
Response to Referees’ Comments
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I thank Amy Braverman and an anonymous referee for their further comments on
the manuscript. the most important comment is that the paper should be more self-
contained. Thus I have summarised some of the relevant sections from Rayner et al.
(2018). Below I respond to reviewers’ comments in detail. I have used a typewriter
font for the reviewer’s comment and Roman for my response

Reviewer One

General Comments
. Page 2, lines 24 to 28: What does This required running
optimized fluxes through the forward model used to generate
the Jacobians have to do with challenging equal weighting?
What is TM3? I have expanded this explanation and explained the acronym.

2. Page 3, Equation (1): Here is a case where you have
referenced Rayner et. al. (2016). I find the material here
impossible to understand without going back to that 2016 article,
and even so, its not clear where this formula is coming from.
In Rayner et. al. (2016), a similar version of current papers
Equation (1) appears as Equation (2), but it doesnt look right
to me: is it missing and integral? For the left-hand side
to be p(x), you would have to integrate out all the other variables.
You appear to be headed that way in Equation (1) of the current
paper by integrating out yt, as if H() is a deterministic function
of x. However, this is never stated, and is contrary to both
the notation and treatment of H later. This is a good point. I have
expanded this section to summarise some of the relevant material from Rayner et al.
(2018) and worked through the notation throughout.

3. Its difficult to tell what the derivations in the first
part of Section 2 are trying to show. It looks to me that
you want to end up with Equation (3), which is an expression
for 1

P(x, Hi|y), but this is only an intermediate step towards
getting p(x|y): p(x|y) = P i p(x, Hi, y) p(y) = P i p(x|Hi,
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y) p(Hi, y) p(y) , = P i p(x|Hi, y) p(Hi|y) p(y) p(y) = X i
p(x|Hi, y) p(Hi|y). (1) Moreover, you want the expression
for p(x|y) to factor in such a way that it involves estimating
p(Hi|y) because those are the weights for the transport models,
and you are interested in those for their own sakes. I think
this argument could be made more clearly if you started Section
2 by stating that the ultimate goal is to obtain the moments
of p(x|y), which can be factored in different ways, and the
particular factorization above is the most informative because
it involves estimating the weights p(Hi|y). This is a good com-
ment and I have reordered the material to first explain the motivation. Here I had tried
to show that it arose from the hierarchical formalism but it can just as easily be stated
as a goal at the beginning.

4. In the footnote on page 3 you explain that Hi is intended
to be an indicator variable that really represents the index
into a set of transport models. You also say that H1, . .
. , HN are the Jacobians of those transport models (line 26).
Elsewhere, Hi is not bold (Equation (2)). These conventions
should all be described in the main text (no footnote) and
the meaning of bold versus non-bold should be clarified. I
suspect your use of non-bold Hi and non-bold x in Equation
(2) is because you are stating a generic result, and you are
not specifically referring to Hi and x used the rest of the
text in this section. Please explain that. I have now explicitly
described the move from potentially nonlinear H to linear H. The notation follows
from Rayner et al. (2018). I have also had someone else check the copy for font errors.

5. Line 27, page 3: Please define yO. I get that it is
the mean of the random vector that represents the observations,
but is it different that yt? It probably could be, but are
you making any assumptions about that? Also, here you treat
xb as the mean of the Gaussian distribution of the random variable
x, but Equation (1) treats it like a random variable (p(x|xb)).
Of course, it is possible that it could be both if the model
was hierarchical and specified a prior distribution on xb,
but if thats the case it should be stated. I suspect that
this is really just notation given that you write, G(x|, C)
on line 28 (if C is bold, then should also be bold). Finally,
the expression uncertainty covariance is somewhat confusing,
at least to me: should it just be covariance? Most of this I agree
and have implemented. I would rather, however, not drop the descriptor ”uncertainty”
from covariance. There is an unfortunate habit of people confusing signal and uncer-
tainty covariances in this field and I would rather keep it clear in this paper, especially
as later I will move between the two.

6. Lines 2930 on page 3 and Equation (3): I dont understand
why this is here, but perhaps that is because my understanding
of what you are trying to do relies on expressions I wrote
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above for item 3 (my Equation (1)). The final expression for
p(x|y) there is already in terms of p(x|Hi, y). You then write,
Thus our posterior for the ensemble is a mixture of Gaussians...,
which I agree with. We both have p(Hi|y) (I note that you
have now switched to using capital P for probability instead
of p used earlier its a minor thing, but it would be better
to be consistent), and the remaining term I call p(x|Hi, y)
and you call G(x|xa i , Ai). It might be helpful to clarify
this correspondence in the text since it ties back to the ultimate
objective of expressing the posterior p(x|y) in a special way
that admits the mixture of Gaussians representation. This sec-
tion has been reordered in line with a previous comment which hopefully makes the
development clearer. The Gaussian arises because that is the solution for the Bayesian
problem for a single observation operator, I have now made this clearer. I have also
proofread for things like capitalisation more carefully.

7. Lines 23, page 4: When you say, As usual with a joint
PDF we obtain the marginal probability for a variable by integrating
over all others, to what are you referring? Are you justifying
Equation (4)? This point has now been moved earlier but I am a little unsure what
the reviewer refers to here, this seems a conventional statement about marginal proba-
bilities.

8. Equation (4): There are a few things about this that
need to be addressed or explained. First, you stated earlier
in the footnote on page 3 that Hi is a stand-in for an index
random variable that distinguishes between transport models,
but you use Hi anyway to remind the reader to what this index
refers. If that remains true, then Hi is a discrete variable
here, not a continuous one. If thats the case, then P(Hi)
is not Gaussian, and I dont think the right-hand-side of the
equation makes sense. In Michalak et. al. (2005), the target
of inference is which is a vector of continuously- valued
variance parameters, so it makes sense there. I think what
you are trying to do with this expression is to obtain the
set weights associated with models represented by Hi as in
Raftery et. al., (2005) which you cite. Alternatively, maybe
you have changed the notation implicitly to treat Hi (or more
properly vec(Hi)) as a Gaussian random vector. If so, please
explain. Indeed, I have fixed the inconsistency between using Hi or i. I hope the
new, more careful development is clearer. But yes, the variable is discrete and I am fol-
lowing Raftery et al. (2005). I wonder if part of the confusion turns on what is variable
and what fixed in this equation. I have now commented on this explicitly.

I have divided the following into several subpoints. 9. Lines 710, page
4: Several issues here. First, the words of the first sentence
in Section 2.1 provide an example of where xb is now discussed
as if it were a random variable rather a parameter (in contrast
to its use earlier in the paper). Is xb a parameter of the
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prior distribution of x or is it a random draw from that distribution?
Only in the latter case does the notion of independence from
y make sense. This is correct, I meant the prior distribution for x and have cor-
rected.
Second, Equation (4) as stated is not the probability of simulating the observations (y);
it is the probability of Hi given the observations. Should it be p(y—Hi, x)? My point
here is that the two quantities are the same. Up to normalisation, p(Hi|y) turns out to
be the PDF for the quantity Hix − y evaluated at the point Hix

b − yo. I have now
developed this explicitly.
Third, I question assertion made in Michalak et. al. (2005), Section 6.4, Equation (4)
that Equation (2) of that paper can be written, p(x) G(x xb , B) G(H(x) y, R). Equation
(2) in Michalak et. al. (2005) is p(x) p(x—xb) p(yt—y) p(yt—H(x)). It appears to
me that p(x—xb) (or p(x—xb) using the notation of the paper under review) is missing
from the expression above. I don’t agree, I think Michalak’s G(x − xb,B) (which I
might write G(x,xb,B) is your p(x|xb). My more explicit treatment no longer refers
to the Michalak result at this point however, so this disagreement is no longer relevant
to the current paper.
Finally, also G(x xb, B) is ambiguous at best and nonsense at worst: do they mean
G(x xb—xb, B) and G(H(x) y—H(x), R)? As I said above, I would not write the
Gaussian this way. I also note generally that I have now acceded to the reviewer’s im-
plicit suggestion and listed explicit dependence on observations (or whatever else) to
distinguish prior and posterior probabilities. It makes the notation a little clumsier but
seems necessary to avoid serious confusion.

10. Lines 1719, page 4: P(Hi) appears several times in
this passage. Do you mean P(Hi|y)? Yes, see previous comment.

11. Lines 2228, page 4: Whats the point of this second-to-last
paragraph of Section 2.1? Is it simply to draw a line between
the more familiar concept of 2 in the literature and the work
here? You do use it in the next paragraph (and in Section
2.2), so perhaps these should all be combined into one paragraph?
That would make it clear why 2 is being defined. Also, I dont
understand the calculation given in lines 2527. I have moved
the χ2 paragraph into the next section and expanded the point on inconsistency.

12. Section 2.2: The statement that neither AIC nor BIC
take account of different prior uncertainties among parameters
or different sensitivities of the observations to these parameters
is mysterious to me. That is certainly true, but thats not
their purpose. Since I am confused about what Hi means here
notationally, and that makes it hard to understand what you
are driving at. This comment is a little difficult to interpret. Perhaps the re-
viewer thinks I am criticising the other criteria? I am not but pointing out that there
is a relationship between them and where the difference lies. The second point I can’t
yet respond to, here I do use P (Hi|y) as requested so I’m unsure where the confusion
arises.
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Reviewer Two

Major Comments
1. Some notations in this paper are not very consistent. For
example, at the beginning of Section 2, the author used p()
for probability density function (PDF), but later on P() was
used for PDF. In addition, for function Hi() and matrix Hi,
it is better to add some notes to make a clear distinction.
Last, the criterion L in Equation (5) is not italic, but later
on it appears in italic font and hence can be a bit confusing.
This was also noted by reviewer one. I have enlisted help with proofreading.

2. The conditional densities in Equations (1) and (4) are
also conditional on xb , and hence the author should mention
xb is omitted for notation simplicity. Besides, is the prior
mean xb treated as a fixed or random quantity in this paper?
see point nine from reviewer one. I have now tried to add explicit dependence through-
out.

3. Page 4, Line 7, the author mentioned that Provided xb
and y are independent, R + HiBHT i is the variance of the prior
mismatch y Hixb ..., which seems to be inappropriate. This
is because the matrix B is the covariance matrix of x, not
of the prior mean xb Indeed, this was poorly expressed, also responded to at
point nine from reviewer one.

4. Page 6, in Figure 1, why the weight of model 3 is so
small for the tuned case, compared with other two cases? This
took some digging. The tuning procedure returned 1 for the weights for this model. For
most other models it substantially reduced prior uncertainty so increasing the unnor-
malised weight. When we applied the normalisation criterion (sum to 1) model 3 was
severely punished. Model 1 suffered a less extreme version of the same thing, again its
prior uncertainty was reduced less than most. This is a curious enough fact that I have
added it to the discussion of the figure.

5. The author claims that Equation (7) is the variance
of the ensemble, which seems to be incorrect. From the formulation,
it seems to be the mean squared (prediction) error for x. I
don’t think so although it looks like the prediction error. I’ve not found a derivation of
this so I include it here so the reviewer can check my algebra. I present the univariate
version, the multivariate will undoubtedly follow with much unpleasant matrix algebra.

Define a Gaussian mixture PDF

P (x) =

N∑

i=1

wiG(x, µi, σ
2
i ) (1)

with G(x, µi, σ
2
i ) a Gaussian with mean µi and variance σ2

i . the mean of P is given by

µ =

∫
xP (x)dx =

N∑

i=1

wi

∫
xG(x, µi, σ

2
i )dx =

N∑

i=1

wiµi (2)
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The variance is given by

var =

∫
(x− µ)2P (x)dx (3)

=

N∑

i=1

wi

∫
(x− µ)2G(x, µi, σ

2
i )dx (4)

(5)

We add and subtract µi inside the bracketed term and expand to yield:

var =

N∑

i=1

wi

[
= int(x− µi)

2G(x, µi, σ
2
i ) (6)

+2(µ− µi)

∫
(x− µi)G(x, µi, σ

2
i )dx (7)

+

∫
(µ− µi)

2G(x, µi, σ
2
i )dx

]
(8)

The first integral in Eq. 6 is σ2
i by definition, the second integral is zero by antisymme-

try of the integrand and the third integral is (µi − µ)2, yielding the desired result.
6. Page 7, Figure 2: The titles of boxplots are repeated

for each row but it is supposed that the results for all the
22 regions are reported. The author should double check whether
this figure is correctly produced. Indeed it was not, corrected.

7. For Equations (8) and (9), it is better to give the
mathematical definition of the mean terms (e.g., the mean of
H(x)b i ); also the superscript a is missed in Equation (9).
Could the author provide more motivations for using Rprior
i,j and Rsample i,j ? I have added a separate equation for the mean before
Eq. 8. I don’t think this is relevant for Eq. (9) since that uses the observations. Super-
script corrected. Most importantly I have added extra text on the motivation.

8. Page 9, Line 6: The author pointed out that the residual
covariances have the largest values for a few terrestrially-influenced
stations such as Baltic Sea and so on. A figure showing the
residual covariances can be added to support this claim. Done.

9. Page 10, for the section of computational aspects: Provided
that R is a sparse matrix (e.g., diagonal), I think the computational
trick is to use a low-rank matrix to approximate HiBHT i ;
then we can resort to the Sherman-Woodbury-Morrison inversion
formula to compute the inverse of (HiBHT i + R) and the Sylvesters
theorem to compute its determinant (e.g, Cressie and Johannesson,
2008; Sang and Huang, 2012). The author may add a bit more
details to make the computational strategy more clear. That
is a good strategy when one has a matrix representation for the model and when one
of the dimensions is reasonably small. Many problems do not meet these criteria so
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we can only calculate matrix-vector products. The reviewer’s case is common enough
though so I have added it as an alternative.

10. Page 12, Figure 4: Similar to Figure 2, the results
seem to be repeated and not all the regions statistics are
reported. The author should double check whether the figure
is correctly produced. fixed as above

Minor Comments
1. Page 1, Line 23, the right bracket should be removed. re-
moved

2. Page 2, Line 12, discreet should be discrete. corrected
3. Page 3, Line 2: the in the standard data assimilation...

should be capitalized. Similarly, Page 6, Line 11: the in
the variance is calculated as should be capitalized. The author
needs to double check whether there are similar typos in the
paper. A hard one to pick up nonvisually that. Checked throughout

4. The author refers the Equation (1) but I do not see
Equation (1) in the context.

5. Page 4, in the second and third paragraph, it seems
that P(Hi) should be P(Hi|y). I have added these conditional expressions
throughout.

6. Page 4, Line 23: ...2 is equal to the number of observations...
should be ... the expected value of 2 is equal to the number
of observations... corrected

7. Page 7, Line 1: The Superscripts * indicates we consider...
should be The superscript * indicates we consider... corrected

8. Page 9, Line 6: Eq. 9 and Eq. 8 should be Eq. 8
and Eq. 9. corrected

9. Page 10: the math symbols, Xb and Xa should be xb and
xa , respectively. More problems with capitalisation, corrected.

10. Page 11: in the caption of Figure 3, the author should
give the full name of JIC. In fact I have stopped using the name so this
caption has been rewritten.
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Data Assimilation using an Ensemble of Models: A hierarchical
approach
Peter Rayner1
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Abstract. One characteristic of biogeochemical models is uncertainty about their formulation. Data assimilation should take

this uncertainty into account. A common approach is to use an ensemble of models. We must assign probabilities not only

to the parameters of the models but the models themselves. The method of hierarchical modelling allows us to calculate

these probabilities. This paper describes the approach, develops the algebra for the most common case then applies it to

the TRANSCOM intercomparison. We see that the discrimination among models is unrealistically strong, due to optimistic5

assumptions inherent in the underlying inversion. The weighted ensemble means and variances from the hierarchical approach

are quite similar to the conventional values because the best model in the ensemble is also quite close to the ensemble mean.

The approach can also be used for cross-validation in which some data is held back to test estimates obtained with the rest.

We demonstrate this with a test of the TRANSCOM inversions holding back the airborne data. We see a slight decrease in the

tropical sink and a notably different preferred order of models.10

1 Introduction

Models of any interesting biogeochemical system are inexact. Either they cannot include all interesting processes, the govern-

ing equations of processes are not known exactly or computational resolution limits the accuracy of the solution. Throughout

this series we stress that quantitative descriptions should be inherently statistical
:
, meaning they must include information on

the probability of any quantity, either inferred or predicted. This requires us to describe the uncertainty introduced into any15

quantity by that of the model. Model uncertainty is of two forms, structural and parametric. Structural uncertainties occur when

we do not know the functional forms that relate the inputs and outputs of the real system or that control its evolution. In bio-

geochemical models these functional forms are exactly specified so that uncertainty is usually manifest as an error. Parametric

errors occur when the functional forms are well-known but there is uncertainty in various quantities such as constants in phys-

ical equations, initial values or boundary conditions. Uncertainties in model predictions arising from parametric uncertainty20

can be generated by semi-analytic error propagation (e.g. Scholze et al., 2007; Rayner et al., 2011) or by generating ensembles

of model simulations from samples of the PDFs of parameters (e.g. Murphy et al., 2007; Bodman et al., 2013).

Ensemble methods dominate the study of model uncertainty. The most common approach is Model Intercomparison ) of

which the Coupled Model Intercomparison Project (Taylor et al., 2012) for the physical climate and C4MIP (Friedlingstein

et al., 2006) for the global carbon cycle are prominent examples. The MIPs play a crucial but controversial role in quantifying25
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uncertainty. First, they may underestimate uncertainty since it is impossible, even in principle, to know how well a given

ensemble properly samples the manifold of possible models. On the other hand not all models are equally credible. They do

more or less well at tests like fitting observations or conserving required quantities. This has led to the application of Bayesian

Model Averaging (e.g. Murphy et al., 2007) in which models are tested against some criteria (such as fit to observations) and

their predictions weighted accordingly.5

Inverse problems or data assimilation as discussed in this volume generally treats parametric uncertainty. It uses observations

and statistical inference to improve knowledge of the uncertain values (see Rayner et al., 2016, and references therein for a general introduction)

:::::::::::::::::::::::::::::::::::::::::::::
(see ?, and references therein for a general introduction). Structural model uncertainty must still be included and indeed it of-

ten dominates other uncertainties. Model uncertainty is hard to characterize with analytic PDFs since errors in the functional

forms will project systematically onto errors in simulated quantities. Hierarchical approaches (e.g. Cressie et al., 2009) pro-10

vide a mechanism for including uncertainties over
:
in

:
the choice of model into the formulation. For an ensemble of models

this involves introducing an extra discreet
:::::::
discrete variable (the index of the set of models) into the problem and calculating

its probability. This probability goes under several names, e.g. the Bayes Factor (Kass and Raftery, 1995) or the Evidence

(MacKay, 2003, ch.28). We can then calculate probability distributions for model parameters as weighted averages over these

model probabilities. Hence this application of hierarchical Bayesian modelling is closely related to Bayesian Model Averaging15

(Hoeting et al., 1999; Raftery et al., 2005).

Ensemble methods are rare for biogeochemical data assimilation since there are few problems for which a useful population

of assimilation systems currently exists. The clearest exception to this is the case of global scale atmospheric inversions where

the TRANSCOM intercomparison (Gurney et al., 2002, 2003, 2004; Baker et al., 2006) used an ensemble of atmospheric

transport models and common inversion systems to infer regional CO2 fluxes from atmospheric concentrations. All these20

studies faced the problem of estimating properties of the ensemble such as its mean and some measure of spread. Throughout

they opted for the ensemble mean and two measures of spread, the standard deviation of the maximum a posteriori (most likely)

estimate from each ensemble member and the square-root of the mean of the posterior variances of the ensemble. This treated

all members of the ensemble equally.

Equal weighting was challenged by Stephens et al. (2007) who compared the seasonality of vertical gradients in model25

simulations and observations. They found that only a subset of models produced an acceptable simulation and that this subset

favoured larger tropical uptake than the ensemble mean. Pickett-Heaps et al. (2011)
::::::::
extended

:::
this

::::::::::
calculation.

::::
They

:
compared

simulations using optimized fluxes with airborne profiles. This required running optimized fluxes through the forward model

used to generate the Jacobians
::::::::
simulating

:::
the

:::::::
airborne

:::::::
profiles

:::::
using

:::
the

::::::
optimal

:::::
fluxes

:::
for

::::
each

::::::
model. Of the four

::::::::::
atmospheric

:::::::
transport

:
models tested TM3

::
(?) performed substantially better against this extra data than the other three.30

Both the cited studies used data not included in the inversion, a procedure often called cross-validation. Cross-validation

asks whether new data enhances or reduces our confidence in previous estimates while Bayesian model averaging calculates

our relative confidence in two models. We shall see that the machinery needed to answer these two questions is very similar.

The outline of the paper is as follows. In Section 2 we review the necessary machinery. Section 3 describes an application to

the TRANSCOM case including an extension to treat covarying model errors. Section 5 discusses the use of the machinery for35
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assessing cross-validation. Section 7 compares the technique with other model evaluation methods as well as discussing some

computational aspects.

2 Theory

The following can be regarded as a development of ideas described in (Jaynes and Bretthorst, 2003, Ch.21) or (MacKay, 2003,

Ch.28). the5

:::
The

:
standard data assimilation problem seeks to improve knowledge of some target variables in a model given observations.

We express our knowledge as probability density functions (PDFs)and the mathematical operations are multiplications of

PDFs for the .
::::
The

:::
true

::::
state

:::::
must

::
be

::::::::
consistent

::::
with

:::::
three

::::::::::
independent

::::::
pieces

::
of

::::::::::
information,

:::
our

:
prior knowledge of the target

variables, the observations and the observation operator which relates the target variables to the observations
::
our

::::::::::
knowledge

::
of

::
the

::::::::
observed

::::::::
quantities

::::
and

:::
the

::::::::::
relationship

:::::::
between

:::::
target

::::::::
variables

:::
and

:::::::::::
observations

::::::::::
instantiated

::
in

::
an

::::::::::
observation

:::::::
operator.10

In most applications the target variables are continuous quantities such as model parameters, initial or boundary conditions.

Following (Rayner et al., 2016)[Eqs. 2,3] we write
:::
We

::::
form

:::
the

::::
joint

:::::::::
probability

:::
by

::::::::::::
multiplication

::
as

p(x|y,Hy
:
)∝

∫
p(x|xb)× p(yt|yo)× p(y|H(x))dyt (1)

where x represents the target variables, y the observations, the superscript b represents the background or prior value, the

superscript t represents the true
:
o
::::::::
represents

:::
the

::::::::
observed

:
value and H represents the observation operator. The left-hand side15

of Equation 1 represents the probability distribution for the target variables given both prior knowledge and the observations.

We add H to this left-hand side to emphasise that the PDF also depends on H .
:::
We

:::::::
generate

:::
the

::::
final

:::::
PDF

::
for

::
x
:::
by

:::::::::
integrating

:::
over

::
y
:

p(x)∝
∫
p(x,y)dy

::::::::::::::::

(2)

In the usual case of data assimilation we only have one observation operator. Thus we often forget that the posterior PDFs20

for target variables are implicitly dependent on the observation operator. Where an ensemble of observation operators is avail-

able we can no longer assume certainty over
::
for

:
which one we should use. The ith

::
ith

:
observation operator Hi becomes

part of the target variables so instead of calculating P (x|y)
:::::
p(x|y)

:
we now seek P (x,Hi|y):::::::::

p(x,Hi|y).1 ::::
Once

:::
we

:::::
have

::::::::
calculated

:::::::::
p(x,Hi|y):::

we
::::
can

:::::
either

::::::::
integrate

::::
over

:
x
::

if
:::
we

:::
are

:::::::::
interested

::
in

:::
the

::::::
relative

:::::::::::
probabilities

::
of

::::::::
different

::::::::::
observation

:::::::
operators

:::
or

::
we

::::
can

::::
sum

::::
over

:::
the

::::::
various

::::::
choices

:::
of

:::::::::
observation

::::::::
operators

:::
to

:::::
obtain

:::
the

::::
PDF

:::
for

::
x.

:
The hierarchical approach25

::::::::::::::::
(see ?, Section 5.6) factorises this joint PDF of observation operators and unknowns

::::::::
continuous

:::::
target

::::::::
variables

:
using an ex-

pression known variously as the chain rule of probabilities or the law of total probabilities.
::
In

:::
the

::::
case

:::
of

:
a
:::::::
discrete

::::::
choice

::
of

:::::::::
observation

:::::::
operator

::::
this

::::
takes

:::
the

:::::
form

Pp
:
(xx

:
,Hi) = Pp

:
(xx

:
|Hi)Pp

:
(Hi) (3)

1The true target variable is i, the index variable on the set of observation operators but we will continue to use Hi to make it clear to what this index refers.
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Substituting Equation 1 into
:::::::::
Combining

::::::::
Equation

::
??

::::
and Equation 2 we

:::::
obtain

:

p(x,Hi|y) = P (x|y,Hi)p(Hi|y)
:::::::::::::::::::::::::::

(4)

::
we

:
see that the hierarchical and nonhierarchical PDFs differ only by the factor P (Hi|y):::::::

p(Hi|y) and we hence need to calculate

this term.

We will develop the theory for the simplest linear Gaussian case. Here many of the resulting integrals have analytic solutions.5

The approach will hold for nonlinear observation operators provided they are approximately linear over enough of the support

for the joint distribution of x and y. The qualitative ranking of models is unlikely to be sensitive to weak nonlinearities since,

as we shall see, the discrimination among models is strong.

We follow the notation of Rayner et al. (2016)
:
?
:
.
:::
We

::::::
switch

::::
from

:::::
using

:
a
::::::::::

potentially
::::::::
nonlinear

::::::::::
observation

:::::::
operator

::
H

::
to

::
a

:::::
linear

:::
one

::::::::::
represented

:::
by

:::
the

:::::::
Jacobian

:::
H. Take a collection of linear observation operators with Jacobians H1 . . .HN , with10

prior probability for the unknowns
:::::::::
continuous

:::::
target

::::::::
variables given by G(x|xb,B) and prior probability for the data given

by G(y|yo,R) where G(x|µ,C) represents the Gaussian distribution of the variable x given
::::
with mean µ and uncertainty

covariance C.
::
xb

:
is
:::
the

:::::
prior

::
or

:::::::::
background

::::
with

::::::::::
uncertainty

:::::::::
covariance

::
B.

:::
yo

:
is
:::
the

::::::::
observed

::::
value

::::
with

::::::::::
uncertainty

:::::::::
covariance

::
R

:::::::::
(?, Table 1)

:
.

For each Hi our problem is the linear Gaussian inversion described in (Rayner et al., 2016, Section 6.4)
::::::::::::
(?, Section 6.4).15

Most importantly for us the posterior PDF P (x|y,Hi) is Gaussian. Thus our posterior for the ensemble is a mixture distribution

of Gaussians
:::::::::
p(x|y,Hi) :

is
:::::::::
Gaussian:

Pp
:
(x,Hi|y)∝ P (,Hi|y)×=:G(x|,xa

i ,Ai) (5)

where xa
i is the maximum aposteriori probability estimate or analysis for the ith Jacobian and Ai is the corresponding

analysiscovariance.
:
a
:::::::::

posteriori
:::::::
estimate

:::
for

::::
the

:::
ith

::::::::::
observation

::::::::
operator

:::::
(often

::::::
called

:::
the

::::::::
analysis)

:::::
with

:::::::::
covariance

::::
Ai.20

::::::::::
Substituting

:::::::
Equation

:::
??

::::
into

:::::::
Equation

:::
??

:::
we

:::::
obtain

:

p(x,Hi|y)∝ p(Hi|y)×G(x|xa
i ,Ai)

::::::::::::::::::::::::::::::
(6)

The constant of proportionality is set such that
∑
iP (Hi|y) = 1. As usual with a joint PDF we obtain the marginal probability

for a variable by integrating over all others. In the case of the set of observation operators this integral reduces to a sum.

P (Hi|y) ::::::::::::::

∑
i p(Hi|y) = 1.

::::
Thus

:::::::::
p(x,Hi|y)::

is
::
a

:::
sum

::
of
::::::::
Gaussian

:::::::::::
distributions,

::::::
usually

::::::
called

:
a
::::::::
Gaussian

:::::::
mixture

::::::::::
distribution.25

:::::::
p(Hi|y) is the marginal likelihood for a Gaussian (Michalak et al., 2005, Eq.10)

:::::::::::::::::::::::::
(Michalak et al., 2005, Eq. 10)

Pp
:
(Hi|y) =K

∣∣R+HiBHT
i

∣∣−1/2
exp

[
−1

2
(yo−Hix

b)T · (R+HiBHT
i )

−1 · (yo−Hix
b)

]
(7)

::::
Note

:::
that

::::::::
p(Hi|y)::

is
:
a
::::
PDF

::::
over

:::
the

::::::
indices

:
i
:::::
since

:::
all

::::
terms

:::
on

:::
the

:::
rhs

::
of

::::::::
Equation

:
4
:::::
apart

::::
from

:::
Hi:::

are
:::::
fixed.
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2.1 Interpretation5

Provided xb
::::
p(x)

:::
(the

:::::
prior

::::::::::
distribution

:::
for

::
x)

:
and y are independent, R+HiBHT

i is the variance of the prior mismatch

y−Hix
b (as noted by Michalak et al., 2005) so Eq. 4 represents the probability of simulating the observations given the prior

estimate and related uncertainties. Quite reasonably, the higher this probability the more likely
:::::::
y−Hix.

:::::
This

::::::
follows

:::::
from

::
the

::::::::
Jacobian

:::
rule

:::
of

::::::::::
probabilities

:::::::::::
(?, Eq. 1.18)

:::
and

:::
the

:::::::::
expression

:::
for

:::
the

:::::::
variance

::
of

:::
the

::::::::
difference

:::
of

:::
two

::::::::
normally

:::::::::
distributed

::::::::
quantities.

:::::
Thus,

:::::::::
inspection

::
of

:::
the the model

::
rhs

::
of

::::::::
Equation

:
4
::::::
shows

:
it
::
to

:::
be,

::::::::
excluding

:::::
some

:::::::
potential

::::::::::::
normalisation,

::::::::::::::::::
G(z,0,HiBHT

i +R)10

::::::::
evaluated

::
at

:::
the

:::::
point

::::::::::::::
z=Hix

b−yo.
:::::::
Smaller

::::::::::
magnitudes

::
of

::::::::::
Hix

b−yo
::::::::::
correspond

::
to

:::::
better

::
a
:::::
priori

::::::::::
simulations

:::
of

:::
the

::::::::::
observations

:::
and

::::::
higher

::::::
values

::
of

:::::::
p(Hi|y)::

i.e
:::::
more

:::::
likely

:::::::
models.

:::::
Equal

::::::::::
magnitudes

::
of

:::::::::
Hix

b−yo
::::
may

:::
not

::::::
produce

:::
the

:::::
same

::::
value

:::
of

:::::::
p(Hi|y):::::

since
:::
The

:::::::::
mismatch

:::::::
variance

:::::::::::
HiBHT

i +R
::::

may
::::

not
::::::
weight

::::
them

:::::::
equally. We can say equivalently that the

model performance should be judged by the normalised prediction error (simulation− observation divided by its variance) pe-

nalised by the expected range of the predictions or the volume of the data space occupied by the prior model and its uncertainty15

(see discussion in MacKay, 2003, Ch.28).

Eq. 4 occurs in other hierarchical contexts such as the calculation of covariance parameters by Michalak et al. (2005) and

Ganesan et al. (2014). This is understandable since the submodels in all three cases are the classical Gaussian problem. We

note that these two papers used Eq. 4 to tune covariance parameters which may change the relative weighting of models. It

raises the question that relative performance of models may depend strongly on whether the inversion is well-tuned for that20

model. The algorithm in Michalak et al. (2005) consists of tuning a scaling factor for prior covariances to maximize P (Hi)

:::::
p(Hi):(though in their case there is only one model). We can test the sensitivity to a uniform scaling of B and R by a factor α.

Increasing α increases the determinant so decreases the first factor of P (Hi) :::::
p(Hi) while it decreases the negative exponent

and so increases the second part. The balance is a relatively subtle change. In Section 3 we will investigate whether this is

enough to change the ranking of models in one example.25

The exponent in Eq. 4 is also the minimum value of the cost function usually minimised to solve such systems. It is often

denoted 1
2χ

2. In a statistically consistent system χ2 is equal to the number of observations (Tarantola, 1987, P.211). We often

quote the normalized χ2 as χ2

n .

Note also that for a given B and R, Eq. 4 is extremely punishing on inconsistency. For example with n= 10000, a normalized

χ2 of 1.01 instead of 1 yields a ratio of probabilities for the two models of e50 ≈ 1021
:::::::
consider

:
a
::::
case

:::::
with

::
N

:::::::::::
observations30

:::
and

:::
two

::::
two

::::::
models

::::
H1:::

and
::::
H2 :::

for
:::::
which

:::
the

:::::::
quantity

:::::::::::::::::::::::::::::::::::::::::

1
N (yo−Hxb)T · (R+HiBHT

i )
−1 · (yo−Hxb)

::::
(the

:::::
mean

::::::
square

::::::::
mismatch

:::
per

:::::::::::
observation)

:::
are

::::
1.0

:::
and

:::::
1.01

:::::::::::
respectively.

::::
With

::::::::::
N = 10000

::::
(by

:::
no

::::::
means

::::::::
unusually

::::::
large)

:::
we

::::
see,

:::::
from

:::::::::
substitution

::::
into

::::::::
Equation

:
4
:::
that

:::::::::::::::::::::::::::
p(H1|y)/p(H2|y) = e50 ≈ 1022. This is unrealistic and is an example of the “curse of dimen-

sionality” (Stordal et al., 2011) in which distances between points in high-dimensional spaces tend to infinity. We shall address

one approach to resolving this problem in Section 4.

2.2 Relationship with Other Criteria

5



P (Hi) :::
The

::::::::
exponent

:::
in

:::
Eq.

::
4

::
is

::::
also

:::
the

::::::::
minimum

:::::
value

:::
of

:::
the

::::
cost

:::::::
function

:::::::
usually

:::::::::
minimised

::
to

:::::
solve

::::
such

::::::::
systems.

::
It5

:
is
:::::

often
:::::::
denoted

:::::

1
2χ

2.
::
In

::
a
::::::::::
statistically

:::::::::
consistent

::::::
system

:::
the

::::::::
expected

:::::
value

::
of

:::
χ2

::
is
:::::
equal

:::
to

:::
the

:::::::
number

::
of

:::::::::::
observations

:::::::::::::::::::
(Tarantola, 1987, P.211)

:
.
:::
We

::::
often

:::::
quote

:::
the

::::::::::
normalized

::
χ2

:::
as

:::

χ2

n ,
:::::::
roughly

:::
the

::::
mean

::::::
square

::::::::
mismatch

:::
per

:::::::::::
observation.

:::::::
p(Hi|y) is related to several other measures of model quality. For convenient comparison we define

LL
:
=−2log(P (Hi|y)

K

p(Hi|y)
K

:::::::

) = log
∣∣HiBHT

i +R
∣∣+χ2 (8)

The change of sign means smaller values of L correspond to more likely models.10

L is related to other criteria for model selection such as the Akaike Information Criterion (Akaike, 1974) and Schwartz

Information Criterion (also called the Bayesian Information Criterion,BIC) (Schwarz, 1978). Both these
:
In

::::
our

::::
case

:::
the

::::
AIC

:::
can

::
be

:::::::
defined

::
as

AIC =M +χ2

::::::::::::
(9)

:::::
where

:::
M

::
is

:::
the

::::::
number

:::
of

:::::
target

::::::::
variables

:::
(the

:::::::::
dimension

:::
of

:::
x).

:::
The

::::::
related

::::::::
Bayesian

:::
or

::::::::
Schwartz

::::::::::
Information

::::::::
Criterion

::
is15

::::::
defined

::
as

:

BIC
::::

= χ2 +M ln(N)
:::::::::::::

(10)

20

:::
All

::::
three

::::::
criteria

::::::::
consider

:::
the

::::::::
goodness

::
of

:::
fit

::
of

:::
the

::::::
model.

:::
All

:
criteria penalise models for adding parameters. Neither

::::
AIC

:::
nor

::::
BIC take account of different prior uncertainties among parameters or different sensitivities of the observations to these

parameters.

3 The TRANSCOM Example

The TRANSCOM III intercomparison (Gurney et al., 2002, 2004; Baker et al., 2006) was designed to investigate the impact25

of uncertainty in atmospheric transport models on the determination of CO2 sources and sinks. The target variables were the

mean CO2 flux from each of 22 regions (11 land and 11 ocean) for the period 1992–1996. These fluxes excluded fossil fuel

emissions and a data driven estimate based on ocean and atmosphere measurements (Takahashi et al., 1999). Prior estimates

and uncertainties were gathered from consultation with experts in each domain. The data was the average CO2 concentration

from 77
::
76 stations and the same data was used in every inversion. Participants in the intercomparison calculated Jacobians by30

inserting a unit flux into an atmospheric transport model corresponding to each region. There were 17 participating models so

our space of target variables consists of 22 flux components and an indexed set of 17 models Hi.
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The inversions for the flux components are carried out by changing H with all other aspects held constant. The authors

then created pooled estimates of the posterior fluxes such as the mean, the mean uncertainty (averaging all the posterior

uncertainties) and finally the “between model” spread, calculated as the covariance among the posterior fluxes for each model.

In all these calculations we weighted every model equally. What happens if we apply the methods described in Section 2 to

calculate pooled estimates?

Figure 1 shows a slightly modified L for the seventeen models for the cases without (top) and with (middle) tuning following

Michalak et al. (2005). The modification consists of displaying log10 rather than the natural logarithm. For the tuning cases we5

used one multiplier each for P
:
B

:
and R. We see a large range of weights, 11 orders of magnitude for the untuned and 14 orders

of magnitude for the tuned cases. This certainly reflects the “curse of dimensionality” mentioned earlier. For the same reason

there is a strong focus of weight on a few models. Tuning intensifies this focus though it leaves the ranking almost unchanged.

We conclude therefore that variation in model performance (as measured by L) does not reflect the quality of tuning of the

inversion but something more fundamental about the models and data. Henceforth we consider only the untuned case.10

::::::::
Although

:::::::
rankings

::
do

:::
not

:::::::
change

:::::
much,

:::
we

:::
see

:::
that

::::::
model

:
3
::::
and,

::
to
::
a
:::::
lesser

::::::
extent,

:::::
model

::
1

::::
have

:::::
much

:::::
lower

:::::::
weights

::::
after

:::::
tuning

::::
than

::::::
before.

::::
The

:::::::
variance

:::::
tuning

:::::::::
procedure

::::::
reduces

:::
the

::::::::
variances

:::
for

::::
most

:::::::
models

:::::::::
(indicating

:::
that

::::
they

::
fit

:::
the

::::
data

:::::
better

:::
than

::::
the

::::::
original

:::::::::
variances

::::::
suggest

::::
they

:::::::
should).

::::
All

:::
else

::::::
being

::::
equal

::
a
:::::
lower

:::::::
optimal

:::::
value

:::
for

:::
the

:::::::
variance

:::::::
scaling

::::::
factors

:::::
means

::
an

:::::::::
increased

:::::::
p(Hi|y).:::::::

Models
:::
one

::::
and

::::
three

::
do

:::
not

:::::
have

::::
their

:::::::
variance

::::::
scaling

:::::::
changed

:::::
much

::
so

:::::
their

::::::
relative

::::::
weight

::
is

:::::::
reduced.

:::
The

::::::::
reduction

::
is
:::::
large

:::::::
because

::
of

:::
the

::::
same

:::::::::::::
dimensionality

:::::::::
arguments

::::
made

::::::
above.

:

In the next two sections we consider the marginal probabilities to investigate the relative probabilities of different models

and the pooled flux estimates.

3.1 Model Probabilities: Comparing Model Performance5

The Gaussian weights derived in Section 2 are the probabilities that a given model is the correct one for matching the data under

the assumption that we must choose one (see Jaynes and Bretthorst, 2003, P136 for a discussion of this point)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::
(see Jaynes and Bretthorst, 2003, p.136 for a discussion of this point)

. We must, however, be careful not to over-interpret these probabilities as measures of model quality. In the first place, L, like

the BIC and χ2 grows with the number of observations. So, then, does the divergence among models, an effect intensified

when we take exponentials to calculate probabilities. The relative quality of two models depends on the amount of data used to10

compare them even if our ability to distinguish between them does increase as we add data. We can normalise by considering

L/N (where N is the number of observations) as a generalisation of the normalised χ2. This ranges from a minimum of 0.01

to 0.67. The very low value should not be interpreted as representing an absolute quality of fit since we have normalised the

probabilities to sum to 1. Rather it tells us that the apparently large change in the weights is a result of much smaller differences

in the relative quality of the fit coupled to large amounts of data.15
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Figure 1. log10 of P (Hi|y) ::::::
p(Hi|y) for the untuned (top), tuned (middle) and case with residuals used for R (bottom) transcom inversions.

3.2 Ensemble Means and Variances

We can calculate various statistics of the ensemble using well-known properties of Gaussian mixtures. the
::::
The mean is calcu-

lated as

µ=
∑

i

Pp
:
(Hi|y)xa

i (11)

Note that this collapses to the conventional mean if all weights are equal. the
:::
The variance is calculated as20

A∗ =
∑

i

Pp
:
(Hi|y)

[
A∗
i +(xa

i −µ)2
]

(12)

The Superscripts
:::::::::
superscript ∗ indicates we consider only the diagonal of the relevant matrices; Equation 7 only accounts for

the variance not the covariance of the estimates. The second term in Equation 7 includes the spread of the means for each

model. If all the P (Hi|y):::::::
p(Hi|y):are equal, Equation 7 collapses to the “total uncertainty” metric used by Rayner (2004) to

incorporate both the “within” and “between” model uncertainty described in Gurney et al. (2002).25

Figure 2 shows the equally-weighted and probability-weighted case for the TRANSCOM regions, in a format following

Gurney et al. (2002). Here we do not show the “within” and “between” metrics separately since the Gaussian mixture naturally

combines them. The focus of P (Hi|y) :::::::
p(Hi|y):on a few models (70% on one model) might suggest that the uncertainty in
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Figure 2. Prior and posterior uncertainties for regional fluxes from the TRANSCOM intercomparison following Gurney et al. (2002). The

centre line of each box shows the prior estimate of the mean while the box limits show the ±1σ uncertainties. The three bars show the

mean (marked with "x") and ±1σ uncertainty denoted by the length of the bar. The uncertainty is that of the ensemble including both the

uncertainty for each model and the dispersion among model means. The left bar shows the equally weighted case, the middle bar the case for

the P (Hi|y) ::::::
p(Hi|y):and the right bar the case with covariance of residuals included.

the weighted case should be far smaller than the equally weighted traditional case. Figure 2 shows this is not the case. Both the

means and uncertainties for the two cases are quite similar.30

The agreement of the means is explained by a result from Gurney et al. (2002). They noted that the mean simulation from

their equally-weighted ensemble produces a better match to the data than any individual model . The probability-weighted flux

is constructed to maximize the posterior probability across the model ensemble and parameter PDFs thus its mean should also

produce a good match. It is hence no surprise that the preferred model eight is the model closest to the unweighted model mean.

Recalling that the ensemble weights this preferred model at 70% we see good agreement between weighted and unweighted

means.5

The similarity in the weighted and unweighted total uncertainty is partly a result of the weak data constraint in our problem.

Gurney et al. (2002) noted that for almost all regions the “within” uncertainty was larger than the “between”. Furthermore

the posterior uncertainties produced by each model are rather similar so that the weighted and unweighted contributions in

equation 7 are similar. The contributions of the “between” uncertainty are different in the weighted and unweighted cases but,

9



since these are smaller than the other contribution, we do not see a large final difference. This would change in cases where the10

constraint afforded by the data (as evidenced by the uncertainty reduction cf the prior) was large.

4 Improved Treatment of Observational Covariance

Although mathematically correct, the strong discrimination among models by L is not intuitively reasonable. One reason for

the strength of the discrimination is that each datapoint makes an independent contribution to the PDF. This is not an error in

the formulation of L but rather the PDF associated with the data in the underlying assimilation.2 Physically this asumption
::
In

::
the

::::
case

::
of
:::::::::::
atmospheric

:::::::
transport

:::::::
models

:::
this

:::::::::
assumption

:
says that if a model makes an error at one station, one cannot assume5

it will make a similar error at a nearby station. The physical coherence of atmospheric transport processes makes this most

unlikely, even if subgrid heterogeneity lends some independence to the two stations.

There are two major approaches to characterising the model error covariance, either a priori or a posteriori. A priori we would

like some machinery for calculating how uncertainties in model components or drivers project into model simulations. Lauvaux

et al. (2009), for example, described a mechanism for calculating correlations in simulated tracer distributions due to correlated10

meteorological uncertainty but this is not a comprehensive description, i.e it leaves out many sources of uncertainty. If we have

an ensemble of models we can use the ensemble of simulations using the prior value of the target variables as a measure of

the model contribution to uncertainty. This was suggested by Tarantola (1987). We can write this as
::::
The

:::::::::
motivating

::::::::
argument

:
is
::::
that

:::
the

::::::::
ensemble

::
of

::::::
models

:::::::
samples

:::
the

::::::::::
uncertainty

::
of

:::
the

::::::::::
observation

:::::::
operator

:::::
while

::::::::::
maintaining

:::::::
physical

::::::::::
consistency

:::
for

::::
each

:::::::
member

::
of

:::
the

::::::::
ensemble.

::::::::
Equation

:::
??

:::::::
requires

::
the

:::::
PDF

::
of

:::
the

:::::::::
simulation

:::::
H(x)

:::
for

:::
any

::
x.

::::::::::::::
Tarantola (1987)

:::::::
suggests

::::
that15

::
the

::::::::::
covariance

::
of

:::
this

::::
PDF

::::
can

::
be

:::::::::
calculated

::::
using

::::
xb.

::::
First

:::::
define

:::
the

:::::
model

:::::
mean

:

µb =Hxb
::::::::

(13)

:::::
where

:::
the

::::::
average

::
is
:::::
taken

::::
over

:::
the

::::::::
ensemble

::
of

:::::::
models.

:::
We

:::
can

::::
then

:::::
write

:::
the

::::::::
ensemble

:::::::::
covariance

::
as

:

Rprior
i,j = (Hxb

i −µb
i )(Hxb

j −µb
j ) (14)20

the other
::::
where

:::::
once

:::::
again

::
the

:::::::
average

::
is

::::
over

:::
the

::::::::
ensemble

::
of

::::::
models

::::
and

:::
the

::::::::
subscripts

:::::
index

:::
the

:::::::::::
observations.

:

:::
The

::::::
second

:
approach is analysis of the posterior residuals. Desroziers et al. (2005) noted that the residuals must be consistent

with the PDF assumed for the model-data mismatch, here described by R. If this is not the case we need to make a correction

to R. Here again we have a range of choices. If we have enough data we can fit covariance models as functions of space and

time. We do not have enough data so we calculate directly the ensemble covariance of the residuals as25

Rsample
i,j = (Hxa

i −yi)(Hxj −yj) (15)

where the overbar denotes an average over the ensemble of models and their respective analyses and the indices i and j refer

to observations. Descriptively Rsample will be positive if, on average, models make errors of the same sign for observations
2Strictly speaking it is the model PDF from Rayner et al. (2016)

:
?, but we have combined model and data uncertainties following their Section 6.4
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Figure 3.
::::::

Assumed
:::::::
standard

::::::::
deviations,

:::::::
standard

::::::::
deviations

::::
taken

::::
from

:::
the

:::::::
diagonal

::
of

:::::
Rprior

:::
and

:::::::
Rsample

:::
for

:
a
:::::::::::
representative

:::::
subset

::
of

::::::
stations.

i and j. Note that if the ensemble of models is smaller than the number of observations (usually the case) then both Rsample

and Rprior are singular. This is one reason why we add R to either, the other being that the model uncertainty does not capture30

all the data uncertainty.
::::::
Neither

::::::
Rprior

:::
nor

::::::::
Rsample

::::::
capture

::::::::::::
observational

::::
error

::::::::
however.

::::::::::::
(?, Eq. 1.106)

:::::
points

:::
out

:::::
that,

:::
for

:::::::
Gaussian

::::::
PDFs,

:::
we

:::
can

:::::::
combine

:::
the

:::::
PDFs

:::
for

:::
the

:::::
model

::::
and

::::::::::
observations

:::
by

::::::
adding

::::
their

:::::::::
respective

::::::::::
covariances.

We note in advance an objection to using Rsample that, by using the residuals, we are double counting information in any

subsequent inversion. This is partly true although firstly we only use it to correct the spread not the location of the related PDFs

and that the same objection holds for any use of posterior diagnostics. The

:::::
Figure

:::
??

::::::
shows,

::
for

::
a
::::::
sample

::
of

:::::::
stations,

:::
the first-guess and residual covariances

:::::::
standard

::::::::
deviations

:
from Eq. 9

:
8 and Eq. 85

:
9
::
as

::::
well

:::
as

:::
the

::::::
control

:::::::
standard

:::::::::
deviation.

:::
The

::::::::
standard

::::::::
deviations

:
show somewhat similar structure, with the largest values

for a few terrestrially-influenced stations such as Baltic Sea , Hungary and taiane
:::::
(bal),

::::::::::::
Hungary(hun)

:::
and

::::::
Taiane Peninsula,

Korea . As expected the variances in Eq. 9 are smaller than those in Eq. 8 reflecting
::::
(tap).

::::::::::
Magnitudes

:::
of

:::
the

:::::::::
first-guess

::::::::
variances

::
are

:::::
larger

::::::::
however.

:::::
There

:::
are

:::
49

::
of

:::
the

::
76

:::::::
stations

:::::
where

:::
the

::::::::
first-guess

::::::::
variance

:
is
:::::
larger

::::
than

:::
the

:::::::::::
observational

:::::
error

:::::::
variance

:::
but

::::
only

:::
one

::::::
station

::::::
(Mould

::::
Bay

::
in

:::::::
Canada)

:::::
where

:::
this

::
is

:::
true

:::
for

:::
the

:::::::
residual

:::::::
variance.

::::
This

::::::
reflects

:
the convergence of10

simulations towards the observations.
::::::::::
Covariances

::::::
among

::::::
stations

:::
are

:::::
more

:::::::
complex

:::
but,

:::
as

::::::::
expected,

:::
they

:::
are

::::::
strong

::::::::
whenever

:::::::
multiple

::::::::::::
measurements

:::::
occur

::::
near

::::
each

:::::
other

::::
(e.g.

::
at

:::
one

::::::
station

::
or

::
in

::::
one

::::::
vertical

:::::::
profile).

::::
This

:::
has

:::
the

::::::::
desirable

::::::::
property

::
of

:::::::::::
de-weighting

::::
these

::::::::::::
measurements

:::::::
relative

::
to

::
an

::::::::::
independent

:::::::::::
observational

::::::::::
covariance.

:

The weights for the case considering covariance of first guesses
::::
using

:::::::
Rsample

:
is shown as the bottom row in Figure 1 and

the impact on regional estimates is shown as the right bar in Figure 2. The ranking is similar to the other cases, especially15
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for the preferred models. The main effect of including the residual covariance is to reduce the penalty for the least preferred

models. Given the small changes among the preferred models it is no surprise that there is little change in the regional estimates

or total uncertainties. One reason for the largest impact falling on the least preferred models is that the residual covariance is

dominated by the largest residuals which come from the least preferred models.

5 Model Comparison and Cross-Validation20

In Section 3 we applied the theory to the simplest possible case of models with identical dimensionality and uncertainties; they

differed only in their Green’s Function. The theory is more general than this. We noted in Section 2.1 that model performance is

determined by the normalised prediction error and the volume of the data space occupied by the prior model. Neither of these

depends directly on the dimensionality of the prior model. We can compare a model with two highly uncertain parameters

against another with four more certain parameters. This extends the BIC which considers only the number of parameters.25

The case is quite common in biogeochemistry in which we often compare simple models with empirical and highly uncertain

parameters with complex, physically-based models whose parameters can be linked to field experiments.

A special case occurs when we compare the prior and posterior models. This is usually done by holding back a subset of

the data and testing the improvement in the fit to that data (e.g. Peylin et al., 2016). The approach is frequently called cross-

validation. L provides a good basis for comparison of the prior and posterior models. Most importantly it accounts for the30

different volumes in the data space occupied by the prior and posterior models. Posterior models (informed by the previous

assimilation) always occupy less volume in the space of the cross-validation data than their unconstrained or free-running prior

model. Thus a good fit to the cross-validation data is less likely to be a chance event.

It is also possible to weight model estimates by their ability to fit cross-validation data. The steps are as follows:

1. Divide data into assimilation and validation data;

2. Carry out an ensemble of assimilations using each model and the assimilation data;5

3. Calculate L using the posterior estimates from step two and the validation data;

4. Calculate ensemble statistics from the posterior estimates from step two and L from step three.

Note that the prior means and covariances in Equation 4 for step three are the posterior means and covariances from step two.

Thus, while in Section 3.1 we varied only the model H here we also vary Xb
::
xb and B. Variations in B or, more generally,

variations in the projection of prior uncertainty into observation space are not usually treated in cross-validation studies (e.g.10

Pickett-Heaps et al., 2011).

For our example we parallel the test of Stephens et al. (2007). They held back data from airborne profiles and rated models

according to their ability to fit seasonal changes in vertical gradients. We cannot use the same measure in our annual mean

experiment but we do use the nine points from the airborne profiles above Cape Grim Tasmania or Colorado USA.

We can calculate L using these nine measurements and the prior and posterior models. The comparison of L for these cases15

shows whether the fit to the data held back from the inversion has improved. One would hope so but Peylin et al. (2016) showed
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Figure 4. log10 ofP (Hi|y):::::::
p(Hi|y) for the prior (top) posterior (bottom) with the JIC

::::::
p(Hi|y):calculated using nine airborne measurements

over Cape Grim and Colorado.

that this is not always the case. In our case L improves by several orders of magnitude due both to a reduction in the residuals

and a narrowing of the PDF. Figure 3 shows the comparison of normalised L for the prior (top) and posterior (bottom) models.

The prior case shows little variation around the equally-weighted value of 1
17 while this variation is considerably increased

for the posterior case. Figure 4 shows the ensemble statistics for three inversion cases. The left bar is the equally weighted5

case for the entire network (the left bar from Figure 2), the middle bar shows the equally weighted case for the inversion with

the nine cross-validation stations removed while the right bar shows the same inversion but weighted according to P (Hi|ycv)

:::::::::
p(Hi|ycv) where ycv is the cross-validation data. Averaged across all regions the impact of changing network and changing

weighting are comparable although the largest changes are in North and South America following from the change of network.

This was also observed by Pickett-Heaps et al. (2011).10

6 Computational Aspects

The hardest part of the calculation of P (Hi|y) :::::::
p(Hi|y):is calculating the matrix HiBHT

i +R. There are several possible

routes depending on the size of the problem and the available machinery. In problems with few parameters it may be possible to

calculate and store Hi directly. Recall that Hi =∇xy. We can calculate Hi either as the tangent linear of H (Griewank, 2000)
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Figure 5. Prior and posterior uncertainties for regional fluxes from the TRANSCOM intercomparison following Gurney et al. (2002). The

centre line of each box shows the prior estimate of the mean while the box limits show the ±1σ uncertainties. The three bars show the

mean (marked with "x") and ±1σ uncertainty denoted by the length of the bar. The uncertainty is that of the ensemble including both the

uncertainty for each model and the dispersion among model means. The left bar shows the equally weighted case for the full network, the

middle bar the equally weighted case with the cross-validation stations removed and the right bar the L-weighted case for the cross-validation

data.

or via finite difference calculations in which a parameter is perturbed. Once we calculate H we can generate the eigen-values

of HiBHT
i +R from the singular values of Hi.::

In
:::::
other

::::
cases

:::
R

:
is
::::::
sparse

::
in

:::::
which

::::
case

:::
we

::::
can

:::::::
calculate

::::::::::::::::

(
HiBHT

i +R
)−1

5

::
as

:
a
:::::::::
correction

::
to

::::
R−1

:::::
using

:::
the

::::::::
Sherman

:::::::::
Morrison

::::::::
Woodbury

:::::::
formula

:::
(?).

:

If the problem is too large or the generation of the Jacobian too costly we need to generate an approximation of the determi-

nant of HiBHT
i +R. A common approach is to calculate the leading eigenvalues of (the symmetric matrix HiBHT

i through

a so-called matrix-free approach. Rather than an explicit representation of the matrix, matrix-free approaches require the ca-

pability to evaluate the product of the matrix in question with any given vector. The prime example of a matrix free approach10

was published by Lanczos (1950). In our case the application of a matrix-free approach requires the tangent linear of Hi ( to

generate Hi(x) ::
to

:::::::
generate

::::
Hix and the adjoint model to generate Ht

i(x)::::
Ht
ix. This is similar to calculations performed in the

conjugate gradient algorithm for the assimilation problem itself (Fisher, 1998). The second term in Equation 4 is the Bayesian

14



least squares cost function evaluated at the minimum so, provided we want to calculate Xa
::
xa

:
and not just P (Hi|y)::::::::

p(Hi|y),
we already have this value.15

7 Discussion and Future Work

The method we have outlined points out one way of incorporating measures of model quality into ensemble estimates. The

TRANSCOM case points out its main limitation, a strong dependence on the underlying PDFs. The same limitation holds for

other calculations with the underlying PDFs, especially measures of information content or posterior uncertainty. Thus the

largest effort needed to improve our calculation is the same as that for many other aspects of assimilation, namely the assess-20

ment of the independent information available from large sets of observations, accounting for systematic errors in observation

operators. This problem is particularly difficult in biogeochemical assimilation. The normal application is of a single assim-

ilation carried out over the longest possible period. This is desirable both because there is usually little data available in any

period (encouraging maximising the assimilation window) and many of the processes we seek to elucidate are slow so that

long windows are desirable to reveal them. This means that it is hard to separate systematic errors arising from the prior, the25

data itself or the observation operator.

Some assimilation problems are less subject to this weakness. In numerical weather prediction, for example, we have repeat

assimilations. Thus we can test that the underlying PDFs are consistent with their realisations. We also have more direct tests

of the quality of the assimilation via forecast skill. The above argument suggests a strong need for ensemble approaches in

biogeochemical assimilation.

A more immediate application than properly weighting an ensemble of models may be in model development. Here a

common question is of complexity over simplicity. If, as is argued throughout this series, assimilation is a good guide to

parameter choice and even structure in models we need some way to tell whether adding extra processes, with their concomitant5

uncertainties, is worth the effort. This is a standard problem in statistical inference. The Bayesian formulation outlined here

shifts the comparison of two models from complexity to the volume of data space available to them, allowing both complexity

and uncertainty to play a role. This offers a promising basis for comparing different versions of a model.

The comparison between models and data sets is, however, incomplete. We cannot compare easily two assimilations with

different amounts of data since the Model Evidence
::::::
p(H|y) has a strong dependence on dimension.10

8 Conclusions

We have developed a simple application of hierarchical data assimilation to incorporate choice among an ensemble of models.

We have demonstrated it for a computationally simple case, the annual mean version of the TRANSCOM intercomparison. The

method provides unrealistically strong discrimination among models, mainly due to incorrect assumptions about underlying

PDFs. We have also successfully applied the technique to the cross-validation of the TRANSCOM inversions by holding back15

15



airborne data over Tasmania and Colorado. The method, when coupled with more sophisticated diagnostics of model-data

mismatch should prove a useful extension to traditional biogeochemical data assimilation.

Code and Data Availability

The code and data files to run the TRANSCOM example and generate the figures in the paper can be found at https://figshare.

com/articles/Code_needed_to_run_the_transcom_ensemble_weighted_probability_case_for_Data_Assimilation_using_an_Ensemble_20

of_Models_A_hierarchical_approach_Geoscience_Model_Development_Discussions_2016_w_draft_item/4210212
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