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Abstract. Expanding urban populations and the significant contribution of cities to global fossil-fuel CO2 (CO2ff) emissions 

emphasize the necessity of achieving independent and accurate quantifications of the emissions from urban area. In this paper, 

we assess the utility of total column dry air CO2 mole fraction (XCO2) data retrieved from NASA’s Orbiting Carbon 

Observatory 2 (OCO-2) observations to quantify CO2ff emissions from cities. Observing System Simulation Experiments 

(OSSEs) are implemented by forward modeling of meteorological fields and column XCO2. The impact of transport model 15 

errors on the inverse emissions estimates is examined for two ―plume cities‖ (Riyadh, Cairo) and a ―basin city‖ (Los Angeles 

metropolitan region, LA). The pseudo data experiments indicate convergence of emission uncertainties related to transport 

model errors with increasing amount of observations. The 1-σ uncertainty of emission estimates is constrained to 

approximately 15%/5% with about 10 pseudo tracks for plume city/basin city. The systematic wind speed biases in simulated 

wind fields for LA lead to overestimations in total CO2ff emission, which require data assimilation to improve high-resolution 20 

atmospheric transport. The contribution of biogenic fluxes gradients in urban and rural area of Pearl River Delta metropolitan 

region in China are examined by simulations with biospheric fluxes imposed by the Net Ecosystem Exchange (NEE) from 

multiple terrestrial biosphere models, which show about 24±21% (1σ) and 19±15% (1σ) contributions to the total XCO2 

enhancements for the two cases examined. The representations of transport model errors for the emission optimization are 

examined for Riyadh, Cairo and LA in real cases. The determination of background XCO2 is discussed for LA by using constant 25 

and simulated background with biospheric fluxes included, demonstrating the need of careful consideration of the variations in 

background XCO2 for identifying concentration enhancements due to fossil fuel emissions.  

1 Introduction 

Since the preindustrial era the global atmospheric CO2 concentration has increased by more than 40%, predominantly due 

to CO2 emissions from combustion of fossil fuels (coal, oil, and gas) and net land use change (Andres et al., 2012; Ciais et al., 30 

2013; Rotty, 1983). Given that CO2 is the most important greenhouse gas (GHG), the international community has pursued 

treaties and agreements on the mitigation and management of anthropogenic CO2 emissions, e.g. the Kyoto Protocol (United 
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Nations, 1998) and the Paris Agreement (UNFCCC, 2015). Cities across the globe, where more than half of the world's 

population resides in, are the major sources of anthropogenic GHG emissions, accounting for more than 70% of the global 

energy-related CO2 emissions (International Energy Agency, 2008). Although fossil fuel emissions are well quantified at 

national or regional level via emission inventory compilation, i.e. bottom-up approach, emissions at subnational or local level 

are often based on disaggregation of national or regional/state emissions (Janssens-Maenhout et al., 2012; Kurokawa et al., 5 

2013; Oda and Maksyutov, 2011), with a few exception such as (Gurney et al., 2012). For a limited number of cities, emissions 

are reported on voluntary basis or under climate action activities, such as the Global Covenant of Mayors 

(http://www.globalcovenantofmayors.org/), but the data are not spatial explicit and are often incomplete or rarely checked 

against scientific standards and procedures (Hutyra et al., 2014). Additionally, due to the differences in emission 

disaggregation methods, bottom-up emissions estimates exhibit large discrepancy especially at high spatial and temporal 10 

resolutions (Ackerman and Sundquist, 2008; Gurney et al., 2012; Hogue et al., 2016; Oda et al., 2017b; Oda and Maksyutov, 

2011; Turnbull et al., 2011).  Thus independent, comprehensive and comparable emissions estimates are needed to enable 

transparent verification and monitoring of fossil-fuel CO2 (CO2ff) emissions from urban areas (Duren and Miller, 2012; Gurney 

et al., 2015; National Research Council, 2010).  

Inverse modeling, or top-down approach assimilate atmospheric CO2 observations with atmospheric transport modeling to 15 

quantify CO2 fluxes from oceans and continents, as part of the ―atmospheric inversions‖ (e.g. Bousquet, 2000; Ciais et al., 

2010) Enting, 1998. It has been applied most often on global scale carbon fluxes at fairly coarse resolutions (Denning et al., 

1995; Engelen et al., 2009; Gurney et al., 2002; Takagi et al., 2011). More recently, urban-scale CO2ff emissions have been 

constrained by inversion method by using ground-based measurements of CO2 concentrations (Lauvaux et al., 2016; McKain et 

al., 2012; Wunch et al., 2009) or by aircraft mass-balance (Cambaliza et al., 2014). However, only a handful of cities, mostly in 20 

Europe and North America, have been instrumented with networks of GHG sensors (Bréon et al., 2015; Davis et al., 2017; 

McKain et al., 2012; Miles et al., 2017; Verhulst et al., 2017).  By comparison, space-based satellite retrievals of total column 

averaged dry air CO2 mole fraction (XCO2) featured with global spatial coverage are expected to facilitate the quantification and 

monitoring of CO2ff emissions from a significant number of cities (Duren and Miller, 2012; Kort et al., 2012; McKain et al., 

2012; Schneising et al., 2013). Many efforts have been made to relate remotely observed XCO2 to CO2ff emissions on regional 25 

or local scales. For instance, XCO2 enhancements are detected over industrial regions in Germany by the Scanning Imaging 

Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) on ENVISAT (Bovensmann et al., 1999; Buchwitz 

et al., 2005; Schneising et al., 2008, 2013). Using observations from the Greenhouse gases Observing SATellite (GOSAT) 

(Morino et al., 2011), discernible signatures of CO2ff emissions have been derived as regional XCO2 contrasts between emission 

and background regions (Janardanan et al., 2016; Keppel-Aleks et al., 2013). XCO2 enhancements over megacities are identified 30 

by differencing measurements over urban and nearby background area (Kort et al., 2012). These enhancements in XCO2 over or 

downwind of emission sources can be exploited as independent and observational constraints of CO2ff emissions via 

atmospheric inversion frameworks (Pillai et al., 2016).  

NASA’s Orbiting Carbon Observatory 2 (OCO-2) (Crisp, 2008; Crisp et al., 2004) pioneered the contiguous high-

resolution mapping of global CO2 concentrations. Since its launch on July 2, 2014, OCO-2 has been collecting spectroscopic 35 

observations of reflected sunlight in near infrared CO2 and O2 bands near midday (Crisp, 2015). The high spectral resolution 

and signal-to-noise ratio of the sensor enable an unprecedented 1 ppm retrieval error in XCO2 (Eldering et al., 2017; Wunch et 
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al., 2017). The small nadir footprints of approximately 1.25 km × 2.25 km maximize probability of cloud-free observations in 

the presence of patchy clouds, which allow us to record concentration enhancement due to localized anthropogenic sources. 

OCO-2 data have been used to quantify CO2ff emissions on regional scale by Hakkarainen et al. (2016). However, the 

capability to improve estimates of anthropogenic carbon emissions from urban area has not been addressed, which will be 

presented in this paper.  5 

With high-density retrievals along repeated tracks near urban centers come several key challenges limiting our ability to 

constrain CO2ff emissions. Firstly, discernible CO2ff emission imprints can be limited due to the contamination by clouds and 

aerosols and limitations of spatial-temporal sampling coverage for local sources related to the revisit cycle of sun-synchronize 

polar orbit and the narrow tracks (e.g. 10.6 km at nadir of OCO-2). Secondly, atmospheric transport modeling errors and the 

error correlations has been identified as a major source of uncertainty in the top-down method (Houweling et al., 2010; 10 

Lauvaux et al., 2012; Lauvaux and Davis, 2014; Lin and Gerbig, 2005; Miller et al., 2015). The improvement of model physics 

and/or data assimilation is required to reduce the systematic and random errors in the simulated meteorological conditions and 

to ensure policy-level requirements on annual emissions (less than 10% error) (Deng et al., 2017). Thirdly, the spatial 

heterogeneity of urban sources and existence of intense point sources (e.g. power plants) generate complex structures in urban 

CO2ff emissions and hence the atmospheric CO2 plumes (Feng et al., 2016). In order to obtain robust emissions estimates on 15 

urban scale, atmospheric transport models and prior emissions at high resolution are needed to capture variability in XCO2 

enhancements. Fourthly, varying XCO2 background concentrations obscure the extraction of CO2ff signatures and attribution to 

local sources (Keppel-Aleks et al., 2013; Turnbull et al., 2016), since the background XCO2 is influenced by complex interplay 

of biogenic fluxes, synoptic and dynamic processes (e.g. frontal passage), leading to diurnal and seasonal variability. 

Additionally, the discrepancy of biogenic fluxes within and around cities in vegetated areas in mid-latitude, tropical and 20 

equatorial climates would contribute to local XCO2 enhancements derived from observations along satellite tracks. Variations in 

biogenic fluxes and amplified plant physiology due to human interventions in cities (Hutyra et al., 2014) further complicate the 

interpretation of CO2ff signatures and source attribution.  

The major goal of this paper is to evaluate the potential of OCO-2 XCO2 observations along-tracks in nadir and glint modes 

on the quantification of CO2ff emissions from cities. Since various local factors such meteorology, vegetation, and topography 25 

create city-specific difficulties in analyzing XCO2 enhancements to quantify CO2ff emissions, we focus on a handful of cities 

with different typical features in XCO2ff enhancements. First, the CO2ff emissions from Riyadh, Saudi Arabia and Cairo, Egypt 

with populations of 6.2 million and18.4 million are investigated to represent cities exhibiting CO2ff plumes dominated by 

atmospheric transport, referred to as plume cities hereafter. Both cities are located in moderate terrain variability with small 

biogenic influence on background, and OCO-2 observations are available along several tracks. Second, the Los Angeles 30 

metropolitan area, the United States with a population of more than 13 million is selected to investigate urban emitters located 

in basins, featuring with strong enhancements in XCO2 due to confined air masses and reduced advection/diffusion, referred to 

as basin cities hereafter. This feature is referred to as ―urban dome‖ in some previous studies (Idso et al., 1998), albeit we do 

not adopt this terminology due to the potential confusion of the actual accumulation of CO2 by the concept of a virtual dome of 

CO2 over the city. Finally, the results for the Pearl River Delta (PRD) region, China are analyzed to investigate the relative 35 

contribution of biogenic fluxes on XCO2 enhancements, in addition to increased complexity by the coastal atmospheric 

dynamics. The PRD metropolitan region is an agglomeration of several cities including Guangzhou, Hong Kong, Shenzhen, 
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Zhuhai, Dongguan, and Zhongshan etc., which is one of the largest metropolitan regions in the world with about 45 million 

people and referred to as the PRD region hereafter.  

In this paper, the utility of OCO-2 XCO2 data to constrain CO2ff emissions from Riyadh, Cairo, Los Angeles and the PRD 

region are presented. The enhancements in XCO2 attributable to urban CO2ff emissions are examined based on OCO-2 XCO2 

retrievals, and are compared to that obtained from high-resolution modeling by using the Weather Research and Forecasting 5 

(WRF) model in chemistry mode (WRF-Chem) for passive tracers, with the CO2ff emissions imposed by the Open-source Data 

Inventory for Anthropogenic CO2 (ODIAC) (Oda et al., 2017b; Oda and Maksyutov, 2011, 2015). Since the atmospheric 

transport model errors are one of the major factors influencing inverse modeling, we designed pseudo-data experiments to 

evaluate the amount of satellite observations needed to constrain CO2ff emissions in presence of random transport model errors 

based on high-resolution forward modeling of urban CO2ff for different meteorological conditions. The contributions of 10 

biogenic fluxes are assessed for the PRD region by using forward simulations coupled to Net Ecosystem Exchange (NEE) from 

the Multi-scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP) (Fisher et al., 2016; Huntzinger et al., 

2013). The implications of our results on tracking temporal variability of CO2ff emissions on urban scale are discussed.  

 2 Data and Method 

2.1 OCO-2 XCO2 observations 15 

The OCO-2 daily lite files (v7r) from September 2014 to April 2016 are used in this study (data available online at 

https://CO2.jpl.nasa.gov/). The OCO-2 satellite operates in a sun-synchronous polar orbit at the altitude of about 705 km and 

crosses the equator nominally at 13:36 LT (Local Time). It provides high-resolution spectroscopic measurements at eight 

adjacent 2.25 km long footprints within a narrow swath every 0.333 s, with a cross-track resolution of 0.1~1.3 km, which are 

used to retrieve the XCO2 (Crisp, 2008; Eldering et al., 2017). The XCO2 data provided in lite files are retrieved using the 20 

Atmospheric CO2 Observations from Space (ACOS) algorithm (O’Dell et al., 2012) and a bias correction is applied (Mandrake 

et al., 2015).  We select the XCO2 data with Quality Flag (QF) of zero, which is a label for data passing the internal quality 

check (Mandrake et al., 2015).  

2.2 Atmospheric modeling of CO2 

2.2.1 Atmospheric model simulations  25 

The XCO2 fields are simulated by high-resolution forward atmospheric transport modeling  using the Weather Research 

and Forecasting model coupled with chemistry processes (WRF-Chem) (Grell et al., 2005; Skamarock et al., 2008) version 

3.6.1, which is slightly modified for tracking passive tracers (Lauvaux et al., 2012). Table 1 presents a summary of the 

simulations performed in this study. The model grids are configured separately for each city. One-way nested domains with 

resolutions of 27, 9, 3, and 1 km are used for Riyadh and Cairo, 36, 12 and 4 km for LA, and 36, 12, 4, and 1.333 km for the 30 

PRD region. All the domains are set up with 51 terrain following vertical levels. The 6-hourly NCEP FNL (Final) Operational 

Global Analysis data on 0.5°×0.5° grids are used for the initial and boundary conditions of meteorological and land surface 

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-1022
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 20 December 2017
c© Author(s) 2017. CC BY 4.0 License.



5 
 

fields. Simulations are conducted for every 4 days with an integration time period of 108 hours, including a spin-up of 12 hours 

starting at 12:00 UTC on initial day. The simulation results are outputted hourly.  

2.2.2 Fossil fuel CO2 emissions  

Enhancements in XCO2 induced by CO2ff emissions (ΔXCO2ff) are estimated by tracking a passive tracer imposed by the 

fossil fuel emissions from the Open-source Data Inventory for Atmospheric Carbon dioxide (ODIAC) (Oda et al., 2017; Oda 5 

and Maksyutov, 2011, 2015). The ODIAC emission data product is a global 1×1 km gridded monthly fossil fuel CO2 emission 

inventory, developed based on country level fossil fuel CO2 emission estimates, fuel consumption statistics, satellite-observed 

nightlight data, and point source information (geographical locations and emission intensities) from the CARbon Monitoring 

for Action (CARMA) power plant database (Oda et al., 2017b).  The global nightlight data were used as a geo-referenced, 

spatial proxy to determine the spatial extent of anthropogenic emissions from line and diffused (area) sources (e.g. road traffic, 10 

residential or commercial fuel consumption). We used the year 2015 version of the ODIAC emission dataset (ODIAC2015a, 

available at http://db.cger.nies.go.jp/dataset/ODIAC/). The ODIAC gridded emission fields defined on a global rectangular 

(latitude × longitude) coordinate are remapped to meet the grids resolutions for each simulation domain.  

2.2.3 Biogenic fluxes in urban areas 

Additionally for the PRD region, the contribution of biogenic fluxes on spatial distributions of XCO2 (XCO2bio) is examined 15 

by WRF simulations. Since there is no established urban Net Ecosystem Exchange (NEE) data available, the NEE from 15 

different global Terrestrial Biogeochemical Models with spatial resolutions of 0.5°×0.5° in the Multi-scale Synthesis and 

Terrestrial Model Intercomparison Project (MsTMIP) (Huntzinger et al., 2013) are used to impose the biogenic CO2 fluxes. In 

order to better characterize the diurnal variability and spatial distribution of biogenic fluxes in and around the cities, a 3-hourly 

dataset for global biogenic fluxes (Fisher et al., 2016) is used, which is temporally downscaled from the monthly global 20 

models. Furthermore, we spatially downscale the 3-hourly NEE from the original 0.5°×0.5° MsTMIP grids (e.g. Fig. 1a) to the 

WRF grids using the Green Vegetation Fraction (GVF), with the assumption that vegetation productivity and respiration scales 

linearly with canopy coverage. A robust relationship between canopy cover and biomass was observed in Boston, which 

supports the use of GVF as a proxy for biomass, and hence as a scaling parameter for biogenic fluxes (Briber et al., 2013; 

Raciti et al., 2012). Using high resolution vegetation greenness, the NEE is downscaled as follows:  25 

Ewrf, i, j= (Eblin, i, j /GVFblin, i, j)×GVFwrf, i, j 

where the subscripts i, j represent the coordinates of a WRF grid cell, Ewrf  the NEE at WRF grids (e.g. Fig. 1c), and Eblin the 

bilinear interpolated NEE from the original 0.5°×0.5° grids to WRF grids (e.g. Fig. 1b). GVFblin is interpolated using MODIS 

climatological observations of GVF from 2001 to 2010 (e.g. Fig. 1d) in a similar way of deriving Eblin (e.g. Fig. 1c), ensuring 

the same spatial representativeness of GVFblin and Eblin, and GVFwrf  (e.g. Fig. 1e) is the GVF projected on the WRF grid. The 30 

uncertainties in biogenic CO2 are represented by the variability among the simulated XCO2bio concentrations of the 15 members.  
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2.3 Observing System Simulation Experiments (OSSEs)  

In order to assess the potential of OCO-2-like satellites to quantify CO2ff emissions from cities, we implement several 

Observing System Simulation Experiments (OSSEs) based on forward modeling of meteorological fields and column XCO2 

(XCO2ff and XCO2bio).Here we focus on the errors in the CO2ff emissions estimates resulting from transport model errors with 

constraints by XCO2 measurements. The prescribed ODIAC fossil fuel CO2 emissions are assumed as the ―true fluxes‖ to be 5 

retrieved. The impact of errors in prior emissions is not included here, which is limited by the lack of high-resolution error 

structure of the emission maps for most cities. For Riyadh and Cairo, which are plume cities, the hourly forward modeling 

results of XCO2 in daytime hours (09:00-15:00 LST) with the angle between XCO2 plume and ground track ranging between 10° 

and 170° are used to construct pseudo observations of XCO2 by interpolating the model results to a typical ground track in nadir 

mode. Here the retrieval errors are not included. The construction of pseudo modeling data of XCO2 are detailed in the 10 

following section to represent the transport model errors (section 2.3.2). The uncertainty in the retrieved emissions is assessed 

by performing multiple emission optimizations (Monte-Carlo approach). Assuming n available OCO-2 overpasses over a city 

during a certain time period, we randomly select n samples of pseudo observations (i.e. perfect modeled XCO2) and modeling 

data (i.e. perturbed modeled XCO2), and calculate the optimal emissions by minimizing the mismatch between the total XCO2 

enhancements (ΔXCO2) derived from pseudo observations and modeling (see section 2.3.1).  15 

For Los Angeles, representing a typical basin city, the OSSEs are conducted using ensemble of WRF simulations with 

varying PBL and urban canopy physics parameterizations (Feng et al., 2016). The optimization of CO2ff emissions is conducted 

by estimating the statistical distribution of the emission scaling factor, which is detailed in section 2.3.2. Note that for the 

OSSEs, background XCO2 concentrations are presumed to be well known, which is not represented in the pseudo data. The 

enhancements (ΔXCO2ff) only reflect contributions from local fossil fuel CO2 emissions. However, for in-situ observations the 20 

determination of background CO2 concentrations is more complicated and crucial to interpret observed signals attributable to 

CO2ff emissions, which will be discussed in section 3.4 for real-world cases.  

 

2.3.1 Emission optimization 

The urban CO2ff emissions are optimized using a simple method by adjusting total emissions from the city with a scaling 25 

factor (S), which is calculated by scaling the total XCO2ff enhancements (ΔXCO2ff) of the pseudo modeling (integrated along the 

ground track) to match that of the pseudo observations:  

2 , 2 ,/CO ff o CO ff m

lat lat

S X X     

where the subscript m represents data from modeling, an d o for observation. Since CO2 is a passive tracer, ΔXCO2ff is expected 

to be linearly scaled with emissions. Therefore, the emissions are optimized on a total basis, namely the optimized CO2ff 30 

emission from a city is the product of the a priori total emission and the scaling factor. It should be noted that, the optimization 

method used here is a ―displaced optimization‖, which artificially alleviates the impact of wind direction errors in transport 

modeling. Meanwhile this method yields to nearly unbiased distribution of S associated with unbiased wind direction errors, 

compared to the biased S when using the typical least square error method. The justification of the total XCO2 optimization is 

detailed in the Supplement.  35 
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2.3.2 Representation of transport model errors  

Transport model errors are represented here using two different approaches: by modifying directly atmospheric XCO2 

structures from plume cities, and by a physics-based ensemble modeling for basin cities. Both methods are evaluated using 

surface meteorological measurements to calibrate the statistics of the model to realistic transport errors.  

a. Plume city: direct perturbations 5 

 For plume cities, the enhancements in XCO2 related to urban CO2ff emissions (ΔXCO2ff) are dominated by atmospheric 

transport. In order to propagate errors from simulated wind fields into ΔXCO2ff, the simulated plumes are modified based on 

wind speed and direction errors, determined following statistics in previous studies (e.g. Deng et al., 2017). Examples for the 

transport error representation method are presented in Fig. 2 for a simulated XCO2 plume over Riyadh. The effects of 

positive/negative wind speed errors are represented by stretching (Fig. 2b)/shrinking (Fig. 2c) the XCO2 plumes along the 10 

average wind direction within the entire domain, and multiplied by a factor k as:  

k=(U+Uerr)/U 

where U is the average wind speed, and Uerr is the randomly specified error of U. To incorporate the wind direction errors, 

plumes are rotated around the emission center of the entire city by an angle of the random error term (Fig. 2d). The errors are 

randomly selected from normal distributions of N(0, 1.0) (unit: ms
-1

) for wind speed and N(0, 15) (unit: °) for wind direction, 15 

respectively. This method represents the overall effect of the transport model errors in the lower fraction of the troposphere.  

 

b. Basin city: physics-based ensemble  

For cities located in basins or valleys, the diffusions of fossil-fuel CO2 are confined by local topography, which violates 

the logic of the error propagation method used here for plume cities. Therefore, an ensemble approach is used to represent 20 

transport model errors, constructed by using multiple combinations of planetary boundary layer (PBL) schemes and urban 

canopy models (cf. Table 2). The Mellor-Yamada-Nakanishi-Niino (MYNN) 2.5 (Nakanishi and Niino, 2004)(Nakanishi and 

Niino, 2004) scheme, the Mellor-Yamada-Jancic (MYJ) scheme (Janjić, 1994), and the Bougeault and Lacarrère (BouLac) 

(Bougeault and Lacarrere, 1989) scheme are used for PBL parameterization. The single-layer urban canopy model (UCM) 

(KUSAKA and KIMURA, 2004) and the multi-layer Building Environment Parameterization (BEP) (Martilli et al., 2002) are 25 

used for the land surface processes in urban canopy.  

In order to ensure that the transport model errors (represented by the ensemble spread) are comparable with the observed 

model-data mismatches, we evaluated the performance of the overall ensemble by comparing modeling results with surface 

wind observations. The evaluation of Planetary Boundary Layers Heights (PBLH) was not performed, since the errors in 

vertical mixing near the surface does not have much impact on that of total column average concentrations of XCO2, though the 30 

study by Feng et al. (2016) suggests that PBLH were correctly represented in LA with specific model configurations, but with 

an overall overestimation of PBLH across the ensemble. Meteorological observations of wind speed and wind direction at 43 

synoptic weather stations located within the 4-km domain covering Los Angeles are used for the evaluation. The surface 

observations are derived from the global hourly Integrated Surface Data (ISD), accessible online at the National Centers for 

Environmental Information (NCEI) 35 

(https://gis.ncdc.noaa.gov/geoportal/catalog/search/resource/details.page?id=gov.noaa.ncdc:C00532 ).  
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Since we use displaced optimization based on scaling the total enhancement of XCO2 along the observation track (cf. 

section 2.3.1), the wind direction errors have less impact than wind speed errors as this approach compensates for peak offset 

along the OCO-2 tracks. We focus here on the wind speed ensemble results to examine the representation of transport model 

errors for Los Angeles. The model spread is represented by 1) the standard deviation (STD) of the ensemble, and 2) by half of 

the full range of the model results (half difference between the maximum and minimum), as shown in Fig. 3. The original six 5 

members exhibit lower spread of wind speeds compared to the mean absolute error (MAE), suggesting an underestimation of 

the transport errors (Figs. 3a and 3b). In order to enlarge the ensemble spread, we included model results one hour before and 

after (±1 h) the observation time by taking temporal offset into consideration; therefore, the ensemble size is increased to 18. 

The ensemble spreads for wind speed and wind direction both match the observed model-data differences (MAE) better when 

using half of the full ensemble range compared to the STD (Figs. 3c and 3d). Based on these results, the 1-hour lag and the 10 

min-max of the ensemble will be used to represent the transport model uncertainties in the pseudo data experiments for LA. 

The hourly ensemble average distribution of XCO2 is interpolated along a typical track in nadir mode and used as the pseudo 

observations. Assuming that the scaling factor S follows normal distribution of N(μs, σs), we estimate S by randomly selecting a 

value according to its distribution. The mean error μs is estimated as the relative bias of the ensemble mean wind speed 

compared to observations at the 43 stations. The σs is estimated as half of the difference between the scaling factors calculated 15 

using the ensemble members with the maximum and minimum wind speed as pseudo modeling data.  

3 Results 

3.1 Simulations for plume and basin cities and comparison with OCO-2 data 

a. Riyadh and Cairo: plume cities  

The simulated XCO2ff enhancements (ΔXCO2ff) for Riyadh are characterized by elongated plume structures mainly 20 

dependent on atmospheric transport conditions (i.e. wind speed and direction). Figure 4 shows the modeling results of ΔXCO2ff 

in the 1-km resolution domain at 09:00, 10:00, and 11:00 UTC December 29, 2014. 10:00 UTC is the approximately 

overpassing time of OCO-2. We note here that a constant value of XCO2 is used as the background CO2 concentration, defined 

by the observations located outside the city plume. Here the constant value for background CO2 is determined by manually 

examining the observations. The simulated ΔXCO2ff demonstrates rapid-changing and fine-scale structures of the plumes, with 25 

discernable variations among the distributions of ΔXCO2ff within the several hours shown in Fig. 4. The ΔXCO2ff along the 

corresponding OCO-2 overpass at 10:00 UTC and one hour before or after (Fig. 5) also suggests the distinctive temporal 

variations of the plume. Comparing the simulated ΔXCO2ff from the 1-km, 3-km and 9-km resolution domains, the peak values 

are lower and smoother when using coarser resolutions, indicating the necessity of using high-resolution simulations to 

reproduce structures in the plumes realistically. The modeling results of the 1-km resolution domain are used in our pseudo 30 

data experiments with the results presented in section 3.2.  

b. Los Angeles: basin city 

By contrast, over a basin city like LA the XCO2 enhancements due to fossil fuel emissions are not only affected by the 

atmospheric dynamics and local emissions, but also by local topography. As an example, Figures 6 and 7 show the simulated 
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and observed ΔXCO2ff by the six ensemble members at 21:00 UTC July 6, 2015 in the model domain and along the satellite 

track. Compared to the observations, the peak is displaced to the north by about 0.4° in latitude, which could be related to the 

bias in the simulated wind field with a stronger northern component. The simulations show diffusive distributions of ΔXCO2ff 

over the basin with the peak values located over the eastern end of the city, downwind of the major emissions (Fig. 6). A recent 

study by (Hedelius et al., 2017) demonstrates persistent differences (~0.8 ppm) in XCO2 between two locations only 9 km apart 5 

within the LA basin, which are partly explained by the steep terrain responsible for 20–50% of the variability in XCO2. This also 

suggests that the transport model errors could not be represented by rescaling the ΔXCO2ff over the basin. Therefore, the spread 

of ensemble modeling with different physical configurations are used to represent the impact of the transport model errors on 

emission optimization.  

3.2 Uncertainty in fossil fuel CO2 emissions: impact of transport model errors and sampling density  10 

a. Riyadh and Cairo: plume cities  

Based on hourly simulated XCO2 mole fractions over Riyadh and Cairo, OSSEs are conducted by sampling model results 

over several weeks from both cities, providing 31 and 20 days (217 and 140 daytime hours) of simulated XCO2 under different 

meteorological conditions. The simulated XCO2 plumes are perturbed according to wind field errors (cf. section 2.3.2). The 

prior total emissions are optimized using the single scaling factor (S) in a non-Gaussian optimization system. The optimized 15 

total emission is the product of the scaling factor and the total of the priors. The statistical distribution of S is retrieved by 

randomly selecting our pseudo observation and modeling tracks among the available daytime results. These pseudo data 

samples are generated for 100 times (i.e. with 100 different perturbations) to provide a complete description of the inverse 

emissions. Figure 8 shows the relation between the inverse emissions (here represented by the distribution of S) starting with a 

single track up to 30. Here we assume that the true emissions remain constant. The impact of seasonal and diurnal cycles in 20 

emissions is discussed in section 5. The average and uncertainty (±1σ) of S is shown for Riyadh and Cairo in Figs. 8(a) and 

8(b). As the number of tracks increases, the average of S approaches 1—i.e., the ―true‖ S. In the experiments for plume cities, 

the emission estimates are unbiased, consistent with the nearly unbiased wind speed and wind direction errors shown in 

previous studies. The uncertainty of S converges rapidly with the increasing amount of available OCO-2 data, indicating the 

effective constraint on the total emissions by the observations. We note that the pseudo ―tracks‖ used here denote overpasses 25 

with XCO2 enhancements attributable to local CO2ff emissions. Based on these experiments, about 9~10 tracks are necessary to 

constrain the uncertainty (±1σ) in total emissions estimates to reach less than 15%. This suggests that the uncertainties in 

emission estimates are determined by the amount of observations when the available amount of observations is small (less than 

10 tracks). However, with the number of available tracks increasing, the distribution of S reaches a steady condition with 1σ of 

approximately 0.07, i.e. an uncertainty of 7% in the emission estimates. Therefore the transport model errors define the lower 30 

level of emissions uncertainty of the convergence of S, i.e. the improvement of transport model is required in order to further 

reduce the uncertainty in the total emission estimates.  

b. Los Angeles: basin city 

The statistical distribution of the total emissions’ scaling factor is examined by exploring the hourly ensemble simulation 

results of XCO2 for the Los Angeles basin, sampling ensemble members as described in section 3.1. The average scaling factor 35 
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S shows a positive bias of about 0.133—i.e., an overestimation of about 13% of total emissions compared to the true value 

(S=1). This is associated with the positive bias of surface wind speed for LA, which is a concern for air quality applications 

reported by previous studies (Angevine et al., 2012; Feng et al., 2016)(Feng et al., 2016; Angevine et al., 2012). The transport 

model errors represented by the ensemble members for LA lead to less variability in the total enhancements, thus less 

uncertainty in the scaling factor (cf. Figure 8(c)), compared to that for Riyadh and Cairo. The scaling factor can be constrained 5 

at 0.05 uncertainty (or 5%) with 10 tracks. The bias in emissions estimates remains independent of the number of tracks, which 

is affected by systematic transport model errors. 

3.3 Uncertainty in fossil fuel CO2 emissions: impact of biogenic fluxes 

Forward simulations are conducted for the PRD region to demonstrate the influence of biogenic fluxes and the associated 

uncertainties on the estimation of total emissions in this region. As described in section 2.2.3, the biogenic fluxes are imposed 10 

by 15 MsTMIP flux maps coupled to our WRF modeling system. Following the spatial distribution of CO2ff emissions from 

several cities located in the PRD region, the modeled XCO2ff enhancements are characterized with multiple plume cities 

features, with long bands of CO2 stretching downwind from the major sources when the atmospheric transport is strong (i.e. 

high wind speeds) and persistent (i.e. steady winds) as shown in Fig. 9. Compared to the OCO-2 observations (Figs. 9c and 

9d), the XCO2 enhancements are underestimated by the model. Both tracks show larger variations in XCO2. On both days, the 15 

coastal circulation contrasts with the continental wind regimes, with fast ocean winds on January 15th and near-zero wind 

speed on August 4th, opposite to the inland circulation patterns. Since cities in the PRD region are less vegetated compared to 

the surrounding area (Fig. 1f), the distribution of biogenic fluxes is expected to impact positively the city XCO2 enhancements 

during daytime with stronger photosynthesis surrounding the cities induced by the vegetation gradient, which is demonstrated 

in a schematic diagram (Fig. 10). This impact is also validated by our simulation results for the two cases (Fig. 9), with the 20 

biogenic signals exhibiting enlargements when added to the ΔXCO2 signals. According to the simulated enhancements from the 

tracers imposed by the 15 biogenic MsTMIP fluxes, the biogenic contributions to the total XCO2 enhancement along the OCO-2 

track are about 24±21% (1σ) and 19±15% (1σ) for the two cases examined here. This result suggests that if the total 

enhancement is used to constrain local emissions, and the biogenic contribution is not subtracted, the total emissions would be 

overestimated by about 32±27% and 23±18% on these two days. The measurements of 
14

CO2 at the monitoring sites in Los 25 

Angeles indicated ~25% of biogenic contributions to the mid-day CO2 enhancement over background (Miller et al., 2017). 

These results indicate significant influence of biospheric fluxes on local XCO2 variability for vegetated areas.   

3.4 CO2ff emissions estimates using OCO-2 observations  

a. Riyadh and Cairo: plume cities 

In order to examine the representation of transport model errors for the emission optimization in real cases, the scaling 30 

factor is calculated using OCO-2 XCO2 along several tracks in nadir or glint mode collected during the simulated time period for 

Riyadh and Cairo. The tracks are selected by comparing the observed XCO2 with the simulated plumes to ensure that the 

satellite overpassed downwind of the cities and captured XCO2 signals attributable to the local emitters. The transport model 

errors are incorporated using the same method as for the OSSEs (cf. Section 2.3.2), with sampling size of 10
3
 for each track.  
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The quantification of emissions requires careful determination of background XCO2, which technically represent the 

atmospheric XCO2 abundance without the impact of local fossil-fuel emissions. The XCO2 background shows spatial and 

temporal variations due to long- and medium-range transport of CO2 and would impair our ability to extract enhancements due 

to CO2ff emissions form observations. Moreover, the contamination of space-based observations due to clouds and aerosols 

lead to more difficulties, when the background values on the edges of the urban plume being obscured or deteriorated due to 5 

poor data quality. For Riyadh and Cairo linear background XCO2 is used. The latitudinal trend of the background line is defined 

by linear regression of the interested portion of XCO2 observations, i.e. within the simulation domain, and the intercept is 

determined by forcing the background line passing the minimum XCO2 among the observations. Figure 11 shows the histograms 

of scaling factors for the selected tracks over Riyadh and Cairo. The distributions of S for Riyadh are non-Gaussian, centered 

on higher scaling factors (here 1.6-1.9) suggesting larger emissions than ODIAC emissions imposed. Both Riyadh and Cairo 10 

show bimodal distributions for three tracks (27 December, 18 March, and 15 July) due to negative perturbed wind speeds 

caused by large errors added on small absolute wind speed. The track on December 29 shows also two modes corresponding to 

two Best Likelihoods from modeled XCO2 mole fractions. For the three tracks over Cairo on 28 February, 19 May, and 16 

August 2015, the distributions of S are centered around 2.4 to 2.9 and consistently over one in all cases, suggesting higher 

emissions from the Cairo area.  15 

b. Los Angeles: basin city 

Six OCO-2 tracks were examined over LA on July 6 and 15, August 7 and 16, October 10 and 12, 2015. In order to extract 

fossil-fuel XCO2 signals, constant and simulated background XCO2 are used. The constant background concentration is derived 

as the average XCO2 of the measurements over the desert north to LA. Meanwhile, the variations of background XCO2 were 

calculated based on the WRF simulations coupled with the Vegetation Photosynthesis and Respiration Model (VPRM) 20 

(Mahadevan et al., 2008) (WRF-VPRM). Figure 12 shows the OCO-2 measurements and the background XCO2. The WRF-

VPRM background is characterized with nearly linear variation along the tracks. Generally, the two definitions give similar 

information of background XCO2. The WRF-VPRM simulations exhibit better representation of the spatial variations of 

background XCO2 for the tracks on July 15, August 7 and October 10, 2015.  

Given the two different definitions of background XCO2 shown above, we constrain the total fossil-fuel CO2 emissions 25 

from LA using the observations from the six OCO-2 tracks during the modeling time period. Note that the observations along 

the tracks shown here are chopped near the northern edge of the desert, because the measurements collected north to the desert 

are usually deteriorated due to the mountainous topography. The scaling factors are calculated as the ratio between the 

observed total ΔXCO2 and the simulated total ΔXCO2ff, as shown in Figure 14. The uncertainty is estimated as 1σ of the scaling 

factors calculated with simulated total ΔXCO2ff by the 18 ensemble members. Since the monthly emissions are used in the 30 

experiments as a priori emissions, we adjust the simulated total ΔXCO2ff  to daytime value at approximately the overpassing 

time of OCO-2 by scaling with a factor of 1.288, which characterize the diurnal variations of the emissions for ODIAC by 

(Nassar et al., 2013). The total emission within the 4-km domain covering LA are 103.98 (133.93 with the adjustment, same 

hereafter) TgCO2 yr
-1 

for July, 105.52 (135.91) TgCO2 yr
-1 

for August, and 99.54 (128.21) TgCO2 yr
-1 

for October.  The mean 

scaling factor ranges from 0.78 to 1.16 for the tracks on July 6, August 7, and October 12, 2015, but varies from 3.04 to 6.47 35 

for the other three tracks, associated with the underestimated and displaced ΔXCO2ff peaks from the simulation (Figs. 13b, 13d, 
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13e) and un-reproduced signals over the ocean (Figs. 13b and 13d) for the tracks in glint mode. The average scaling factor for 

all of the six selected tracks are 3.04±0.17 and 3.01±0.17 with constant background and WRF-VPRM background, 

respectively. The WRF-VPRM background XCO2 yields to slightly smaller scaling factors than that using the constant 

background. The 1-σ uncertainties are comparable, which represent the impact of transport model errors.  

4 Discussion  5 

We implemented OSSEs to examine the contribution of satellite data availability and transport model errors to the 

emissions optimizations. For plume cities of Riyadh and Cairo as examples, the transport model errors are represented by 

reshaping the XCO2 plumes following unbiased errors in wind speed and direction. The uncertainty (1σ) of the emission 

estimates is constrained to less than 15% with at least 9~10 tracks of pseudo observations. These pseudo tracks are selected 

with the requirements of measuring downwind of the city, with the angle between plume and ground track ranging between 10 

10°~170°, ensuring that the XCO2ff enhancements attributable to local emissions are captured by observations. Based on OCO-2 

data from September 2014 to April 2016 over Riyadh, there are seven tracks that meet these requirements, i.e. about one track 

per 2.86 months. This suggest that, it would take about 2.1~2.4 years to collect 9~10 tracks. For basin city with LA as an 

example, the transport model errors are represented by using an ensemble of WRF-ODIAC simulations with different model 

physics. The scaling factor uncertainty related to transport model errors would be constrained to 5% with 10 tracks. However, 15 

the positive bias in emissions estimates can not be compensated by increasing the number of tracks, which is related to 

systematic transport model errors. These calculations suggest possibility to further improve emissions monitoring using a 

sufficient number of tracks with accurate transport simulations. More focused observing platforms dedicated to additional 

urban measurements will be needed, such as OCO-3 (https://oco3.jpl.nasa.gov) and future GOSAT missions.  

The a priori emissions used in the optimization system (ODAIC) were considered to be perfectly distributed in space, 20 

neglecting the potential uncertainties in emission spatial structures. This shortcoming was further corrected by optimizing the 

total XCO2 enhancement instead of a point-to-point model-data optimization. The total enhancement allows us to compensate 

for any missing sources by adjusting the enhanced fraction of the XCO2 signals, while linear regression or any point-to-point 

minimization algorithm would have introduced low biases in our results. Due to the absence of information on prior emissions 

errors, we implemented a direct optimization with a Monte Carlo approach and did not evaluate the impact of errors in the prior 25 

emissions. Due to the lack of physical measurements, direct assessment of errors in gridded emission fields is difficult (Andres 

et al., 2016).  Error assessments of gridded emissions are thus often done using an inter-emission inventories difference as a 

proxy for uncertainty, especially at an aggregated spatial resolution (Hutchins et al., 2017; Oda et al., 2015).  For the case for 

ODIAC, it is often challenging to find an emission inventory with a comparable spatial resolution, although ideally an emission 

evaluation should be done using a detailed emission data like (Gurney et al., 2012). Error correlations among these products are 30 

high because of the similitudes in the inputs. Future studies on emission comparisons should address the impact of 

uncertainties in spatial structures or missing point sources in CO2ff emission products, similar to (Oda et al., 2017a) over the 

state of California. 

The ensemble of WRF-ODIAC simulations over Los Angeles revealed positive systematic errors in wind speed, which 

lead to over-dilution of CO2ff and positive bias of scaling factors. The positive wind bias over LA is well documented by 35 
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previous studies. Angevine et al. (2012) found a mean wind bias of +1.0-2.0 m/s, and Feng et al. (2016) reported slightly larger 

bias of +1.5-2.5 m/s, using surface stations and radar measurements across the LA basin. Similar errors have been reported in 

other studies at different scales and locations, typically when the steep terrain is incorrectly represented. The LA basin presents 

large elevation gradients from the sea surface to Mount Wilson top. Future studies trying to quantify emissions from basin 

cities should address the presence of biases, not even considering vertical mixing errors and horizontal distribution of XCO2 5 

gradients (Ware et al., 2016). Recent urban modeling studies (e.g. Deng et al., 2017) showed that simple data assimilation 

systems can significantly improve modeling performances and decrease systematic errors to negligible levels (<0.5 m/s). In 

comparison, WRF simulations over plume cities located inland with flat terrain showed better model results in terms of wind 

speed and direction, with wind speed errors of <1 m/s even without data assimilation around Indianapolis, IN (Deng et al., 

2017), or <0.8 m/s around Paris urban area in France (Lac et al., 2013).  10 

Few studies have addressed the impact of human interventions on urban vegetation (Hutyra et al., 2014), which are likely 

to increase both Gross Primary Productivity and respiration of ecosystems in urban areas compared to their more natural 

counterparts. Here the impact of biogenic fluxes is represented with the modeling imposed by the MsTMIP NEE from15 

biogeochemical terrestrial models. The simulation results show that, despite the large CO2ff emissions from the Pearl River 

Delta, a significant fraction (24±21% and 19±15% for the two cases shown) of the local XCO2 enhancement is driven by the 15 

local biogenic fluxes. Urban vegetation models at higher resolution without downscaling would help to more objectively 

quantify the possible impact of biogenic fluxes, especially for tropical and subtropical cities with various spatial gradients of 

greenness across in urban and suburban area.  

Spatial gradients in background XCO2 concentrations matter when deriving local emission signals from satellite 

observations along tracks. For Los Angeles, we considered two approaches, i.e. constant versus a varying background as 20 

simulated by WRF-VPRM. The tracks are chopped at the northern edge of the desert near LA, in order to exclude the data over 

the complex terrain and therefore with high warn level. Noise in the OCO-2 measurements associated with precision of single 

retrievals should also be taken into account, which could obscure the background determination. We have not addressed here a 

general method in background determination for individual OCO-2 tracks. 

For the observation data quality, we analyzed each individual track for this study and considered possible artifacts from 25 

complex terrain, aerosols, and clouds. Some cases have been discarded as we suspected strong contaminations from aerosols, 

as confirmed by CALIPSO data but not filtered using the Quality Flags and Warn Levels. For applications at urban scale, one 

should address the data quality control by examining the observations, while current filters are mostly applicable on global 

scale. 

The potential biases in emissions estimates introduced by incomplete sampling of satellite measurements have not been 30 

considered here. The seasonal and diurnal variations of CO2ff emissions might not be fully tracked, since the satellite soundings 

are available only in daytime with clear-sky conditions. It has been reported that, satellite XCO2 retrievals must be assimilated at 

the time and location of the observations, since the clear-sky sampling bias leads to underestimated mean CO2 (Corbin and 

Denning, 2006). To examine its impact on CO2ff emission estimates, we used the hourly CO2ff emissions from Hestia-

Indianapolis product at the scale of buildings and street segments (Gurney et al., 2012), which is one of the most accurate and 35 

complete emission inventory available and evaluated against in situ tower measurements (Lauvaux et al., 2016). Low cloud 
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cover days were determined according to surface observations within the city. The average total emission on low cloud cover 

days are larger than the that of the full year, indicating positive systematic error of 13% by only sampling low cloud cover 

days. Seasonal bias will vary by location due to the climatological variations of cloud cover (e.g. monsoon, or rainy season). 

For the diurnal bias, the Hestia product indicates 14% positive bias for Indianapolis by comparing daytime average (09:00-

14:00 LST) emissions to the daily average. The diurnal variation factors proposed by Nassar et al. (2013) are 1.195, 1.127 and 5 

1.288 for Riyadh, Cairo and LA for the emissions at about the satellite overpassing time against the monthly average, 

suggesting over-estimations by about 19.5%, 12.7% and 28.8% when sampling daytime only. These cycles could be 

compensated by optimal sampling strategies but only active sensors will be able to sample across clouds and at night. For 

future missions, the sampling bias might be compensated by more frequent tracks or targeted view modes.  

5 Conclusions 10 

In this paper, we examined the potential of XCO2 observations from OCO-2 to quantify CO2ff emissions from urban areas 

by carrying out OSSEs from high resolution WRF-ODIAC simulations over multiple cities. The capability to constrain 

emission uncertainties in the presence of transport model errors was examined using Monte-Carlo approach. The OSSEs results 

show convergence of emission uncertainties with increasing amount of observations. The 1-σ uncertainty of emission estimates 

is constrained to approximately 15% and 5% with about 10 pseudo tracks for plume cities (Riyadh and Cairo) and basin city 15 

(Los Angeles metropolitan area), respectively. The systematic positive wind speed biases in model transport for LA lead to 

overestimations in the scaling factor and therefore in total CO2ff emissions, which require data assimilation to improve high-

resolution atmospheric simulations. By comparison, plume cities are more promising with current mesoscale modeling 

systems. Systematic analysis of cities across the globe will help to refine the needs for quantifying urban CO2ff emissions using 

satellite observations around the globe by considering the limitations of each region.  20 

The simulations driven by MsTMIP NEE of the cities in China’s Pearl River Delta region indicate that, biogenic fluxes are 

critical for cities located in well vegetated areas, typically in mid-latitudes to the equatorial areas. Gradients in biogenic fluxes 

in the urban and surrounding areas in the PRD region contribute to about 24±21% (1σ) and 19±15% (1σ) of the total XCO2 

enhancements for the two cases examined, which would lead to overestimation of total emissions by about 32±27% and 

23±18%. Similar magnitude was reported with 
14

CO2 measurements in Los Angeles, indicating ~25% of the contribution of 25 

biospheric sources to the midday CO2 enhancement over background (Miller et al., 2017).  

Background mole fractions of XCO2 for urban areas require more consideration. For Los Angeles two definitions are 

examined, i.e. constant background using average XCO2 over the desert near LA and background determined by WRF-VPRM 

modeling. The WRF-VPRM background yields to slightly smaller scaling factors than that using the constant background for 

half of the six tracks shown here. More sophisticated biospheric modeling can help to develop a better determination of the 30 

background XCO2.  

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-1022
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 20 December 2017
c© Author(s) 2017. CC BY 4.0 License.



15 
 

Acknowledgments  

This work has been funded by the National Aeronautics and Space Administration (NASA) Orbiting Carbon Observatory 

2 (OCO-2) Science Team (award NNX15AI42G), the National Institute for Standards and Technology (NIST) Indianapolis 

Flux Experiment (INFLUX) project (award 70NANB10H245), and the National Oceanic and Atmospheric Administration 

(NOAA) project (grant NA13OAR4310076).  5 

References 

Ackerman, K. V. and Sundquist, E. T.: Comparison of Two U.S. Power-Plant Carbon Dioxide Emissions Data Sets, Environ. 

Sci. Technol., 42(15), 5688–5693, doi:10.1021/es800221q, 2008. 

Andres, R. J., Boden, T. A., Bréon, F.-M., Ciais, P., Davis, S., Erickson, D., Gregg, J. S., Jacobson, A., Marland, G., Miller, J., 

Oda, T., Olivier, J. G. J., Raupach, M. R., Rayner, P. and Treanton, K.: A synthesis of carbon dioxide emissions from fossil-10 
fuel combustion, Biogeosciences, 9(5), 1845–1871, doi:10.5194/bg-9-1845-2012, 2012. 

Andres, R. J., Boden, T. A. and Higdon, D. M.: Gridded uncertainty in fossil fuel carbon dioxide emission maps, a CDIAC 

example, Atmos. Chem. Phys., 16(23), 14979–14995, doi:10.5194/acp-16-14979-2016, 2016. 

Angevine, W. M., Eddington, L., Durkee, K., Fairall, C., Bianco, L. and Brioude, J.: Meteorological Model Evaluation for 

CalNex 2010, Mon. Weather Rev., 140(12), 3885–3906, doi:10.1175/MWR-D-12-00042.1, 2012. 15 

Bougeault, P. and Lacarrere, P.: Parameterization of Orography-Induced Turbulence in a Mesobeta--Scale Model, Mon. 

Weather Rev., 117(8), 1872–1890, doi:10.1175/1520-0493(1989)117<1872:POOITI>2.0.CO;2, 1989. 

Bousquet, P.: Regional Changes in Carbon Dioxide Fluxes of Land and Oceans Since 1980, Science (80-. ), 290(5495), 1342–

1346, doi:10.1126/science.290.5495.1342, 2000. 

Bovensmann, H., Burrows, J. P., Buchwitz, M., Frerick, J., Noël, S., Rozanov, V. V., Chance, K. V. and Goede, A. P. H.: 20 
SCIAMACHY: Mission Objectives and Measurement Modes, J. Atmos. Sci., 56(2), 127–150, doi:10.1175/1520-

0469(1999)056<0127:SMOAMM>2.0.CO;2, 1999. 

Bréon, F. M., Broquet, G., Puygrenier, V., Chevallier, F., Xueref-Remy, I., Ramonet, M., Dieudonné, E., Lopez, M., Schmidt, 

M., Perrussel, O. and Ciais, P.: An attempt at estimating Paris area CO2 emissions from atmospheric concentration 

measurements, Atmos. Chem. Phys., 15(4), 1707–1724, doi:10.5194/acp-15-1707-2015, 2015. 25 

Briber, B., Hutyra, L., Dunn, A., Raciti, S. and Munger, J.: Variations in Atmospheric CO2 Mixing Ratios across a Boston, MA 

Urban to Rural Gradient, Land, 2(3), 304–327, doi:10.3390/land2030304, 2013. 

Buchwitz, M., de Beek, R., Noël, S., Burrows, J. P., Bovensmann, H., Bremer, H., Bergamaschi, P., Körner, S. and Heimann, 

M.: Carbon monoxide, methane and carbon dioxide columns retrieved from SCIAMACHY by WFM-DOAS: year 2003 initial 

data set, Atmos. Chem. Phys., 5(12), 3313–3329, doi:10.5194/acp-5-3313-2005, 2005. 30 

Cambaliza, M. O. L., Shepson, P. B., Caulton, D. R., Stirm, B., Samarov, D., Gurney, K. R., Turnbull, J., Davis, K. J., Possolo, 

A., Karion, A., Sweeney, C., Moser, B., Hendricks, A., Lauvaux, T., Mays, K., Whetstone, J., Huang, J., Razlivanov, I., Miles, 

N. L. and Richardson, S. J.: Assessment of uncertainties of an aircraft-based mass balance approach for quantifying urban 

greenhouse gas emissions, Atmos. Chem. Phys., 14(17), 9029–9050, doi:10.5194/acp-14-9029-2014, 2014. 

Ciais, P., Rayner, P., Chevallier, F., Bousquet, P., Logan, M., Peylin, P. and Ramonet, M.: Atmospheric inversions for 35 
estimating CO2 fluxes: methods and perspectives, Clim. Change, 103(1–2), 69–92, doi:10.1007/s10584-010-9909-3, 2010. 

Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., Chhabra, A., DeFries, R., Galloway, J., Heimann, M., Jones, 

C., Le Quéré, C., Myneni, R. B., Piao, S. and Thornton, P.: Carbon and Other Biogeochemical Cycles, in Climate Change 2013 

- The Physical Science Basis, edited by Intergovernmental Panel on Climate Change, pp. 465–570, Cambridge University 

Press, Cambridge, 2013. 40 

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-1022
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 20 December 2017
c© Author(s) 2017. CC BY 4.0 License.



16 
 

Corbin, K. D. and Denning, A. S.: Using continuous data to estimate clear-sky errors in inversions of satellite CO2 

measurements, Geophys. Res. Lett., 33(12), L12810, doi:10.1029/2006GL025910, 2006. 

Crisp, D.: NASA Orbiting Carbon Observatory: measuring the column averaged carbon dioxide mole fraction from space, J. 

Appl. Remote Sens., 2(1), 23508, doi:10.1117/1.2898457, 2008. 

Crisp, D.: Measuring atmospheric carbon dioxide from space with the Orbiting Carbon Observatory-2 (OCO-2), in SPIE 9607 5 
Earth Observing Systems, edited by J. J. Butler, X. (Jack) Xiong, and X. Gu, p. 960702, South Kensington Campus, 2015. 

Crisp, D., Atlas, R. ., Breon, F.-M., Brown, L. ., Burrows, J. ., Ciais, P., Connor, B. ., Doney, S. ., Fung, I. ., Jacob, D. ., Miller, 

C. ., O’Brien, D., Pawson, S., Randerson, J. ., Rayner, P., Salawitch, R. ., Sander, S. ., Sen, B., Stephens, G. ., Tans, P. ., Toon, 

G. ., Wennberg, P. ., Wofsy, S. ., Yung, Y. ., Kuang, Z., Chudasama, B., Sprague, G., Weiss, B., Pollock, R., Kenyon, D. and 

Schroll, S.: The Orbiting Carbon Observatory (OCO) mission, Adv. Sp. Res., 34(4), 700–709, doi:10.1016/j.asr.2003.08.062, 10 
2004. 

Davis, K. J., Deng, A., Lauvaux, T., Miles, N. L., Richardson, S. J., Sarmiento, D. P., Gurney, K. R., Hardesty, R. M., Bonin, 

T. A., Brewer, W. A., Lamb, B. K., Shepson, P. B., Harvey, R. M., Cambaliza, M. O., Sweeney, C., Turnbull, J. C., Whetstone, 

J. and Karion, A.: The Indianapolis Flux Experiment (INFLUX): A test-bed for developing urban greenhouse gas emission 

measurements, Elem Sci Anth, 5, 21, doi:10.1525/elementa.188, 2017. 15 

Deng, A., Lauvaux, T., Davis, K. J., Gaudet, B. J., Miles, N., Richardson, S. J., Wu, K., Sarmiento, D. P., Hardesty, R. M., 

Bonin, T. A., Brewer, W. A. and Gurney, K. R.: Toward reduced transport errors in a high resolution urban CO2 inversion 

system, Elem Sci Anth, 5, 20, doi:10.1525/elementa.133, 2017. 

Denning, A. S., Fung, I. Y. and Randall, D.: Latitudinal gradient of atmospheric CO2 due to seasonal exchange with land biota, 

Nature, 376(6537), 240–243, doi:10.1038/376240a0, 1995. 20 

Duren, R. M. and Miller, C. E.: Measuring the carbon emissions of megacities, Nat. Clim. Chang., 2(8), 560–562, 

doi:10.1038/nclimate1629, 2012. 

Eldering, A., O&amp;apos;Dell, C. W., Wennberg, P. O., Crisp, D., Gunson, M. R., Viatte, C., Avis, C., Braverman, A., 

Castano, R., Chang, A., Chapsky, L., Cheng, C., Connor, B., Dang, L., Doran, G., Fisher, B., Frankenberg, C., Fu, D., Granat,  

R., Hobbs, J., Lee, R. A. M., Mandrake, L., McDuffie, J., Miller, C. E., Myers, V., Natraj, V., O&amp;apos;Brien, D., 25 
Osterman, G. B., Oyafuso, F., Payne, V. H., Pollock, H. R., Polonsky, I., Roehl, C. M., Rosenberg, R., Schwandner, F., Smyth, 

M., Tang, V., Taylor, T. E., To, C., Wunch, D. and Yoshimizu, J.: The Orbiting Carbon Observatory-2: first 18 months of 

science data products, Atmos. Meas. Tech., 10(2), 549–563, doi:10.5194/amt-10-549-2017, 2017. 

Engelen, R. J., Serrar, S. and Chevallier, F.: Four-dimensional data assimilation of atmospheric CO2 using AIRS observations, 

J. Geophys. Res., 114(D3), D03303, doi:10.1029/2008JD010739, 2009. 30 

Feng, S., Lauvaux, T., Newman, S., Rao, P., Ahmadov, R., Deng, A., Díaz-Isaac, L. I., Duren, R. M., Fischer, M. L., Gerbig, 

C., Gurney, K. R., Huang, J., Jeong, S., Li, Z., Miller, C. E., O&apos;Keeffe, D., Patarasuk, R., Sander, S. P., Song, Y., Wong, 

K. W. and Yung, Y. L.: Los Angeles megacity: a high-resolution land–atmosphere modelling system for urban CO2 emissions, 

Atmos. Chem. Phys., 16(14), 9019–9045, doi:10.5194/acp-16-9019-2016, 2016. 

Fisher, J. B., Sikka, M., Huntzinger, D. N., Schwalm, C. and Liu, J.: Technical note: 3-hourly temporal downscaling of 35 
monthly global terrestrial biosphere model net ecosystem exchange, Biogeosciences, 13(14), 4271–4277, doi:10.5194/bg-13-

4271-2016, 2016. 

Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G., Skamarock, W. C. and Eder, B.: Fully coupled ―online‖ 

chemistry within the WRF model, Atmos. Environ., 39(37), 6957–6975, doi:10.1016/j.atmosenv.2005.04.027, 2005. 

Gurney, K. R., Law, R. M., Denning, A. S., Rayner, P. J., Baker, D., Bousquet, P., Bruhwiler, L., Chen, Y.-H., Ciais, P., Fan, 40 
S., Fung, I. Y., Gloor, M., Heimann, M., Higuchi, K., John, J., Maki, T., Maksyutov, S., Masarie, K., Peylin, P., Prather, M., 

Pak, B. C., Randerson, J., Sarmiento, J., Taguchi, S., Takahashi, T. and Yuen, C.-W.: Towards robust regional estimates of 

CO2 sources and sinks using atmospheric transport models, Nature, 415(6872), 626–630, doi:10.1038/415626a, 2002. 

Gurney, K. R., Razlivanov, I., Song, Y., Zhou, Y., Benes, B. and Abdul-Massih, M.: Quantification of Fossil Fuel CO2 

Emissions on the Building/Street Scale for a Large U.S. City, Environ. Sci. Technol., 46(21), 12194–12202, 45 

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-1022
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 20 December 2017
c© Author(s) 2017. CC BY 4.0 License.



17 
 

doi:10.1021/es3011282, 2012. 

Gurney, K. R., Romero-Lankao, P., Seto, K. C., Hutyra, L. R., Duren, R., Kennedy, C., Grimm, N. B., Ehleringer, J. R., 

Marcotullio, P., Hughes, S., Pincetl, S., Chester, M. V., Runfola, D. M., Feddema, J. J. and Sperling, J.: Climate change: Track 

urban emissions on a human scale, Nature, 525(7568), 179–181, doi:10.1038/525179a, 2015. 

Hakkarainen, J., Ialongo, I. and Tamminen, J.: Direct space-based observations of anthropogenic CO2 emission areas from 5 
OCO-2, Geophys. Res. Lett., 43(21), 11,400-11,406, doi:10.1002/2016GL070885, 2016. 

Hedelius, J. K., Feng, S., Roehl, C. M., Wunch, D., Hillyard, P. W., Podolske, J. R., Iraci, L. T., Patarasuk, R., Rao, P., 

O’Keeffe, D., Gurney, K. R., Lauvaux, T. and Wennberg, P. O.: Emissions and topographic effects on column CO2 ( XCO2) 

variations, with a focus on the Southern California Megacity, J. Geophys. Res. Atmos., 122(13), 7200–7215, 

doi:10.1002/2017JD026455, 2017. 10 

Hogue, S., Marland, E., Andres, R. J., Marland, G. and Woodard, D.: Uncertainty in gridded CO2 emissions estimates, Earth’s 

Futur., 4(5), 225–239, doi:10.1002/2015EF000343, 2016. 

Houweling, S., Aben, I., Breon, F.-M., Chevallier, F., Deutscher, N., Engelen, R., Gerbig, C., Griffith, D., Hungershoefer, K., 

Macatangay, R., Marshall, J., Notholt, J., Peters, W. and Serrar, S.: The importance of transport model uncertainties for the 

estimation of CO2 sources and sinks using satellite measurements, Atmos. Chem. Phys., 10(20), 9981–9992, doi:10.5194/acp-15 
10-9981-2010, 2010. 

Huntzinger, D. N., Schwalm, C., Michalak, A. M., Schaefer, K., King, A. W., Wei, Y., Jacobson, A., Liu, S., Cook, R. B., Post, 

W. M., Berthier, G., Hayes, D., Huang, M., Ito, A., Lei, H., Lu, C., Mao, J., Peng, C. H., Peng, S., Poulter, B., Riccuito, D., 

Shi, X., Tian, H., Wang, W., Zeng, N., Zhao, F. and Zhu, Q.: The North American Carbon Program Multi-Scale Synthesis and 

Terrestrial Model Intercomparison Project – Part 1: Overview and experimental design, Geosci. Model Dev., 6(6), 2121–2133, 20 
doi:10.5194/gmd-6-2121-2013, 2013. 

Hutchins, M. G., Colby, J. D., Marland, G. and Marland, E.: A comparison of five high-resolution spatially-explicit, fossil-fuel, 

carbon dioxide emission inventories for the United States, Mitig. Adapt. Strateg. Glob. Chang., 22(6), 947–972, 

doi:10.1007/s11027-016-9709-9, 2017. 

Hutyra, L. R., Duren, R., Gurney, K. R., Grimm, N., Kort, E. A., Larson, E. and Shrestha, G.: Urbanization and the carbon 25 
cycle: Current capabilities and research outlook from the natural sciences perspective, Earth’s Futur., 2(10), 473–495, 

doi:10.1002/2014EF000255, 2014. 

Idso, C. D., Idso, S. B. and Balling Jr., R. C.: The urban CO2 dome of Phoenix, Arizona, Phys. Geogr., 19, 95–108, 

doi:10.1080/02723646.1998.10642642, 1998. 

International Energy Agency: World Energy Outlook, IEA., 2008. 30 

Janardanan, R., Maksyutov, S., Oda, T., Saito, M., Kaiser, J. W., Ganshin, A., Stohl, A., Matsunaga, T., Yoshida, Y. and 

Yokota, T.: Comparing GOSAT observations of localized CO2 enhancements by large emitters with inventory-based estimates, 

Geophys. Res. Lett., 43(7), 3486–3493, doi:10.1002/2016GL067843, 2016. 

Janjić, Z. I.: The Step-Mountain Eta Coordinate Model: Further Developments of the Convection, Viscous Sublayer, and 

Turbulence Closure Schemes, Mon. Weather Rev., 122(5), 927–945, doi:10.1175/1520-35 
0493(1994)122<0927:TSMECM>2.0.CO;2, 1994. 

Janssens-Maenhout, G., Dentener, F., Van Aardenne, J., Monni, S., Pagliari, V., Orlandini, L., Klimont, Z., Kurokawa, J., 

Akimoto, H., Ohara, T., Wankmueller, R., Battye, B., Grano, D., Zuber, A. and Keating, T.: EDGAR-HTAP: a Harmonized 

Gridded Air Pollution Emission Dataset Based on National Inventories., 2012. 

Keppel-Aleks, G., Wennberg, P. O., O’Dell, C. W. and Wunch, D.: Towards constraints on fossil fuel emissions from total 40 
column carbon dioxide, Atmos. Chem. Phys., 13(8), 4349–4357, doi:10.5194/acp-13-4349-2013, 2013. 

Kort, E. A., Frankenberg, C., Miller, C. E. and Oda, T.: Space-based observations of megacity carbon dioxide, Geophys. Res. 

Lett., 39(17), doi:10.1029/2012GL052738, 2012. 

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-1022
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 20 December 2017
c© Author(s) 2017. CC BY 4.0 License.



18 
 

Kurokawa, J., Ohara, T., Morikawa, T., Hanayama, S., Janssens-Maenhout, G., Fukui, T., Kawashima, K. and Akimoto, H.: 

Emissions of air pollutants and greenhouse gases over Asian regions during 2000–2008: Regional Emission inventory in ASia 

(REAS) version 2, Atmos. Chem. Phys., 13(21), 11019–11058, doi:10.5194/acp-13-11019-2013, 2013. 

KUSAKA, H. and KIMURA, F.: Coupling a Single-Layer Urban Canopy Model with a Simple Atmospheric Model: Impact on 

Urban Heat Island Simulation for an Idealized Case, J. Meteorol. Soc. Japan, 82(1), 67–80, doi:10.2151/jmsj.82.67, 2004. 5 

Lac, C., Donnelly, R. P., Masson, V., Pal, S., Riette, S., Donier, S., Queguiner, S., Tanguy, G., Ammoura, L. and Xueref-

Remy, I.: CO2 dispersion modelling over Paris region within the CO2-MEGAPARIS project, Atmos. Chem. Phys., 13(9), 

4941–4961, doi:10.5194/acp-13-4941-2013, 2013. 

Lauvaux, T. and Davis, K. J.: Planetary boundary layer errors in mesoscale inversions of column-integrated CO2 

measurements, J. Geophys. Res. Atmos., 119(2), 490–508, doi:10.1002/2013JD020175, 2014. 10 

Lauvaux, T., Schuh, A. E., Uliasz, M., Richardson, S., Miles, N., Andrews, A. E., Sweeney, C., Diaz, L. I., Martins, D., 

Shepson, P. B. and Davis, K. J.: Constraining the CO2 budget of the corn belt: exploring uncertainties from the assumptions in 

a mesoscale inverse system, Atmos. Chem. Phys., 12(1), 337–354, doi:10.5194/acp-12-337-2012, 2012. 

Lauvaux, T., Miles, N. L., Deng, A., Richardson, S. J., Cambaliza, M. O., Davis, K. J., Gaudet, B., Gurney, K. R., Huang, J., 

O’Keefe, D., Song, Y., Karion, A., Oda, T., Patarasuk, R., Razlivanov, I., Sarmiento, D., Shepson, P., Sweeney, C., Turnbull, J. 15 
and Wu, K.: High-resolution atmospheric inversion of urban CO2 emissions during the dormant season of the Indianapolis Flux 

Experiment (INFLUX), J. Geophys. Res. Atmos., 121(10), 5213–5236, doi:10.1002/2015JD024473, 2016. 

Lin, J. C. and Gerbig, C.: Accounting for the effect of transport errors on tracer inversions, Geophys. Res. Lett., 32(1), L01802, 

doi:10.1029/2004GL021127, 2005. 

Mahadevan, P., Wofsy, S. C., Matross, D. M., Xiao, X., Dunn, A. L., Lin, J. C., Gerbig, C., Munger, J. W., Chow, V. Y. and 20 
Gottlieb, E. W.: A satellite-based biosphere parameterization for net ecosystem CO2 exchange: Vegetation Photosynthesis and 

Respiration Model (VPRM), Global Biogeochem. Cycles, 22(2), GB2005, doi:10.1029/2006GB002735, 2008. 

Mandrake, L., O’ Dell, C., Wunch, D., Wennberg, P. O., Fisher, B., Osterman, G. B. and A., E.: OCO-2 XCO2 warn level, bias 

correction, and lite file product description. Version1., Pasadena, California, 2015. 

Martilli, A., Clappier, A. and Rotach, M. W.: An Urban Surface Exchange Parameterisation for Mesoscale Models, Boundary-25 
Layer Meteorol., 104(2), 261–304, doi:10.1023/A:1016099921195, 2002. 

McKain, K., Wofsy, S. C., Nehrkorn, T., Eluszkiewicz, J., Ehleringer, J. R. and Stephens, B. B.: Assessment of ground-based 

atmospheric observations for verification of greenhouse gas emissions from an urban region, Proc. Natl. Acad. Sci., 109(22), 

8423–8428, doi:10.1073/pnas.1116645109, 2012. 

Miles, N. L., Richardson, S. J., Lauvaux, T., Davis, K. J., Balashov, N. V., Deng, A., Turnbull, J. C., Sweeney, C., Gurney, K. 30 
R., Patarasuk, R., Razlivanov, I., Cambaliza, M. O. L. and Shepson, P. B.: Quantification of urban atmospheric boundary layer 

greenhouse gas dry mole fraction enhancements in the dormant season: Results from the Indianapolis Flux Experiment 

(INFLUX), Elem Sci Anth, 5, 27, doi:10.1525/elementa.127, 2017. 

Miller, J. B., Lehman, S., Verhulst, K. R., Yadav, V., Miller, C., Duren, R., Newman, S. and Sloop, C.: Unexpected and 

Significant Biospheric CO2 Fluxes in the Los Angeles Basin Indicated by Atmospheric Radiocarbon (
14

CO2), in 45th Global 35 
Monitoring Annual Conference, Boulder, Colorado, USA, 2017. 

Miller, S. M., Hayek, M. N., Andrews, A. E., Fung, I. and Liu, J.: Biases in atmospheric CO2 estimates from correlated 

meteorology modeling errors, Atmos. Chem. Phys., 15(5), 2903–2914, doi:10.5194/acp-15-2903-2015, 2015. 

Morino, I., Uchino, O., Inoue, M., Yoshida, Y., Yokota, T., Wennberg, P. O., Toon, G. C., Wunch, D., Roehl, C. M., Notholt, 

J., Warneke, T., Messerschmidt, J., Griffith, D. W. T., Deutscher, N. M., Sherlock, V., Connor, B., Robinson, J., Sussmann, R. 40 
and Rettinger, M.: Preliminary validation of column-averaged volume mixing ratios of carbon dioxide and methane retrieved 

from GOSAT short-wavelength infrared spectra, Atmos. Meas. Tech., 4(6), 1061–1076, doi:10.5194/amt-4-1061-2011, 2011. 

Nakanishi, M. and Niino, H.: An improved Mellor–Yamada level-3 model with condensation physics: its design and 

verification, Boundary-layer Meteorol., 112, 1–31, 2004. 

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-1022
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 20 December 2017
c© Author(s) 2017. CC BY 4.0 License.



19 
 

Nassar, R., Napier-Linton, L., Gurney, K. R., Andres, R. J., Oda, T., Vogel, F. R. and Deng, F.: Improving the temporal and 

spatial distribution of CO2 emissions from global fossil fuel emission data sets, J. Geophys. Res. Atmos., 118(2), 917–933, 

doi:10.1029/2012JD018196, 2013. 

National Research Council: Verifying Greenhouse Gas Emissions: Methods to Support International Climate Agreements, 

National Academies Press, Washington, D.C., 2010. 5 

O’Dell, C. W., Connor, B., Bösch, H., O’Brien, D., Frankenberg, C., Castano, R., Christi, M., Eldering, D., Fisher, B., Gunson, 

M., McDuffie, J., Miller, C. E., Natraj, V., Oyafuso, F., Polonsky, I., Smyth, M., Taylor, T., Toon, G. C., Wennberg, P. O. and 

Wunch, D.: The ACOS CO2 retrieval algorithm – Part 1: Description and validation against synthetic observations, Atmos. 

Meas. Tech., 5(1), 99–121, doi:10.5194/amt-5-99-2012, 2012. 

Oda, T. and Maksyutov, S.: A very high-resolution (1 km×1 km) global fossil fuel CO2 emission inventory derived using a 10 
point source database and satellite observations of nighttime lights, Atmos. Chem. Phys., 11(2), 543–556, doi:10.5194/acp-11-

543-2011, 2011. 

Oda, T. and Maksyutov, S.: ODIAC Fossil Fuel CO2 Emissions Dataset (Version name: ODIAC2015a), 

doi:10.17595/20170411.001, 2015. 

Oda, T., Ott, L., Topylko, P., Halushchak, M., Bun, R., Lesiv, M., Danylo, O. and Horabik-Pyzel, J.: Uncertainty associated 15 
with fossil fuel carbon dioxide (CO2) gridded emission datasets, in 4th International Workshop on Uncertainty in Atmospheric 

Emissions, pp. 124–129, Systems Research Institute, Polish Academy of Sciences, 7-9 October 2015, Krakow, Poland, 2015. 

Oda, T., Lauvaux, T., Lu, D., Rao, P., Miles, N. L., Richardson, S. J. and Gurney, K. R.: On the impact of granularity of space-

based urban CO2 emissions in urban atmospheric inversions: A case study for Indianapolis, IN, Elem Sci Anth, 5, 28, 

doi:10.1525/elementa.146, 2017a. 20 

Oda, T., Maksyutov, S. and Andres, R. J.: The Open-source Data Inventory for Anthropogenic Carbon dioxide (CO2), version 

2016 (ODIAC2016): A global, monthly fossil-fuel CO2 gridded emission data product for tracer trans, Earth Syst. Sci. Data 

Discuss., 1–31, doi:10.5194/essd-2017-76, 2017b. 

Pillai, D., Buchwitz, M., Gerbig, C., Koch, T., Reuter, M., Bovensmann, H., Marshall, J. and Burrows, J. P.: Tracking city CO2 

emissions from space using a high-resolution inverse modelling approach: a case study for Berlin, Germany, Atmos. Chem. 25 
Phys., 16(15), 9591–9610, doi:10.5194/acp-16-9591-2016, 2016. 

Raciti, S. M., Hutyra, L. R., Rao, P. and Finzi, A. C.: Inconsistent definitions of ―urban‖ result in different conclusions about 

the size of urban carbon and nitrogen stocks, Ecol. Appl., 22(3), 1015–1035, doi:10.1890/11-1250.1, 2012. 

Rotty, R. M.: Distribution of and changes in industrial carbon dioxide production, J. Geophys. Res., 88(C2), 1301, 

doi:10.1029/JC088iC02p01301, 1983. 30 

Schneising, O., Buchwitz, M., Burrows, J. P., Bovensmann, H., Reuter, M., Notholt, J., Macatangay, R. and Warneke, T.: 

Three years of greenhouse gas column-averaged dry air mole fractions retrieved from satellite – Part 1: Carbon dioxide, Atmos. 

Chem. Phys., 8(14), 3827–3853, doi:10.5194/acp-8-3827-2008, 2008. 

Schneising, O., Heymann, J., Buchwitz, M., Reuter, M., Bovensmann, H. and Burrows, J. P.: Anthropogenic carbon dioxide 

source areas observed from space: assessment of regional enhancements and trends, Atmos. Chem. Phys., 13(5), 2445–2454, 35 
doi:10.5194/acp-13-2445-2013, 2013. 

Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O. and Barker, D. M.: A description of the Advanced Research WRF 

Version 3, Boulder, Colorado, USA, 2008. 

Takagi, H., Saeki, T., Oda, T., Saito, M., Valsala, V., Belikov, D., Saito, R., Yoshida, Y., Morino, I., Uchino, O., Andres, R. J., 

Yokota, T. and Maksyutov, S.: On the benefit of GOSAT observations to the estimation of regional CO2 fluxes, SOLA, 7, 161–40 
164, doi:10.2151/sola.2011-041, 2011. 

Turnbull, J. C., Karion, A., Fischer, M. L., Faloona, I., Guilderson, T., Lehman, S. J., Miller, B. R., Miller, J. B., Montzka, S., 

Sherwood, T., Saripalli, S., Sweeney, C. and Tans, P. P.: Assessment of fossil fuel carbon dioxide and other anthropogenic 

trace gas emissions from airborne measurements over Sacramento, California in spring 2009, Atmos. Chem. Phys., 11(2), 705–

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-1022
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 20 December 2017
c© Author(s) 2017. CC BY 4.0 License.



20 
 

721, doi:10.5194/acp-11-705-2011, 2011. 

Turnbull, J. C., Keller, E. D., Norris, M. W. and Wiltshire, R. M.: Independent evaluation of point source fossil fuel CO2 

emissions to better than 10%, Proc. Natl. Acad. Sci., 113(37), 10287–10291, doi:10.1073/pnas.1602824113, 2016. 

UNFCCC: Action taken by the conference of the parties at its twenty-first session, in report of the conference of the parties on 

its twenty-first session, United Nations Framework Convention on Climate Change, Paris, France, 2015. 5 

United Nations: Kyoto protocol to the United Nations framework convention on climate change, 1998. 

Verhulst, K. R., Karion, A., Kim, J., Salameh, P. K., Keeling, R. F., Newman, S., Miller, J., Sloop, C., Pongetti, T., Rao, P., 

Wong, C., Hopkins, F. M., Yadav, V., Weiss, R. F., Duren, R. M. and Miller, C. E.: Carbon dioxide and methane 

measurements from the Los Angeles Megacity Carbon Project – Part 1: calibration, urban enhancements, and uncertainty 

estimates, Atmos. Chem. Phys., 17(13), 8313–8341, doi:10.5194/acp-17-8313-2017, 2017. 10 

Ware, J., Kort, E. A., DeCola, P. and Duren, R.: Aerosol lidar observations of atmospheric mixing in Los Angeles: 

Climatology and implications for greenhouse gas observations, J. Geophys. Res. Atmos., 121(16), 9862–9878, 

doi:10.1002/2016JD024953, 2016. 

Wunch, D., Wennberg, P. O., Toon, G. C., Keppel-Aleks, G. and Yavin, Y. G.: Emissions of greenhouse gases from a North 

American megacity, Geophys. Res. Lett., 36(15), doi:10.1029/2009GL039825, 2009. 15 

Wunch, D., Wennberg, P. O., Osterman, G., Fisher, B., Naylor, B., Roehl, C. M., O&amp;apos;Dell, C., Mandrake, L., Viatte, 

C., Kiel, M., Griffith, D. W. T., Deutscher, N. M., Velazco, V. A., Notholt, J., Warneke, T., Petri, C., De Maziere, M., Sha, M. 

K., Sussmann, R., Rettinger, M., Pollard, D., Robinson, J., Morino, I., Uchino, O., Hase, F., Blumenstock, T., Feist, D. G., 

Arnold, S. G., Strong, K., Mendonca, J., Kivi, R., Heikkinen, P., Iraci, L., Podolske, J., Hillyard, P. W., Kawakami, S., Dubey, 

M. K., Parker, H. A., Sepulveda, E., García, O. E., Te, Y., Jeseck, P., Gunson, M. R., Crisp, D. and Eldering, A.: Comparisons 20 
of the Orbiting Carbon Observatory-2 (OCO-2) XCO2 measurements with TCCON, Atmos. Meas. Tech., 10(6), 2209–2238, 

doi:10.5194/amt-10-2209-2017, 2017. 

 

  

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-1022
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 20 December 2017
c© Author(s) 2017. CC BY 4.0 License.



21 
 

Table 1. Summary of WRF-Chem simulations performed in this study  

Objective 

City/ 

Metropolitan 

region 

Grids 

resolution  

(km) 

Innermost 

domain size 

(number of 

grids) 

Simulated time period 

Plume city 

Riyadh 27, 9, 3, 1 201×201 

1-16 November 2014 

17 December 2014 – 30 

January 2015 

Cairo 27, 9, 3, 1 201×201 

4-7 October 2014 

16-19 March 2015 

17-20 May 2015 

13-16 July 2015 

14-17 August 2015 

Basin city 

Los Angeles 

metropolitan 

region 

36, 12, 4 207×150 
3 July – 20 August 2015 

6-19 October 2015 

Impact of 

biogenic 

fluxes 

Pearl River Delta 

metropolitan 

region 

36, 12, 4, 

1.333 
240×240 

12-15 January 2015 

1-4 August 2015 

 

Table 2. WRF configurations of forward simulations for Los Angeles 

Ensemble 

member 
PBL scheme Surface layer scheme Urban Canopy model 

MYJ MYJ Eta similarity (Janjić Eta) None 

MYJ_UCM MYJ Eta similarity (Janjić Eta) Noah UCM 

MYNN MYNN Nakanishi and Niino None 

MYNN_UCM MYNN Nakanishi and Niino Noah UCM 

BouLac_BEP BouLac Eta similarity (Janjić Eta) BEP 

BouLac_UCM BouLac Eta similarity (Janjić Eta) Noah UCM 
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Figure 1. Example of biogenic carbon fluxes (Net Ecosystem Exchange, NEE) downscaling. Top panels show the NEE in PRD 

region derived from 3-hourly MsTMIP data at 12:00 LT January 12, 2010 on (a) 0.5°×0.5° grid, (b) WRF grid (1.333×1.333 

km), derived by bilinear interpolation of original NEE, and (c) WRF grid (1.333×1.333 km), derived by scaling  the 

interpolated NEE. Bottom panels show the green vegetation fraction (GVF) in January on (d) 0.5°×0.5° grid, (e) WRF grid 5 

(1×1 km) by bilinear interpolation of GVF in (d), and (f) WRF grid (1×1 km).  See texts in section 2.2.3 for further details.  
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Figure 2. (a) Map of simulated XCO2 plume and an OCO-2 ground track in nadir mode at about 10:00 UTC, December 29, 

2014; (b) stretched plume to represent a wind speed error of 1.0 ms
-1

; (c) shrunken plume to represent wind speed error of -1.0 

m s
-1

; (d) rotated plume to represent wind direction error of 5.0°.  

  5 
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Figure 3. Comparison between the half of ensemble spread and mean absolute error (MAE) of wind speed and wind direction 

over 43 surface sites in LA and the adjacent area. The half ensemble spread is calculated using the standard deviation (STD, 

blue scatters) and half of the full range of the model results, i.e. difference between the maximum and minimum values among 

the ensemble members (red scatters).  The top two panels show comparison for the original six members, and the bottom two 5 

panels for the 18 members with modeling results at ±1 h included. The red and blue crosses in each panel stand for average 

points of the scatters in the corresponding color.  
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Figure 4. Simulated ΔXCO2ff  of Riyadh and 10-m wind in 1-km resolution domain at (a) 09:00 UTC, (b) 10:00 UTC, and (c) 

11:00 UTC December 29, 2014. The colored dots represent the 1-s average OCO-2 data in nadir mode at about 10:00 UTC 

over this domain, which are filtered with quality flag of zero (QF=0) with a constant value of 397.73 ppm subtracted.   

 5 

 

 

Figure 5. Observed and simulated ΔXCO2ff along latitude for Riyadh. The black dots represent the OCO-2 data around 10:00 

UTC December 29, 2014, filtered with quality flag of zero (QF=0) with a constant value of 397.73 ppm subtracted. The dotted 

lines in red, orange, and yellow stand for simulations at 10:00 UTC from 1-km, 3-km and 9-km resolution domain. The blue 10 

and gray dash-dotted lines represent simulations at ±1 h (09:00 and 10:00 UTC) respectively.  
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Figure 6. Simulated 10-m wind (arrow vectors) and ΔXCO2 (color shading) imposed by fossil fuel emissions in LA and in the 4-

km resolution domain at 21:00 UTC July 6, 2015. The colored dots represent 1-s average OCO-2 data (nadir mode) collected at 

about 21:00 UTC, which are filtered by quality flag (QF=0) with a constant value of 400.61 ppm subtracted.  

 5 

Figure 7. Observed and simulated ΔXCO2 along latitude for LA. The black dots represent 1-s average OCO-2 data observed at 

about 21:00 UTC July 6, 2015 (filtered with quality flag of zero (QF=0) with a constant value of 400.61 ppm subtracted). The 

colored lines stand for simulations of the six ensemble members of the 4-km domain at 21:00 UTC of the same date.  
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Figure 8. Variation of scaling factor and its uncertainty (±1σ) due to transport errors with increasing number of satellite tracks 

for (a) Riyadh, (b) Cairo, and (c) Los Angeles. The dotted lines in each panel represent ±1σ of 0.15, and the dash-dotted lines 

in (c) represent ±1σ of 0.05.  5 

 

Figure 9. Simulated fossil-fuel ΔXCO2 due to CO2ff emissions from the PRD region and the 10-m wind vectors in the 1.333-km 

resolution domain at (a) 05:00 UTC January 15, 2015, and (b) 05:00 UTC August 4, 2015. The colored dots represent the 

OCO-2 data at about 05:00 UTC over this domain, which are filtered with quality flag of zero (QF=0) with a constant value of 
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399.59 ppm subtracted from data in (a) and 397.74 ppm for (b). The black dots in (c) and (d) show the 1-s average observations 

of the tracks in (a) and (b), with the modeled fossil-fuel ΔXCO2 enhancements and total ΔXCO2 (owing to both fossil fuel and 

biogenic fluxes) represented by the red and blue dotted lines, respectively.  

 

 5 

Figure 10. Schematic diagram for the contribution of urban-rural biogenic flux gradient (ΔXCO2 obs, bio) and urban fossil fuel 

CO2 emissions (ΔXCO2 obs, ff) to the observed XCO2 enhancement (ΔXCO2 obs).  

 

 

Figure 11. Histograms of scaling factor calculated for the tracks on December 27 and 29, 2014 over Riyadh and on February 10 

28, March 18, May 19, July 15, and August 16, 2015 over Cairo. Median values are indicated with the dashed line. The total 

sample size is 10
3
 for each track.  
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Figure 12. Determination of background XCO2 for OCO-2 tracks over LA on (a) July 6, (b) July 15, (c) August 7, (d) August 

16, (e) October 10, and (f) October 12, 2015. The black dots stand for 1-s average OCO-2 XCO2, filtered with quality flag of 

zero (QF=0). The black lines represent constant background determined as the average XCO2 observed within the desert north to 

LA, and the colored lines for WRF-VPRM XCO2 by the 18 ensemble members, forced to cross the constant background.  5 

 

 

Figure 13. ΔXCO2ff derived from OCO-2 observations and simulations over LA on (a) July 6, (b) July 15, (c) August 7, (d) 

August 16, (e) October 10, and (f) October 12, 2015. The black and orange dots represent the XCO2 enhancements with 

background defined by constant and WRF-VPRM modeling, respectively. The colored lines represent the simulated ΔXCO2ff by 10 

the 18 ensemble members.  
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Figure 14. Scaling factor of the total fossil fuel CO2 emissions in LA calculated using ΔXCO2ff from OCO-2 observations and 

modeling results. The background XCO2 is determined by the average XCO2 within the desert north to LA basin (blue) and the 

WRF-VPRM modeling (red). The dots and the error bars stand for the average and uncertainty (±1σ) of scaling factors 

calculated using the 18 ensemble members.  5 
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