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1 Response to Referee 1

Reviewer: In this manuscript the role of different ordered structures of water close and
far from an immersed particle is investigated. A theory of immersion freezing based on
these different states is derived. The theoretical investigations are compared to real
measurements of heterogeneous nucleation rates in different experiments. Since ice
nucleation in general, and especially heterogeneous nucleation is not well understood
and the theoretical investigations are not convincing at the moment, a theory based on
thermodynamics of water is a very interesting step for improving our knowledge of het-
erogeneous ice nucleation. Thus, in general this is a valid contribution for Atmospheric
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Chemistry and Physics. However, before the manuscript can be accepted, some is-
sues has to be clarified. Therefore I recommend major revisions of the manuscript. In
the following I will explain my concerns in details.

Response: I thank the reviewer for the comments on the manuscript. They are ad-
dressed in detail below.

Major Points

Reviewer: 1. Representation of the theory: The topic of ice nucleation is quite com-
plicated and usually only classical nucleation theory or some additional topics are well
known in the ice cloud community, whereas the more detailed thermodynamic basis is
usually hidden in many discussions. In this study, the author has to present details for
the development of the theory but also has to make sure that the reader can follow his
line of arguments. It would be very helpful if the author would present a kind of roadmap
at the very beginning to describe what he wants to derive finally and which steps will be
necessary in order to do so. Otherwise the reader is really lost in details, which stem
either from standard thermodynamic arguments or are of phenomenological type.

Response: The revisited paper has been reorganized to clarify the approach. Specif-
ically, the calculation of the nucleation rate is now the central theme of the theoretical
derivation. Additional explanation has also been included contrasting the classical ap-
proach and the proposed theory. The derivation of the equation of state of vicinal water
was reworked to make it clearer and correct errors/typos. Finally, the Section on kinet-
ics has been reorganized introducing general concepts earlier in the text. This has
made the revisited paper much more readable.

Reviewer: Derivation of equation (17). I could not reproduce the central equation (17)
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in the form the author did, I ended with the expression

aw = a
1

1+ζ

w, effa
ζ

1+ζ
w,eq exp

(
ΛE

1− ζ
1 + ζ

)
(1)

This is crucial, since the equation is often used in the following derivation.

Response: The wrong expression for ∆µs was written in the text. ∆µs must actually
be calculated at aw, eff, hence Eq. (14) of should read:

∆µs = −kBT ln
(
aw, eff
aw, eq

)
, (2)

After introducing this equation into Eq.(13) it can be readily seen that Eq. (17) of the
original paper is correct. Equation (14) was also used to simplify Eq. (40); this has
been corrected as well. The derivation of Eq. (2) is shown at the end of this document
(Eq. 10).

Reviewer: For instance, I have several reservations about equation (19), since the limit
ζ → 1 is not well defined. The author has to check his derivation of equation (17) and,
if necessary also the derivation of the subsequent theory. In section 2.3.3 the model is
extended to the spinodal limit and the limit ζ → 1 is investigated, which is unbounded
in the current representation, but probably not for the derivation I have found. Thus, it
is not clear to me if the discussion in this section still holds.

Response: The new derivation at the end of this document shows more clearly that
aw, eff is in fact bounded for ζ → 1. From Eq.(18),

aw = aw, eff

(
aw, eq
aw, eff

)ζ
exp(Λmix) (3)
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and from Eq.(19)

aw, eff =

(
aw

aζw, eq

) 1
1−ζ

exp
(
−Λmix
ζ − 1

)
. (4)

Since Λmix = 0 for ζ = 1, then Eq.(3) implies that aw = aw, eq for ζ = 1. Hence from
Eq.(4) aw = aw, eq = aw, eff = 1, indicating that ζ = 1 corresponds to thermodynamic
equilibrium.

Minor Points

Reviewer: Could you explain the sign of the excess energy gE = −Awζ(1− ζ)? What
is the thermodynamic reason for this choice?

Response: The choice was made simply to obtain a positive Tc. However as pointed
out by other reviewers there is an error in the derivation. Motivated by this I have re-
worked the derivation correcting errors and making it more readable. Since the excess
term plays a minor role, the correction only resulted in up to two orders of magnitude
difference in Jhet, but following essentially the same behavior. The new derivation is
presented at the end of this document and it is now included in the revised paper.

Reviewer: What are the thermodynamic conditions for the derivation of the critical
temperature, i.e. where do the conditions ∂2µvc

∂ζ2
= 0 , ∂

3µvc
∂ζ3

= 0 come from? Please
explain this shortly in the text.

Response: A solution would split into two phases if by doing so lowers its Gibbs
free energy (Prausnitz et al. (1998), c.f. Section 6.12). For a metastable solution µvc
must be locally minimal, hence ∂µvc

∂ζ = 0. The condition ∂2µvc
∂ζ2

< 0 indicates that any
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increase in ζ increases µvc (i.e., the curve µvc vs. ζ becomes concave downward)
such that it is thermodynamically more favorable for the solution to split into distinct
phases than to increase its concentration; ∂

2µvc
∂ζ2

= 0 thus limits the metastable region.

The last condition, ∂
3µvc
∂ζ3

= 0, indicates that the metastable region reduces to a single
point and that there is a single critical temperature Tc for a regular solution.

The explanation above has been introduced in the text.

Reviewer: In section 2.3.2 the water activity shift for heterogeneous nucleation is de-
rived from the theory. Could you compare this results also numerically with the use of
a constant shift in actual parameterisations and comment this? How large is ζ for the
usual parameterisations?

Response: Since the mixing term is typically small, ζ ≈ 1−
∆aw, het

∆aw, hom
, hence 0 < ζ <∼

1 (the upper limit is somewhere around .96 due to mixing effects). This relationship is
true only in the germ-forming regime where Jhet is mainly dictated by thermodynamics.
Kärcher and Lohmann (2003) suggested the approximation Jhet ≈ Jhom[f(∆aw, het)].
This of course resembles the definition of the nucleation work derived in Section 2.3.1.
The revisited paper discusses this in further detail. As expected the two approaches
considerable differ for the spinodal regime. It must be noted that Knopf and Alpert
(2013) also parameterized Jhet as a function of ∆aw, het. However their expressions
are material-specific and comparison against their work is left for future works.

Reviewer: In figure 4 different curves of water activity are shown. As far as I un-
derstand, the colors (dark red to yellow) indicate different versions of the new theory
(aw,het ). Thus, the label aw,het as red in the diagram is misleading

Response: Corrected.
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2 Corrected derivation of the equation of state of vicinal water

The vicinal layer is defined as a solution of hypothetical ice-like (IL) and liquid-like (LL)
regions, with Gibbs free energy given by

µvc = (1− ζ)µ̂LL + ζµ̂IL, (5)

where µ̂LL and µ̂LL are the chemical potentials of the LL and IL species within the
solution, respectively, and ζ is the fraction of IL regions in the layer. Equation (5) can
also be written in terms of the chemical potentials of the “pure” LL and IL species, µLL
and µIL, respectively, in the form,

µvc = (1− ζ)µLL + ζµIL + ∆Gmix (6)

where ∆Gmix = (µ̂IL − µIL)ζ + (1 − ζ)(µ̂LL − µLL) is the Gibbs energy of mixing.
For a mechanical mixture of pure LL and IL species, ∆Gmix = 0, whereas for an ideal
solution ∆Gmix is determined by the ideal entropy of mixing (Prausnitz et al., 1998).
Reorganizing Eq. (6) we obtain,

µvc = µLL + ζ∆µil + ∆Gmix (7)

where ∆µil = µIL− µLL. ∆µil can be approximated by using the equilibrium between
bulk liquid and ice as reference state so that (Kashchiev, 2000),

µIL = µeq + kBT ln(aIL), (8)

and
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µLL = µeq + kBT ln
(
aw, eff
aw, eq

)
, (9)

where aw, eff is termed the “effective water activity” and it is the value of aw associated
with the LL regions in the vicinal water, and aIL is the water activity in the IL regions.
Assuming that similarly to bulk ice the solute does not significantly partition to the IL
phase, then aIL ≈ 1. With this, and combining Eqs.(8) and (9), and rearranging we
obtain,

∆µil = −kBT ln
(
aw, eff
aw, eq

)
, (10)

The central assumption behind Eq. (10) is that aw, eq corresponds to the equilibrium
water activity between liquid and ice, or in other words that near equilibrium ∆µil ≈
∆µs, being ∆µs the excess free energy of solidification of water.

In reality ∆µs corresponds to actual liquid and ice instead of the hypothetical LL and
IL substances. This difference can be accounted for by selecting a proper functional
form for ∆Gmix, for which several empirical and semiempirical interaction models with
varying degrees of complexity exist (Prausnitz et al., 1998). In this work it is going
to be assumed that the vicinal water can be described as a regular solution. This is
the simplest model that accounts for the interaction between solvent and solute during
mixing and that is flexible enough to include corrections for the difference between
∆µs and ∆µil. Holten et al. (2013) have shown that a regular solution can reasonably
approximate the chemical potential of supercooled water. Moreover, the authors also
showed that taking into account clustering of water molecules upon mixing leads to
better agreement with MD simulations and experimental results.

According to the regular solution model, modified by clustering (Holten et al., 2013, c.f.
Eq. 16),
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∆Gmix =
kBT
N

[ζ ln(ζ) + (1− ζ) ln(1− ζ)] +Awζ(1− ζ) (11)

The first term on the right hand side corresponds to the usual definitioin of the ideal
entropy of mixing, i.e., random ideal mixing and a weak interaction between IL and LL
regions, modified to account for clustering in groups of N molecules. N = 6 corre-
sponds to clustering in hexamers and is near the optimum fit between MD simulations
and the solution model (Holten et al., 2013). It must be noted that Holten et al. (2013)
recommended an alternative model termed “athermal solution”, where nonideality is
ascribed to entropy changes upon mixing. In vicinal water some evidence points at
nonideality originating from enthalpy changes near the particle (Etzler, 1983), hence a
regular solution is more appropriate in this case. For N = 6 the difference between the
two models is negligible (Holten et al., 2013).

The second term on the right hand side of Eq. (11) is an empirical functional form
used to approximate the enthalpy of mixing selected so that ∆Gmix = 0 for ζ = 0
and ζ = 1. Aw is a phenomenological interaction parameter and typically must be
fitted to experimental observations. Here it is assumed Aw also implicitly corrects the
approximation ∆µil ≈ ∆µs.

An important aspect of the regular solution model is that it predicts that ∆Gmix (hence
µvc) has a critical temperature, Tc, at ζ = 0.5, defined by the conditions,

∂2∆Gmix

∂ζ2
= 0 ,

∂3∆Gmix

∂ζ3
= 0. (12)

Using Eq. (11) into Eq. (12) and solving for Aw gives for T = Tc,

Aw =
2kBTc
N

. (13)
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Physically, Tc represents the stability limit of the vicinal water, at which it spontaneously
separates into IL and LL regions. Equation (13) thus provides an opportunity to deter-
mine Aw, since Tc should also correspond to the temperature at which the work of
nucleation becomes negligible. This is explored in Section 3.2.

Combining Eqs. (10), (11), and (13), into Eq. (7) we obtain,

µvc = µLL − ζkBT ln
(
aw, eff
aw, eq

)
+
kBT
N

[ζ ln(ζ) + (1− ζ) ln(1− ζ)] +
2kBTc
N

ζ(1− ζ).

(14)

Making,

Λmix =
1
N

[ζ ln(ζ) + (1− ζ) ln(1− ζ)] +
2
N

Tc
T
ζ(1− ζ), (15)

Equation (14) can be written in the form,

µvc = µLL − ζkBT ln
(
aw, eff
aw, eq

)
+ kBTΛmix (16)

Equation (16) is the equation of state of vicinal water. It describes the properties of
vicinal water in terms of the material-specific parameter ζ, and the interaction parame-
ters N and Tc. MD simulations indicate that N ∼ 6 (Bullock and Molinero, 2013; Holten
et al., 2013). Tc is thus the only remaining unknown in Eq. (16) and it is calculated in
Section 3.3.

In immersion freezing the particle remains within the droplet long enough that equi-
librium is established. This condition is mathematically expressed by the equality,
µvc = µw, where µw is the chemical potential of water in the bulk of the liquid, i.e.,
away from the particle. Using Eq. (16) this implies,

C9

µw = µLL − ζkBT ln
(
aw, eff
aw, eq

)
+ kBTΛmix. (17)

Using again the equilibrium between bulk liquid and ice as reference state, so that
µw = µeq + kBT ln(aw), and using Eq. (8), Eq. (17) can be written in terms of the
water activity in the form,

aw = aw, eff

(
aw, eq
aw, eff

)ζ
exp(Λmix). (18)

From Eq. (18) aw, eff can be readily obtained in the form,

aw, eff =

(
aw

aζw, eq

) 1
1−ζ

exp
(
−Λmix
ζ − 1

)
. (19)
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