerosol 

extinction coefficient from all the lidar measurements during the campaign) or use the specified 



profile dependent on locations, time and the availability of lidar measurements? 

Response: Lidar measurement was carried out together with MAX-DOAS most of the time 

during the campaign. AMF of the MAX-DOAS observations is calculated using hourly averaged 

Lidar aerosol extinction profile. This information is now supplemented in the manuscript line 172. 

 

4) A fix set of single scattering albedo (SSA) of 0.95, asymmetry parameter of 0.68 and surface 

albedo of 0.06 is assumed in the radiative transfer calculations. Please explain why use this setting. 

Any references? 

Response: The single scattering albedo (SSA) of 0.95 and asymmetry parameter of 0.68 are 

chosen according to the sensitivity study by (Chen et al., 2009). For oceans or rivers, the surface 

albedo is generally low and keep around 0.06 (Pinker et al., 1995). We have added the references 

in the revised manuscript line 188. 

 

5) In section 2.2.4, there are too many formula and introduction of the determination of the 

tropospheric VCD. I suggest shortening the section and combining some of the formula. 

Response: We followed the reviewer suggestion and shortened the introduction of the 

determination of the tropospheric VCD and combined some of the formula. Changes are listed in 

the following: 

a) Line 149-150: we put the formula (SCDmeas = SCDtrop + SCDstrat) into the sentence 

b) Line 151-152: sentence combination: “ it can be assumed that the light path in the 

stratosphere for zenith and off zenith measurements are very similar, i.e. 

SCDstrat(α)≈SCDstrat(90°)”  

c) Line 157-158: add description of VCDtrop: “and the tropospheric vertical column density 

(VCDtrop) can be expressed as follows”  

d) Line 193-195: remove this paragraph about the description of tropospheric vertical column 

density (VCDtrop) in the ACPD version 

e) Line 207: delete the “tropospheric vertical column density” 

 

6) I agree with the comment from Referee #1 about the high NO2 VCD on Nov. 29. Please explain 

the reason of high NO2 and relative low SO2 concentrations during this day. 



Responses: The measurement ship was sailing around Wuhan on 29 November. Elevated 

tropospheric NO2 observed around Wuhan is probably related to high emission, i.e., traffic 

emissions, in Wuhan as it is the largest city in Hubei. A rather low SO2 level might due to lower 

SO2 emissions located along the Yangtze River around Wuhan, e.g., coal-fired power plants. 

 

7) In section 2.3, USTC’s OMI tropospheric NO2 product is used. I suggest showing more detailed 

information about the USTC OMI product, e.g., the data source of NO2 slant density (SCD). In 

addition, USTC shall be explained when appeared for the first time. 

Response: We agree with the reviewer suggestion and now included a more detailed description 

of the USTC’s OMI NO2 product in section 2.3. In this study, USTC's OMI tropospheric NO2 

product is developed based on OMI's primary product and has proven to be more suitable for the 

atmospheric conditions in China (Liu et al., 2016;Su et al., 2017;Xing et al., 2017). Slant column 

densities (SCDs) of NO2 are retrieved by applying the DOAS fit to OMI spectra (data source: 

OMI Level 1B VIS Global Radiances Data product (OML1BRVG) 

(https://disc.gsfc.nasa.gov/Aura/data-holdings/OMI/oml1brvg_v003.shtml)). The information of 

USTC’s OMI product are now supplemented in the revised manuscript line 234-237. 

 

8) Figure 7d is a bit confusing, please describe clearly what the green lines represent? Is it 6, 12, 

18 or 24 hour backward trajectories? What is the altitude of the backward trajectories? 

Response: In Figure 7d, the green lines represent the 24 h backward trajectories during pollution 

events. The green lines show the backward trajectories calculated for each hour during the 

detected episodes. For example, five green lines on 1 Dec represent the backward trajectories 

ending at 04, 05, 06, 07, and 08 UTC on 1 Dec 2015 (corresponding to gray columns in Fig 4). 

The green markers indicate the location of air masses 6, 12, 18 and 24 h before arriving to the 

measurement ship. Considering atmospheric pollutants are mainly concentrated in low altitudes 

during heavy pollution episodes, the trajectory arrival heights were set to 500 m and assumed to 

be representative for the entire boundary layer. This information is now included in the manuscript 

line 300-302. 

 

9) The authors mention that the different spatial patterns detected by MAX-DOAS and OMI on 

https://disc.gsfc.nasa.gov/Aura/data-holdings/OMI/oml1brvg_v003.shtml)


Dec. 2 might be due to the strong influence by the aerosols. This is an interesting episode because 

it might show that the effect of neglecting aerosol in satellite AMF calculations on satellite NO2 

retrieval. Please prove this hypothesis using the Lidar measurement data. 

Response: We agree with the reviewer suggestion and estimated the influence of ignoring 

aerosols in satellite AMF calculation on NO2 retrieval. As lidar measurements only cover limited 

area, therefore, we have recalculated OMI NO2 VCDs by taking aerosol information from 

WRF-Chem simulation into account. Figure R1a shows OMI NO2 VCDs calculated without 

consider aerosol in the AMF calculation while Figure R1b shows the OMI NO2 VCDs recalculated 

using aerosol information from WRF-Chem simulation. The spatial distributions of NO2 are 

changed after including aerosol in the radiative transfer calculation. Significant enhancement of 

NO2 VCDs can be observed over some areas. However, the spatial patterns of NO2 detected by 

MAX-DOAS and OMI are still quite different. The result indicates the impact of aerosol could not 

fully explain the discrepancy between MAX-DOAS and OMI on this day. On the other hand, the 

MAX-DOAS and OMI observations agree better during OMI overpass time (black star symbols) 

and the agreement decay when the time differences between MAX-DOAS and OMI 

measurements become larger. This implies a strong temporal variability of NO2 on this day. We 

have now supplemented the additional information and explanation in the manuscript line 

352-360. 

 

Figure R1. Spatial pattern of tropospheric NO2 VCD measured by OMI calculated under two 

different AMFs. 

 

10) In section 3.1, Line 307-308: “In contrast, lower HCHO VCDs were observed mainly on rainy, 



cloudy and haze days”. Could the authors explain more about the possible reasons for this 

phenomenon? 

Response: Lower HCHO VCDs were observed mainly on rainy, cloudy and haze days, which 

might be due to stronger wet deposition and weaker solar irradiation during these days. The 

possible reasons for this phenomenon are supplemented in the revised manuscript line 316-318. 

 

11) In section 3.4, please explain how to convert HCHO VCD to HCHO concentrations (ppb). 

Response: For the estimation of primary and secondary sources of HCHO, the measured HCHO 

used in the regression model is ground mixing ratios. Usually, surface HCHO mixing ratios can be 

obtained from the HCHO vertical profiles (e.g., 0-200 m layer) (Wang et al., 2014). As the 

viewing elevation angles of the MAX-DOAS measurements only include 30° and 90°, therefore, 

there is not enough information to retrieve HCHO vertical profiles. In this study, we use a 

simplified formula introduced by (Lee et al., 2008) to convert mean HCHO DSCDs to mixing 

ratios (ppbv). 
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where M is the mixing ratio, DSCD is the difference between the SCDs of the measured spectrum 

and that of the Fraunhofer reference spectrum, dAMF is a differential air mass factor 

(dAMF=AMF(α=30°)-AMF(α=90°)), and ΔP is the pressure difference between surface and 500m 

height of boundary layer. The AMFs for this study were calculated using the radiative transfer 

model SCIATRAN 2.2 as described in Section 2.2.4. These information are now supplemented in 

the revised manuscript line 433-434. 

 

12) In section 3.4, Line 430: “As other factors can also affect the atmospheric HCHO 

concentration”. Please describe the “other factors” in more detail. 

Response: In addition to primary emission and secondary formation of HCHO, meteorological 

conditions, e.g., solar irradiance, could also affect the atmospheric HCHO concentration. This 

information is now included in the revised manuscript line 451. 

 



Technical corrections: 

1) Line 321: ‘Dec 1 and 3’> ‘Dec 2 and 4’ 

Response: Corrected. 

 

2) Line 344: ‘aerosol‘ > ‘aerosols‘ 

Response: Corrected. 

 

3) Text on Figure 2: change “dSCD” to “DSCD”, and please uniform the units of DSCD 

(molec/cm2). 

Response: We have changed “dSCD” to “DSCD” on Figure 2 and uniform the units of DSCD 

(molec/cm2) in the revised manuscript. 

 

4) Explain the caption ‘RTM’ in Figure 3-5. Or remove it. 

Response: We have removed the caption ‘RTM’ in Figures 3-5. We have merged Figs.3-5 so that 

the time series of three pollutants (NO2, SO2, and HCHO) in each panel with a continuous X-axis 

(Fig. 3&4 in the revised manuscript). 

 

5) Text on Figure 6 is too small to read. Please use larger font size and put the colorbar on the 

right. 

Response: We have enlarged the fonts in Figure 6 and put the colorbar on the right (Fig. 5 in the 

revised manuscript). 

 

6) Improve the quality of Figure 10 (too many stripes). 

Response: We have do our best to improve the quality of Figure 10, but too many stripes in Fig. 

10 is inevitable which caused by the different satellite orbit.  
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