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Figure 2. Panel (a): annually and zonally averaged sulfate mass density calculated anomalies (ig/m®), due to a geoengineering injection of
5 Tg-SOu/yr, with respect to a RCP4.5 background atmosphere. The aerosol mass density distribution is calculated in the Goddard Earth
Observing System Chemistry Climate Model (GEOSCCM), with SG treated as described in Pitari et al. (2014). Arrows superimposed to the
acrosol distribution indicate the main transport pathways of the aerosol particles, as explained in panel (b). The sensitivity of each dynamical
effect to the SO injection is highlighted in panel (b), along with the physical mechanisms driving the perturbation and the net effect on
sulfate lifetime and optical depth.

Fig. 2.

C3

(a) SG perturbations relevant for UT ice formation
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(b) Summary of SO, injection feedback mechanisms
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Figure 3. Panel (a): schematic profile changes of upper troposphere-lower stratosphere temperature (K) and UT vertical velocity (cm/s) in
the tropics, due to a geoengineering injection of 5 Tg-SO,/yr. The perturbation scheme is based on the findings of Kuebbeler et al. (2012),
Pitari et al. (2016¢) and Pitari et al. (2014). The s

itivity of each thermal-dynamical effect to the SO injection s highlighted in panel (b),
along with the physical mechanisms driving the perturbation and the net effect on UT ice optical depth.
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Figure 4. Summary of direct and indirect SG global TOA RF per component (see sections 2.1 - 2.2).
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