¹ Supplement of

Atmospheric processes of persistent organic pollutants over a remote lake of the central Tibetan Plateau: Implications for regional cycling

5

6	Jiao Ren ^{1,3} , Xiaoping Wang ^{1,2,*} , Chuanfei Wang ^{1,2} , Ping Gong ^{1,2} , and Tandong Yao ^{1,2}
7	¹ Key Laboratory of Tibetan Environment Changes and Land Surface Processes,
8	Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101,
9	China
10	² CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, 100101,
11	China
12	³ University of Chinese Academy of Sciences, Beijing 100049, China
13	
14	* Correspondence to: Xiaoping Wang (wangxp@itpcas.ac.cn)
15	
16	

17 Introduction

18 [This supplement file includes the details about climate of sampling site, methods on the extraction and analysis of samples, detection limits and QA/QC results. Dataset of 19 concentrations for each target compounds in this study and comparisons with 20 literature values from other remote regions are also presented. Furthermore, method 21 22 on air-water exchange calculation, localized physical-chemical properties of POPs and 23 derived degradation fluxes are also detailed here. In total, this supplement includes six texts (Text S1 to S6), five figures (Figure S1 to S5) and seventeen tables (Table S1 to 24 S17). They are listed in the order of appearance in the manuscript; please see the 25 26 summary table below.]

Figure S1	The dominated air circulation in Nam Co region for different seasons	Page S4
Figure S2	Temporal variations of air temperature and precipitation in Nam Co station	Page S5
Table S1	Air temperature and wind speed during the sampling period	Page S6-7
Table S2	Information about the water samples	Page S8
Text S1	Preparation, extraction and cleanup method for different samples	Page S9
Text S2	Details about the chromatographic conditions	Page S10
Table S3	Concentrations of POPs in the field blanks and procedural blanks	Page S11-13
Text S3	The ways to define method detection limits (MDLs) and treat with the concentrations below MDLs	Page S14
Table S4	Detection frequency and MDLs for individual compound in each kind of samples	Page S15-16
Table S5	Breakthrough estimation of individual POPs in PUF plugs	Page S17
Text S4	Correction of the dissolved POPs concentrations by dissolved organic carbon (DOC)	Page S18
Text S5	Temperature and salinity-corrected Henry's law constant (<i>H</i>)	Page S19
Text S6	Flux calculation of air-water gas exchange	Page S20-21
Table S6	Equations used for temperature-corrected subcooled liquid vapour pressure (P_L) for each compound	Page S22
Table S7	Concentrations of gas phase POPs (pg m ⁻³) in the atmosphere of Nam Co	Page S23-26
Table S8	Concentrations of POPs (pg m ⁻³) in the total suspended particulates (TSP) of Nam Co	Page S27-30
Table S9	Concentrations of dissolved phase POPs (pg L ⁻¹) in the lake water of Nam Co	Page S31-34
Table S10	Concentrations of particulate phase POPs (pg L ⁻¹) in the SPM of water samples from Nam Co Lake	Page S35-36
Table S11	Comparisons of OCPs and PCBs in the air of this dtudy and data reported for other remote areas (pg m ⁻³)	Page S37
Table S12	Comparisons of PAHs concentrations from this study and data reported for other remote areas (ng m ⁻³)	Page S38
Table S13	Dissolved concentrations of OCPs and PCBs in lake water of this study and other remote sites (pg L ⁻¹).	Page S39

27 Summary of the number of pages, figures, and tables

Table S14	Concentrations of PAHs in lake water of this study and other remote sites (ng L^{-1}).	Page S40
Table S15	Comparison of isomer ratios of OCPs in this study and the source region	Page S41
Figure S3	Seasonal patterns of gaseous and particulate phase of \sum_{15} PAHs in the atmosphere	Page S42
Table S16	Results of ANOVA to test the concentration difference in lake water from different regions of Nam Co Lake	Page S43
Table S17	Results of Clausius–Clapeyron regression	Page S44
Figure S4	Average atmospheric degradation fluxes for individual POPs	Page S45
Figure S5	Seasonality of the wet deposition fluxes for HCHs in Nam Co Lake	Page S46
References		Page S47-51

29 Figure S1. The dominated air circulation in Nam Co region for monsoon and

non-monsoon season (average from 1980-2010). The star is the location of Nam Co Monitoring and Research Station.

- 32 (Cited from Zhang et al., 2013: A study of Zhadang glacier energy and mass balance
- 33 and its hydrological process, in NamCo basin, central Tibetan Plateau, Doctoral
- 34 Dissertation)

Figure S2. Temporal variations of air temperature and precipitation in Nam Co
 station in 2012.

38 The meteorological parameters were measured by an automatic weather station in the

39 Nam Co station, and the data were downloaded in the website of High-cold Region

40 Observation and Research Network for Land Surface Processes & Environment of

41 China (HORN, <u>http://www.horn.ac.cn/</u>)

Table S1. Air temperature and wind speed during the sampling period

Start Date	End Date	Temperature	Wind speed
Y/M/D	Y/M/D	(°C)	(m/s)
2012.09.03	2012.09.15	6.7	3.0
2012.09.16	2012.09.20	6.4	3.1
2012.10.01	2012.10.15	-0.7	3.5
2012.10.24	2012.10.31	-5.5	3.0
2012.11.01	2012.11.15	-7.2	4.3
2012.11.16	2012.11.30	-5.9	NA
2012.12.01	2012.12.15	-8.3	NA
2012.12.16	2012.12.31	-6.6	NA
2013.01.03	2013.01.15	-12.6	3.3
2013.01.16	2013.01.31	-13.0	2.9
2013.02.06	2013.02.16	-8.9	3.6
2013.02.21	2013.03.01	-8.7	3.0
2013.03.02	2013.03.15	-6.1	2.2
2013.03.15	2013.03.31	-5.4	3.2
2013.04.01	2013.04.15	-3.2	3.5
2013.04.15	2013.04.30	-1.1	3.2
2013.05.01	2013.05.15	-0.2	3.1
2013.05.15	2013.06.04	5.2	3.3
2013.06.06	2013.06.15	8.0	2.8
2013.06.15	2013.06.30	9.7	3.2
2013.07.01	2013.07.19	10.0	2.8
2013.07.19	2013.08.03	8.5	3.0
2013.08.04	2013.08.15	8.6	2.4
2013.08.15	2013.08.31	8.9	2.9
2013.09.01	2013.09.15	5.2	2.7
2013.09.15	2013.09.30	4.9	2.9
2013.10.01	2013.10.15	-0.7	3.5
2013.10.15	2013.10.30	-5.5	3.0
2013.11.01	2013.11.15	-8.3	3.7
2013.11.15	2013.11.30	-9.7	3.0
2013.12.01	2013.12.15	-12.6	3.1
2013.12.16	2013.12.30	-9.1	4.1
2014.01.05	2014.01.31	-12.6	3.3
2014.02.01	2014.02.15	-8.7	3.7
2014.02.15	2014.02.28	-9.1	3.8
2014.03.01	2014.03.15	-6.1	2.2
2014.03.15	2014.03.31	-5.4	3.2
2014.04.01	2014.04.15	-2.4	3.2
2014.04.15	2014.04.30	-1.0	3.6
2014.05.01	2014.05.15	2.3	3.4
2014.05.15	2014.05.28	5.2	3.2

2014.06.02	2014.06.15	8.0	2.8
2014.06.22	2014.06.30	9.7	3.2
2014.07.01	2014.07.15	10.0	2.8
2014.07.15	2014.07.31	9.2	2.7
2014.08.01	2014.08.15	9.3	2.5
2014.08.15	2014.08.31	6.8	2.5
2014.09.02	2014.09.15	7.9	2.8
2014.09.15	2014.09.30	4.5	3.1

NA: not available

_

44 **Table S2. Information about the water samples.**

45 The information include water temperature, pH, electric conductivity, salinity,46 dissolved oxygen and contents of suspended particulate matter (SPM).

Spatial sample	T (°C)	рН	Electric conductivity (ms cm ⁻¹)	Salinity (ppt)	Dissolved Oxygen (mg L ⁻¹)	SPM (mg L ⁻¹)
S1	14.5	9.48	1.96	1.1	9.2	11.0
S2	NA	9.51	1.92	1.0	9.0	3.2
S 3	15.6	9.39	1.85	1.1	8.6	5.5
S4	NA	NA	NA	NA	NA	5.7
S5	14.4	9.48	1.76	1.0	9.3	7.0
S6	12.7	9.56	1.92	1.1	10.2	1.7
S 7	11.7	9.44	1.54	0.8	9.4	5.3
S 8	12.4	9.56	1.86	1.0	9.9	7.2
S9	12.4	9.56	1.93	1.1	9.6	6.7
S10	8.5	9.63	1.99	1.1	9.7	2.1
S 11	8.1	9.49	2.02	1.1	8.9	6.1
S12	14.8	9.50	1.86	1.1	10.1	3.2
S13	14.6	9.40	1.83	1.1	10.2	5.2
S14	14.9	9.34	1.93	1.0	9.5	11.7
S15	14.8	9.38	0.74	1.0	NA	8.2
Seasonal sample	T (°C)	РН	Electric conductivity (ms cm ⁻¹)	Salinity (ppt)	Dissolved Oxygen (mg L ⁻¹)	SPM (mg L ⁻¹)
Seasonal sample	T (°C)	PH	Electric conductivity (ms cm ⁻¹)	Salinity (ppt)	Dissolved Oxygen (mg L ⁻¹)	SPM (mg L ⁻¹)
Seasonal sample May-1 May-2	T(℃) 8.2 8.5	PH 8.98 9.01	Electric conductivity (ms cm ⁻¹) 1.92 1.91	Salinity (ppt) 1.0 1.1	Dissolved Oxygen (mg L ⁻¹) 9.8 11.2	SPM (mg L ⁻¹) 2.6 2.2
Seasonal sample May-1 May-2 May-3	T (℃) 8.2 8.5 8.9	PH 8.98 9.01 9.03	Electric conductivity (ms cm ⁻¹) 1.92 1.91 1.89	Salinity (ppt) 1.0 1.1 1.2	Dissolved Oxygen (mg L ⁻¹) 9.8 11.2 12.6	SPM (mg L ⁻¹) 2.6 2.2 3.0
Seasonal sample May-1 May-2 May-3 June-1	T (℃) 8.2 8.5 8.9 10.1	PH 8.98 9.01 9.03 9.13	Electric conductivity (ms cm ⁻¹) 1.92 1.91 1.89 1.9	Salinity (ppt) 1.0 1.1 1.2 1.2	Dissolved Oxygen (mg L ⁻¹) 9.8 11.2 12.6 11.7	SPM (mg L ⁻¹) 2.6 2.2 3.0 0.9
Seasonal sample May-1 May-2 May-3 June-1 June-2	T(℃) 8.2 8.5 8.9 10.1 10.3	PH 8.98 9.01 9.03 9.13 9.14	Electric conductivity (ms cm ⁻¹) 1.92 1.91 1.89 1.9 1.9 1.88	Salinity (ppt) 1.0 1.1 1.2 1.2 1.1	Dissolved Oxygen (mg L ⁻¹) 9.8 11.2 12.6 11.7 10.3	SPM (mg L ⁻¹) 2.6 2.2 3.0 0.9 2.2
Seasonal sample May-1 May-2 May-3 June-1 June-2 June-3	T(℃) 8.2 8.5 8.9 10.1 10.3 10.9	PH 8.98 9.01 9.03 9.13 9.14 9.14	Electric conductivity (ms cm ⁻¹) 1.92 1.91 1.89 1.9 1.88 1.86	Salinity (ppt) 1.0 1.1 1.2 1.2 1.1 1.1 1.0	Dissolved Oxygen (mg L ⁻¹) 9.8 11.2 12.6 11.7 10.3 8.9	SPM (mg L ⁻¹) 2.6 2.2 3.0 0.9 2.2 0.8
Seasonal sample May-1 May-2 May-3 June-1 June-2 June-3 July-1	T(℃) 8.2 8.5 8.9 10.1 10.3 10.9 16.7	PH 8.98 9.01 9.03 9.13 9.14 9.14 9.16	Electric conductivity (ms cm ⁻¹) 1.92 1.91 1.89 1.9 1.88 1.86 1.86 1.83	Salinity (ppt) 1.0 1.1 1.2 1.2 1.1 1.0 0.8	Dissolved Oxygen (mg L ⁻¹) 9.8 11.2 12.6 11.7 10.3 8.9 17.3	SPM (mg L ⁻¹) 2.6 2.2 3.0 0.9 2.2 0.8 2.5
Seasonal sample May-1 May-2 May-3 June-1 June-2 June-3 July-1 July-2	T(℃) 8.2 8.5 8.9 10.1 10.3 10.9 16.7 15.9	PH 8.98 9.01 9.03 9.13 9.14 9.14 9.16 9.10	Electric conductivity (ms cm ⁻¹) 1.92 1.91 1.89 1.9 1.88 1.86 1.83 1.83 1.82	Salinity (ppt) 1.0 1.1 1.2 1.2 1.1 1.0 0.8 0.9	Dissolved Oxygen (mg L ⁻¹) 9.8 11.2 12.6 11.7 10.3 8.9 17.3 17.8	SPM (mg L ⁻¹) 2.6 2.2 3.0 0.9 2.2 0.8 2.5 4.0
Seasonal sample May-1 May-2 May-3 June-1 June-2 June-3 July-1 July-2 July-3	T(℃) 8.2 8.5 8.9 10.1 10.3 10.9 16.7 15.9 12.8	PH 8.98 9.01 9.03 9.13 9.14 9.14 9.14 9.16 9.10 9.16	Electric conductivity (ms cm ⁻¹) 1.92 1.91 1.89 1.9 1.88 1.86 1.83 1.82 1.82 1.83	Salinity (ppt) 1.0 1.1 1.2 1.2 1.1 1.0 0.8 0.9 0.9	Dissolved Oxygen (mg L ⁻¹) 9.8 11.2 12.6 11.7 10.3 8.9 17.3 17.8 12.6	SPM (mg L ⁻¹) 2.6 2.2 3.0 0.9 2.2 0.8 2.5 4.0 1.9
Seasonal sample May-1 May-2 May-3 June-1 June-2 June-3 July-1 July-2 July-3 Aug-1	T(℃) 8.2 8.5 8.9 10.1 10.3 10.9 16.7 15.9 12.8 15.6	PH 8.98 9.01 9.03 9.13 9.14 9.14 9.16 9.10 9.16 9.25	Electric conductivity (ms cm ⁻¹) 1.92 1.91 1.89 1.9 1.88 1.86 1.83 1.82 1.83 1.82 1.83 1.82	Salinity (ppt) 1.0 1.1 1.2 1.2 1.1 1.0 0.8 0.9 0.9 0.9 0.8	Dissolved Oxygen (mg L ⁻¹) 9.8 11.2 12.6 11.7 10.3 8.9 17.3 17.8 12.6 20.0	SPM (mg L ⁻¹) 2.6 2.2 3.0 0.9 2.2 0.8 2.5 4.0 1.9 2.4
Seasonal sample May-1 May-2 May-3 June-1 June-2 June-3 July-1 July-2 July-2 July-3 Aug-1 Aug-2	T (℃) 8.2 8.5 8.9 10.1 10.3 10.9 16.7 15.9 12.8 15.6 14.0	PH 8.98 9.01 9.03 9.13 9.14 9.14 9.14 9.16 9.10 9.16 9.25 9.27	Electric conductivity (ms cm ⁻¹) 1.92 1.91 1.89 1.9 1.88 1.86 1.83 1.82 1.83 1.82 1.83 1.75 1.80	Salinity (ppt) 1.0 1.1 1.2 1.2 1.1 1.0 0.8 0.9 0.9 0.9 0.9 0.8 1.0	Dissolved Oxygen (mg L ⁻¹) 9.8 11.2 12.6 11.7 10.3 8.9 17.3 17.8 12.6 20.0 20.0	SPM (mg L ⁻¹) 2.6 2.2 3.0 0.9 2.2 0.8 2.5 4.0 1.9 2.4 0.4
Seasonal sample May-1 May-2 May-3 June-1 June-2 June-3 July-1 July-2 July-3 Aug-1 Aug-2 Aug-3	T(℃) 8.2 8.5 8.9 10.1 10.3 10.9 16.7 15.9 12.8 15.6 14.0 13.2	PH 8.98 9.01 9.03 9.13 9.14 9.14 9.16 9.10 9.16 9.25 9.27 9.28	Electric conductivity (ms cm ⁻¹) 1.92 1.91 1.89 1.9 1.88 1.86 1.83 1.82 1.83 1.82 1.83 1.75 1.80 1.85	Salinity (ppt) 1.0 1.1 1.2 1.2 1.1 1.0 0.8 0.9 0.9 0.9 0.8 1.0 1.1	Dissolved Oxygen (mg L ⁻¹) 9.8 11.2 12.6 11.7 10.3 8.9 17.3 17.8 12.6 20.0 20.0 20.0 NA	SPM (mg L ⁻¹) 2.6 2.2 3.0 0.9 2.2 0.8 2.5 4.0 1.9 2.4 0.4 0.5
Seasonal sample May-1 May-2 May-3 June-1 June-2 June-3 July-1 July-2 July-3 Aug-1 Aug-1 Aug-2 Aug-3 Sep-1	T(℃) 8.2 8.5 8.9 10.1 10.3 10.9 16.7 15.9 12.8 15.6 14.0 13.2 12.4	PH 8.98 9.01 9.03 9.13 9.14 9.14 9.14 9.16 9.10 9.16 9.25 9.27 9.28 9.16	Electric conductivity (ms cm ⁻¹) 1.92 1.91 1.89 1.9 1.88 1.86 1.83 1.82 1.83 1.82 1.83 1.75 1.80 1.85 1.82	Salinity (ppt) 1.0 1.1 1.2 1.2 1.1 1.0 0.8 0.9 0.9 0.9 0.9 0.8 1.0 1.1 0.8	Dissolved Oxygen (mg L ⁻¹) 9.8 11.2 12.6 11.7 10.3 8.9 17.3 17.8 12.6 20.0 20.0 NA 13.4	SPM (mg L ⁻¹) 2.6 2.2 3.0 0.9 2.2 0.8 2.5 4.0 1.9 2.4 0.4 0.5 1.0
Seasonal sample May-1 May-2 May-3 June-1 June-2 June-3 July-1 July-2 July-3 Aug-1 Aug-2 Aug-3 Sep-1 Sep-2	T (℃) 8.2 8.5 8.9 10.1 10.3 10.9 16.7 15.9 12.8 15.6 14.0 13.2 12.4 12.2	PH 8.98 9.01 9.03 9.13 9.14 9.14 9.14 9.16 9.10 9.16 9.25 9.27 9.28 9.16 9.18	Electric conductivity (ms cm ⁻¹) 1.92 1.91 1.89 1.9 1.88 1.86 1.83 1.82 1.83 1.82 1.83 1.75 1.80 1.85 1.82 1.82	Salinity (ppt) 1.0 1.1 1.2 1.2 1.2 1.1 1.0 0.8 0.9 0.9 0.9 0.9 0.9 0.8 1.0 1.1 0.8 1.0	Dissolved Oxygen (mg L ⁻¹) 9.8 11.2 12.6 11.7 10.3 8.9 17.3 17.8 12.6 20.0 20.0 20.0 NA 13.4 11.9	SPM (mg L ⁻¹) 2.6 2.2 3.0 0.9 2.2 0.8 2.5 4.0 1.9 2.4 0.4 0.5 1.0 2.0

47 NA: not available

48 Text S1. Preparation, extraction and cleanup method for different samples

Preparation. Polyurethane foam (PUF) and glass fiber filter (GFF 0.7 µm, Whatman) 49 were used to absorb the gas and particulate phase POPs in air, respectively; while 50 51 GFFs and XAD-2 resin were used to accumulate the POPs in suspended particulate matter (SPM) and dissolved phases in water, respectively. Prior to field sampling, 52 PUF and XAD resin was pre-cleaned by Soxhlet extraction using dichloromethane 53 54 (DCM) for 16 h; GFF were pre-combusted at 450 °C for 4 h. Glass adsorption column (internal diameter of 2.5 cm and length of 30 cm) was prepared and each one was 55 filled with about 200 cm³ of XAD resin. 56

Extraction. Each collected sample was spiked with a mixture of 2, 4, 57 6-trichlorobiphenyl (PCB 30), Mirex and perylene-D12 as recovery surrogates before 58 59 extraction. Different extraction methods were used for XAD-resin and other samples, but the procedure for cleanup is the same. The XAD column after passing through the 60 water samples was first eluted with 100 mL of DCM. Then XAD resin was transferred 61 62 to conical flask and mixed with enough anhydrous sodium sulfate for dehydration. Ultrasonically extraction was repeated for 3 times (20 min with 50 mL DCM for each 63 time) to extract remaining chemicals. For the PUF and GFF filters, Soxhlet extraction 64 was conducted using DCM at 48 °C for 16 h. 65

Cleanup. Extracts of the above samples were all concentrated to 1 mL by a rotary 66 evaporator, solvent exchanged to hexane and then cleanup. The samples were loaded 67 on a chromatography column (from the bottom to top: 3 g of 6% deactivated silica gel, 68 2 g of 3% deactivated alumina and 1 g of anhydrous sodium sulfate) and eluted with 69 30 mL of a mixture of hexane/DCM (1:1 v/v). The elute was further cleaned on 70 gel-permeation chromatography (GPC, containing 6 g of Biobeads SX3) with 71 hexane/DCM (1:1). The first 16 mL was discarded and the subsequent 30 mL fraction 72 was collected. After the cleanup, all samples were finally concentrated to 100 µL 73 containing a known quantity of pentachloronitrobenzene (PCNB), decachlorobiphenyl 74 75 (PCB 209), pryene-D10 and benzo[g,h,i]perylene-D12 as internal standards.

76 Text S2. Details about the chromatographic conditions

The POPs concentrations in all samples were analyzed on the gas chromatograph-mass spectrometer (GC-MS, Finnigan Trace GC/PolarisQ); however different chromatographic column and temperature program were used for OCPs, PCBs and PAHs. Additionally, the enantiomers of α -HCH were analyzed separately.

81 *OCPs and PCBs.* The GC-MS was operated with a CP-Sil 8CB capillary column (50 82 m \times 0.25 mm, film thickness 0.25 µm) and under single-ion monitoring (SIM) mode. 83 Helium was used as the carrier gas at 1 mL min⁻¹ under constant-flow mode. The oven 84 temperature began at 100 °C for 2 min and was increased at a rate of 20 °C min⁻¹ to 85 140 °C, then increased at a rate of 4 °C min⁻¹ to 200 °C, held for 10 min, and finally 86 increased at a rate of 4 °C min⁻¹ to 300 °C and held for 17 min.

PAHs. PAHs were analyzed on GC-MS system with a DB-5MS column (60 m × 0.25 mm, film thickness 0.25 μ m). The carrier gas and SIM mode are the same as OCPs and PCBs. The oven temperature began at 50 °C for 2 min and was increased at a rate of 20 °C min⁻¹ to 180 °C, then increased at a rate of 3 °C min⁻¹ to 250 °C, then increased at a rate of 2 °C min⁻¹ to 300 °C and held for 10 min, and finally increased at a rate of 10 °C min⁻¹ to 310 °C and held for 5 min.

Chiral analysis for \alpha-HCH. Determination of enantiomeric compositions of α -HCH 93 was performed on an Agilent 6890 gas chromatography equipped with a micro-cell 94 ⁶³Ni electron capture detector (μ-ECD) at State Key Laboratory of Environmental 95 Chemistry and Ecotoxicology, Research Center of Eco-Environment Sciences, 96 Chinese Academy of Sciences. Separation for enantiomers of α -HCH was carried out 97 using a BGB-172 chiral column (30 m \times 0.25 mm i.d., 0.25 µm film thickness, BGB 98 Analytik AG, Switzerland). The carrier gas was nitrogen with a flow of 0.7 mL/min. 99 The injector and detector temperatures were 250 $\,^{\circ}$ C and 300 $\,^{\circ}$ C, respectively. The 100 temperature program was: 90 °C held for 1 min, increased to 140 °C at a rate of 101 15 °C/min, followed by 2 °C/min to 210 °C, held for 5 min and then 20 °C/min to 102 240 °C, held for 10 min. According to the previous study (Ding et al., 2007a), the 103 104 elution order of α -HCH on BGB column was (–)- α -HCH and (+)- α -HCH.

105 **Table S3. Concentrations of POPs in the field blanks and procedural blanks.**

1	0	6
-	~	v

Part 1. OCPs and PCBs in the field blanks:

Field blank		8 HCH	и ПСП	ПСР	o,p'-	<i>p,p'</i> -	o,p'-	<i>p,p'</i> -	PCB-	PCB-	PCB-	PCB-	PCB-	PCB-
Air (pg m ⁻³)	и-псп	р-псп	ү-псп	пср	DDE	DDE	DDT	DDT	28	52	101	153	138	180
PUF field blank 1	0.10	ND^{a}	0.06	1.97	ND	0.44	ND	ND	ND	0.02	ND	ND	ND	ND
PUF field blank 2	0.10	ND	0.03	1.84	ND	0.15	ND	ND	ND	0.04	ND	ND	ND	ND
PUF field blank 3	0.10	ND	0.03	1.50	ND	0.28	ND	ND	ND	0.03	ND	ND	ND	ND
PUF field blank 4	0.13	ND	0.04	0.9	ND	0.38	ND	ND	ND	0.05	ND	ND	ND	ND
PUF field blank 5	0.25	ND	0.03	1.14	ND	0.47	ND	ND	ND	0.07	ND	ND	ND	ND
PUF field blank 6	0.15	ND	0.09	1.43	ND	0.36	ND	ND	ND	0.05	ND	ND	ND	ND
Blank average	0.14	0	0.05	1.46	0	0.35	0	0	0	0.04	0	0	0	0
Field blank	a HCH	0 HCH	пон	HCD	o,p'-	<i>p,p′</i> -	o,p'-	<i>p,p′</i> -	PCB-	PCB	PCB-	PCB-	PCB-	PCB-
Water (pg L ⁻¹)	и-псп	р-псп	ү-псп	пср	DDE	DDE	DDT	DDT	28	-52	101	153	138	180
XAD field blank 1	0.79	1.31	1.08	1.05	0.57	0.27	0.19	0.34	0.14	0.18	0.15	0.05	0.01	0.09
XAD field blank 2	0.44	1.20	0.93	1.03	0.58	0.44	0.22	0.30	0.08	0.16	0.27	0.15	0.07	0.03
XAD field blank 3	BDL	0.53	0.05	0.85	0.30	0.34	0.14	0.17	BDL	0.05	0.18	0.04	0.02	BDL
Blank average	0.61	1.01	0.69	0.98	0.48	0.35	0.18	0.27	0.11	0.13	0.20	0.08	0.03	0.06

^aND=chemical was not detected in blank.

Field blank	Acel	Ace	Phe	Flu	Ant	Fla	Pvr	BaA	Chr	Bbf	Bkf	BaP	IcdP	DahA	BøhiP
Air (pg m ⁻³)	11001	1100	1 me	114	11110	114	- 3-	Duil	0 m	201	DIII	Dui	Icui	Duni	29
PUF field blank 1	0.95	0.21	0.76	ND	0.24	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PUF field blank 2	0.87	0.19	0.34	ND	0.15	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PUF field blank 3	0.73	0.45	0.12	ND	0.46	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PUF field blank 4	0.61	0.54	0.56	ND	0.31	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PUF field blank 5	0.92	0.23	0.92	ND	0.36	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PUF field blank 6	0.59	0.52	0.43	ND	0.27	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Blank average	0.78	0.36	0.52	0	0.30	0	0	0	0	0	0	0	0	0	0
Field blank	A 1			DL .		DI -	р.	D . A		DLC	DIC	D	T. JD	D-1-4	D . I. 'D
Water (pg L ⁻¹)	Acel	Ace	Flu	Pne	Ant	ria	Pyr	ваА	Cnr	RDI	BKI	вар	IcaP	DanA	BgniP
XAD field blank 1	8.7	12.2	87.0	348.0	350.6	111.5	80.3	7.3	15.6	ND	ND	ND	ND	ND	ND
XAD field blank 2	2.8	3.4	52.9	244.4	41.1	105.8	59.5	4.1	9.1	ND	ND	ND	ND	ND	ND
XAD field blank 3	4.1	6.2	24.1	73.2	218.9	4.0	14.8	2.3	4.6	ND	ND	ND	ND	ND	ND
Blank average	5.2	7.3	54.7	221.9	203.5	73.8	51.5	4.6	9.7	ND	ND	ND	ND	ND	ND

Part 2. PAHs in the field blanks:

$(na \text{ comple}^{-1})$			ИСР	o,p'-	<i>p,p'</i> -	o,p'-	<i>p,p′</i> -	PCB-	PCB-	PCB-	PCB-	PCB-	PCB-
(ing sample)	и-псп	ү-псп	пср	DDE	DDE	DDT	DDT	28	52	101	153	138	180
procedural blank 1	0.07	0.02	0.78	ND	0.16	ND	ND	ND	0.03	ND	ND	ND	ND
procedural blank 2	0.10	0.02	0.91	ND	0.23	ND	ND	ND	0.02	ND	ND	ND	ND
procedural blank 3	0.08	0.04	0.64	ND	0.20	ND	ND	ND	0.02	ND	ND	ND	ND
procedural blank 4	0.08	0.04	1.04	ND	0.16	ND	ND	ND	0.02	ND	ND	ND	ND
procedural blank 5	0.07	0.04	0.86	ND	0.14	ND	ND	ND	0.02	ND	ND	ND	ND
procedural blank 6	0.11	0.03	0.89	ND	0.28	ND	ND	ND	0.04	ND	ND	ND	ND
average	0.08	0.03	0.85	0	0.20	0	0	0	0.02	0	0	0	0
(ng sample ⁻¹)	Acel	Ace	Phe	Flu	Ant	BaA	Chr	Bbf	Bkf	BaP	IcdP	DahA	BghiP
procedural blank 1	0.24	0.13	0.29	ND	0.14	ND	ND	ND	ND	ND	ND	ND	ND
procedural blank 2	0.28	0.38	0.38	ND	0.27	ND	ND	ND	ND	ND	ND	ND	ND
procedural blank 3	0.13	0.38	0.43	ND	0.08	ND	ND	ND	ND	ND	ND	ND	ND
procedural blank 4	0.19	0.26	0.40	ND	0.17	ND	ND	ND	ND	ND	ND	ND	ND
procedural blank 5	0.05	0.07	0.14	ND	0.07	ND	ND	ND	ND	ND	ND	ND	ND
procedural blank 6	0.25	0.37	0.41	ND	0.31	ND	ND	ND	ND	ND	ND	ND	ND
average	0.19	0.27	0.34	0	0.17	0	0	0	0	0	0	0	0

Part 3. OCPs, PCBs and PAHs in the procedural blanks (ng sample⁻¹):

Text S3. The ways to define method detection limits (MDLs) and treat with the 112 113 concentrations below MDLs

114 The MDLs were derived as the mean blank concentration plus 3 times its standard deviation; when a target compound was not detected in the blanks, the concentration 115 of the lowest calibration standard was substituted for the MDL. Based on 600 m³ and 116 200 L, the corresponding MDLs for air and water samples were calculated 117 respectively and presented in Table S4. 118

- If the concentration of a compound after blank correction was below the MDL, the 119
- concentration was substituted with 1/2 MDL in cases where greater than 70% of data
- were greater than the MDL (Antweiler and Taylor, 2008); otherwise it will be marked 121
- with "BDL". 122

23	Table S4. Detection frequency and MDLs fo	r individual compound in each kind	of samples
----	---	------------------------------------	------------

	Ai	ir-gas phase	e	Air-pa	articulate p	hase	Water	dissolved j	phase	Water-particulate phase			
	detection frequency (%)	MDL (pg m ⁻³)	1/2 MDL (pg m ⁻³)	detection frequency (%)	MDL (pg m ⁻³)	1/2 MDL (pg m ⁻³)	detection frequency (%)	MDL (pg L ⁻¹)	1/2 MDL (pg L ⁻¹)	detection frequency (%)	MDL (pg L ⁻¹)	1/2 MDL (pg L ⁻¹)	
α-НСН	100	0.31	0.16	2	0.23	0.12	100	1.4	0.7	10	0.70	0.35	
β-НСН	43	0.33	0.17	2	0.33	0.17	100	2.3	1.1	17	1	0.5	
ү-НСН	96	0.12	0.06	19	0.09	0.04	100	2.4	1.2	53	0.26	0.13	
HCB	100	2.68	1.34	5	2.11	1.05	79	1.3	0.7	37	6.32	3.16	
o,p'-DDE	68	0.33	0.17	0	0.33	0.17	0	1.0	0.5	3	1	0.5	
<i>p,p'</i> -DDE	66	0.70	0.35	7	0.59	0.30	10	0.6	0.3	13	1.78	0.89	
<i>o,p'-</i> DDT	91	0.33	0.17	23	0.33	0.17	3	0.3	0.2	10	1	0.5	
<i>p,p'</i> -DDT	72	0.33	0.17	21	0.33	0.17	3	0.5	0.3	33	1	0.5	
PCB-28	100	0.03	0.02	23	0.03	0.02	72	0.2	0.1	50	0.1	0.05	
PCB-52	83	0.10	0.05	0	0.08	0.04	17	0.3	0.2	27	0.23	0.12	
PCB-101	98	0.03	0.02	74	0.03	0.02	3	0.4	0.2	93	0.1	0.05	
PCB-153	81	0.03	0.02	28	0.03	0.02	0	0.3	0.1	47	0.1	0.05	
PCB-138	79	0.03	0.02	21	0.03	0.02	7	0.1	0.06	53	0.1	0.05	
PCB-180	19	0.03	0.02	5	0.03	0.02	0	0.2	0.09	10	0.1	0.05	
Acel	100	1.25	0.63	23	0.75	0.37	100	14	7	100	2.25	1.12	
Ace	100	0.85	0.42	72	1.13	0.57	100	21	10	100	3.40	1.70	
Flu	100	0.33	0.17	100	0.33	0.17	100	149	75	100	1	0.5	
Phe	100	1.39	0.70	100	1.12	0.56	100	638	319	100	3.37	1.69	
Ant	100	0.62	0.31	100	0.77	0.39	48	670	335	97	2.31	1.16	
Fla	100	0.33	0.17	100	0.33	0.17	56	255	128	100	1	0.5	

Pyr	100	0.17	0.08	100	0.17	0.08	93	152	76	100	0.5	0.25
BaA	100	0.17	0.08	100	0.17	0.08	48	12	6	97	0.5	0.25
Chr	100	0.17	0.08	100	0.17	0.08	56	26	13	97	0.5	0.25
Bbf	100	0.33	0.17	86	0.33	0.17	52	1	0.5	55	1	0.5
Bkf	98	0.17	0.08	100	0.17	0.08	100	0.5	0.3	97	0.5	0.25
BaP	98	0.17	0.08	98	0.17	0.08	100	0.5	0.3	97	0.5	0.25
IcdP	49	0.17	0.08	56	0.17	0.08	0	0.5	0.3	55	0.5	0.25
DahA	31	0.33	0.17	33	0.33	0.17	0	1	0.5	48	1	0.5
BghiP	96	0.33	0.17	100	0.33	0.17	100	1	0.5	97	1	0.5

	а-НСН	β-НСН	ү-НСН	нсв	<i>o,p'-</i> DDE	<i>p,p'</i> - DDE	<i>o,p'-</i> DDT	<i>p,p'</i> - DDT	PCB-28	PCB-52	PCB-101	PCB-153	PCB-138	PCB-180	
breakthrough 1	15%	0%	11%	24%	5%	13%	5%	6%	11%	10%	13%	12%	8%	0%	
breakthrough 2	20%	4%	14%	18%	0%	2%	1%	1%	14%	7%	7%	0%	3%	0%	
breakthrough 3	25%	8%	17%	25%	0%	12%	8%	6%	14%	11%	13%	0%	16%	11%	
breakthrough 4	26%	7%	22%	30%	4%	5%	3%	2%	19%	7%	5%	3%	5%	0%	
breakthrough 5	28%	0%	12%	26%	3%	0%	1%	1%	10%	5%	6%	3%	1%	0%	
breakthrough 6	16%	25%	31%	20%	26%	25%	10%	19%	24%	0%	13%	10%	9%	0%	
breakthrough 7	17%	15%	25%	25%	14%	16%	14%	16%	18%	17%	15%	18%	15%	26%	
breakthrough 8	13%	18%	22%	16%	22%	24%	14%	11%	17%	14%	15%	15%	15%	9%	
breakthrough 9	13%	16%	14%	20%	14%	17%	15%	16%	13%	16%	18%	18%	19%	19%	
breakthrough 10	22%	20%	19%	32%	27%	22%	20%	23%	23%	17%	20%	21%	45%	11%	
breakthrough 11	15%	20%	10%	20%	4%	5%	3%	13%	10%	7%	8%	16%	7%	9%	
average	19%	12%	18%	23%	11%	13%	9%	10%	16%	10%	12%	11%	13%	8%	
	Acel	Ace	Flu	Phe	Ant	Fla	Pyr	BaA	Chr	Bbf	Bkf	Вар	IcdP	DahA	BghiP
breakthrough 1	1%	1%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
breakthrough 2	33%	34%	32%	31%	26%	20%	19%	31%	25%	39%	33%	38%	0%	0%	37%
breakthrough 3	16%	17%	15%	19%	16%	23%	23%	12%	26%	6%	17%	16%	0%	0%	21%
breakthrough 4	15%	10%	22%	23%	23%	20%	18%	19%	14%	12%	8%	11%	0%	0%	22%
breakthrough 5	24%	23%	28%	34%	31%	28%	24%	21%	19%	21%	24%	32%	26%	19%	24%
breakthrough 6	20%	21%	20%	19%	23%	14%	22%	22%	22%	23%	19%	28%	21%	18%	20%
breakthrough 7	23%	21%	17%	13%	14%	13%	14%	14%	14%	12%	12%	10%	15%	14%	15%
breakthrough 8	22%	23%	24%	19%	13%	20%	23%	33%	30%	33%	35%	34%	35%	27%	32%
breakthrough 9	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
breakthrough 10	22%	22%	23%	32%	30%	30%	31%	17%	24%	26%	21%	31%	50%	0%	23%
breakthrough 11	6%	7%	10%	13%	12%	11%	8%	26%	25%	17%	18%	28%	19%	32%	13%
average	17%	16%	17%	18%	17%	16%	17%	18%	18%	17%	17%	21%	15%	10%	19%

126 Table S5. Breakthrough estimation: the percentage of OCPs, PCBs and PAHs in the second PUF to the total Plugs (PUF₂/(PUF₁+PUF₂))

Text S4. Correction of the dissolved POPs concentrations by dissolved organic carbon (DOC)

In order to obtain the concentrations of truly freely dissolved POPs (C_w), results of dissolved concentrations retained by the XAD should be corrected by the estimated influence of sorption by DOC in water as follows (Ruge et al., 2015):

$$C_{\rm w} = C_{\rm XAD} / [1 + K_{\rm DOC} * C_{\rm DOC}]$$

where C_{XAD} (pg L⁻¹) is the POPs concentration derived from XAD samples, K_{DOC} is the DOC-water equilibrium partitioning coefficient (m³ kg⁻¹), and C_{DOC} is the concentration of DOC in water (kg m-³). K_{DOC} can be estimated from octanol-water partition coefficient (K_{OW}) by using correlation of log K_{DOC} versus log K_{OW} derived by Burkhard et al. (2000):

$$\log K_{\rm DOC} = 0.85 \cdot \log K_{\rm OW} - 0.25$$

139 For the Nam Co Lake, a C_{DOC} of 4.23 mg L⁻¹ was adopted from previous literature

140 (Liu et al., 2010).

141 Text S5. Temperature and salinity-corrected Henry's law constant (H)

142 (1) By using the equations below, H values (unit: Pa m³ mol⁻¹) were corrected for the 143 measured water temperature in this study.

Compound	Regression equations	References
α-HCH	logH=10.13-3098/T(K)	(Sahsuvar et al., 2003)
β-ΗCΗ	logH=9.96-3400/T(K)	(Sahsuvar et al., 2003)
γ-HCH	logH=10.14-3208/T(K)	(Sahsuvar et al., 2003)
HCB	logH=11.6-3013/T(K)	(Jantunen et al., 2006)
PCB-28	logH=10.11-2547.1/T(K)	(Paasivirta et al., 2009)
Acel	logH=10.47-2798/T(K)	(Ma et al., 2010)
Ace	logH=9.37-2443.3/T(K)	(Ma et al., 2010)
Flu	logH=10.66-2887.8/T(K)	(Ma et al., 2010)
Phe	logH=8.13-2230.3/T(K)	(Ma et al., 2010)
Pyr	logH=8.61-2528.7/T(K)	(Ma et al., 2010)
BaA	logH=8.46-2568.7/T(K)	(Ma et al., 2010)
Chr	logH=17.71-5384.2/T(K)	(Ma et al., 2010)
Bbf	logH=6.76-2366.8/T(K)	(Ma et al., 2010)
Bkf	logH=7.3-2541.4/T(K)	(Ma et al., 2010)
Bap	logH=5.54-2051/T(K)	(Ma et al., 2010)
IcdP	logH=3.85-1580.5/T(K)	(Ma et al., 2010)
DahA	logH=11.23-3371/T(K)	(Ma et al., 2010)
BghiP	logH=3.167-1384/T(K)	(Ma et al., 2010)

(2) The aqueous solubility of a nonelectrolyte has been found generally to be
dependent on the concentration and type of salt present in solution. The salt effect on *H* is frequently described by the Setschenow equation (Cetin et al., 2006):

147

 $\log(H^*/H) = K_S C_S$

where H^* and H are the Henry's law constant in saline water and deionized water, respectively; *K*s is the Setschenow or the salting-out constant (L mol⁻¹); *C*_S is the molar concentration of salt in lake water (mol L⁻¹). *K*_S was estimated from *K*_{OW} using a linear relationship derived by Ni et al. (2003):

152 $K_{\rm S}=0.040*\log K_{\rm OW}+0.114$

For Nam Co Lake, the measured salinity ranged between 0.8‰ and 1.2‰, thus a corresponding $C_{\rm S}$ of 0.02 mol L⁻¹ was used. Finally, the corrected $H^*/H=1.01$ or 1.02.

155 Text S6. Flux calculation of air-water gas exchange

The fluxes of air-water gas exchange (F_{AW} , ng m⁻² day⁻¹) were calculated using the two-film model which has been used in many previous studies (Qiu et al., 2008; Xie et al., 2011):

159
$$F_{\rm AW} = K_{\rm ol} \left(C_{\rm w} - C_{\rm a} R T_{\rm a} / H \right)$$

160 where C_{w} and C_{a} are the dissolved and gaseous concentrations of the target 161 compounds, which are considered to be the measured air and DOC-corrected water 162 concentrations; *R* is the gas constant (8.314 Pa m³ mol⁻¹ K⁻¹), *T*a (K) is the absolute 163 temperature, and *H* (Pa m³ mol⁻¹) is the Henry's law constant. K_{ol} (m s⁻¹) is the overall 164 mass transfer coefficient, which contains contributions from the mass transfer 165 coefficients of the water layer and the air layer, namely K_{w} and K_{a} . The value of K_{ol} is 166 given by (Khairy et al., 2014):

167
$$\frac{1}{K_{\rm ol}} = \frac{RT}{H} \times \frac{1}{K_{\rm a}} + \frac{1}{K_{\rm w}}$$

where K_w and K_a are the water-side and air-side mass transfer coefficients, respectively. They are related to the wind speed and compound-specific molecular diffusivity. In the present study, K_w and K_a of target compounds were estimated from those of reference substances as follows.

172 K_a (cm s⁻¹) for water vapour and K_w (cm h⁻¹) for CO₂ can be calculated according to 173 the following relations:

174
$$K_{a}(H_{2}O)=0.2 \times U_{10}+0.3$$

where U_{10} (m s⁻¹) is the wind speed above the water surface at 10 m. It was calculated by using the wind speed (U_Z , m s⁻¹) at any given height (Z, m) by following equation (Schwarzenbach et al., 2003):

 $K_{\rm w}({\rm CO}_2)=0.45 \times U_{10}^{1.64}$

179
$$U_{10} = U_Z \left(\frac{10.4}{\text{LN}(Z) + 8.1}\right)$$

Because rates of transfer is related to the molecular diffusivity, these estimates for K_a (H₂O) and K_w (CO₂) allow prediction of K_a and K_w for other compounds of interest with the following relationships (Schwarzenbach et al., 2003):

183
$$K_{a}(\text{analyte}) = K_{a}(H_{2}O) \times \left\{\frac{D_{a}(\text{analyte})}{D_{a}(H_{2}O)}\right\}^{0.67}$$

184
$$K_{\rm w}({\rm analyte}) = K_{\rm w}({\rm CO}_2) \times \left\{ \frac{S_{\rm c}({\rm analyte})}{S_{\rm c}({\rm CO}_2)} \right\}^{-0.5.}$$

185 where D_a is the molecular diffusivity in air and *Sc* is the Schmidt number, calculated 186 by dividing the kinematic viscosity of water (V_w , cm² s⁻¹) at a given temperature by 187 the molecular diffusivity in water (D_w):

$$S_{\rm c}({\rm analyte}) = \frac{V_{\rm w}}{D_{\rm w}({\rm analyte})}$$

188 D_a and D_w values were estimated using the compound molecular mass to simplify the 189 relationship (Schwarzenbach et al., 2003). We can derive the unknown diffusivity of 190 target compounds in the present study by using the diffusivity of a reference substance, 191 such as D_a (H₂O) and D_w (CO₂) according to the following equation (Schwarzenbach 192 et al., 2003):

193
$$\frac{D_{a}(\text{analyte})}{D_{a}(\text{H}_{2}\text{O})} \approx \left[\frac{M(\text{analyte})}{M(\text{H}_{2}\text{O})}\right]^{-0.5}$$

194
$$\frac{D_{\rm w}({\rm analyte})}{D_{\rm w}({\rm CO}_2)} \approx \left[\frac{M\,({\rm analyte})}{M\,({\rm CO}_2)}\right]^{-0.5}$$

-	1	
Compound	Regression equations(logP _L)	References
Acel	9.93-2855/T	(Odabasi et al., 2006)
Ace	10.17-2979/T	(Odabasi et al., 2006)
Flu	10.61-3233/T	(Odabasi et al., 2006)
Phe	11.43-3726/T	(Odabasi et al., 2006)
Ant	11.54-3780/T	(Lei et al., 2002)
Fla	12.47-4382/T	(Odabasi et al., 2006)
Pyr	11.7-4164/T	(Lei et al., 2002)
BaA	10.87-4269/T	(Lei et al., 2002)
Chr	13.87-5294/T	(Odabasi et al., 2006)
Bbf	12.48-5148/T	(Odabasi et al., 2006)
Bkf	12.5-5165/T	(Odabasi et al., 2006)
Bap	12.59-5252/T	(Odabasi et al., 2006)
IcdP	13.13-5691/T	(Odabasi et al., 2006)
DahA	13.31-5794/T	(Odabasi et al., 2006)
BghiP	13.15-5737/T	(Odabasi et al., 2006)

196 Table S6. Equations used for temperature-corrected $P_{\rm L}$ for each compound

Start Data	E-d Data	α-	β-	γ-	HCD	o,p'-	<i>p,p′</i> -	o,p'-	<i>p,p'</i> -	PCB-	PCB-	PCB-	PCB-	PCB-	PCB-
Start Date	End Date	HCH	HCH	HCH	HCR	DDE	DDE	DDT	DDT	28	52	101	153	138	180
2012.09.03	2012.09.15	4.8	BDL	2.5	12.2	0.6	2.1	0.7	0.2	0.4	0.25	0.44	0.17	0.35	0.03
2012.09.16	2012.09.20	3.2	BDL	1.3	15.5	0.5	1.3	2.8	0.8	0.8	0.22	0.37	0.06	0.12	BDL
2012.10.24	2012.10.31	3.4	BDL	0.7	12.2	0.17	0.35	3.4	1.3	0.3	0.05	0.05	0.02	0.02	BDL
2012.11.01	2012.11.15	4.6	BDL	0.6	38.4	0.17	0.35	0.8	0.5	0.3	0.14	0.08	0.03	0.03	BDL
2012.11.16	2012.11.30	2.5	BDL	0.4	36.7	0.17	0.35	0.4	0.17	0.4	0.19	0.08	0.03	0.02	BDL
2012.12.01	2012.12.15	1.4	BDL	0.2	26.7	0.17	0.35	0.17	0.17	0.1	0.05	0.04	0.02	0.02	BDL
2012.12.16	2012.12.31	0.7	BDL	0.3	20.8	0.17	0.35	0.17	0.17	0.4	0.14	0.07	0.03	0.02	BDL
2013.01.03	2013.01.15	1.5	BDL	0.3	37.3	0.17	0.35	0.5	0.4	0.5	0.19	0.11	0.02	0.02	BDL
2013.01.16	2013.01.31	1.3	BDL	0.6	29.8	0.17	0.35	0.5	0.17	0.7	0.21	0.08	0.02	0.02	BDL
2013.02.06	2013.02.16	0.8	BDL	0.2	14.1	0.17	0.35	0.6	0.17	0.1	0.05	0.02	0.02	0.02	BDL
2013.02.21	2013.03.01	3.9	BDL	1.2	25.6	0.4	0.8	2.9	2.4	0.4	0.17	0.08	0.03	0.02	BDL
2013.03.02	2013.03.15	1.2	0.3	0.4	18.1	0.17	0.35	0.4	0.17	0.5	0.16	0.09	0.02	0.02	BDL
2013.03.15	2013.03.31	3.2	0.5	1.0	24.3	0.17	0.35	0.7	0.4	0.5	0.15	0.08	0.02	0.02	BDL
2013.04.01	2013.04.15	3.6	0.5	1.0	17.0	0.17	0.35	1.0	0.6	0.6	0.17	0.08	0.02	0.03	BDL
2013.04.15	2013.04.30	6.5	0.9	2.2	19.4	0.5	0.35	6.6	2.1	0.9	0.33	0.19	0.06	0.05	BDL
2013.05.01	2013.05.15	9.0	0.6	1.9	25.7	0.3	0.35	4.8	2.4	0.9	0.29	0.15	0.04	0.05	BDL
2013.05.15	2013.06.04	7.7	1.4	4.2	15.5	0.4	0.8	6.1	2.2	1.4	0.56	0.23	0.05	0.05	BDL
2013.06.06	2013.06.15	3.8	0.8	1.6	12.1	0.17	0.35	2.2	0.7	0.7	0.29	0.16	0.02	0.04	BDL
2013.06.15	2013.06.30	8.1	1.3	4.8	11.9	0.7	1.2	12.0	3.9	1.5	0.56	0.29	0.08	0.09	BDL
2013.07.01	2013.07.19	6.9	0.6	2.3	12.8	0.4	0.6	7.9	1.9	0.8	0.30	0.19	0.08	0.07	BDL
2013.07.19	2013.08.03	6.7	0.9	1.7	15.1	1.4	1.4	6.0	2.0	1.4	0.44	0.39	0.06	0.09	0.03
2013.08.04	2013.08.15	3.7	0.7	0.9	15.9	0.17	0.35	1.0	0.6	1.4	0.44	0.39	0.04	0.05	0.13
2013.08.15	2013.08.31	5.3	0.4	1.2	14.6	0.5	0.9	14.1	4.9	0.6	0.23	0.28	0.08	0.06	BDL

198 **Part 1. Concentrations of gas phase OCPs and PCBs (pg m⁻³) in air:**

Table S7. Concentrations of gas phase POPs (pg m⁻³) in the atmosphere of Nam Co

Start Data	End Dota	α-	β-	γ-	ПСР	o,p'-	<i>p,p'</i> -	o,p'-	<i>p,p'</i> -	PCB-	PCB-	PCB-	PCB-	PCB-	PCB-
Start Date	End Date	НСН	НСН	НСН	HCB	DDE	DDE	DDT	DDT	28	52	101	153	138	180
2013.09.01	2013.09.15	5.4	BDL	0.06	11.7	3.1	3.4	1.6	0.17	2.7	0.05	0.13	0.07	0.09	BDL
2013.10.01	2013.10.15	4.6	BDL	2.8	11.4	2.2	3.8	4.4	1.1	0.8	0.44	0.28	0.54	0.14	BDL
2013.10.15	2013.10.30	3.5	BDL	5.4	17.5	0.6	1.0	3.2	0.9	0.3	0.38	0.24	0.33	0.11	BDL
2013.11.01	2013.11.15	2.2	BDL	1.0	40.5	0.5	1.3	1.0	1.0	0.7	0.96	0.31	0.24	0.12	BDL
2013.11.15	2013.11.30	1.9	BDL	0.4	24.5	0.17	0.9	0.17	0.2	0.6	0.66	0.30	0.14	0.07	BDL
2013.12.01	2013.12.15	1.2	BDL	3.3	23.4	4.1	2.7	1.5	0.17	1.0	0.05	0.28	0.08	0.07	BDL
2013.12.16	2013.12.30	2.6	BDL	7.2	27.6	1.9	5.3	1.5	0.9	1.8	1.08	1.06	0.33	0.18	BDL
2014.01.05	2014.01.31	1.3	BDL	2.7	16.4	2.3	1.9	1.2	0.2	0.9	0.05	0.32	0.11	0.06	BDL
2014.02.01	2014.02.15	0.7	BDL	0.7	12.4	0.17	0.35	0.17	0.17	0.5	0.62	0.40	0.15	0.07	BDL
2014.02.15	2014.02.28	2.7	0.5	4.9	33.0	0.6	1.4	0.6	0.17	1.9	0.59	0.71	0.18	0.08	BDL
2014.03.01	2014.03.15	1.7	BDL	1.4	20.4	0.4	1.0	1.6	0.4	0.5	0.81	0.51	0.18	0.07	BDL
2014.03.15	2014.03.31	2.3	BDL	3.7	18.3	0.5	0.9	0.7	0.17	0.8	0.05	0.45	0.14	0.07	BDL
2014.04.01	2014.04.15	4.5	BDL	0.06	16.1	1.4	3.1	3.2	0.4	1.9	0.05	0.48	0.05	0.09	BDL
2014.04.15	2014.04.30	2.9	BDL	1.6	18.6	0.6	0.8	1.6	1.0	0.7	1.02	0.57	0.36	0.15	BDL
2014.05.01	2014.05.15	4.2	0.4	2.2	15.8	0.6	1.3	1.8	1.1	0.7	0.96	0.54	0.26	0.12	BDL
2014.05.15	2014.05.28	2.3	0.5	4.3	14.8	1.5	2.9	4.4	1.7	0.7	0.93	0.75	0.49	0.22	0.05
2014.06.02	2014.06.15	7.1	1.4	3.1	26.8	3.6	6.9	6.3	1.8	2.0	1.30	0.97	0.86	0.39	0.08
2014.06.22	2014.06.30	4.7	0.5	2.1	15.1	0.7	2.1	8.0	2.4	0.8	0.68	0.43	0.26	0.10	BDL
2014.07.01	2014.07.15	6.5	BDL	5.3	12.6	2.4	4.9	4.5	0.17	3.7	5.47	0.74	0.09	0.03	0.05
2014.07.15	2014.07.31	7.4	1.0	3.0	24.3	1.3	2.2	6.6	1.7	1.9	1.40	0.80	0.38	0.97	BDL
2014.08.01	2014.08.15	8.4	1.5	6.7	21.7	13.9	12.8	17.9	1.8	6.9	4.15	1.75	0.41	0.45	0.05
2014.08.15	2014.08.31	7.5	1.4	1.7	25.6	1.7	4.8	6.4	2.8	2.9	1.59	1.22	0.29	0.46	0.06
2014.09.02	2014.09.15	4.0	0.6	1.8	12.0	2.3	6.1	9.8	3.7	3.1	0.71	0.84	0.33	0.27	0.03
2014.09.15	2014.09.30	4.1	BDL	2.3	17.3	1.5	4.1	6.0	3.5	3.1	0.47	0.48	0.15	0.16	BDL

Entries in bold and italics are substituted values at 1/2 MDL.

Start Date	End Date	Acel	Ace	Flu	Phe	Ant	Fla	Pyr	BaA	Chr	Bbf	Bkf	Вар	IcdP	DahA	BghiP
2012.09.16	2012.09.20	52	123	607	1170	121	256	204	13	68	4	9	6	BDL	BDL	7
2012.10.01	2012.10.15	19	31	540	2037	347	383	223	3	18	1	1	1	BDL	BDL	1
2012.10.24	2012.10.31	8	21	115	264	24	51	30	2	6	1	1	1	BDL	BDL	1
2012.11.01	2012.11.15	4	6	85	267	20	65	40	3	8	1	3	2	BDL	BDL	2
2012.11.16	2012.11.30	5	7	80	291	21	52	31	2	5	0.3	1	1	BDL	BDL	1
2012.12.01	2012.12.15	4	6	85	252	19	53	33	3	7	0.3	1	1	BDL	BDL	1
2012.12.16	2012.12.31	14	55	273	701	118	274	167	9	12	2	2	1	BDL	BDL	2
2013.01.03	2013.01.15	11	37	189	328	32	59	38	4	10	2	4	2	BDL	BDL	4
2013.01.16	2013.01.31	27	62	544	1120	85	147	87	3	10	0.5	2	1	BDL	BDL	2
2013.02.06	2013.02.16	5	9	109	320	33	94	54	2	6	0.2	0.3	0.3	BDL	BDL	0.17
2013.02.21	2013.03.01	8	13	171	684	138	314	192	9	13	0.3	1	1	BDL	BDL	1
2013.03.02	2013.03.15	11	31	199	636	66	194	126	2	8	0.1	0.3	0.5	BDL	BDL	1
2013.03.15	2013.03.31	7	11	161	726	124	308	192	7	12	1	1	1	BDL	BDL	1
2013.04.01	2013.04.15	5	7	102	470	34	107	54	2	8	1	2	1	BDL	BDL	2
2013.04.15	2013.04.30	4	4	137	1048	195	453	274	10	16	0.4	1	1	BDL	BDL	1
2013.05.01	2013.05.15	4	5	102	540	69	148	120	32	53	9	22	31	1	1	28
2013.05.15	2013.06.04	4	5	98	817	97	269	157	8	17	1	3	3	BDL	BDL	3
2013.06.06	2013.06.15	3	4	96	694	181	415	262	14	18	1	1	1	BDL	BDL	1
2013.06.15	2013.06.30	4	5	147	1316	301	577	356	13	23	0.4	1	1	BDL	BDL	1
2013.07.01	2013.07.19	5	8	145	1016	225	530	350	14	24	2	1	1	BDL	BDL	2
2013.07.19	2013.08.03	19	44	286	817	100	178	150	13	27	2	6	7	BDL	BDL	5
2013.08.04	2013.08.15	44	87	675	1124	106	205	206	11	33	4	4	5	BDL	BDL	5
2013.08.15	2013.08.31	8	14	162	565	90	124	80	2	11	0.3	1	0.3	BDL	BDL	1
2013.09.01	2013.09.15	170	226	2068	3844	382	176	813	6	34	2	5	4	3	BDL	7
2013.10.01	2013.10.15	10	20	206	829	90	162	145	2	11	2	1	1	1	0.4	1

200 Part 2. Concentrations of gas phase PAHs (pg m⁻³) in air:

Start Date	End Date	Acel	Ace	Flu	Phe	Ant	Fla	Pyr	BaA	Chr	Bbf	Bkf	Bap	IcdP	DahA	BghiP
2013.10.15	2013.10.30	3	6	142	453	33	106	60	7	14	9	7	5	4	1	3
2013.11.01	2013.11.15	14	22	265	550	31	75	40	2	8	2	1	0.4	1	BDL	1
2013.11.15	2013.11.30	15	25	236	613	39	115	63	3	8	2	2	0.4	1	BDL	1
2013.12.01	2013.12.15	37	71	491	659	67	58	80	4	8	3	2	1	2	0.4	2
2013.12.16	2013.12.30	53	92	709	1429	112	176	132	10	21	8	6	5	6	1	6
2014.01.05	2014.01.31	34	58	422	758	79	70	78	3	8	2	1	2	1	BDL	2
2014.02.01	2014.02.15	4	6	137	518	24	84	42	2	8	2	1	1	1	BDL	1
2014.02.15	2014.02.28	43	67	547	969	55	70	72	3	9	3	2	1	1	0.3	2
2014.03.01	2014.03.15	4	9	153	590	44	173	86	4	11	3	3	1	1	0.3	2
2014.03.15	2014.03.31	8	18	146	389	23	72	54	1	4	1	1	0.4	0.5	BDL	1
2014.04.01	2014.04.15	56	80	750	1454	119	148	182	9	20	5	5	5	6	1	7
2014.04.15	2014.04.30	10	18	165	436	93	112	68	4	9	3	2	1	1	0.3	2
2014.05.01	2014.05.15	8	16	124	449	40	111	65	3	10	3	3	1	1	0.4	2
2014.05.15	2014.05.28	5	8	100	540	62	178	111	13	28	18	13	9	7	1	7
2014.06.02	2014.06.15	11	15	236	989	107	154	119	19	32	27	13	19	9	2	9
2014.06.22	2014.06.30	15	19	586	1370	173	190	110	3	11	0.4	2	1	BDL	BDL	1
2014.07.01	2014.07.15	118	159	1632	4270	381	104	338	4	68	0.5	2	2	0.5	BDL	3
2014.07.15	2014.07.31	36	45	716	1687	199	176	111	2	11	0.3	1	1	0.3	BDL	2
2014.08.01	2014.08.15	198	311	2580	7057	1310	760	946	22	79	14	8	13	7	2	11
2014.08.15	2014.08.31	16	28	743	4716	1137	1621	1242	269	698	29	0.08	0.08	8	9	0.17

202 Entries in bold and italics are substituted values at 1/2 MDL.

Start Data	E. J.D. 4	α-	β-	γ-	HCD	o,p'-	p,p'-	o,p'-	p,p'-	PCB-	PCB-	PCB-	PCB-	PCB-	PCB-
Start Date	End Date	нсн	нсн	HCH	нсв	DDE	DDE	DDT	DDT	28	52	101	153	138	180
2012.09.03	2012.09.15	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0.02	BDL	BDL	BDL
2012.09.16	2012.09.20	BDL	BDL	0.20	3.14	BDL	BDL	BDL	BDL	0.06	BDL	0.13	BDL	BDL	BDL
2012.10.01	2012.10.15	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0.03	BDL	BDL	BDL
2012.10.24	2012.10.31	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0.02	BDL	BDL	BDL
2012.11.01	2012.11.15	BDL	BDL	0.10	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0.03	BDL	BDL	BDL
2012.11.16	2012.11.30	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0.02	BDL	BDL	BDL
2012.12.16	2012.12.31	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0.05	BDL	0.05	BDL	BDL	BDL
2013.01.03	2013.01.15	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0.06	BDL	0.06	BDL	BDL	BDL
2013.01.16	2013.01.31	BDL	BDL	BDL	BDL	BDL	BDL	0.38	0.33	0.09	BDL	0.04	BDL	BDL	BDL
2013.02.06	2013.02.16	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0.03	BDL	BDL	BDL
2013.02.21	2013.03.01	BDL	BDL	0.16	BDL	BDL	BDL	BDL	0.55	BDL	BDL	0.04	BDL	BDL	BDL
2013.03.02	2013.03.15	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0.03	BDL	0.04	BDL	BDL	BDL
2013.03.15	2013.03.31	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0.02	BDL	BDL	BDL
2013.04.01	2013.04.15	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0.03	BDL	BDL	BDL
2013.05.01	2013.05.15	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0.02	BDL	BDL	BDL
2013.05.15	2013.06.04	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0.02	BDL	BDL	BDL
2013.06.06	2013.06.15	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0.03	BDL	BDL	BDL
2013.06.15	2013.06.30	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0.04	BDL	0.02	BDL	BDL	BDL
2013.07.01	2013.07.19	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0.04	BDL	BDL	BDL
2013.07.19	2013.08.03	0.40	BDL	0.14	3.71	BDL	BDL	0.43	BDL	BDL	BDL	0.04	BDL	0.08	0.03
2013.09.01	2013.09.15	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0.60	BDL	BDL	0.04	0.05	BDL	BDL
2013.10.01	2013.10.15	BDL	BDL	BDL	BDL	BDL	1.01	1.58	2.38	BDL	BDL	0.04	0.04	0.04	BDL
2013.10.15	2013.10.30	BDL	BDL	0.34	BDL	BDL	BDL	0.47	BDL	BDL	BDL	0.03	BDL	BDL	BDL

204 **Part 1. Concentrations of particulate phase OCPs and PCBs (pg m⁻³) in air:**

Table S8. Concentrations of POPs (pg m⁻³) in the total suspended particulates (TSP) of Nam Co

Start Data	End Data	α-	β-	γ-	ИСР	o,p'-	p,p'-	o,p'-	p,p'-	PCB-	PCB-	PCB-	PCB-	PCB-	PCB-
Start Date	Ellu Date	HCH	HCH	HCH	пср	DDE	DDE	DDT	DDT	28	52	101	153	138	180
2013.11.01	2013.11.15	BDL	BDL	BDL	BDL	BDL	BDL	0.39	0.43	BDL	BDL	0.05	0.03	0.03	BDL
2013.11.15	2013.11.30	BDL	BDL	BDL	BDL	BDL	BDL	0.43	BDL	0.03	BDL	0.08	0.09	0.04	BDL
2013.12.01	2013.12.15	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0.09	0.11	0.04	BDL
2013.12.16	2013.12.30	BDL	BDL	BDL	BDL	BDL	0.70	BDL	BDL	BDL	BDL	0.14	0.16	0.08	0.04
2014.01.05	2014.01.31	BDL	BDL	BDL	BDL	BDL	BDL	0.36	0.58	BDL	BDL	0.04	BDL	BDL	BDL
2014.02.01	2014.02.15	BDL	BDL	0.16	BDL	BDL	1.31	0.93	0.51	0.08	BDL	0.12	0.07	0.05	BDL
2014.02.15	2014.02.28	BDL	BDL	BDL	BDL	BDL	BDL	0.85	0.66	0.03	BDL	0.07	0.09	0.04	BDL
2014.03.01	2014.03.15	BDL	BDL	BDL	BDL	BDL	BDL	0.91	1.01	0.03	BDL	0.07	0.17	0.06	BDL
2014.03.15	2014.03.31	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0.04	0.05	BDL	BDL
2014.04.01	2014.04.15	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0.04	0.04	BDL	BDL
2014.04.15	2014.04.30	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0.03	BDL	BDL	BDL
2014.05.01	2014.05.15	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0.02	BDL	BDL	BDL
2014.05.15	2014.05.28	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0.03	BDL	BDL	BDL
2014.06.02	2014.06.15	BDL	0.47	0.42	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0.05	0.06	BDL	BDL
2014.06.22	2014.06.30	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0.03	BDL	BDL	BDL
2014.07.01	2014.07.15	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0.03	BDL	BDL	BDL
2014.07.15	2014.07.31	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0.02	BDL	BDL	BDL
2014.08.01	2014.08.15	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0.02	BDL	BDL	BDL
2014.08.15	2014.08.31	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0.03	BDL	BDL	BDL
2014.09.02	2014.09.15	BDL	BDL	0.10	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0.02	BDL	BDL	BDL

Entries in bold and italics are substituted values at 1/2 MDL.

Start Date	End Date	Acel	Ace	Flu	Phe	Ant	Fla	Pyr	BaA	Chr	Bbf	Bkf	Bap	IcdP	DahA	BghiP
2012.09.03	2012.09.15	1	1	51	519	33	360	239	11	19	2	4	3	BDL	BDL	8
2012.09.16	2012.09.20	4	6	148	1392	216	966	606	34	45	3	5	3	BDL	BDL	7
2012.10.01	2012.10.15	2	2	58	525	75	428	287	20	38	4	16	17	BDL	BDL	29
2012.10.24	2012.10.31	2	2	58	571	70	463	307	23	49	5	19	20	BDL	BDL	30
2012.11.01	2012.11.15	2	3	58	552	76	411	285	21	44	1	21	21	BDL	BDL	28
2012.11.16	2012.11.30	BDL	1	16	74	4	56	43	8	20	0.17	9	10	BDL	BDL	13
2012.12.16	2012.12.31	2	2	26	123	8	82	61	11	25	2	11	12	BDL	BDL	15
2013.01.03	2013.01.15	4	6	74	306	15	198	159	27	58	3	30	27	1	BDL	39
2013.01.16	2013.01.31	2	3	33	156	7	95	69	11	25	1	11	12	BDL	BDL	16
2013.02.06	2013.02.16	BDL	2	18	95	7	110	101	28	61	11	34	36	3	1	37
2013.02.21	2013.03.01	BDL	1	17	105	7	86	75	18	40	3	19	22	BDL	BDL	30
2013.03.02	2013.03.15	BDL	2	60	676	90	618	464	70	146	6	59	74	BDL	1	87
2013.03.15	2013.03.31	BDL	2	31	173	12	124	106	23	59	3	28	33	BDL	BDL	45
2013.04.01	2013.04.15	BDL	1	19	106	11	71	58	13	28	21	21	18	18	2	24
2013.05.01	2013.05.15	BDL	1	21	117	10	61	49	10	25	21	16	17	17	1	27
2013.05.15	2013.06.04	BDL	1	21	116	8	67	52	10	25	19	17	12	16	2	22
2013.06.06	2013.06.15	BDL	1	18	103	10	57	46	9	22	17	15	10	12	1	18
2013.06.15	2013.06.30	BDL	2	27	148	10	69	50	8	17	2	8	10	BDL	BDL	15
2013.07.01	2013.07.19	BDL	1	24	125	6	48	33	4	11	2	4	3	0.5	BDL	6
2013.07.19	2013.08.03	BDL	1	39	379	61	179	125	11	46	2	8	8	BDL	BDL	14
2013.09.01	2013.09.15	BDL	2	25	116	7	74	51	9	25	23	10	8	12	2	15
2013.10.01	2013.10.15	BDL	0.57	19	106	5	105	82	16	62	58	26	23	34	4	38
2013.10.15	2013.10.30	BDL	2	26	123	5	74	54	8	20	17	17	14	16	1	17
2013.11.01	2013.11.15	BDL	2	20	104	5	87	64	12	28	8	14	16	1	1	20
2013.11.15	2013.11.30	BDL	1	20	139	4	197	116	15	41	0.17	17	20	BDL	BDL	23

206 Part 2. Concentrations of particulate phase PAHs (pg m⁻³) in air:

Start Date	End Date	Acel	Ace	Flu	Phe	Ant	Fla	Pyr	BaA	Chr	Bbf	Bkf	Bap	IcdP	DahA	BghiP
2013.12.01	2013.12.15	BDL	1	18	115	5	104	68	9	22	2	9	11	BDL	BDL	11
2013.12.16	2013.12.30	2	2	32	117	6	80	54	8	25	0	8	10	BDL	BDL	10
2014.01.05	2014.01.31	BDL	0.57	15	96	5	100	75	13	31	0	15	18	BDL	BDL	20
2014.02.01	2014.02.15	BDL	1	24	180	9	186	93	12	27	0.17	11	13	BDL	BDL	12
2014.02.15	2014.02.28	3	3	49	184	7	151	105	21	48	0.17	24	26	BDL	BDL	30
2014.03.01	2014.03.15	BDL	1	20	95	4	94	76	18	45	8	22	29	1	1	30
2014.03.15	2014.03.31	BDL	1	28	125	6	95	77	16	41	29	21	24	24	2	28
2014.04.01	2014.04.15	BDL	0.57	9	43	2	20	14	2	5	3	2	2	2	BDL	3
2014.04.15	2014.04.30	BDL	0.57	9	46	5	37	32	8	20	16	12	11	12	1	12
2014.05.01	2014.05.15	BDL	0.57	5	28	2	21	17	4	12	11	8	8	7	0.4	9
2014.05.15	2014.05.28	BDL	0.57	9	55	2	26	18	2	8	5	3	3	2	BDL	3
2014.06.02	2014.06.15	BDL	2	13	54	2	24	17	2	7	4	2	2	1	BDL	3
2014.06.22	2014.06.30	BDL	0.57	10	53	2	22	15	2	5	3	2	2	1	BDL	2
2014.07.01	2014.07.15	BDL	0.57	13	65	8	33	22	3	10	4	3	2	1	BDL	3
2014.07.15	2014.07.31	BDL	0.57	15	75	7	34	23	4	15	8	6	2	3	BDL	5
2014.08.01	2014.08.15	BDL	0.57	24	110	7	48	29	3	7	4	2	0.4	1	BDL	2
2014.08.15	2014.08.31	BDL	0.57	9	49	2	20	12	1	3	1	1	0.08	0.2	BDL	1
2014.09.02	2014.09.15	BDL	0.57	13	60	9	23	18	2	5	3	3	2	0.3	BDL	3

207 Entries in bold and italics are substituted values at 1/2 MDL.

	S1	S2	S3	S4	S5	S6	S7	S8	S9	S10	S11	S12	S13	S14	S15
а-НСН	5.0	11.8		8.0	9.5	7.5	8.7	9.3	9.3	9.8	6.3	14.7	11.5	8.6	18.4
β-НСН	79.9	104.2		100.3	105.5	116.9	77.9	76.2	70.3	71.7	44.0	100.2	82.7	85.2	77.2
γ-ΗCΗ	5.4	7.5		5.8	10.2	8.2	6.7	7.3	3.7	4.4	2.7	9.0	7.5	8.0	11.6
HCB	2.9	4.3		4.7	3.7	5.1	5.3	15.1	6.6	3.3	4.3	5.8	18.0	7.2	19.6
<i>o,p'</i> -DDE	BDL	BDL		BDL	BDL	BDL	BDL	BDL	BDL						
<i>p,p'</i> -DDE	BDL	BDL		BDL	BDL	0.9	BDL	BDL	1.2						
<i>o,p'</i> -DDT	BDL	BDL		BDL	BDL	BDL	BDL	BDL	BDL						
<i>p,p'</i> -DDT	BDL	BDL		BDL	BDL	BDL	BDL	BDL	BDL						
PCB-28	2.1	1.8		1.6	1.6	1.6	0.9	1.2	1.8	0.9	1.0	1.8	1.0	2.9	4.3
PCB-52	0.3	0.2		BDL	BDL	0.2	BDL	1.6	1.0						
PCB-101	BDL	BDL		BDL	BDL	BDL	BDL	BDL	0.3						
PCB-153	BDL	BDL		BDL	BDL	BDL	BDL	BDL	BDL						
PCB-138	BDL	BDL		BDL	BDL	0.03	BDL	BDL	0.2						
PCB-180	BDL	BDL		BDL	BDL	BDL	BDL	BDL	BDL						

209 Part 1. Concentrations of dissolved phase OCPs and PCBs (pg L⁻¹) in the water from different sites of the lake (S1-S15):

Table S9. Concentrations of dissolved phase POPs (pg L⁻¹) in the lake water of Nam Co (after corrected by DOC)

	S1	S2	S3	S4	S5	S6	S7	S8	S9	S10	S11	S12	S13	S14	S15
Acel	338	685		685	291	543	571	309	1326	411	283		539	1076	990
Ace	274	244		282	167	183	150	102	236	155	103		195	468	815
Flu	1549	1833		1726	1742	1638	1376	2148	2801	1646	1619		3275	4219	4118
Phe	2515	4311		5065	5497	7423	5732	13822	73236	5791	7499		15907	9883	17748
Ant	BDL	1130		1178	1301	1500	1176	5159	1829	1045	1978		6781	3035	7778
Fla	934	1865		2118	1984	3314	2883	10946	2179	3085	4397		12413	5525	14099
Pyr	751	1266		1390	1311	1553	1293	7633	1589	2445	3585		8871	3738	10669
BaA	48	55		105	87	94	70	380	98	199	302		337	134	401
Chr	484	265		358	291	521	446	514	255	518	595		463	469	2078
Bbf	BDL	BDL		BDL	6	5	BDL	17	BDL	BDL	16		3	2	BDL
Bkf	15	14		52	32	42	36	89	41	88	97		18	15	62
Bap	3	7		27	19	17	9	84	34	22	78		11	8	38
IcdP	BDL	BDL		BDL	BDL		BDL	BDL	BDL						
DahA	BDL	BDL		BDL	BDL		BDL	BDL	BDL						
BghiP	7	7		19	12	15	7	51	16	24	40		11	4	19
\sum_{15} PAHs (pg L ⁻¹)	6918	11680		13005	12739	16848	13747	41255	83641	15429	20592		48825	28575	58817
\sum_{15} PAHs (ng L ⁻¹)	7	12		13	13	17	14	41	84	15	21		49	29	59

210 Part 2. Concentrations of dissolved phase PAHs (pg L⁻¹) in the water from different sites of the lake (S1-S15):

	α-	β-	γ-	иср	o,p'-	<i>p</i> , <i>p</i> ′-	o,p'-	<i>p</i> , <i>p</i> ′-	PCB-	PCB-	PCB-	PCB-	PCB-	PCB-
	HCH	HCH	HCH	псв	DDE	DDE	DDT	DDT	28	52	101	153	138	180
May-1	6.0	44.7	4.1	5.1	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
May-2	4.4	35.2	2.6	0.7	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
May-3	4.0	32.3	2.4	1.5	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
June-1	12.5	83.0	8.5	4.4	BDL	BDL	BDL	BDL	0.2	BDL	BDL	BDL	BDL	BDL
June-2	5.8	62.0	4.1	0.7	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
June-3	7.0	58.0	3.8	2.8	BDL	BDL	0.3	BDL	BDL	BDL	BDL	BDL	BDL	BDL
July-1	0.7	60.0	4.6	1.8	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
July-2	11.3	66.9	5.5	1.9	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
July-3	9.7	66.0	4.8	2.1	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Aug-1	7.2	45.4	4.0	1.7	BDL	BDL	BDL	BDL	0.3	BDL	BDL	BDL	BDL	BDL
Aug-2	7.2	66.8	4.6	0.7	BDL	BDL	BDL	BDL	0.2	BDL	BDL	BDL	BDL	BDL
Aug-3	9.8	83.2	4.3	1.8	BDL	BDL	BDL	BDL	0.4	BDL	BDL	BDL	BDL	BDL
Sep-1	10.6	108.9	7.2	0.7	BDL	0.6	BDL	0.4	1.7	BDL	BDL	BDL	BDL	BDL
Sep-2	9.2	93.0	5.1	0.7	BDL	BDL	BDL	BDL	0.9	BDL	BDL	BDL	BDL	BDL
Sep-3	3.5	32.3	1.8	0.7	BDL	BDL	BDL	BDL	0.2	BDL	BDL	BDL	BDL	BDL

Part 3. Concentrations of dissolved phase OCPs and PCBs (pg L⁻¹) in different months from May to September: 211

Entries in bold and italics are substituted values at 1/2 MDL.

	Acel	Ace	Flu	Phe	Ant	Fla	Pyr	BaA	Chr	Bbf	Bkf	Вар	IcdP	DahA	BghiP	∑15PAHs (pg L ⁻¹)	∑15PAHs (ng L ⁻¹)
May-1	64	116	1510	2755	BDL	BDL	264	BDL	BDL	BDL	3	1	BDL	BDL	1	4715	4.7
May-2	35	74	771	1677	BDL	BDL	226	BDL	BDL	4	3	1	BDL	BDL	1	2793	2.8
May-3	87	105	697	1608	BDL	BDL	172	BDL	BDL	2	2	1	BDL	BDL	1	2674	2.7
June-1	309	220	1913	3358	BDL	BDL	352	BDL	26	BDL	4	2	BDL	BDL	2	6187	6.2
June-2	36	76	560	1153	BDL	BDL	74	BDL	BDL	BDL	1	1	BDL	BDL	1	1901	1.9
June-3	186	131	885	1501	BDL	BDL	74	BDL	BDL	BDL	1	1	BDL	BDL	1	2779	2.8
July-1	138	106	844	1034	BDL	BDL	74	BDL	BDL	1	0	1	BDL	BDL	1	2198	2.2
July-2	314	196	1744	2211	BDL	BDL	150	BDL	BDL	BDL	1	1	BDL	BDL	1	4617	4.6
July-3	214	120	1562	2142	BDL	BDL	167	BDL	BDL	2	1	1	BDL	BDL	1	4211	4.2
Aug-1	281	131	900	1281	BDL	BDL	74	BDL	BDL	2	1	1	BDL	BDL	1	2673	2.7
Aug-2	316	140	1233	1578	BDL	BDL	74	BDL	BDL	3	3	1	BDL	BDL	1	3349	3.3
Aug-3	463	193	1226	1645	BDL	BDL	74	BDL	BDL	3	2	1	BDL	BDL	1	3608	3.6
Sep-1																	
Sep-2	448	188	1529	2120	1430	BDL	226	BDL	26	BDL	0	2	BDL	BDL	2	5972	6.0
Sep-3	315	166	1220	1779	BDL	BDL	74	BDL	BDL	2	1	2	BDL	BDL	0	3560	3.6

213 Part 4. Concentrations of dissolved phase PAHs (pg L⁻¹) in different months from May to September:

214 Entries in bold and italics are substituted values at 1/2 MDL.

	а-НСН	β-НСН	ү-НСН	НСВ	o,p'- DDE	p,p'- DDE	o,p'- DDT	p,p'- DDT	PCB-28	PCB-52	PCB-101	PCB-153	PCB-138	PCB-180	PCBs
S1	BDL	BDL	0.5	BDL	BDL	2.3	BDL	BDL	1.3	0.7	0.8	0.3	0.7	0.1	3.9
S2	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0.3	BDL	0.4	BDL	0.5	BDL	1.3
S3	BDL	1.1	BDL	BDL	BDL	BDL	BDL	BDL	0.5	BDL	0.2	BDL	BDL	BDL	0.7
S4	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0.2	BDL	0.3	BDL	0.1	BDL	0.6
S 5	BDL	BDL	0.5	BDL	BDL	BDL	BDL	BDL	0.8	0.3	0.2	BDL	BDL	BDL	1.3
S6	BDL	BDL	0.7	BDL	BDL	BDL	BDL	BDL	0.6	BDL	0.3	BDL	0.2	BDL	1.1
S7	BDL	BDL	0.5	BDL	BDL	BDL	BDL	BDL	0.5	BDL	0.3	BDL	0.1	BDL	0.9
S8	BDL	BDL	0.4	BDL	BDL	BDL	BDL	BDL	0.5	0.2	0.3	BDL	0.2	BDL	1.3
S9	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0.4	BDL	0.2	BDL	BDL	BDL	0.6
S10	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0.2	0.3	0.4	BDL	0.2	BDL	1.1
S11	BDL	BDL	BDL	BDL	BDL	BDL	BDL	1.8	0.2	BDL	0.2	BDL	BDL	BDL	0.4
S12	BDL	BDL	0.6	BDL	BDL	BDL	BDL	BDL	0.4	0.3	0.5	0.1	0.4	BDL	1.7
S13	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0.3	BDL	0.3	BDL	BDL	BDL	0.5
S14	BDL	2.2	3.3	BDL	BDL	BDL	BDL	BDL	7.3	BDL	1.6	BDL	0.8	BDL	9.8
S15	BDL	BDL	1.0	BDL	BDL	BDL	BDL	BDL	0.7	0.5	0.7	0.2	0.7	0.1	3.0

215 Table S10. Concentrations of particulate phase POPs (pg L⁻¹) in the SPM of the water samples from Nam Co Lake

Part 1. Concentrations of particulate phase OCPs and PCBs $(pg L^{-1})$ in the lake water:	
--	--

	A col	1 00	Fl.,	Dho	Ant	Flo	Dum	Bal	Chr	Phf	₽ŀ₽	Bon	IndD	DohA	RahiD	∑15PAHs	∑15PAHs
	Acei	Ace	гш	rne	Ant	га	ryr	DaA	CIII	DUI	DKI	Бар	Icur	DallA	Dgillr	(pg L ⁻¹)	(ng L ⁻¹)
S1	12	29	145	641	136	927	777	240	980	114	185	232	8	20	297	4742.7	4.7
S2	11	27	161	727	107	549	442	107	248	BDL	102	81	BDL	BDL	140	2700.2	2.7
S3	9	19	128	639	107	338	229	38	141	BDL	31	25	BDL	BDL	28	1732.6	1.7
S4	13	37	169	870	170	1240	1052	406	768	BDL	277	380	6	BDL	336	5723.1	5.7
S5	46	135	387	9800	151	613	488	64	162	38	40	57	BDL	BDL	50	12030.6	12.0
S6	16	42	352	1607	329	920	717	187	521	32	165	184	BDL	BDL	241	5312.4	5.3
S7																	
S8	9	11	135	787	232	2185	2005	830	1380	BDL	605	827	19	BDL	910	9935.9	9.9
S9	11	17	111	597	121	796	665	281	561	BDL	266	363	8	BDL	396	4192.7	4.2
S10	9	15	252	1696	699	5404	4308	2835	4159	BDL	2050	3242	31	47	3437	28184.3	28.2
S11	6	11	188	1155	301	2163	1818	1025	1652	BDL	620	1052	BDL	9	1105	11104.4	11.1
S12	5	8	139	972	148	563	441	54	269	BDL	58	65	BDL	BDL	74	2794.8	2.8
S13	6	13	122	668	121	379	237	43	103	5	25	35	2	BDL	29	1788.2	1.8
S14	28	56	266	1517	316	1296	1299	149	1432	BDL	217	331	BDL	BDL	328	7235.7	7.2
S15	9	23	216	1313	204	753	628	49	599	88	23	92	BDL	BDL	120	4117.8	4.1

217 **Part 2.** Concentrations of particulate phase PAHs (pg L⁻¹) in the lake water:

T a satism	Nam Co Lake,	Nam Co,	Lhasa,	Lulang,	Mt.	Rocky	Central	A 4 4	
Location	ТР	ТР	ТР	southeast TP	Everest	Mountains	Pyrenees	Antarctic	Alert, Arctic
Sampling Year	2012-2014	2006-2008	2006-2007	2008-2011	2002	2000	2001-2003	2007-2010	2000-2003
Sampler	AAS	FTS	AAS	AAS	AAS	AAS	AAS	AAS	AAS
а-НСН	4 (0.7-9)	48.7 (4.0-144)	2.3 (BDL-9.2)	12.1 (0.61-51)	19.2	21	8	0.2	22 (1.4-66)
β-ΗCΗ	0.8 (BDL-1.5)				7.7				0.1 (0.018-1.0)
γ-ΗCΗ	2.1 (0.1-7.2)	7.9 (0.9-19.9)	10.3 (3.7-20.9)	(BDL-7.07)		2.3	22		5.6 (0.43-19)
НСВ	20 (11.4-40.5)	17.1 (7.3-31.7)		7.87 (0.05-27.1)	8.9	42	49	22.9	64 (20-130)
<i>o,p'</i> -DDE	1.2 (0.2-13.9)	0.6 (BDL-0.99)		(BDL-7.3)				0.03	0.089 (0.013-0.36)
<i>p,p'</i> -DDE	1.9 (0.3-12.8)	0.6 (BDL-1.0)	2.9 (BDL-12.1)	6.4 (0.08-23.8)	5.1		33		0.41 (0.051-3.6)
<i>o,p'</i> -DDT	3.6 (0.2-17.9)	8.2 (0.3-19.7)	5.8 (BDL-34.3)	(BDL-60.5)	5.1				0.14 (0.016-0.56)
<i>p,p</i> '-DDT	1.2 (0.2-4.9)	3.9 (0.3-12.67)	3.2 (BDL-9.7)	(BDL-33.6)	3.7		BDL		0.09 (0.015-1.1)
∑PCBs	2.5 (0.2-13.7)	1.4 (0.1-2.6)	10.6 (3.4-45.4)	(BDL-16.7)			34	0.5	
Reference	This study	(Xiao et al., 2010)	(Gong et al., 2010)	(Sheng et al., 2013)	(Li et al., 2006)	(Wilkinson et al., 2005)	(Van Drooge et al., 2004)	(Kallenborn et al., 2013)	(Su et al., 2006 and 2008)

218 Table S11. Comparisons of OCPs and PCBs in the air of this study and data reported for other remote areas (pg m⁻³)

219 AAS: active air sampler; FTS: flow-through sampler.

Location	Sampling Year	Sampler	Gaseous (G)/ Particulate (P)	∑PAHs (ng/m ³)	Reference
	2012 2014		G	2.2 (0.5-13)	
Nam Co, central TP	2012-2014	AAS	Р	0.6 (0.1-3.4)	This study
Nam Co, central TP	2006-2008	FTS	G+P	0.7 (0.08-2.2)	(Xiao et al., 2010)
Lulang, southeast TP	2008-2011	AAS	Р	2.0 (0.2-5)	(Wang et al., 2015)
Lahsa, TP	2006-2007	AAS	G+P	35.7 (11.4-72.5)	(Gong et al., 2011)
Pyrenees, Europe	1996-1997	AAS	G	(1.3-2.6)	(F 1 (1 2002)
Alps, Europe	1996-1997	AAS	G	(2.7-3.7)	(Fernandez et al., 2002)
Open water of Lake Superior	2011	PE-PAS	G	(BDL-1.9)	(Ruge et al., 2015)
	2005 2007		G	38.38 (25.84-86.47)	$\langle C \rangle \langle 1 \rangle \langle 0 \rangle \langle 0 \rangle$
Mediterranean Sea	2006-2007	AAS	Р	1.4 (0.9-1.8)	(Castro et al., 2012)
	2010		G	(0.91-7.4)	(1, 1, 2012)
Pacific and Arctic Ocean	2010	AAS	Р	(0.0002-0.36)	(Ma et al., 2013)
Atlantic Ocean	2005	AAS	G+P	0.6 (0.02-2.8)	(Nizzetto et al., 2008)
	2000 2010		G	0.004 (0.0004-0.01)	(D: 1.0010)
Terra Nova Bay, Antarctica	2009-2010	AAS	Р	0.13 (0.02-0.3)	(Piazza et al., 2013)
	2002		G	3.3 (0.9–6.3)	
Arctic	2003	AAS	Р	0.5 (0.02–2.6)	(Ding et al., $200/b$)

220 Table S12. Comparisons of PAHs concentrations from this study and data reported for other remote areas (ng m⁻³)

AAS: active air sampler; PE-PAS: polyethylene passive air sampler; FTS: flow-through sampler.

Table S13. Dissolved concentrations of OCPs and PCBs in lake water of Nam Co Lake and other remote sites (pg L⁻¹).

Location	Year	а-НСН	β-НСН	γ-НСН	HCB	<i>o,p'</i> -DDE	<i>p,p'</i> -DDE	<i>o,p'</i> -DDT	<i>p,p'</i> -DDT	∑ ₆ PCBs	Reference
Nam Co Lake	2013	9.9±3.4	85.2±18.8	7±2.5	7.6±5.6	BDL	BDL-1.2	BDL	BDL	2.0±1.4	This study
Yamdro, TP	2002	850	2400				260				(Zhang et al., 2003)
Co Ngoin, TP	2002	550	810						190		(Zhang et al., 2003)
Taihu Lake, China	2004-2005	1887±1372	1773±944	484±373		53±113	77±91	135±287	12±4		(Qiu et al., 2008)
Chaohu Lake, China	2010-2011	460±460	900±480	280±310	170±70	1640±1820	20±40	140±390	220±220		(Ouyang et al., 2013)
European mountain lake	2000	68±35		139±89	8.5±3.2		12	±3			(Fernandez et al., 2005)
North Pacific	2010	101.6	27.7	17.9	2.8						(Cai et al., 2012)
Indian Ocean	2011	3.2±0.8	5.4±2.2	2.2±1.3		48±120	37±85	330±840	1600±4000		(Huang et al., 2013)
Ross Sea, Antarctic	2003-2004	1.4±0.9		2.9±2.2							(Cincinelli et al., 2009)
North Atlantic and Arctic	2004	13.0±16.3		4.7±5.6	0.9-9.6	BDL	0.15±0.08	BDL	BDL-0.2		(Lohmann et al., 2009)
i noue										<1	(Gioia et al., 2008)

225 Table S14. Concentrations of PAHs in lake water of Nam Co Lake and other remote sites (ng L⁻¹).

Leasting	Vaaa	$\sum \mathbf{P}$	AHs	Deferrer
Location	Y ear	dissolved phase	particulate phase	Reference
Nam Co Lake	2013	28.6 (6.9-83.6)	7.3 (1.7-28)	This study
Lakes in Himalayan region, Nepal	2007	$1.96~{\pm}1.86$		(Guzzella et al., 2011)
Lake Redo, Pyrenees	2000	$0.27\ \pm 0.19$	0.41 ± 0.13	(Vilanova et al., 2001)
Lake Gossenkolle, Alps	2000	0.35 ± 0.19	0.57 ± 0.34	(Vilanova et al., 2001)
Lake Ladove, High Tatras	2000	3.4 ± 0.4	$8.5\ \pm 0.7$	(Fernandez et al., 2005)
Lake Ontario	2011-2012	5.5 ± 3.2		(Venier et al., 2014)
Lake Erie	2011-2012	4.8 ± 1.4		(Venier et al., 2014)
Lake Superior	2011-2012	1.1 ± 0.5		(Venier et al., 2014)
Atlantic Ocean	2005	(0.058-1.07)		(Nizzetto et al., 2008)
North Pacific and Arctic	2010	(0.014	4-0.76)	(Ma et al., 2013)
Gerlache Inlet Sea, Antarctica	2001	2.4 (2.1-2.9)	3.6 (2.8-4.7)	(Stortini et al., 2009)

227 Table S15. Comparison of isomer ratios of OCPs in this study and the source

228 region

Sampling site	α/r-HCH	<i>p,p'</i> -DDT/ <i>p,p'</i> -DDE	Reference
Nam Co, TP	2.7±1.7	1.3±1.6	This study
Lulang, TP	3.7 ± 1.99	>1	(Sheng et al., 2013)
Indian major cities	0.67±0.5	0.9±0.5	(Chakraborty et al., 2010)
Indian coastal region	0.11-4	2	(Zhang et al., 2008)
Bay of Bengal		>1	(Gioia et al., 2012)

Figure S3. Seasonal patterns of the gaseous and particulate phase of \sum_{15} PAHs in 231 the atmosphere of Nam Co. 232

- 233 Table S16. Results of randomized block ANOVA to test the concentration
- 234 difference of POPs in the lake water from different regions of the Nam Co Lake.
- 235 (a) Before the ANOVA analysis, the sampling sites of surface water in the present
- study were classified as four regions according to the different locations:

Site	Region		
S 1	south		
S2	south		
S 3	south		
S 4	south		
S 5	south		
S 6	south		
S 7	south		
S 8	northwest		
S 9	northwest		
S 10	north		
S 11	north		
S12	north		
S 13	east		
S 14	east		
S15	east		

237 (2) *p* values derived from the ANOVA test:

			p values	
L	ocation	HCHs	HCB	PAHs
south	northwest	0.161	0.05	0.001
	north	0.106	0.96	0.303
	east	0.518	0.002	0.005
northwest	north	0.983	0.086	0.007
	east	0.424	0.25	0.16
north	east	0.361	0.006	0.068

238 (The values of p < 0.05 were highlighted in bold and italics, which indicates that the

239 levels of pollutants significantly differ between two regions)

240 Table S17. Results of Clausius–Clapeyron regression

Clausius-Clapeyron (C.C.) equation is often used for assessing the relative
contribution of re-volatilization from local surface versus long range atmospheric
transport:

244

$$\ln P = \frac{m}{T} + b$$

where *P* is the partial pressure of pollutants in air (Pa), *T* is the air temperature (K), m and b are slopes and intercepts derived from C.C. regression for each compound. Carlson and Hites (2005) found that the temperature dependence will reduce or disappear when *T* is below the freezing point. Thus, the sampling periods with T<0 °C were excluded in the present study. Results included slope *m*, R^2 , *p*-value, and number of data points, *n*, as shown in the table below.

Compound	slope (m)	R^2	<i>p</i> -value	n	Compound	т	R^2	<i>p</i> -value	n
α-HCH	-7893	0.29	0.01^{a}	18	Acel	/	\	0.83	14
β-НСН	$\setminus^{\mathbf{b}}$	\	0.27	14	Ace	\	\	0.93	14
γ-HCH	\	\	0.50	17	Flu	\	\	0.56	14
HCB	\	\	0.55	18	Phe	\	\	0.37	14
o,p'-DDE	\	\	0.90	18	Ant	\	\	0.13	14
p,p'-DDE	\	\	0.58	18	Fla	\	\	0.17	14
o,p'-DDT	\	\	0.06	18	Pyr	\	\	0.37	14
p,p'-DDT	\	\	0.33	18	BaA	\	\	0.71	14
PCB-28	\	\	0.78	18	Chr	\	\	0.87	14
PCB-52	\	\	0.61	18	Bbf	\	\	0.28	14
PCB-101	\	\	0.96	18	Bkf	\	\	0.15	13
PCB-153	\	\	0.61	18	Bap	\	\	0.61	13
PCB-138	\	\	0.89	18	IcdP	\	\	0.91	6
PCB-180	\	\	0.60	18	DahA	\	\	0.28	4
					BghiP	\	\	0.60	13

a: Numbers in bold font stand for p < 0.05, indicating that the relationship is significant.

b: "\" stands for the unavailable slope and R^2 for some compounds which showed insignificant correlation (p > 0.05).

257 Figure S4. Average atmospheric degradation fluxes of individual POPs.

258

259 Figure S5. Seasonality of the wet deposition fluxes for HCHs in Nam Co Lake.

260 **References**

- Antweiler, R. C., and Taylor, H. E.: Evaluation of statistical treatments of left-censored
 environmental data using coincident uncensored data sets: I. Summary statistics, Environ. Sci.
 Technol., 42, 3732-3738, doi:10.1021/es071301c, 2008.
- Burkhard, L. P.: Estimating dissolved organic carbon partition coefficients for nonionic organic
 chemicals, Environ. Sci. Technol., 34, 4663-4668, doi:10.1021/es001269I, 2000.
- Cai, M. H., Ma, Y. X., Xie, Z. Y., Zhong, G. C., Moller, A., Yang, H. Z., Sturm, R., He, J. F.,
 Ebinghaus, R., and Meng, X. Z.: Distribution and air-sea exchange of organochlorine
 pesticides in the North Pacific and the Arctic, J. Geophys. Res., 117,
 doi:10.1029/2011jd016910, 2012.
- Carlson, D. L., and Hites, R. A.: Temperature dependence of atmospheric PCB concentrations,
 Environ. Sci. Technol., 39, 740-747, doi:10.1021/es049081f, 2005.
- 272 Castro-Jimenez, J., Berrojalbiz, N., Wollgast, J., and Dachs, J.: Polycyclic aromatic hydrocarbons 273 (PAHs) in the Mediterranean Sea: Atmospheric occurrence, deposition and decoupling with 274 settling fluxes in the water column. Environ. Pollut.. 166. 40-47. 275 doi:10.1016/j.envpol.2012.03.003, 2012.
- Cetin, B., Ozer, S., Sofuoglu, A., and Odabasi, M.: Determination of Henry's law constants of
 organochlorine pesticides in deionized and saline water as a function of temperature, Atmos.
 Environ., 40, 4538-4546, doi: 10.1016/j.atmosenv.2006.04.009, 2006.
- Chakraborty, P., Zhang, G., Li, J., Xu, Y., Liu, X., Tanabe, S., and Jones, K. C.: Selected
 Organochlorine Pesticides in the Atmosphere of Major Indian Cities: Levels, Regional versus
 Local Variations, and Sources, Environ. Sci. Technol., 44, 8038-8043, doi:
 10.1021/Es102029t, 2010.
- Cincinelli, A., Martellini, T., Del Bubba, M., Lepri, L., Corsolini, S., Borghesi, N., King, M. D.,
 and Dickhut, R. M.: Organochlorine pesticide air-water exchange and bioconcentration in
 krill in the Ross Sea, Environ. Pollut., 157, 2153-2158, doi: 10.1016/j.envpol.2009.02.010,
 2009.
- Ding, X., Wang, X. M., Xie, Z. Q., Xiang, C. H., Mai, B. X., Sun, L. G., Zheng, M., Sheng, G. Y.,
 and Fu, J. M.: Atmospheric hexachlorocyclohexanes in the North Pacific Ocean and the
 adjacent Arctic region: Spatial patterns, chiral signatures, and sea-air exchanges, Environ. Sci.
 Technol., 41, 5204-5209, doi:10.1021/es070237w, 2007a.
- Ding, X., Wang, X. M., Xie, Z. Q., Xiang, C. H., Mai, B. X., Sun, L. G., Zheng, M., Sheng, G. Y.,
 Fu, J. M., and Poschl, U.: Atmospheric polycyclic aromatic hydrocarbons observed over the
 North Pacific Ocean and the Arctic area: Spatial distribution and source identification, Atmos.
 Environ., 41, 2061-2072, doi:10.1016/j.atmonsenv.2006.11.002, 2007b.
- Fernandez, P., Grimalt, J. O., and Vilanova, R. M.: Atmospheric gas-particle partitioning of
 polycyclic aromatic hydrocarbons in high mountain regions of Europe, Environ. Sci. Technol.,
 36, 1162-1168, doi: 10.1021/Es010190t, 2002.
- Fernandez, P., Carrera, G., and Grimalt, J. O.: Persistent organic pollutants in remote freshwater
 ecosystems, Aquat. Sci., 67, 263-273, doi:10.1007/s00027-005-0747-8, 2005.
- Gioia, R., Lohmann, R., Dachs, J., Temme, C., Lakaschus, S., Schulz-Bull, D., Hand, I., and Jones,
 K. C.: Polychlorinated biphenyls in air and water of the North Atlantic and Arctic Ocean, J.
 Geophys. Res., 113, doi: 10.1029/2007jd009750, 2008.
- 303 Gioia, R., Li, J., Schuster, J., Zhang, Y. L., Zhang, G., Li, X. D., Spiro, B., Bhatia, R. S., Dachs, J.,

- and Jones, K. C.: Factors Affecting the Occurrence and Transport of Atmospheric
 Organochlorines in the China Sea and the Northern Indian and South East Atlantic Oceans,
 Environ. Sci. Technol., 46, 10012-10021, doi: 10.1021/Es302037t, 2012.
- Gong, P., Wang, X. P., Sheng, J. J., and Yao, T. D.: Variations of organochlorine pesticides and
 polychlorinated biphenyls in atmosphere of the Tibetan Plateau: Role of the monsoon system,
 Atmos. Environ., 44, 2518-2523, doi: 10.1016/j.atmosenv.2010.04.025, 2010.
- Gong, P., Wang, X. P., and Yao, T. D.: Ambient distribution of particulate- and gas-phase n-alkanes
 and polycyclic aromatic hydrocarbons in the Tibetan Plateau, Environmental Earth Sciences,
 64, 1703-1711, doi:10.1007/s12665-011-0974-3, 2011.
- Gong, P., Wang, X. P., Xue, Y. G., Sheng, J. J., Gao, S. P., Tian, L. D., and Yao, T. D.: Influence of
 atmospheric circulation on the long-range transport of organochlorine pesticides to the
 western Tibetan Plateau, Atmospheric Research, 166, 157-164,
 doi:10.1016/j.atmosres.2015.07.006, 2015.
- Gonzalez-Gaya, B., Zuniga-Rival, J., Ojeda, M. J., Jimenez, B., and Dachs, J.: Field
 Measurements of the Atmospheric Dry Deposition Fluxes and Velocities of Polycyclic
 Aromatic Hydrocarbons to the Global Oceans, Environ. Sci. Technol., 48, 5583-5592,
 doi:10.1021/es500846p, 2014.
- Guzzella, L., Poma, G., De Paolis, A., Roscioli, C., and Viviano, G.: Organic persistent toxic
 substances in soils, waters and sediments along an altitudinal gradient at Mt. Sagarmatha,
 Himalayas, Nepal, Environ. Pollut., 159, 2552-2564, doi:10.1016/j.envpol.2011.06.015,
 2011.
- Huang, Y. M., Xu, Y., Li, J., Xu, W. H., Zhang, G., Cheng, Z. N., Liu, J. W., Wang, Y., and Tian, C.
 G.: Organochlorine Pesticides in the Atmosphere and Surface Water from the Equatorial
 Indian Ocean: Enantiomeric Signatures, Sources, and Fate, Environ. Sci. Technol., 47,
 13395-13403, doi: 10.1021/Es403138p, 2013.
- Jantunen, L. M., and Bidleman, T. F.: Henry's law constants for hexachlorobenzene, p,p'-DDE and
 components of technical chlordane and estimates of gas exchange for Lake Ontario,
 Chemosphere, 62, 1689-1696, doi: 10.1016/j.chemosphere.2005.06.035, 2006.
- Kallenborn, R., Breivik, K., Eckhardt, S., Lunder, C. R., Mano, S., Schlabach, M., and Stohl, A.:
 Long-term monitoring of persistent organic pollutants (POPs) at the Norwegian Troll station
 in Dronning Maud Land, Antarctica, Atmospheric Chemistry and Physics, 13, 6983-6992, doi:
 10.5194/acp-13-6983-2013, 2013.
- Khairy, M., Muir, D., Teixeira, C., and Lohmann, R.: Spatial Trends, Sources, and Air-Water
 Exchange of Organochlorine Pesticides in the Great Lakes Basin Using Low Density
 Polyethylene Passive Samplers, Environ. Sci. Technol., 48, 9315-9324,
 doi:10.1021/es501686a, 2014.
- Lei, Y. D., Chankalal, R., Chan, A., and Wania, F.: Supercooled liquid vapor pressures of the
 polycyclic aromatic hydrocarbons, J. Chem. Eng. Data., 47, 801-806, doi:10.1021/je0155148,
 2002.
- Li, C. L., Kang, S. C., Chen, P. F., Zhang, Q. G., and Fang, G. C.: Characterizations of
 particle-bound trace metals and polycyclic aromatic hydrocarbons (PAHs) within Tibetan
 tents of south Tibetan Plateau, China, Environmental Science and Pollution Research, 19,
 1620-1628, doi:10.1007/s11356-011-0678-y, 2012.
- 347 Li, J., Zhu, T., Wang, F., Qiu, X. H., and Lin, W. L.: Observation of organochlorine pesticides in

- the air of the Mt. Everest region, Ecotoxicol. Environ. Saf., 63, 33-41, doi:
 10.1016/j.ecoenv.2005.04.001, 2006.
- Liu, X. B., Yao, T. D., Kang, S. C., Jiao, N. A. Z., Zeng, Y. H., and Liu, Y. Q.: Bacterial
 Community of the Largest Oligosaline Lake, Namco on the Tibetan Plateau, Geomicrobiol. J.,
 27, 669-682, doi:10.1080/01490450903528000, 2010.
- Lohmann, R., Gioia, R., Jones, K. C., Nizzetto, L., Temme, C., Xie, Z., Schulz-Bull, D., Hand, I.,
 Morgan, E., and Jantunen, L.: Organochlorine Pesticides and PAHs in the Surface Water and
 Atmosphere of the North Atlantic and Arctic Ocean, Environ. Sci. Technol., 43, 5633-5639,
 doi: 10.1021/Es901229k, 2009.
- Ma, Y. G., Lei, Y. D., Xiao, H., Wania, F., and Wang, W. H.: Critical Review and Recommended
 Values for the Physical-Chemical Property Data of 15 Polycyclic Aromatic Hydrocarbons at
 25 degrees C, J. Chem. Eng. Data., 55, 819-825, doi: 10.1021/Je900477x, 2010.
- Ma, Y. X., Xie, Z. Y., Yang, H. Z., Moller, A., Halsall, C., Cai, M. H., Sturm, R., and Ebinghaus,
 R.: Deposition of polycyclic aromatic hydrocarbons in the North Pacific and the Arctic, J.
 Geophys. Res., 118, 5822-5829, doi:10.1002/jgrd.50473, 2013.
- Ni, N., and Yalkowsky, S. H.: Prediction of Setschenow constants, Int. J. Pharm., 254, 167-172,
 doi:10.1016/S0378-5173(03)00008-5, 2003.
- 365 Nizzetto, L., Lohmann, R., Gioia, R., Jahnke, A., Temme, C., Dachs, J., Herckes, P., Di Guardo, A., 366 and Jones, K. C.: PAHs in air and seawater along a North-South Atlantic transect: Trends, 367 sources, Environ. Sci. Technol., 42, processes and possible 1580-1585, 368 doi:10.1021/es0717414, 2008.
- Odabasi, M., Cetin, E., and Sofuoglu, A.: Determination of octanol-air partition coefficients and
 supercooled liquid vapor pressures of PAHs as a function of temperature: Application to
 gas-particle partitioning in an urban atmosphere, Atmos. Environ., 40, 6615-6625, doi:
 10.1016/j.atmosenv.2006.05.051, 2006.
- Ouyang, H. L., He, W., Qin, N., Kong, X. Z., Liu, W. X., He, Q. S., Yang, C., Jiang, Y. J., Wang, Q.
 M., Yang, B., and Xu, F. L.: Water-gas exchange of organochlorine pesticides at Lake Chaohu,
 a large Chinese lake, Environmental Science and Pollution Research, 20, 2020-2032, doi:
 10.1007/s11356-012-1374-2, 2013.
- Paasivirta, J., and Sinkkonen, S. I.: Environmentally Relevant Properties of All 209
 Polychlorinated Biphenyl Congeners for Modeling Their Fate in Different Natural and
 Climatic Conditions, J. Chem. Eng. Data., 54, 1189-1213, doi: 10.1021/Je800501h, 2009.
- Piazza, R., Gambaro, A., Argiriadis, E., Vecchiato, M., Zambon, S., Cescon, P., and Barbante, C.:
 Development of a method for simultaneous analysis of PCDDs, PCDFs, PCBs, PBDEs,
 PCNs and PAHs in Antarctic air, Anal. Bioanal. Chem., 405, 917-932,
 doi:10.1007/s00216-012-6464-y, 2013.
- Qiu, X. H., Zhu, T., Wang, F., and Hu, J. X.: Air-water gas exchange of organochlorine pesticides
 in Taihu Lake, China, Environ. Sci. Technol., 42, 1928-1932, doi: 10.1021/Es071825c, 2008.
- Ruge, Z., Muir, D., Helm, P., and Lohmann, R.: Concentrations, Trends, and Air-Water Exchange
 of PAHs and PBDEs Derived from Passive Samplers in Lake Superior in 2011, Environ. Sci.
 Technol., 49, 13777-13786, doi:10.1021/acs.est.5b02611, 2015.
- Sahsuvar, L., Helm, P. A., Jantunen, L. M., and Bidleman, T. F.: Henry's law constants for alpha-,
 beta-, and gamma-hexachlorocyclohexanes (HCHs) as a function of temperature and revised
 estimates of gas exchange in Arctic regions, Atmos. Environ., 37, 983-992,

- doi:10.1016/S1352-2310(02)00936-6, 2003.
- Schwarzenbach, R. P., Gschwend, P. M., and Imboden, D. M.: Environmental Organic Chemistry,
 John Wiley and Sons, New Jersey, 2003.
- Sheng, J., Wang, X., Gong, P., Joswiak, D. R., Tian, L., Yao, T., and Jones, K. C.: Monsoon-driven
 transport of organochlorine pesticides and polychlorinated biphenyls to the tibetan plateau:
 three year atmospheric monitoring study, Environ. Sci. Technol., 47, 3199-3208,
 doi:10.1021/es305201s, 2013.
- Stortini, A. M., Martellini, T., Del Bubba, M., Lepri, L., Capodaglio, G., and Cincinelli, A.:
 n-Alkanes, PAHs and surfactants in the sea surface microlayer and sea water samples of the
 Gerlache Inlet sea (Antarctica), Microchemical Journal, 92, 37-43,
 doi:10.1016/j.microc.2008.11.005, 2009.
- Su, Y., Hung, H., Blanchard, P., Patton, G. W., Kallenborn, R., Konoplev, A., Fellin, P., Li, H.,
 Geen, C., Stern, G., Rosenberg, B., and Barrie, L. A.: A circumpolar perspective of
 atmospheric organochlorine pesticides (OCPs): Results from six Arctic monitoring stations in
 2000-2003, Atmos. Environ., 42, 4682-4698, doi:10.1016/j.atmosenv.2008.01.054, 2008.
- Su, Y. S., Hung, H., Blanchard, P., Patton, G. W., Kallenborn, R., Konoplev, A., Fellin, P., Li, H.,
 Geen, C., Stern, G., Rosenberg, B., and Barrie, L. A.: Spatial and seasonal variations of
 hexachlorocyclohexanes (HCHs) and hexachlorobenzene (HCB) in the Arctic atmosphere,
 Environ. Sci. Technol., 40, 6601-6607, doi: 10.1021/Es061065q, 2006.
- Van Drooge, B. L., Grimalt, J. O., Camarero, L., Catalan, J., Stuchlik, E., and Garcia, C. J. T.:
 Atmospheric semivolatile organochlorine compounds in European high-mountain areas
 (Central Pyrenees and High Tatras), Environ. Sci. Technol., 38, 3525-3532, doi:
 10.1021/Es030108p, 2004.
- Venier, M., Dove, A., Romanak, K., Backus, S., and Hites, R.: Flame Retardants and Legacy
 Chemicals in Great Lakes' Water, Environ. Sci. Technol., 48, 9563-9572,
 doi:10.1021/es501509r, 2014.
- Vilanova, R. M., Fernandez, P., Martinez, C., and Grimalt, J. O.: Polycyclic aromatic
 hydrocarbons in remote mountain lake waters, Water Res., 35, 3916-3926, doi:
 10.1016/S0043-1354(01)00113-0, 2001.
- Wang, X. P., Gong, P., Sheng, J. J., Joswiak, D. R., and Yao, T. D.: Long-range atmospheric
 transport of particulate Polycyclic Aromatic Hydrocarbons and the incursion of aerosols to
 the southeast Tibetan Plateau, Atmos. Environ., 115, 124-131,
 doi:10.1016/j.atmosenv.2015.04.050, 2015.
- Wilkinson, A. C., Kimpe, L. E., and Blais, J. M.: Air-water gas exchange of chlorinated pesticides
 in four lakes spanning a 1,205 meter elevation range in the Canadian Rocky Mountains,
 Environ. Toxicol. Chem., 24, 61-69, doi: 10.1897/04-071r.1, 2005.
- Xiao, H., Kang, S. C., Zhang, Q. G., Han, W. W., Loewen, M., Wong, F., Hung, H., Lei, Y. D., and
 Wania, F.: Transport of semivolatile organic compounds to the Tibetan Plateau: Monthly
 resolved air concentrations at Nam Co, J. Geophys. Res., 115, doi: 10.1029/2010jd013972,
 2010.
- Xie, Z., Koch, B. P., Moller, A., Sturm, R., and Ebinghaus, R.: Transport and fate of
 hexachlorocyclohexanes in the oceanic air and surface seawater, Biogeosciences, 8,
 2621-2633, doi:10.5194/bg-8-2621-2011, 2011.
- 435 Zhang, G. S: A study of Zhadang glacier energy and mass balance and its hydrological process, in

- 436 NamCo basin, central Tibetan Plateau, Doctoral dissertation, 2013.
- Zhang, W. L., Zhang, G., Qi, S. H. and Peng, P. A.: A preliminary study of
 organochlorinepesticides in water and sediments from two Tibetan Lakes. Geochimica. 32 (4),
 363-367 (in Chinese with English abstract), 2003.
- Zhang, G., Chakraborty, P., Li, J., Sampathkumar, P., Balasubramanian, T., Kathiresan, K.,
 Takahashi, S., Subramanian, A., Tanabe, S., and Jones, K. C.: Passive Atmospheric Sampling
- 442 of Organochlorine Pesticides, Polychlorinated Biphenyls, and Polybrominated Diphenyl
- Ethers in Urban, Rural, and Wetland Sites along the Coastal Length of India, Environ. Sci.
- 444 Technol., 42, 8218-8223, doi: 10.1021/Es8016667, 2008.