1	The influence of particle composition upon
2	the evolution of urban ultrafine diesel
3	particles on the neighbourhood scale
4	
5	
6	Irina Nikolova ¹ , Xiaoming Cai ¹ , Mohammed Salim Alam ¹ ,
7	Soheil Zeraati-Rezaei ² , Jian Zhong ¹ , A. Rob MacKenzie ^{1,3*}
8	and Roy M. Harrison ^{1,4}
9	
10	
11	¹ School of Geography, Earth and Environmental Sciences
12	University of Birmingham, Edgbaston, Birmingham B15 2TT
13	United Kingdom
14	
15	² Department of Mechanical Engineering
16	University of Birmingham, Edgbaston, Birmingham B15 2TT
17	United Kingdom
18	
1 2	1

19	³ Birmingham Institute of Forest Research (BIFoR)
20	University of Birmingham, Edgbaston, Birmingham B15 2TT
21	United Kingdom
22	
23	⁴ Also at: Department of Environmental Sciences / Center of
24	Excellence in Environmental Studies, King Abdulaziz University,
25	PO Box 80203, Jeddah, 21589, Saudi Arabia
26	
27	* Corresponding author: a.r.mackenzie@bham.ac.uk
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	ABSTRACT
41	A recent study demonstrated that diesel particles in urban air undergo evaporative shrinkage
42	when advected to a cleaner atmosphere (Harrison et al., Atmospheric Environment, 2016, 125,
43 3 4	1-7). We explore, in a structured and systematic way, the sensitivity of nucleation-mode diesel 2

44	particles (diameter < 30 nm) to changes in particle composition and saturation vapour
45	pressure. We use a multi-component aerosol microphysics model based on surrogate molecule
46	(C_{16} - C_{32} n-alkane) volatilities. For standard atmospheric conditions (298 K, 1013.25hPa), and
47	over timescales (ca. 100 s) relevant for dispersion on the neighbourhood scale (up to 1 km), the
48	choice of a particular vapour pressure dataset changes the range of compounds that are
49	appreciably volatile by 2-6 carbon numbers. The nucleation-mode peak diameter, after 100 s of
50	model runtime, is sensitive to the vapour pressure parameterisations for particles with
51	compositions centred on surrogate molecules between $C_{22}H_{46}$ and $C_{24}H_{50}$. The vapour pressure
52	range is between 9.23×10^{-3} and 8.94×10^{-6} Pa for $C_{22}H_{46}$ and 2.26×10^{-3} and 2.46×10^{-7} Pa for $C_{24}H_{50}$.
53	The vapour pressures of components in this range are therefore critical for the modelling of
54	nucleation-mode aerosol dynamics on the neighbourhood scale and need to be better
55	constrained. Laboratory studies have shown this carbon number fraction to derive
56	predominantly from engine lubricating oil. The accuracy of vapour pressure data for other
57	(more and less volatile) components from laboratory experiments, is less critical. The influence
58	of a core of non-volatile material is also considered.
59	
60	The new findings of this study may also be used to identify the Semi-Volatile Organic Compound

(SVOC) compositions that play dominating roles in the evaporative shrinkage of the nucleation
mode observed in field measurements (Dall'Osto, et al., Atmospheric Chemistry & Physics, 2011,
11, 6623-6637).

64 **1. INTRODUCTION**

65 Ultrafine particles (UFP, with particle diameter Dp < 100 nm) have been increasingly a focus of urban air research over the last two decades. The main source of UFP in outdoor urban air is 66 67 typically road traffic (Kumar et al., 2014). Harrison et al. (2011) reported that on a busy highway in central London, UK, 71.9% of particles by number were traffic-generated; of which 27.4% are 68 found in the semi-volatile exhaust nucleation mode (size between 15 and 30 nm), 38% are in the 69 70 exhaust solid mode (size > 30 nm) and the remaining 6.5% are from brake dust and resuspension (size > 2000 nm). Hereafter, nucleation mode particles are defined as particles 71 with diameter less than 30 nm, Aitken mode particles have a diameter in the range 30 – 100 nm. 72 73 The proximity of the UFP traffic source to the public, and the large number of UFP emitted by traffic, have prompted health-related research that has accrued evidence pointing to the 74 75 toxicity and potentially harmful effects of UFP on human health (Atkinson et al., 2010). 76 Experimental and modelling studies have advanced our understanding of the behaviour of urban air UFP, e.g. the relevant aerosol dynamics important to the evolution of the UFP in space 77 and time (Jacobson, 2005; Allen et al., 2007; Biswas et al., 2007; Dall'Osto et al., 2011; Nikolova 78 79 et al., 2011; Karnezi et al, 2014, Karl et al., 2016). 80 81 Nonetheless, key information regarding the size-resolved composition of the UFP is missing, which limits our ability to determine the impact of gas-transfer processes on UFP evolution. 82 83 Progress has been made in modelling traffic-generated particles (including the ultrafine fraction) using a volatility basis set, defined using the effective saturation concentration (Donahue et al., 84

2006). Progress in identifying the precise chemical composition of traffic-generated particles has

86 been made by resolving the so-called 'unresolved complex mixture' (largely uncharacterised

87 organics in traditional gas chromatography) via two-dimensional gas chromatography (GC×GC;

Chan et al., 2013). Alam et al. (2016) show that emitted ultrafine diesel particles consist of a

89 substantial amount of organic material from both unburnt diesel fuel and engine

90 Iubricating oil. They attribute the low molecular weight Semi-Volatile Organic Compounds

4

91 (SVOCs, having carbon number < 18) predominantly to the unburnt diesel fuel, whereas heavier 92 SVOCs (carbon number > 18) are attributed predominantly to the engine lubricating oil. A typical GC×GC separation is shown in the chromatogram (Figure 1) for diesel engine exhaust emissions 93 94 in the particulate-phase Aitken mode (56 < D p< 100 nm). Compounds are separated by 95 volatility along the x-axis (first separation dimension) and by polarity in the y-axis (second dimension). Peak identification is based on retention indices and mass spectral data from the 96 97 National Institute of Standards and Technology (NIST) library. The majority of chromatography peaks (identified as aliphatic alkanes, lower black polygons) are present between C₁₈ to C₂₆, 98 corresponding to the compounds identified in the engine lubricating oil and particulate phase 99 engine emissions (Alam et al. 2017). Bar charts above the chromatogram show the volatility 100 101 distribution of total alkanes (red) and total identified compounds (black), indicating that, 102 although many hundreds of individual chemical compounds are detected, the majority of the 103 SVOCs emissions consist of alkanes. Both the alkane composition and the total composition 104 distributions show a broad peak centred at C₂₅.

105

106 Most primary organic particle emissions are semi-volatile in nature and thus they are likely to 107 evaporate with atmospheric dilution and moving away from the source (Robinson et al., 2007). 108 This has been observed by Dall'Osto et al. (2011; see also Figure 1-S in Supplementary 109 Information) as part of the REPARTEE campaign (Harrison et al., 2012). Dall'Osto et al. (2011) 110 reported a remarkable decrease in the measured nucleation-mode peak particle diameter (D_{pg,nuc}) between a street canyon (D_{pg,nuc} = 23 nm) and the downwind neighbourhood (D_{pg,nuc} = 8-111 9 nm) ca. 650 m distant in central London (UK). The travel time, depending on the wind speed, 112 113 can vary from ~100 s to ~ 300 s. Nucleation formation of new particles in the atmosphere was 114 ruled out as a possible reason for the observed behaviour. Instead, the decrease in particle diameter was attributed to the effect of evaporation and substantial mass loss from the particle 115 surface (hereafter referred to as REPARTEE-like aerosol dynamics). Alam et al. (2016) present 116 117 the composition of diesel UFP particles measured on a laboratory test-rig (cf. Figure 2-S in 9 5

Supplementary Information), however the range of variability of the particle composition in
emissions is still unknown. It is also not known how the organic material is distributed onto the
nucleation and Aitken modes of the UFP distribution in the atmosphere.

121

Numerical experiments can test the plausibility of possible missing components of the system,
 and can advise on which experimental studies will be most likely to resolve the existing
 knowledge gaps. Nikolova et al. (2016) describe a modelling framework that can produce
 nucleation-mode dynamics consistent with observations. However, missing in that study is the
 identification of critical thermodynamic parameters and size-resolved composition that could
 determine or point to a REPARTEE-like aerosol dynamics.

128

129 In the present study, we develop a method to search the particle composition space - i.e. the 130 volatility parameter space — to identify a group of surrogate n-alkanes in the C₁₆H₃₄-C₃₂H₆₆ range that could explain a decrease in the nucleation-mode particle diameter to 10 nm or below 131 as seen in the measurements in London (Dall'Osto et al., 2011). The model simulations are 132 focused on events after dilution and cooling of the exhaust-pipe plume. We provide a more 133 134 robust approach to identify crucial parameters responsible for the UFP behaviour in the 135 atmosphere on the neighbourhood scale including the identification of parameter sets that are 136 incompatible with the observed behaviour in urban air of nucleation mode UFP. We describe a 137 new way to simulate and evaluate the role of the SVOCs composition on the atmospheric behaviour of the size-resolved urban UFP and examine more complex sets of composition 138 139 involving a non-volatile core. We also assess the critical role of saturation vapour pressure on 140 the size-resolved aerosol dynamics.

141

In this study we use Lagrangian box-model simulations of the evolution of urban ultrafine diesel
 particles on the neighbourhood scale (up to 1 km). Key results will be presented and discussed
 in the main text; more details are provided in the Supplementary Information. The Methodology
 6

section describes the modelling approach. The Results section presents the model output. In the
Discussion and Conclusions sections, the key findings are summarised with suggestions for
further work.

148

149 **2. METHODOLOGY**

We adopt a 'surrogate molecule' approach to UFP composition, based on the chemical 150 151 speciation shown in analyses such as Figure 1. The composition of UFP is simulated as comprising n-alkanes from C₁₆H₃₄ to C₃₂H₆₆, which are the most abundant compounds in Figure 152 1. Previously (Nikolova et al., 2016), we initialised the n-alkane abundance in gas and particle 153 154 phases using roadside and urban background observations in Birmingham, U.K. (Harrad et al., 2003). In what follows, we retain this roadside gas-phase initialisation (see below), but choose a 155 156 more general method for initialising the particle composition, in order to test the sensitivity of 157 the results to the initialisation in a systematic way. By adopting a surrogate molecule approach, we are effectively anchoring the model volatility basis set in physico-chemical data, as discussed 158 further below. 159

160

161 The SVOC mass fractions in a particle are represented by a truncated Gaussian distribution that 162 is centred for each model run at a given n-alkane in the range from C₁₆H₃₄ to C₃₂H₆₆ with a standard deviation, σ, varying from 1 to 5. Below we call the surrogate n-alkane on which the 163 164 composition distribution is centred, the *modal composition*. Example compositions are shown in Figure 2 for a Gaussian distribution centred at $C_{24}H_{50}$. A narrower mass distribution, with $\sigma = 1$, 165 166 focuses predominantly (ca. 40%) on the component, j ($C_{24}H_{50}$), at which the distribution is 167 centred, with a smaller (ca. 24%) contribution from the adjacent compounds C₂₃H₄₈ and C₂₅H₅₂, 168 and a minor contribution (ca. 5%) from C₂₂H₄₆ and C₂₆H₅₄. The contribution of the remaining compounds from the tail of the distribution is very low and less than 1%. However, a wider mass 169 170 distribution (e.g. σ = 5) approximates a flat distribution and includes a contribution from the majority or all of the compounds in the n-alkane range $C_{16}H_{34}$ - $C_{32}H_{66}$. Monotonically decreasing 171 13 7 14

172	distributions occur for distributions centred at either end of the $C_{16}H_{34}$ - $C_{32}H_{66}$ range. Overall, if
173	one excludes the compounds with less than 1% contribution, modal compositions centred at
174	carbon number, j, with σ = 1, 2, 3, 4, & 5, contain surrogate compounds +/- 2, 4, 7, 9, and 11
175	carbon numbers of j (formally, to remain in the 16-32 carbon number range, [max(16, j-
176	2):min(32, j+2)], [max(16, j-4):min(32, j+4)], [max(16, j-7):min(32, j+7], [max(16, j-9):min(32,
177	j+9], & [max(16, j-11):min(32, j+11)]), respectively. Multi-modal compositions, or others
178	differing strongly from Gaussian, are not investigated in the present study, but could be
179	accommodated by a simple extension of the method.
180	
181	We use a Gaussian distribution to represent the composition of the particles because it provides
182	a structured and systematic way to evaluate the organic-aerosol phase partitioning and the
183	amount of organic matter in the UFP. This is important for the behaviour and evolution of the
184	UFP at various timescales relevant for the urban atmosphere. Although there is no reason to
185	discount other functional forms for the composition distribution (e.g., skew Gaussian, log-
186	normal, Pareto, linear, etc), the Gaussian distributions chosen represent a simple two-
187	parameter approach to explore the volatility/composition space available.
188	
189	2.1 Box Model
190	The model used in this study is the UFP version (Nikolova et al., 2016) of CiTTy-Street (Pugh et
191	al., 2012); that is, a box-model configuration that accounts for the multicomponent nature of
192	the urban ultrafine particles. The CiTTy-Street-UFP model is used with 15 discrete size bins, with
193	an initial diameter range between 5.8-578 nm in a uniform log-scale. The model can operate in
194	two modes with respect to the aerosol dynamics: Eulerian (fixed particle-diameter grid) or

- Lagrangian (moving particle-diameter grid). The Eulerian mode is selected when the UFP size
- distribution is evaluated in the presence of emissions and exchange of particles between boxes
- 197 (Nikolova et al., 2016). The Lagrangian mode can be selected when the UFP size distribution is
- 198 evaluated for an isolated air parcel, i.e., when no emissions or transport between boxes are

199 present. In this study, the Lagrangian mode is selected in a zero-dimensional configuration with 200 no emissions or transport in/out of the box. The UFP dynamics (only condensation/evaporation) are simulated such that particles are allowed to grow/shrink to their exact size without any 201 202 redistribution onto fixed bins in a grid with bin bounds left open in a fully moving diameter 203 scheme (see, for example, Jacobson et al., 1997). Our earlier work (Nikolova et al., 2016) has shown that deposition and coagulation have a minor effect in the current scenario and so were 204 205 switched off to allow a more straightforward diagnosis of model behaviour. The condensation/evaporation process applies Raoult's Law (for an ideal solution of the volatile 206 compounds) and a mass accommodation coefficient $\alpha = 1$ (Julin et al., 2014) for all SVOC. The 207 Kelvin effect is also considered, which alters the saturation vapour pressure of the compounds 208 209 as a function of the particle diameter, the surface tension of the SVOC mixture/solution, and the 210 molecular weight of the participating compounds. The Kelvin effect is pronounced for particles 211 with a diameter less than 20 nm and substantial for particles with diameter less than 10 nm. The Kelvin term accelerates the evaporation for all compounds under consideration in this study and 212 more notably for the high-molecular-weight compounds due to their larger molar volume. 213 The model results are evaluated at 1, 10 and 100 s. The timescale of 100 s is based on estimate 214

215

216 2.2 Modal Composition and Initial Size-Resolved UFP distribution

The initial size-resolved UFP distribution is based on the measurements of Dall'Osto et al. (2011) and reproduced in Figure 1-S in the Supplementary Information. This ultrafine size distribution represents the typical street canyon bimodal size distribution found next to a traffic site, e.g. next to Marylebone Road in London (UK). The distribution has a well-defined nucleation mode with a peak number concentration at $D_{pg,nuc} \sim 23-24$ nm. The Aitken mode appears as a shoulder attached to the nucleation mode with a peak number concentration found at $D_{pg,aim}$ between 50-60 nm.

of the travel time on the neighbourhood scale (i.e., horizontal travel distances << 1 km).

The initial UFP size-resolved composition is represented by modal compositions in the range
 C₁₆H₃₄-C₃₂H₆₆, as detailed above, and a standard deviation σ from 1 to 5. A non-volatile core is
 9

226 included in the ultrafine particles. While studies broadly agree on the existence of a non-volatile 227 core in the Aitken mode (Biswas et al., 2007; Wehner et al., 2004; Ronkko et al., 2013), it is unclear if nucleation-mode particles contain some non-volatile material or if they are entirely 228 composed of (semi-)volatile SVOC. We have tested the sensitivity to the existence of non-229 230 volatile material in the nucleation mode particles by initialising with 1%, 5% or 10% by mass non-volatile material for each modal composition (see Supplementary Information for details of 231 232 the initialisation); results are discussed later in this paper. Simulations are performed by 233 considering the initialised Aitken mode predominantly non-volatile and coated only with 10% volatile material. This is based on the observations during the REPARTEE campaign (Harrison et 234 al., 2012) that show a fairly stable Aitken mode between the street canyon and the 235 236 neighbourhood. The initial size-resolved modal compositions, composition standard deviations 237 and non-volatile core in the nucleation and Aitken modes are detailed in Tables 1-S, 2-S, 3-S and 238 4-S in the Supplementary Information. We also provide information on the input parameters of the log-normal UFP size distribution for Nucleation and Aitken modes. 239

240

241 2.3 Saturation Vapour Pressures and Gas-Phase Concentrations

242 The driving force for condensation/evaporation is the difference between the partial pressure of 243 each representative SVOC and its saturation vapour pressure (hereafter vapour pressure) over 244 the ideal solution in the nucleation mode condensed phase. Figure 3 shows vapour pressures 245 above pure, flat, supercooled liquids for n-alkanes in the range C₁₆H₃₄-C₃₂H₆₆, following Chickos and Lipkind (2008), Compernolle et al. (2011), Lemmon and Goodwin (2000), the Epi Suite 246 247 calculator (US EPA, 2017), and the UmanSysProp tool (Topping et al., 2016). The UmanSysProp 248 tool provides vapour pressure data based on the work of Nannoolal et al. (2008) and Myrdal and 249 Yalkowsky (1997) with the boiling points of Joback and Reid (1987), Stein and Brown (1994), and Nannoolal et al. (2004). There is a very substantial range of estimated vapour pressures for the 250 same compounds in Figure 3, especially for the high molecular weight n-alkanes. The reported 251 252 data agrees within an order of magnitude between C₁₆H₃₄ and C₁₉H₄₀, but discrepancies of much 19 10 20

253 more than an order of magnitude are evident for the high molecular weight compounds. The vapour pressure ranges of C₂₂H₄₆ and C₂₄H₅₀ are between [9.23x10⁻³ and 8.94x10⁻⁶ Pa] and 254 [2.26x10⁻³ and 2.46x10⁻⁷ Pa], respectively. An enormous difference in the vapour pressure for 255 $C_{32}H_{66}$ (from 2.66x10⁻⁵ Pa in Epi Suite, to 3.20x10⁻¹⁵ Pa in Nannoolal et al., 2008 with the boiling 256 257 point of Joback and Reid, 1987, called A-a hereafter) is clearly seen in Figure 3. Epi Suite (U.S. Environmental Protection Agency) provides the highest vapour pressures for all selected species 258 259 in comparison with the rest of the data. Nannoolal et al. (2008) and Myrdal-Yalkowsky (1997) data, both using the boiling point of Joback and Reid (1987), provide similar results and present 260 the lowest vapour pressures among the selected n-alkanes. For the purpose of our sensitivity 261 study, three representative datasets are nominated as input, namely: Myrdal-Yalkowsky (1997) 262 with the boiling point of Nannoolal et al. (2004, called B-c in Figure 3 and hereafter); 263 264 Compernolle et al. (2011, called Co); and A-a. Hereafter we use the legend abbreviations in 265 Figure 3 when referring to these selected vapour pressures, which are towards the upper, midand lower end of the reported data. The vapour pressure from the EPI Suite calculator has been 266 omitted from the analysis below because it has been considered in our previous study (Nikolova 267 268 et al., 2016).

269

270 The gas-phase concentration in the box is initialised with measured gas-phase concentrations in the C₁₆H₃₄-C₃₂H₆₆ range from a traffic site (Harrad et al., 2003) and reported in Table 6-S in the 271 Supplementary Information. For hydroxyl (OH) radical concentration ~10⁶ molec cm⁻³, the 272 timescale for atmospheric oxidation of $C_{16}H_{34}$ is about 10^6 s (Atkinson and Arey, 2003). 273 Therefore oxidation of SVOC is neglected given the timescale in our study (100 s). The urban 274 275 background gas-phase concentration is kept at zero. All model simulations are run at 298 K; the 276 effects of temperature on vapour pressure differences as a function of carbon number are discussed in the Supplementary Information. 277 278 We have performed a total of (17 modal compositions) x (5 σ values) x (3 non-volatile core

11

21 22

280	amounts) x (3 vapour pressures) = 765 model runs to explore the sensitivity of particle dynamics
281	on the neighbourhood scale.
282	
283	The Supplementary Information contains information regarding the initial size distribution,
284	modal composition in the nucleation and Aitken modes, and gas-phase concentrations.
285	Accumulation-mode aerosol (particles diameter Dp > 100 nm) is not considered in this study.
286	Accumulation-mode particles have much smaller number concentrations than the nucleation
287	and Aitken modes in polluted urban areas, and are influenced by aging and transport over larger
288	scales.
289	
290	3. RESULTS
291	3.1 Effect of composition on Nucleation-Mode Peak Diameter
291 292	3.1 Effect of composition on Nucleation-Mode Peak Diameter We consider first model runs in which the vapour pressure data follows Co (Compernolle et al.
291 292 293	 3.1 Effect of composition on Nucleation-Mode Peak Diameter We consider first model runs in which the vapour pressure data follows Co (Compernolle et al. (2011) and nucleation mode particles initialised with 1% non-volatile material. The nucleation
291 292 293 294	 3.1 Effect of composition on Nucleation-Mode Peak Diameter We consider first model runs in which the vapour pressure data follows Co (Compernolle et al. (2011) and nucleation mode particles initialised with 1% non-volatile material. The nucleation mode peak diameter D_{pg,nuc} is evaluated at 1 s and 100 s of model run-time in runs with varying
291 292 293 294 295	 3.1 Effect of composition on Nucleation-Mode Peak Diameter We consider first model runs in which the vapour pressure data follows Co (Compernolle et al. (2011) and nucleation mode particles initialised with 1% non-volatile material. The nucleation mode peak diameter D_{pg,nuc} is evaluated at 1 s and 100 s of model run-time in runs with varying modal composition and composition standard deviations. Figure 4 shows D_{pg,nuc} (y-axis) at 1s
291 292 293 294 295 296	 3.1 Effect of composition on Nucleation-Mode Peak Diameter We consider first model runs in which the vapour pressure data follows Co (Compernolle et al. (2011) and nucleation mode particles initialised with 1% non-volatile material. The nucleation mode peak diameter D_{pg,nuc} is evaluated at 1 s and 100 s of model run-time in runs with varying modal composition and composition standard deviations. Figure 4 shows D_{pg,nuc} (y-axis) at 1s simulation time, for each model run, plotted with respect to the modal composition and
291 292 293 294 295 296 297	3.1 Effect of composition on Nucleation-Mode Peak DiameterWe consider first model runs in which the vapour pressure data follows Co (Compernolle et al.(2011) and nucleation mode particles initialised with 1% non-volatile material. The nucleationmode peak diameter D _{pg,nuc} is evaluated at 1 s and 100 s of model run-time in runs with varyingmodal composition and composition standard deviations. Figure 4 shows D _{pg,nuc} (y-axis) at 1ssimulation time, for each model run, plotted with respect to the modal composition andcomposition standard deviation, σ.
291 292 293 294 295 296 297 298	3.1 Effect of composition on Nucleation-Mode Peak Diameter We consider first model runs in which the vapour pressure data follows Co (Compernolle et al. (2011) and nucleation mode particles initialised with 1% non-volatile material. The nucleation mode peak diameter D _{pg,nuc} is evaluated at 1 s and 100 s of model run-time in runs with varying modal composition and composition standard deviations. Figure 4 shows D _{pg,nuc} (y-axis) at 1s simulation time, for each model run, plotted with respect to the modal composition and composition, σ.
291 292 293 294 295 296 297 298 299	3.1 Effect of composition on Nucleation-Mode Peak DiameterWe consider first model runs in which the vapour pressure data follows Co (Compernolle et al.(2011) and nucleation mode particles initialised with 1% non-volatile material. The nucleationmode peak diameter D _{pg,nuc} is evaluated at 1 s and 100 s of model run-time in runs with varyingmodal composition and composition standard deviations. Figure 4 shows D _{pg,nuc} (y-axis) at 1ssimulation time, for each model run, plotted with respect to the modal composition andcomposition standard deviation, σ.Figure 4 maps out the effect of nucleation-mode composition at this very early stage in the
291 292 293 294 295 296 297 298 299 300	3.1 Effect of composition on Nucleation-Mode Peak Diameter We consider first model runs in which the vapour pressure data follows Co (Compernolle et al. (2011) and nucleation mode particles initialised with 1% non-volatile material. The nucleation mode peak diameter D _{pg,nuc} is evaluated at 1 s and 100 s of model run-time in runs with varying modal composition and composition standard deviations. Figure 4 shows D _{pg,nuc} (y-axis) at 1s simulation time, for each model run, plotted with respect to the modal composition and composition standard deviation, σ.Figure 4 maps out the effect of nucleation-mode composition at this very early stage in the model simulation. For example, at σ = 1 and initial mass distribution centred at C ₂₀ H ₄₂ (green

302 12 nm in one second due to evaporation of volatile material from the particles. At σ = 2, D_{pg,nuc} =

303 15 nm, a somewhat larger diameter than for $\sigma = 1$, due to the inclusion of material of lesser

volatility in the particle composition and, hence, a decrease in evaporation overall. For modal

305 compositions between $C_{16}H_{34}$ and $C_{20}H_{44}$, an increase in σ leads to a pronounced deceleration in

306 overall evaporation and, hence, a much larger nucleation mode peak diameter at 1 s simulation

12

time. The opposite effect occurs for modal compositions of C₂₂H₄₆ and above, i.e. increasing σ
 for a given modal composition decreases D_{pg,nuc} at 1 s. This is due to the addition of quickly
 evaporating lower molecular weight n-alkanes.

310

For a modal composition of $C_{21}H_{44}$, increasing σ makes almost no difference to the model 311 312 outcome at 1 s. Below, we call the modal composition that shows insensitivity to σ for a given 313 model output time, the threshold modal composition. The threshold modal composition points to the composition compound that is in equilibrium between gas and particulate phases for the 314 selected timescale. Lower-carbon-number compositions than the threshold modal composition 315 evaporate quicker and therefore have reached equilibrium with their respective gas 316 concentrations on a much shorter timescale. The higher-carbon-number compositions 317 318 evaporate slowly and are out-of-equilibrium with their respective gas concentrations for the 319 selected timescale. 320 The model output time of 1 s corresponds to the evaporation timescale of C₂₁H₄₄ under the 321 current model setting, in analogy to the e-folding time for an exponentially decaying process. 322 323 That is, at this time, a significant proportion (e.g. $1-e^{-1} \sim 63\%$ for one e-folding time, and $1-e^{-2} \sim$ 324 86% for two e-folding times) of the initial mass has been evaporated. Furthermore, the 325 timescales are much shorter for those lower than C₂₁H₄₄ carbon-number compositions (e.g. 326 C₂₀H₄₂, C₁₉H₄₀, ...) and much longer for those higher than C₂₁H₄₄ carbon-number compositions 327 (e.g. C₂₂H₄₆, C₂₃H₄₈,...). 328 329 To continue the previous example of the modal composition of $C_{20}H_{42}$, the case with $\sigma = 2$ 330 includes not only less volatile materials (i.e. higher-carbon-number SVOCs), but also an equal amount of more volatile materials (i.e. lower-carbon-number SVOCs), as indicated by Figure 2. 331 One might suppose that inclusion of the more volatile material would balance the effect of 332 333 including less volatile materials. However, following our argument above, most of the lower-25 13

334	carbon-number compounds including $C_{20}H_{42}$ will have evaporated before the given time of 1 s
335	due to their having much shorter evaporation timescales than $C_{21}H_{44}$. Thus any material
336	repartitioned from $C_{20}H_{42}$ to the lower-carbon-number compounds, in changing the model
337	settings from to σ = 1 to σ = 2, will not alter the total amount of evaporation and thus the
338	shrinkage rate.

340 To take a second example: for C₂₂H₄₆, any material reallocated from C₂₂H₄₆ to the higher-carbonnumber compounds (due to changing the model setting from $\sigma = 1$ to $\sigma = 2$) will contribute 341 342 negligibly to the shrinkage simply because the evaporation timescales for those higher-carbon-343 number components are much longer than 1 s, whilst the materials repartitioned from $C_{22}H_{46}$ to the lower-carbon compounds will contribute significantly to evaporation in the first second of 344 345 model run-time, causing the decreasing trend of the curve shown in Figure 4. 346 One implication of this finding is that, if a timescale of 1 s is of interest, the aerosol dynamics of 347 348 the system is dominated by the threshold modal composition of C₂₁H₄₄. Those lower-carbon-349 number compositions evaporate in less than 1 s and are approximately in equilibrium with their 350 respective gas concentrations in the environment. The higher-carbon-number compositions 351 evaporate slowly and at this time of 1 s, only a small or a negligible proportion has been

evaporated. A few compositions with highest carbon numbers (e.g. C₃₁H₆₄, C₃₂H₆₆) have

evaporated almost nothing. Therefore these compositions are effectively non-volatile for theseconditions.

355

Nucleation-mode particles have an initial non-volatile mass of 2.9 ng m⁻³. Modal compositions from $C_{16}H_{34}$ to $C_{19}H_{40}$ and $\sigma = 1$ will lose all their volatile mass in 1 s (Table 1). The initial $D_{pg,nuc}$ decreases from 23 nm to 9 nm and no volatile material is present, i.e. particles are composed of non-volatile core only. Little or no change is simulated in terms of mass and diameter for modal composition $C_{32}H_{66}$.

At 100 s, the evaporation of existing mass from the surface of the particles is evident also for higher molecular weight components (Table 1). The D_{pg,nuc} at 100 s is plotted in Figure 5. The diameter has further decreased with a more pronounced drop for all σ and modal compositions up to C₂₅H₅₂. C₂₅H₅₂ is, therefore, the threshold modal composition at this model output time.

367 The horizontal line drawn at 10nm on Figure 5 corresponds to evaporation approximating REPARTEE-like behaviour. At σ = 1, modal compositions in the range C₁₆H₃₄-C₂₃H₄₈ — and vapour 368 369 pressures and gas-phase partial pressures as detailed in the methodology — could plausibly 370 explain a particle diameter decrease from 23 nm to ~9 nm. Such a narrow range of surrogate molecular compounds is incompatible with experimental observations such as Figure 1. At $\sigma = 2$ 371 372 and σ = 3, modal compositions from C₁₆H₃₄ up to C₂₂H₄₆ and C₂₁H₄₄, respectively, can plausibly 373 approximate REPARTEE-like behaviour. At σ = 4 and σ = 5 modal compositions from C₁₆H₃₄ up to $C_{19}H_{40}$ and $C_{17}H_{36}$, respectively, plausibly simulate REPARTEE-like behaviour. 374

375

376 3.2 Effect of Vapour Pressure on the Nucleation-Mode Peak Diameter

377 We compare the simulated nucleation-mode peak diameter, D_{pg,nuc}, at 100 s using the vapour 378 pressure parameterisations B-c, Co and A-a (cf. Figure 3). The nucleation mode particles are 379 initialised with 1% non-volatile material in these simulations. Diameter change when using Co vapour pressure has been discussed in the previous section. The values of vapour pressure in 380 the Co data are intermediate between the B-c and A-a data. Hence, D_{pg,nuc} at 100 s using vapour 381 382 pressure parameterisations A-a and B-c (see Supplementary Information), as expected, shows 383 the same general behaviour as for vapour pressure parameterisation Co, but with a marked 384 change in threshold modal composition. In order of decreasing vapour pressure (Figure 3), the 385 threshold modal composition value changes from C₂₇H₅₆ for the B-c parameterisation (Figure 4-S in the Supplementary Information), to C₂₅H₅₂ for Co (Figure 5), to C₂₂H₄₆ for A-a (Figure 5-S in the 386 387 Supplementary Information). We restrict ourselves to integer values of threshold modal 29 15 30

388 composition to maintain a straightforward connection back to the homologous chemical series 389 in Figure 1, although there is nothing in principle to prevent us from attributing real number 390 values to the threshold modal composition.

391

392 There is no composition with $\sigma = 4$ and $\sigma = 5$, at the lower volatility A-a vapour pressure parameterisation, that produces REPARTEE-like behaviour; i.e., decrease of the nucleation-393 394 mode peak diameter from 23 nm to 10 nm or below. At σ = 5, the nucleation-mode particles can lose a maximum of ~9 nm of their initial diameter for modal composition C₁₆H₃₄ (please refer to 395 Figure 5-S in the Supplementary Information). Little or no change in mode diameter is simulated 396 397 for modal compositions between $C_{24}H_{50}$ and $C_{32}H_{66}$ and $\sigma = 1$, indicating that these combinations 398 of composition and vapour pressure parameterisation are essentially non-volatile for the 100 s 399 simulation time. Modal compositions $C_{20}H_{42}$ ($\sigma = 1$), $C_{19}H_{40}$ ($\sigma = 2$) and $C_{17}H_{36}$ ($\sigma = 3$) can produce 400 **REPARTEE-like aerosol dynamics.**

401

Vapour pressure parameterisation B-c has the highest vapour pressure for all compounds in 402 403 comparison with Co and A-a. Hence, particles in the nucleation mode are subject to a more 404 pronounced evaporation, even for modal compositions C₂₈H₅₈ to C₃₂H₆₆. Nonetheless, only 405 modal compositions $C_{25}H_{52}$ ($\sigma = 1$), $C_{24}H_{50}$ ($\sigma = 2$), $C_{23}H_{48}$ ($\sigma = 3$), $C_{21}H_{44}$ ($\sigma = 4$) and $C_{20}H_{42}$ ($\sigma = 5$) 406 are able to produce the REPARTEE-like behaviour. Table 2 provides details on the modal compositions and composition standard deviations that approximate the REPARTEE-like aerosol 407 dynamics for B-c, Co and A-a vapour pressure parameterisations. 408

409

410 The difference in 100-s D_{pg,nuc} between the highest vapour pressure (B-c) and the lowest vapour 411 pressure (A-a) for all values of σ , is shown in Figure 6. The largest differences (10-14 nm) 412 between the $D_{pg,nuc}$ occur for modal compositions between $C_{22}H_{46}$ and $C_{24}H_{50}$ and $\sigma = 1, 2, 3$. For model run-time of 100 s, the variability of the UFP shrinkage due to the uncertainty of vapour 413 414 pressure data is highest for the compositions between C₂₂H₄₆ and C₂₄H₅₀. From Figure 3, we see 31 16

that the uncertainty of vapour pressure data increases monotonically with carbon number and
is highest for C₃₂H₆₆. However this high level of uncertainty for high-carbon compositions does
not exert a significant impact on the model results. We thus conclude that the accuracy of
vapour pressure values for very high or very low carbon compositions are not important for
neighbourhood-scale aerosol dynamics.

420

421 **3.3** Effect of Non-Volatile Core on the Nucleation Mode Peak Particle Diameter

To consider how the fraction of non-volatile core interacts with the SVOCs composition and the 422 vapour pressure parameterisations, we define a '100-s effective non-volatile core': the 423 nucleation mode peak diameter at 100 s of evaporation. Figure 7 shows results for three non-424 volatile fractions (initial1%, 5% and 10% based on mass) and vapour pressures A-a, B-c and Co 425 426 (cf. Figure 3), for a modal composition of C₁₆H₃₄. Results for the remaining modal compositions 427 are not plotted here because using modal composition C₁₆H₃₄ and an evaporation time of 100 s gives the maximum reduction of the nucleation-mode peak diameter for all σ in our model runs. 428 However, we show the results for modal compositions C₂₄H₅₀ and C₃₂H₆₆ for completeness in the 429 Supplementary Information (Figure 7-S). 430

431

432 Because the mass-size distribution is held constant for each model initialisation (see 433 Supplementary Information), an increase of the non-volatile material in the nucleation mode 434 leads to a decrease in the total amount of n-alkane SVOC available for evaporation, and hence leads to an increase in the nucleation mode 'dry' (i.e. non-volatile core only) diameter from ~9 435 436 nm to ~12 nm. For the lowest volatility parameterisation (A-a), only the lightest surrogate 437 compounds near C₁₆H₃₄ are sufficiently volatile over the timescale of the model run to drive 438 evaporation of nucleation mode particles. As σ increases, an increasing number of lower volatility components are added into the particle composition, causing the 100-s effective non-439 volatile core to increase. 440

17

441

442 Considering REPARTEE-like behaviour, i.e., shrinkage of the nucleation mode diameter to ca. 10
443 nm, initial non-volatile core fractions of 5% or greater do not reproduce the observed
444 behaviour.

445

- 446
- 447 4. DISCUSSION AND CONCLUSIONS

448 The purpose of this study was to evaluate the importance of particle composition and saturation vapour pressure on the evolution of urban ultrafine diesel particles on the neighbourhood scale 449 (<< 1 km) by means of numerical simulations. We present the effect of evaporation on the size-450 451 resolved ultrafine particles and looked at the evolution of the nucleation-mode peak diameter D_{pg,nuc} depending on particle SVOC composition, vapour pressure, and fraction of non-volatile 452 core in the particles. We have used laboratory measurements of the size-resolved composition 453 454 of the ultrafine particles as an additional strong constraint on the plausibility of model parameter sets. We identified a group of surrogate n-alkane compounds in the range C₁₆H₃₄-455 C₃₂H₆₆ that could explain REPARTEE-like aerosol dynamics measured in London (Dall'Osto et al., 456 457 2011): i.e., a final nucleation-mode peak diameter at 10 nm or below when particles were 458 subject to evaporation in a timescale of 100 s. Table 2 highlighted the set of parameters in terms 459 of vapour pressure and modal compositions that produce such REPARTEE-like behaviour.

460

Table 2 presents the sets of model parameters consistent with diameter reduction due to 461 evaporation. The question remains, however, to what extent these results are realistic and 462 463 relevant for the real-world atmosphere. Standard deviation $\sigma = 1$ for all vapour pressures 464 narrows significantly the contribution from the n-alkanes ([max(16, j-2):min(32, j+2)] for modal 465 composition j), present in the initial composition of the nucleation mode particles. At σ = 2, the main contributing compounds involved in particle composition are the modal composition j and 466 the surrogate molecules [max(16, j-4):min(32, j+4)]. This means that for the given vapour 467 468 pressure parameterisation, A-a, and modal composition C₁₉H₄₀, the compounds found in the 35 18 36

469	particles would be between $C_{15}H_{32}$ and $C_{23}H_{48,\backslash}$ However, $C_{16}H_{34}$ is the lower limit of surrogate
470	compounds in the model, so the Gaussian distribution of composition is truncated at the low-
471	carbon-number end in this case. At σ = 3, the contributing compounds found in the particles are
472	the surrogate molecules in the range [max(16, j-7):min(32, j+7)]. For a modal composition $C_{17}H_{36}$
473	and A-a vapour pressure, the range of participating compounds is $C_{16}H_{34}$ - $C_{24}H_{50}$, similar to the
474	case of σ = 2. At σ = 4 and 5, the majority of the surrogate molecules in our range of n-alkanes
475	participate in the composition of particles, thus providing a reasonable range over the
476	contribution from diesel fuel and engine lubricating oil. The range at σ = 3 could be considered
477	as a transition range, while examples at σ = 2 would have compositions that are rather more
478	limited than available measurements in the Aitken mode (e.g. Figure 1), with a focus on the
479	contribution from the engine lubricating oil. Overall, narrow compositions would imply a strong
480	gradient of SVOCs across the nucleation and Aitken modes whereas broad compositions imply
481	that SVOCs are more or less evenly distributed across the ultrafine size range.
482	Table 3 shows an additionally constrained range of modal compositions consistent with what we
483	know from field and laboratory measurements combined. The lowest vapour pressure
484	parameterisations (A-a and the very similar B-a, see Figure 3) are less likely, at any modal
485	composition standard deviation (σ), to represent the laboratory and field observations together.
486	The results reported in Alam et al. (2016) and in Figure 1 show that diesel ultrafine particle
487	emissions are composed of a wealth of SVOCs that are mainly identified as straight and
488	branched alkanes in the range C_{11} - C_{33} , cycloalkanes (C_{11} - C_{25}), PAHs, various cyclic aromatics,
489	alkyl benzenes and decalins. They report emitted particulate size fractionated concentrations of
490	n-alkanes (cf. Figure 2-S in Supplementary Information) and point out that particles in the 5-
491	100nm diameter range consist mainly of high molecular weight SVOCs (> $C_{24}H_{50}$) associated with
492	engine lubricating oil. The work of Robinson et al. (2007), Grishop et al. (2009) and May et al.
493	(2013) also point to a Gaussian-type distribution of the exhaust particle composition centred at
494	SVOC, that has a wide standard deviation.
495	

497	Vapour pressure parameterisations used in this study and plotted in Figure 3, are one of the
498	crucial input parameters in assessing the rate at which condensation/evaporation can occur,
499	though they are poorly constrained. We introduced a new concept of threshold modal
500	composition, i.e. modal composition that is not sensitive to σ for a given model output time. In
501	an order of decreasing vapour pressure (Figure 3) and timescale of 100 s, the threshold modal
502	composition value changes from $C_{27}H_{56}$ for the B-c parameterisation (Figure 4-S, Supplementary
503	Information), to $C_{25}H_{52}$ for Co (Figure 5), to $C_{22}H_{46}$ for A-a (Figure 5-S, Supplementary
504	Information). Overall, the largest differences (~14 nm) in the 100-s $D_{pg,nuc}$ occur between the
505	highest (B-c) and the lowest (A-a) vapour pressure parameterisations for modal compositions
506	between $C_{22}H_{46}$ and $C_{24}H_{50}$ and composition standard deviation from 1 to 3. The vapour
507	pressures of components in this range are therefore critical for the modelling of nucleation-
508	mode aerosol dynamics on the neighbourhood scale. For components with volatility less than
509	that for the $C_{22}H_{46}$ surrogate compound used here, all available vapour pressure
510	parameterisations render these compounds volatile over the 100-s timescale. These
511	components will equilibrate with the gas phase on these short timescales. Components with
512	volatility lower than that of the $C_{24}H_{50}$ surrogate are effectively non-volatile over this timescale
513	for all vapour pressure parameterisations, and so will remain condensed and out-of-equilibrium
514	with the gas phase on these timescales.
515	
516	The other variable which will influence evaporation rate is the concentration of vapour

surrounding the particles. In this work, measured roadside vapour concentrations reported by Harrad et al. (2003) are used (see also Nikolova et al., 2016). These represent an upper estimate of gas-phase partial pressures away from roadside. Mixing of cleaner urban background air into the simulated air parcel would lower partial pressures and increase evaporation rates.

The 100-s effective non-volatile core (the nucleation mode peak diameter at 100 s of

523 evaporation) increased from ~9 nm to ~12 nm. This was attributed to the decrease in the total 524 amount of n-alkane surrogate compounds present for evaporation. As composition standard deviation σ increased, an increasing number of lower volatility components added into the 525 526 particle composition caused the 100-s effective non-volatile core to further increase. 527 Considering REPARTEE-like behaviour, i.e., shrinkage of the nucleation mode diameter to ca. 10 nm, an initial non-volatile core of 5% by mass or greater was not capable of reproducing the 528 529 observed behaviour in the atmosphere. Because the higher molecular weight (lower volatility) surrogate molecules in the model are essentially non-volatile over the modelling timescale, the 530 nucleation mode dynamics due to SVOC is confounded with that due to the size of any non-531 532 volatile core present in the particles.

533

534 Results (Figure 7) suggest that urban nucleation mode particles should be predominantly 535 volatile in order to produce REPARTEE-like behaviour. In these numerical experiments, the nature of the non-volatile core need not be specified. This core could be composed of one or 536 more low vapour pressure compounds, not affected by condensation/evaporation on the 537 timescale of the model and measurements. On the other hand, as discussed in Nikolova et al. 538 539 (2016), a non-volatile core could be composed mainly of carbon and possibly some contribution 540 from metal oxides and sulphates. This difference in composition could be relevant to effects on 541 human health. Li et al. (2010) show that diesel truck emissions during idle induce a high level of oxidative stress in human aortic endothelial cells, due to the type of metals and trace metals 542 found in the exhaust, while Xia et al. (2015) argue that traffic-related UFP act to promote airway 543 544 inflammation due to the rich content of organic species. The relative importance of these 545 particles in affecting human health merits further investigations.

546

Laboratory exhaust diesel ultrafine particulate measurements are highly dependent on the
 sampling methods. Measurements of the ultrafine particle composition from a diesel-fuelled
 engine are still at an early stage and therefore more efforts should be put into developing
 21

551	a realistic manner. There are no robust UFP chemical composition measurements at street scale
552	and therefore such measurements devoted to address in detail the composition of the traffic
553	emitted UFP in the atmosphere are urgently needed. Saturation vapour pressure is another
554	source of large uncertainties; our study lays out a strategy to determine which vapour pressures
555	are most significant in a given modelling scenario.
556	
557	
558	ACKNOWLEDGEMENTS
559	This work is part of the FASTER project, ERC-2012-AdG, Proposal No. 320821 sponsored by the
560	European Research Council (ERC).
561	
562	REFERENCES
563	Alam, M. S, Rezaei, S. Z., Stark, C. P., Liang, Z., Xu, H. M. and Harrison, R. M.: The
564	characterisation of diesel exhaust particles – composition, size distribution and partitioning,
565	Faraday Discuss., 189, 69-84, 2016.
566	
567	Alam, M. S., Liang, Z., Rezaei, S. Z., Stark, C. P., Xu, H. M., MacKenzie, A. R. and Harrison, R. M.:
568	Mapping and quantifying isomer sets of hydrocarbons (≥C12) in diesel fuel, lubricating oil and
569	diesel exhaust samples using GC×GC-ToFMS, Atmos. Meas. Tech. Discuss., submitted, 2017.
570	
571	Allen, L. R., Donahue, N. M., Shrivastava, M. K., Weitkamp, E. A., Sage, A. M., Grieshop, A. P.,
572	Lane, T. E., Pierce, J. R. and Pandis, S. N.: Rethinking organic aerosols: semivolatile emissions and
573	photochemical aging. Science, 315, 1259-62, 2007.
574	
575	Atkinson, R. W., Fuller, G. W., Anderson, H. R., Harrison, R. M. and Armstrong, B.: Urban
576 43 44	ambient particle metrics and health: a time-series analysis, Epidemiology, 21, 501-511, 2010. 22

sampling protocols that target the composition of the nucleation and Aitken modes particles in

578	Biswas, S., Ntziachristos, L., Moore, K. F. and Sioutas, C: Particle volatility in the vicinity of a
579	freeway with heavy-duty diesel traffic, Atmos. Environ., 41, 3479-3493, 2007.
580	
581	Chan, A. W. H., Isaacman, G., Wilson, K. R., Worton, D. R., Ruehl, C. R., Nah, T., Gentner, D. R.,
582	Dallmann, T. R., Kirchstetter, T. W., Harley, R. A., Gilman, J. B., Kuster, W. C., de Gouw, J. A.,
583	Offenberg, J. H., Kleindienst, T. E., Lin, Y. H., Rubitschun, C. L., Surratt, J. D., Hayes, P. L., Jimenez,
584	J. L. and Goldstein, A. H.: Detailed chemical characterization of unresolved complex mixtures in
585	atmospheric organics:insights into emission sources, atmospheric processing, and secondary
586	organic aerosol formation, J. Geophys. Res.: Atmospheres, 118, 6783-6796, 2013.
587	
588	Chickos, J. and Lipkind, D.: Hypothetical thermodynamic properties: vapour pressures and
589	vaporization enthalpies of the even n-Alkanes from C78 to C92 at T= 298.15K by correlation-gas
590	chromatography, J. Chem. Eng. Data, 53, 2432-2440, 2008.
591	
592	Compernolle, S., Ceulemans, K. and Muller, JF.: Evaporation: a new vapour pressure
593	estimation method for organic molecules including non-additivity and intramolecular
594	interactions, Atmos. Chem. Phys., 11, 9431-9450, 2011.
595	
596	Dall'Osto, M., Thorpe, A., Beddows, D.C.S., Harrison, R.M., Barlow, J.F., Dunbar, T., Williams, P.I.
597	and Coe, H.: Remarkable dynamics of nanoparticles in the urban atmosphere, Atmos. Chem.
598	Phys., 11, 6623-6637, 2011.
599	
600	Donahue, N. M., Robinson, A. L., Stanier, C. O., and Pandis, S. N.: Coupled partitioning, dilution,
601	and chemical aging of semivolatile organics, Environ. Sci. Technol., 40, 2635–2643,
602	2006.
603 45 46	23

604	Grieshop, A., Miracolo, M., Donahue, N., and Robinson, A.: Constraining the volatility
605	distribution and gas-particle partitioning of combustion aerosols using isothermal dilution and
606	thermodenuder measurements., Environ. Sci. Technol., 43, 4750, 2009.
607	
608	Harrad, S., Hassoun, S., Callen Romero, M.S. and Harrison, R.M.: Characterisation and source
609	attribution of the semi-volatile organic content of atmospheric particles and associate
610	vapour phase in Birmingham, UK, Atmos. Environ., 37, 4985-4991, 2003.
611	
612	Harrison, R. M., Beddows, D. S. and Dall'Osto, M.: PMF analysis of wide-range particle size
613	spectra collected on a major highway, Environ. Sci. Technol., 45, 5522-5528, 2011.
614	
615	Harrison, R. M., Dall'Osto, M., Beddows, D. C. S., Thorpe, A. J., Bloss, W. J., Allan, J. D., Coe, H.,
616	Dorsey, J. R., Gallagher, M., Martin, C., Whitehead, J., Williams, P. I., Jones, R. L., Langridge, J.
617	M., Benton, A. K., Ball, S. M., Langford, B., Hewitt, C. N., Davison, B., Martin, D., Petersson, K. F.,
618	Henshaw, S. J., White, I. R., Shallcross, D. E., Barlow, J. F., Dunbar, T., Davies, F., Nemitz, E.,
619	Phillips, G. J., Helfter, C., Di Marco C. F. and Smith, S.: Atmospheric chemistry and physics in the
620	atmosphere of a developed megacity (London): an overview of the REPARTEE experiment and
621	its conclusions, Atmos. Chem. Phys., 12, 3065-3114, 2012.
622	
623	Harrison, R.M., Jones, A.M., Beddows, D.C.S., Dall'Osto M. and Nikolova, I.: Evaporation of
624	traffic-generated nanoparticles during advection from source, Atmos. Environ., 125, 1-7, 2016.
625	
626	Joback, K. and Reid, R.: Estimation of Pure-component properties from group-contributions,
627	Chem. Eng. Commun., 57, 233-243, 1987.
628	
629	Jacobson, M.Z.: Development and application of a new air pollution modeling system. 2. Aerosol
630 47 48	module structure and design, Atmos. Environ., 31, 131-144, 1997. 24

631	
632	Jacobson, M. Z., Kittelson, D. B., and Watts, W. F.: Enhanced coagulation due to evaporation and
633	its effect on nanoparticle evolution, Environ. Sci. Technol., 39, 9486- 9492, 2005.
634	
635	Julin, J., Winkler, P. M., Donahue, N. M., Wagner, P. E. and Riipinen, I.: Nera-unity mass
636	accomodation coefficient of organic molecules of varying structure, Environ. Sci. Technol., 48,
637	12083-12089, 2014.
638	
639	Karl, M., Kukkonen, J., Keuken, M. P., Lützenkirchen, S., Pirjola, L., and Hussein, T.: Modeling and
640	measurements of urban aerosol processes on the neighborhood scale in Rotterdam, Oslo and
641	Helsinki, Atmos. Chem. Phys., 16, 4817-4835, doi:10.5194/acp16-4817-2016, 2016.
642	
643	Karnezi, E., Riipinen, I. and Pandis, S. N.: Measuring the atmospheric organic aerosol volatility
644	distribution: a theoretical analysis, Atmos. Meas. Tech. Discuss., 7, 2953-2965, 2014.
645	
646	Kumar, P., Morawska, L., Birmili, W., Paasonen, P., Hu, M., Kulmala, M., Harrison, R. M., Norford,
647	L. and Britter, R.: Ultrafine particles in cities, Environ. Intl., 66, 1-10, 2014.
648	
649	Lemmon, E. W. and Goodwin, A. R. H.: Critical properties and vapour pressure equation for
650	alkanes CnH2n+2: normal alkanes with $n \le 36$ and isomers for $n = 4$ through $n = 9$, J. Phys. Chem.
651	Ref. Data, 29, 1-39, 2000.
652	
653	Li, R., Ning, Z., Majumdar, R., Cui, J., Takabe, W., Jen, N., Sioutas, C. and Hsiai, T.: Ultrafine
654	particles from diesel vehicle emissions at different driving cycles induce differential vascular pro-
655	inflamatory responses: implications of chemical components and NF-kB signaling, Part. Fibre
656	Toxicol., 7-6, 2010.
657 49 50	25

658	May, A. A., Presto, A. A., Hennigan, C. J., Nguyen, N. T., Gordon, T. D., and Robinson, A. L.: Gas-
659	particle partitioning of primary organic aerosol emissions: (2) Diesel vehicles, Environ. Sci.
660	Technol., 47, 8288-8296, 2013.
661	
662	Myrdal, P. B. and Yalkowsky, S. H.: Estimating pure component vapor pressures of complex
663	organic molecules, Ind. Eng. Chem. Res., 36, 2494-2499, 1997.
664	
665	Nannoolal, Y., Rarey, J., Ramjugernath, D. and Cordes, W.: Estimation of pure component
666	properties: Part 1. Estimation of the normal boiling point of non-electrolyte organic compounds
667	via
668	group contributions and group interactions, Fluid Phase Equilibr., 226, 45-63, 2004.
669	
670	Nannoolal, Y., Rarey, J. and Ramjugernath, D.: Estimation of pure component properties: Part 3.
671	Estimation of the vapor pressure of non-electrolyte organic compounds via group contributions
672	and group interactions, Fluid Phase Equilibr., 269, 117-133, 2008.
673	
674	Nikolova, I., Janssen S., Vos, P., Vrancken, K., Mishra, V. and Berghmans, P.: Dispersion
675	modelling of traffic induced ultrafine particles in a street canyon in Antwerp, Belgium and
676	comparison with observations, Sci. Total Environ., 412-413, 336-43, 2011.
677	
678	Nikolova, I., MacKenzie, A. R., Cai, X., Alam, M. S. and Harrison, R. M.: Modelling component
679	evaporation and coposition change of traffic-induced ultrafine particles during travel from street
680	canyon to urban background, Faraday Discuss.,189, 529-546, 2016.
681	
682	Pugh, T. A. M., MacKenzie, A. R., Whyatt, J. D. and Hewitt, C. N.: Effectiveness of green
683	infrastructure for improvement of air quality in urban street canyons, Environ. Sci. Technol., 46,
684 51 52	7692-7699, 2012. 26

686	Robinson,. A. L., Donahue, N. M., Shrivastava, M. K., Weitkamp, E. A., Sage, A. M., Grieshop, A.
687	P., Lane, T. E., Pierce, J. R. and Pandis, S. N.: Rethinking organic aerosols: semivolatile emissions
688	and photochemical aging, Science, 315, 1259-1262, 2007.
689	
690	Ronkko, T., Lahde, T., Heikkila, J., Pirjola, L., Bauschke, U., Arnold, F., Schager, H., Rothe, D., Yli-
691	Ojanpera, J. and Keskinen, J.: Effects of Gaseous Sulphuric Acid on Diesel Exhaust Nanoparticle
692	Formation and Characteristics, Environ. Sci. Technol., 47, 11882-11889, 2013.
693	
694	Stein, S. E. and Brown, R. L.: Estimation of normal boiling points from group contributions, J.
695	Chem. Inf. Comp. Sci., 34, 581-58, 1994.
696	
697	Topping, D., Barley, M., Bane, M. K., Higham, N., Aumont, B., Dingle, N., and McFiggans, G.:
698	UManSysProp v1.0: an online and open-source facility for molecular property prediction and
699	atmospheric aerosol calculations, Geosci. Model Dev, 9, 899-914, 2016.
700	
701	US EPA: Estimation Programs Interface Suite™ for Microsoft® Windows, v 4.11, United States
702	Environmental Protection Agency, Washington, DC, USA, 2017.
703	
704	Wehner, B., Philippin, S., Wiedensohler, A., Scheer, V. and Vogt, R.: Variability of non-volatile
705	fractions of atmospheric aerosol particles with traffic influence, Atmos. Environ., 38, 6081-6090,
706	2004.
707	
708	Xia, M., Viera-Hutchins, L., Garcia-Lloret, M., Rivas, M. N., Wise, P., McGhee, S. A., Chatila, Z. K.,
709	Daher, N., Sioutas, C. and Chatila, T. A.: Vehicular exhaust particles promote allergic airway
710	inflammation through an aryl hydrocarbon receptor-notch signaling cascade, J. Allergy Clin.
711 53 54	Immun., 136, 441-453, 2015. 27

713	TABLE LEG	ENDS
714	Table 1.	Total mass M (ng m ⁻³) of nucleation mode peak particles at 1 s and 100 s of
715		simulation for modal compositions C16H34-C32H66 and composition standard
716		deviations, sigma. For comparison, the initial mass of the non-volatile material in the
717		nucleation mode peak particles is 2.9 ng m ⁻³ .
718		
719	Table 2.	Modal composition ranges and composition standard deviations, sigma, producing
720		model results that approximate REPARTEE-like behaviour (see main text), for
721		different vapour pressure parameterisations. Initial non-volatile core in the nucleation
722		mode is set to 1%.
723		
724	Table 3.	Modal composition range and composition standard deviations, sigma, producing
725		more realistic results that approximate REPARTEE-like behaviour. Vapour pressure
726		parameterisation follows Myrdal and Yalkowski (1997; B-c in Figure 3),
727		Compernolle et al. (2011; Co in Figure 3), and Nannoolal 2008; A-a in Figure 3).
728		Column 'cn' indicates the carbon number of compounds n in the modal composition
729		with a contribution bigger than 1%.
730		
731		
732	FIGURE LEG	GENDS
733	Figure 1.	A GC×GC chromatogram (contour plot) indicating homologous series of compounds
734		identified in diesel engine exhaust emissions. Emissions from a light-duty diesel
735		engine operating at 1800 revolutions per minute and 1.4 bar brake mean effective
736		pressure. Compounds identified in the contour plot are indicated by the coloured
737		polygons – Lower black polygons are n- + i-alkanes; red polygons are monocyclic
738		alkanes; green polygons are bicyclic alkanes; pink polygons are aldehydes + ketones;
739		and upper black polygons are monocyclic aromatics. Each peak in the contour plot
55 56		28

740		represents a compound present in the emissions; warmer colours (e.g. red) are more
741		intense peaks while colder colours (blue) are smaller peaks. Contour plot were
742		produced by GC Image v2.5. Bar charts above show the volatility distribution of total
743		alkanes (red) and total identified species (black), indicating that the majority of the
744		emissions consist of alkanes. For details of the compound attribution method, see
745		Alam et al. (2017).
746		
747	Figure 2.	An example of nucleation mode UFP compositions, represented as mass fractions for
748		surrogate compounds $C_nH_{(2n+2)}$, n = [16:32], and described by a Gaussian distribution
749		centred on $C_{24}H_{50}$ with standard deviation, σ , from 1 to 5.
750		
751	Figure 3.	Vapour pressure data for selected n-alkanes $C_nH_{(2n+2)}$ where n =[16:32] at 298K.
752		Abbreviations in the legend point to the source as follows: A and B refer to the
753		vapour pressure data from Nannoolal et al. (2008) and Myrdal and Yalkowsky
754		(1997), respectively; -a, -b and -c refer to the boiling point of Joback and Reid
755		(1987), Stein and Brown (1994) and Nannoolal et al. (2004), respectively; ES refers
756		to Epi Suite calculator (U.S. Environmental Protection Agency); Co to Compernolle
757		et al. (2011); Ch to Chickos and Lipkind (2008), LG to Lemmon and Goodwin
758		(2000).
759		
760	Figure 4.	Nucleation mode peak diameter Dp [nm] at 1 s of simulation depending on the modal
761		composition and the composition standard deviation. The initial nucleation mode
762		peak diameter is at 23nm (not shown on the figure). Vapour pressure data follows
763		Compernolle et al. (2011).
764		
765	Figure 5.	Nucleation mode peak diameter Dp [nm] at 100 s of simulation depending on the
766		modal composition and the composition standard deviation. The initial nucleation

767		mode peak diameter is at 23nm (not shown on the figure).Vapour pressure data
768		follows Compernolle et al. (2011).
769		
770	Figure 6.	$D_{pg,nuc}$ difference between the nucleation mode peak diameter (nm) when using B-c
771		vapour pressure and the nucleation mode peak diameter when using A-a vapour
772		pressure for modal compositions $C_nH_{(2n+2)}$ where $n = [16:32]$.
773		
774	Figure 7.	Nucleation mode peak diameter Dp [nm] at 100 s: the '100-s effective non-volatile
775		core' for the nucleation mode. Results are shown at 1%, 5% and 10% initial non-
776		volatile material in the nucleation mode particles, modal composition $C_{16}H_{34}$ and for
777		various composition standard deviations.
778		
779		
780		
781		
782		
783		
784		
785		
786		
787		
788		
789		
709		
790		

791	1s Centre @	C ₁₆ H ₃₄	C ₁₇ H ₃₆ (C ₁₈ H ₃₈	C ₁₉ H ₄₀	C ₂₀ H ₄₂	C ₂₁ H ₄₄	C ₂₂ H ₄₆	C ₂₃ H ₄₈	C ₂₄ H ₅₀	C ₂₅ H ₅₂	C ₂₆ H ₅₄	C ₂₇ H ₅₆	C ₂₈ H ₅₈	C ₂₉ H ₆₀	C30H62	C ₃₁ H ₆₄	C ₃₂ H ₆₆
792	Sigma 1	2.9	2.9	2.9	2.9	7.4	23.6	38.1	46.8	51.0	52.6	53.2	53.4	53.4	53.5	53.5	53.5	53.5
793	2 3 4	2.9 3.7 8.0	2.9 5.4 10.6	3.2 8.4 13.7	6.9 12.9 17.6	14.3 18.5 21.8	24.1 24.9 26.4	34.0 31.6 31.0	42.1 38.1 35.4	47.0 43.5 39.7	50.3 46.8 43.7	52.1 49.3 46.2	52.9 51.0 48.2	53.3 52.1 49.8	53.4 52.8 50.9	53.4 53.1 51.8	53.5 53.3 52.3	53.5 53.4 52.7
794	5	12.8	15.3	18.1	21.1	24.4	27.7	31.2	34.4	37.6	40.2	43.0	45.4	47.0	48.4	49.5	50.4	51.2
795	100s Centre @ Sigma																	
796	1 2	2.9 2.9	2.9 2.9	2.9 2.9	2.9 2.9	2.9 2.9	2.9 2.9	2.9 3.0	2.9 6.2	6.1 14.3	23.8 24.8	38.9 34.8	47.5 42.5	51.3 47.6	52.8 50.6	53.3 52.1	53.5 52.9	53.6 53.2
797	3 4 5	2.9 2.9 2.7	2.9 3.0	2.9 3.3	2.9 4.1	3.1 5.6	4.2 7.9	7.1 11.1	11.9 15.1	18.2 19.7	25.2 24.6	31.9 29.3	37.8 33.8	42.6 37.7	46.1 41.1	48.6 43.8	50.3 46.1	51.4 47.8
798	0	5.7	4.4	5.4	0.9	0.7	11.1	10.0	17.0	20.2	20.1	21.2	50.0	55.7	50.0	55.2	41.4	-0
799																		
800	Table 1.	Total r	mass	M (n	g m⁻³) of r	nucle	ation	mod	e pea	ak pa	rticle	s at 1	L s an	d 10) s of	⁻ simu	lation
801	for moda	ll com	positi	ions	$C_{16}H_{3}$	4-C32	H ₆₆ a	nd co	ompo	sitior	n star	ndard	l devi	atior	ns, sig	gma.	For	
802	comparis	ion, th	ie init	ial m	iass c	of the	e non	-vola	tile m	nateri	ial in	the n	uclea	ation	mod	e pea	ak pa	rticles is
803	2.9 ng m	⁻³ .																
804																		
805																		
806																		
807																		
808																		
809																		
810																		
811																		
812																		
813																		
814																		
815																		
816																		
817																		
61 62									31									

818					
819	Vapour pressure Sigma	B-c	Со	A-a	
015	1	<= C ₂₅ H ₅₂	<= C ₂₃ H ₄₈	<= C ₂₀ H ₄₂	
820	2	<= C ₂₄ H ₅₀	<= C ₂₂ H ₄₆	<= C ₁₉ H ₄₀	
	3	<= C ₂₃ H ₄₈	<= C ₂₁ H ₄₄	<= C ₁₇ H ₃₆	
821	4	<= C ₂₁ H ₄₄	<= C ₁₉ H ₄₀	-	
822	5	<= C ₂₀ H ₄₂	<= C ₁₇ H ₃₆	-	
823					
824	Table 2. Modal composition	ranges and cor	nposition standa	ard deviations, sigm	a, producing
825	model results that approximation	ate REPARTEE-	like behaviour (s	ee main text), for d	ifferent vapour
826	pressure parameterisations.	Initial non-vola	atile core in the r	nucleation mode is s	set to 1%.
827					
828					
829					
830					
831					
832					
833					
834					
835					
836					
837					
838					
839					
840					
841					
843					
844					
63 64			32		

Figure 3. Vapour pressure data for selected n-alkanes $C_nH_{(2n+2)}$ where n =[16:32] at 298K.

Abbreviations in the legend point to the source as follows: A and B refer to the vapour pressure data from Nannoolal et al. (2008) and Myrdal and Yalkowsky (1997), respectively; -a, -b and -c refer to the boiling point of Joback and Reid (1987), Stein and Brown (1994) and Nannoolal et al. (2004), respectively; ES refers to Epi Suite calculator (U.S. Environmental Protection Agency); Co

