Supplementary Information to ## How does soil water availability control phytotoxic O₃ dose to montane pines? Modelling and experimental study from two contrasting climatic regions in Europe Svetlana Bičárová¹, Zuzana Sitková², Hana Pavlendová², Peter Fleischer jr.³, Peter Fleischer sr.³, Laurence Dalstein-Richier⁴, Marie-Lyne Ciriani⁴ and Andrzej Bytnerowicz⁵ Correspondence to: Svetlana Bičárová bicarova@ta3.sk (Supporting Information includes 2 pages, 1 table) ## Part SI-1: Details to section: Methods DO₃SE model parameterization for version (DO₃SE_INTv3.0.5) The interface of DO₃SE model version 3.0 provides a way to parameterise input variables. A collection of parameters according to built-in preset for coniferous forest (CF) was used for model calculation of ozone exposure (AOT40) and phytotoxic dose (PODy) metrics. **Table S1.** Model parameters for coniferous forest (CF) considering for Swiss stone pine and *dwarf mountain pine; G_{max} built-in preset adjusted from value of 160 to **110 mmol O_3 m⁻² PLA s⁻¹ according to field measurements in SK–HT | SK-HT | | |---|-----------------------| | Input data | | | O ₃ _zR (ppb): Measured O ₃ concentration | hourly variables | | Ts (°C): Air temperature (AT – abbreviation used in paper) | hourly variables | | VPD (kPa): Vapour Pressure Deficit | hourly variables | | Uh_zR (m s ⁻¹): Wind speed | hourly variables | | Precip (mm): Precipitation | hourly variables | | P (kPa): Pressure | hourly variables | | R (Wh m ⁻²): Global radiation | hourly variables | | Measurement data | | | O ₃ measurement height (m), recalculated | 20 | | O ₃ measurement canopy height (m) | Same as target canopy | | Wind speed measurement height (m) | 10 | | Wind speed measurement canopy height (m) | Same as target canopy | | Soil water measurement depth (m) | 0.4 | | Location properties | | | Latitude/Longitude/Elevation | variables | | Soil texture type: sandy loam (coarse), silt loam (medium coarse), loam (medium coarse), clay loam (fine) | choice of type | | Rsoil (s m ⁻¹): Soil resistance to the vertical soil water distribution | 200 | | Vegetation characteristics | | | H (m): Canopy height | 20/*2 | | Root (m): Root depth | 1.00/*0.5 | | Lm (m): Cross-wind leaf dimension | 0.008 | | Albedo (fraction) | 0.12 | ¹Earth Science Institute of the Slovak Academy of Sciences, Stará Lesná, 059 60 Tatranská Lomnica, Slovakia ²National Forest Centre–Forest Research Institute Zvolen, T. G. Masaryka 22, 960 92 Zvolen, Slovakia ³Technical University in Zvolen, T. G. Masaryka 24, 960 92 Zvolen, Slovakia ⁴Groupe International d'Etudes des Forêts Sud-européennes G.I.E.F.S, 69, Avenue des Hespérides, 06300 Nice, France ⁵USDA Forest Service, Pacific Southwest Research Station, 4955 Canyon Crest Drive, Riverside, CA 92507, USA | G _{max} (mmol O ₃ m ⁻² PLA s ⁻¹): Maximum stomatal conductance to O ₃ | **110 | |---|--| | Sun/shade factor (fraction) | 1.00 | | f_{min} (fraction): Minimum stomatal conductance to O_3 | 0.10 | | R _{ext} (s m ⁻¹): External plant cuticule resistance | 2,500 | | Threshold Y for PODy (nmol m ⁻² s ⁻¹) | 1.00 | | G _{sto0} (μmol m ⁻² s ⁻¹): Closed stomata conductance | 30,000 | | m (dimensionless): Species-specific sensitivity to An | 16.83 | | Vcmax (µmol m ⁻² s ⁻¹): Maximum catalytic rate at 25°C | 30.00 | | Jcmax (μmol m ⁻² s ⁻¹): Maximum rate of electron transport at 25°C | 60.00 | | Environmental response | | | light _a (dimensionless): Species-specific parameter for response G _{sto} to photosynthetic photon flux density (PPFD) | 0.008 | | T _{min} (°C): Minimum temperature for G _{sto} | 1 | | T _{opt} (°C): Optimum temperature for G _{sto} | 18 | | $T_{max}(^{\circ}C)$: Maximum temperature for G_{sto} | 36 | | VPD _{min} (kPa): Vapour pressure deficit for min. G _{sto} | 3.3 | | VPD _{max} (kPa): Vapour pressure deficit for max. G _{sto} | 0.6 | | SWP _{min} (MPa): Soil water potential for min. G _{sto} | -1.20 | | SWP _{max} (MPa): Soil water potential for max. G _{sto} | -0.76 | | Model options | | | Stomatal conductance model | Multiplicative | | Leaf temperature calculation | Estimate | | fO ₃ calculation | Not used (fO ₃ =1) | | Soil water influence on G _{sto} | Use fSWP | | LWP calculation | Steady-state (SS) | | fSWP calculation | Linear (SWP _{min} , SWP _{max}) | | Season | 1 April–30 September 2016 | | SGS: Star of growing season | 92 | | EGS: End of growing season | 275 | | LAI_a (m² m²): Leaf area index at SGS | 3.4 | | LAI_b (m² m²): Leaf area index at first mid-season | 4.5 | | LAI_c (m² m²): Leaf area index at second mid-season | 4.5 | | LAI_d (m ² m ²): Leaf area index at EGS | 3.4 | | | | | LAI_1(days): Period from LAI_a to LAI_b | 30 | | | | | LAI_1(days): Period from LAI_a to LAI_b LAI_2(days): Period from LAI_c to LAI_d SAI (surface area index) calculation | 30 | | LAI_2(days): Period from LAI_c to LAI_d SAI (surface area index) calculation | 30
10 | | LAI_2(days): Period from LAI_c to LAI_d | 30
10 | | LAI_2(days): Period from LAI_c to LAI_d SAI (surface area index) calculation Phenology function fphen | 30
10
Forest | | LAI_2(days): Period from LAI_c to LAI_d SAI (surface area index) calculation Phenology function fphen fphen_a: fphen at SGS | 30
10
Forest | | LAI_2(days): Period from LAI_c to LAI_d SAI (surface area index) calculation Phenology function fphen fphen_a: fphen at SGS fphen_b: fphen at mid-season | 30
10
Forest
1.0
1.0 | | LAI_2(days): Period from LAI_c to LAI_d SAI (surface area index) calculation Phenology function fphen fphen_a: fphen at SGS fphen_b: fphen at mid-season fphen_c: fphen at second mid-season | 30
10
Forest
1.0
1.0
1.0 | | LAI_2(days): Period from LAI_c to LAI_d SAI (surface area index) calculation Phenology function fphen fphen_a: fphen at SGS fphen_b: fphen at mid-season fphen_c: fphen at second mid-season fphen_d: fphen at third mid-season | 30
10
Forest
1.0
1.0
1.0 | | LAI_2(days): Period from LAI_c to LAI_d SAI (surface area index) calculation Phenology function fphen fphen_a: fphen at SGS fphen_b: fphen at mid-season fphen_c: fphen at second mid-season fphen_d: fphen at third mid-season fphen_e: fphen at EGS | 30
10
Forest
1.0
1.0
1.0
1.0 | | LAI_2(days): Period from LAI_c to LAI_d SAI (surface area index) calculation Phenology function fphen fphen_a: fphen at SGS fphen_b: fphen at mid-season fphen_c: fphen at second mid-season fphen_c: fphen at third mid-season fphen_d: fphen at EGS fphen_1 (days): Period from fphen_a to fphen_b fphen_limA (day of year): Start of SWP limitation | 30
10
Forest
1.0
1.0
1.0
1.0
1.0 | | LAI_2(days): Period from LAI_c to LAI_d SAI (surface area index) calculation Phenology function fphen fphen_a: fphen at SGS fphen_b: fphen at mid-season fphen_c: fphen at second mid-season fphen_d: fphen at third mid-season fphen_e: fphen at EGS fphen_1 (days): Period from fphen_a to fphen_b fphen_limA (day of year): Start of SWP limitation fphen_2 (days): Period from fphen_b to fphen_c | 30
10
Forest
1.0
1.0
1.0
1.0
1.0
0 | | LAI_2(days): Period from LAI_c to LAI_d SAI (surface area index) calculation Phenology function fphen fphen_a: fphen at SGS fphen_b: fphen at mid-season fphen_c: fphen at second mid-season fphen_d: fphen at third mid-season fphen_e: fphen at EGS fphen_1 (days): Period from fphen_a to fphen_b fphen_limA (day of year): Start of SWP limitation fphen_2 (days): Period from fphen_b to fphen_c Fphen 3 (days): Period from fphen_c to fphen_d | 30
10
Forest 1.0 1.0 1.0 1.0 1.0 0 0 0 | | LAI_2(days): Period from LAI_c to LAI_d SAI (surface area index) calculation Phenology function fphen fphen_a: fphen at SGS fphen_b: fphen at mid-season fphen_c: fphen at second mid-season fphen_d: fphen at third mid-season fphen_e: fphen at EGS fphen_1 (days): Period from fphen_a to fphen_b fphen_limA (day of year): Start of SWP limitation fphen_2 (days): Period from fphen_b to fphen_c Fphen 3 (days): Period from fphen_c to fphen_d fphen_limB (day of year): End of SWP limitation | 30
10
Forest 1.0 1.0 1.0 1.0 1.0 0 0 0 0 | | LAI_2(days): Period from LAI_c to LAI_d SAI (surface area index) calculation Phenology function fphen fphen_a: fphen at SGS fphen_b: fphen at mid-season fphen_c: fphen at second mid-season fphen_d: fphen at third mid-season fphen_e: fphen at EGS fphen_1 (days): Period from fphen_a to fphen_b fphen_limA (day of year): Start of SWP limitation fphen_2 (days): Period from fphen_b to fphen_c Fphen 3 (days): Period from fphen_c to fphen_d | 30
10
Forest 1.0 1.0 1.0 1.0 1.0 0 0 0 0 0 |