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Highlights: 18 

1. The WRF-Chem simulation successfully captures aerosol variations in the cold season in the 19 

San Joaquin Valley (SJV), but has poor performance in the warm season.   20 

2. High resolution model simulation can better resolve inhomogeneous distribution of 21 

anthropogenic emissions in urban areas, resulting in better simulation of aerosols in the cold 22 

season in the SJV. 23 

3. Observations show that dust is a major component of aerosols in the SJV, especially in the 24 

warm season. Poor performance of the WRF-Chem model in the warm season is mainly due 25 

to misrepresentation of dust emission and vertical mixing.   26 
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Abstract 27 

WRF-Chem simulations of aerosol seasonal variability in the San Joaquin Valley (SJV), 28 

California are evaluated by satellite and in-situ observations. Results show that the WRF-Chem 29 

model successfully captures the distribution, magnitude and variation of SJV aerosols during the 30 

cold season. However, aerosols are not well represented in the warm season. Aerosol simulations 31 

in urban areas during the cold season are sensitive to model horizontal resolution, with better 32 

simulations at 4 km resolution than at 20 km resolution, mainly due to inhomogeneous distribution 33 

of anthropogenic emissions and better represented precipitation in the 4 km simulation. In rural 34 

areas, the model sensitivity to grid size is rather small. Our observational analysis reveals that dust 35 

is a primary contributor to aerosols in the SJV, especially during the warm season. Aerosol 36 

simulations in the warm season are sensitive to parameterization of dust emission in WRF-Chem. 37 

The GOCART (Goddard Global Ozone Chemistry Aerosol Radiation and Transport) dust scheme 38 

produces very little dust in the SJV while the DUSTRAN (DUST TRANsport model) scheme 39 

overestimates dust emission. Vertical mixing of aerosols is not adequately represented in the model 40 

based on CALIPSO (Cloud-Aerosol Lidar and Infrared pathfinder Satellite Observation) aerosol 41 

extinction profiles. Improved representation of dust emission and vertical mixing in the boundary 42 

layer are needed for better simulations of aerosols during the warm season in the SJV.    43 

44 
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1. Introduction 45 

The San Joaquin Valley (SJV) in the southern portion of the California Central Valley is 46 

surrounded by coastal mountain range to the west and the Sierra Nevada range to the east. With 47 

cool wet winters and hot dry summers, the unique natural environment makes SJV one of the most 48 

productive agricultural regions in the world (SJV APCD, 2012 and references therein). However, 49 

SJV is also one of the most polluted regions in US due to its unique geographical location. Frequent 50 

stagnant weather systems are conducive to air pollution formation, while the surrounding 51 

mountains block air flow and trap pollutions. Large seasonal and spatial variation of aerosol 52 

occurrence and distribution are observed in the SJV. Although significant progress made to 53 

improving local air quality in past decades has been achieved through strong emission controls, 54 

PM2.5 (particulate matter with diameter ≤ 2.5 µm) concentrations in the SJV remain well above 55 

the national ambient air quality standards (NAAQS) threshold of 12 µg m-3 on an annual basis and 56 

35 µg m-3 on daily basis, occurring mainly during the cold season. Improved understanding of the 57 

aerosol variability and impacts is needed to provide further guidance for emission control strategies 58 

in the SJV.   59 

Air quality models are a useful tool to understanding the formation and evolution of 60 

aerosols and their impacts on air quality, weather and climate. However, it is quite challenging to 61 

accurately simulate aerosol properties (Fast et al., 2014). Fast et al. (2014) summarized the factors 62 

contributing to the errors in regional-scale modeling of aerosol properties. They include 1) 63 

emission sources; 2) meteorological parameterizations; 3) representation of aerosol chemistry; 4) 64 

limited understanding of the formation processes of secondary organic aerosol (SOA); 5) spatial 65 

resolution; and 6) boundary conditions. 66 
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As one of the advanced regional air quality models available presently to the community, 67 

the Weather Research and Forecasting model with Chemistry (WRF-Chem) has been widely used 68 

to study aerosols and their impacts on regional air quality, weather and climate (e.g., Misenis and 69 

Zhang, 2010; Zhang et al., 2010; Zhao et al., 2010; 2013a, 2013b; 2014; Wu et al., 2011a, 2011b, 70 

2013; Fast et al., 2012, 2014; Scarino et al., 2014; Tessum et al., 2015; Campbell et al., 2016; Hu 71 

et al., 2016). For example, Fast et al. (2014) showed that WRF-Chem simulations at 4 km 72 

horizontal resolution captured the observed meteorology and boundary layer structure over 73 

California in May and June of 2010 and the spatial and temporal variations of aerosols were 74 

reasonably simulated. Aerosol simulations by WRF-Chem are usually sensitive to both local 75 

emission and long-range transport of aerosols from the boundary conditions provided by the global 76 

Model for Ozone and Related chemical Tracers, version 4 (MOZART-4). With a similar model 77 

set-up, Zhao et al. (2013b) conducted a one-year simulation at 12 km horizontal resolution and 78 

found that the WRF-Chem model represented the observed seasonal and spatial variation of 79 

surface particulate matter (PM) concentration over California. However, underestimation of 80 

elemental carbon (EC) and organic matter (OM) were noticed in the model simulation, with weak 81 

sensitivity to horizontal resolution.  82 

In this study, we focus on simulating aerosol seasonal variability in the SJV, California 83 

using similar model configurations as that used in Zhao et al. (2013b) and Fast et al. (2014). This 84 

paper serves as the first step for future investigation of the aerosol impact on regional climate and 85 

the water cycle in California. Previous studies have demonstrated that aerosols are better simulated 86 

at higher model resolution (Misenis and Zhang et al., 2010; Qian et al., 2010; Stround et al., 2011; 87 

Fountoukis et al., 2013). However, most regional climate studies are still performed with coarse 88 

model resolutions (on the order of 10 km) due to the availability of computational resources. This 89 
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study will investigate the sensitivity of aerosol simulations to horizontal resolution and identify 90 

optimal model physical choices for reasonable representation of aerosol variabilities in the SJV. 91 

Another application of air quality modeling is to provide initial a priori fields for remote 92 

sensing retrievals. The WRF-Chem model has been proposed as an input for retrieval algorithms 93 

to be developed for the recently-selected NASA (National Aeronautics and Space Administration) 94 

MAIA (Multi-Angle Imager for Aerosols) mission, which aims to map PM component 95 

concentrations in major urban areas (including the SJV, a testbed for the MAIA retrieval algorithm 96 

development). A significant challenge for aerosol remote sensing in retrieving spatial information 97 

on specific aerosol types, especially near the surface, is caused by the lack of information on the 98 

vertical distribution of aerosols in the atmospheric column and limited instrument sensitivity to 99 

aerosol types over land. The WRF-Chem model will be used to provide near-real-time estimation 100 

of particle properties, aerosol layer heights, and aerosol optical depths (AOD) to constrain the 101 

instrument-based PM retrievals. A reasonable estimate of aerosol properties from WRF-Chem is 102 

critical to ensuring retrieval speed and quality. Considering the sensitivity of WRF-Chem 103 

simulations to various factors such as initial and boundary conditions, model parameterizations 104 

and emission sources (e.g., Wu and Petty, 2010; Zhao et al., 2010, 2013a, 2013b; Wu et al., 2011a, 105 

2015; Fast et al., 2014; Campbell et al., 2016; Morabito et al., 2016), careful model evaluations 106 

are needed before the simulations can be used operationally for remote sensing retrievals. Thus, 107 

this study is important for the development of MAIA retrieval algorithms, critical to the success 108 

of the MAIA mission.   109 

This paper is organized as follows. Section 2 describes observational datasets used for 110 

model evaluation. Section 3 provides the description of the WRF-Chem model and experiment 111 
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setup. Model simulations and their comparison with observations are discussed in section 4. 112 

Section 5 presents the conclusions.  113 

2. Observations 114 

2.1 Column-integrated Aerosol Optical Properties 115 

AOD is a measure of column-integrated light extinction by aerosols and a proxy for total 116 

aerosol loading in the atmospheric column. The Aerosol Robotic Network (AERONET) provides 117 

ground measurements of AOD every 15 minutes during daytime under clear skies (Holben et al., 118 

1998), with an accuracy approaching ±0.01 (Eck et al., 1999; Holben et al., 2001; Chew et al., 119 

2011). The monthly level 2.0 AOD product with cloud screening and quality control is used in this 120 

study. Ångström exponent (AE) is an indicator of aerosol particle size. Small (large) AE values 121 

are generally associated with large (small) aerosol particles (Ångström, 1929; Schuster et al., 122 

2006). The AE between 0.4 µm and 0.6 µm is derived from AERONET observed AODs, and is 123 

used to evaluate the model-simulated AE. For comparison with simulated AOD, AERONET AOD 124 

is interpolated to 0.55 µm from 0.50 µm and 0.675 µm using the AE. In the SJV, only one 125 

AERONET station at Fresno, CA (36.79°N, 119.77°W) has regular observations throughout the 126 

California water year 2013 (WY2013) from October 2012 to September 2013.  127 

The Multiangle Imaging Spectroradiometer (MISR) (Diner et al., 1998) instrument 128 

onboard the Terra satellite has provided global coverage of AOD once a week since December 129 

1999. The standard MISR retrieval algorithm provides AOD observations at 17.6 km resolution 130 

using 16x16 pixels of 1.1 km x 1.1 km each. About 70% of MISR AOD retrievals are within 20% 131 

of the paired AERONET AOD, and about 50% of MISR AOD falls within 10% of the AERONET 132 

AOD, except in dusty and hybrid (smoke+dust) sites (Kahn et al., 2010). We use version 22 of 133 

Level 3 monthly AOD product at 0.5° resolution in this study.  134 
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2.2 Surface Mass Concentration 135 

Surface PM2.5 speciation and PM10 (particulate matter with diameter ≤ 10 µm) data are 136 

routinely collected by two national chemical speciation monitoring networks: Interagency 137 

Monitoring of Protected Visual Environments (IMPROVE) and the PM2.5  National Chemical 138 

Speciation Network (CSN) operated by Environmental Protection Agency (EPA) (Hand et al.  139 

2011; Solomon et al., 2014). IMPROVE collects 24-h aerosol speciation every third day at mostly 140 

rural sites since 1988. The same frequency of aerosol speciation dataset was collected at EPA CSN 141 

sites in urban and suburban areas since 2000. The observed organic carbon is converted to OM by 142 

multiplying by 1.4 (Zhao et al., 2013b; Hu et al., 2016). Some precursors of aerosol pollutions 143 

(such as NO2 and SO2) are observed hourly by EPA (data available at: 144 

https://aqsdr1.epa.gov/aqsweb/aqstmp/airdata/download_files.html) and are used in this study. 145 

Selected IMPROVE and EPA CSN sites used in this study are shown in Figure 1a.  146 

2.3 Aerosol Extinction Profile 147 

The aerosol extinction coefficient profile reflects the attenuation of the light passing 148 

through the atmosphere due to the scattering and absorption by aerosol particles as a function of 149 

range. Version 3 Level 2 532 nm aerosol extinction profiles derived from Cloud-Aerosol Lidar 150 

with Orthogonal Polarization (CALIOP) backscatter profiles collected onboard the Cloud-Aerosol 151 

Lidar and Infrared pathfinder Satellite Observation (CALIPSO) satellite are used (Omar et al., 152 

2009; Young and Vaughan, 2009). Seasonal mean profiles are derived for WY2013 based on the 153 

methodology outlined in Campbell et al. (2012), whereby quality-assurance protocols are applied 154 

to individual profiles before aggregating and averaging the data. We highlight that no individua l 155 

profiles are included in the averages if the CALIOP Level 2 retrieval failed to resolve any 156 

extinction within the column, a potential issue to create bias that has recently been described by 157 
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Toth et al. (2017).  Level 2 532 nm aerosol extinction data classify aerosols into 6 types: clean 158 

marine, dust, polluted continental, clean continental, polluted dust and smoke. Dust and polluted 159 

dust are distinguished in the averages in this study for their contribution to total extinction and the 160 

vertical profile seasonally in the SJV. 161 

2.4 Meteorology  162 

AIRS (Atmospheric Infrared Sounder) onboard the Aqua satellite (Susskind et al., 2003; 163 

Divakarla et al., 2006) has provided global coverage of the tropospheric temperature and moisture 164 

at approximately 01:30 and 13:30 local time since 2002. AIRS retrievals have root-mean-squared 165 

(RMS) error of ~1 K for temperature and ~15% for water vapor (Divakarla et al., 2006). Level 3 166 

monthly temperature and moisture retrievals (version 6) at 1° x 1° grid are used in this study. 167 

Vertical gradient of equivalent potential temperature (𝜃𝑒 ) marks atmospheric stability and is  168 

computed from temperature and moisture profiles observed by AIRS. Surface observations, 169 

including air temperature, relative humidity (RH) and wind speed, are routinely collected at the 170 

California Irrigation Management Information System (CIMIS; http://www.cimis.water.ca.gov/). 171 

Precipitation used in this study is the Climate Prediction Center (CPC) Unified Gauge-Based 172 

Analysis of Daily Precipitation product at 0.25° x 0.25° resolution.    173 

3. Model Description and Experiment Setup 174 

The WRF-Chem model Version 3.5.1 (Grell et al., 2005) updated by Pacific Northwest 175 

National Laboratory (PNNL) is used in this study (Zhao et al., 2014). This study uses the CBM-Z 176 

(carbon bond mechanism) photochemical mechanism (Zaveri and Peters, 1999) coupled with the 177 

sectional-bin MOSAIC (Model for Simulating Aerosol Interactions and Chemistry) aerosol 178 

scheme (Zaveri et al., 2008) as the chemical driver. The major components of aerosols (nitrate, 179 

ammonium, EC, primary OM, sulfate, sea salt, dust, water and other inorganic matter) as well as 180 
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their physical and chemical processes are simulated in the model. For computational efficiency, 181 

aerosol particles in this study are partitioned into four-sectional bins with dry diameter within 182 

0.039-0.156 µm, 0.156-0.625 µm, 0.625-2.5 µm, and 2.5-10.0 µm. Zhao et al. (2013a) compared 183 

the impact of aerosol size partition on dust simulations. It showed that the 4-bin approach 184 

reasonably produces dust mass loading and AOD compared with the 8-bin approach. The size 185 

distribution of the 4-bin approach follows that of the 8-bin approach with coarser resolution, 186 

resulting in ±5% difference on the ratio of PM2.5-dust/PM10-dust in dusty regions (more large 187 

particles and less small particles). Dust number loading and absorptivity are biased high in the 4-188 

bin approach compared with the 8-bin approach.   189 

Aerosols are considered to be spherical and internally mixed in each bin (Barnard et al., 190 

2006; Zhao et al., 2013b). The bulk refractive index for each particle is calculated by volume 191 

averaging in each bin. Mie calculations as described by Ghan et al. (2001) are used to derive 192 

aerosol optical properties (such as extinction, single-scattering albedo, and the asymmetry 193 

parameter for scattering) as a function of wavelength. Aerosol radiation interaction is included in 194 

the shortwave and longwave radiation schemes (Fast et al., 2006; Zhao et al., 2011). By linking 195 

simulated cloud droplet number with shortwave radiation and microphysics schemes, aerosol 196 

cloud interaction is effectively simulated in WRF-Chem (Chapman et al., 2009). Aerosol snow 197 

interaction is implemented in this version of WRF-Chem (Zhao et al., 2014) by considering aerosol 198 

deposition on snow and the subsequent radiative impacts through the SNICAR (SNow, ICe, and 199 

Aerosol Radiative) model (Flanner and Zender, 2005, 2006).  200 

The model simulations start on 1 September 2012 and run continuously for 13 months. 201 

With the first month used for the model spin-up, our analysis focuses on WY2013 from October 202 

2012 to September 2013. The model is configured with 40 vertical levels and a model top at 50 203 
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hPa. The vertical resolution from the surface to 1 km gradually increases from 28 m to 250 m. The 204 

model center is placed at 38°N, 121°W, with 250 x 350 grid points at 4 km horizontal resolution 205 

(referred to as “4km” hereafter; Table 1), covering California and the surrounding area. To test the 206 

sensitivity of the aerosol simulations to horizontal resolution, one simulation with the same model 207 

settings and domain coverage is conducted at 20 km horizontal resolution (referred to as “20km”  208 

hereafter). 209 

The physics parameterizations used in the simulations include the Morrison double -210 

moment microphysics scheme (Morrison et al., 2009), Rapid Radiative Transfer Model for General 211 

circulation model (RRTMG) shortwave and longwave radiation schemes (Iacono et al., 2008), 212 

Community Land Model (CLM) Version 4 land surface scheme (Lawrence et al., 2011). The 213 

Yonsei University (YSU) planetary boundary layer (PBL) scheme (Hong et al., 2006) is used in 214 

all of the simulations, except one sensitivity experiment that uses the ACM2 (Asymmetric 215 

Convective Model with non-local upward mixing and local downward mixing; Pleim, 2007) PBL 216 

scheme (referred to as “20km_P7” hereafter, Table 1). Subgrid convection, convective transport 217 

of chemical constituents and aerosols, and wet deposition from subgrid convection are 218 

parameterized using the Grell 3D ensemble cumulus scheme (Grell and Devenyi, 2002) in the 20 219 

km simulations while convective processes are resolved in the 4 km simulations. The Interim 220 

European Center for Medium-Range Weather Forecasts Re-Analysis (ERA-Interim; Dee et al., 221 

2011) serves as initial and boundary meteorological conditions for WRF-Chem. The MOZART-4 222 

global chemical transport model (Emmons et al., 2010) is used for  initial and boundary chemical 223 

conditions. Fast et al. (2014) found that the MOZART-4 model overestimates aerosols in the free 224 

troposphere over California, which is also found in one of our sensitivity experiments 225 
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(“20km_BC1” in the supplementary). Following Fast et al. (2014), the chemical initial and 226 

boundary conditions from MOZART-4 are divided by two in all simulations except 20km_BC1.   227 

Anthropogenic emissions are provided by US EPA 2005 National Emissions Inventory 228 

(NEI05), with area-type emissions on a structured 4-km grid and point-type emissions at specific 229 

latitude and longitude locations (US EPA, 2010). Nineteen gases (including SO2, NO, NH3 etc.) 230 

are emitted, and aerosol emissions include SO4, NO3, EC, organic aerosols, and total PM2.5 and 231 

PM10 masses. Anthropogenic emissions are updated every hour to account for diurnal variability , 232 

while its seasonal variation is not considered in the simulations. A sensitivity experiment with 233 

2011 NEI emissions (“20km_NEI11” in the supplementary) does not produce significant ly 234 

different results from the 2005 NEI emissions. Biogenic emissions are calculated online using the 235 

Model of Emissions of Gases and Aerosols from Nature (MEGAN) model (Guenther et al., 2006). 236 

Biomass burning emissions are obtained from the Global Fire Emissions Database version 2.1, 237 

with eight-day temporal resolution (Randerson et al., 2007) and updated monthly. Sea salt 238 

emissions are derived from the PNNL-updated sea salt emission scheme that includes the 239 

correction of particles with radius less than 0.2 µm (Gong et al., 2003) and dependence on sea 240 

surface temperature (Jaeglé et al., 2011).  241 

Following Zhao et al. (2013b), dust emission is computed from the GOCART (Goddard 242 

Global Ozone Chemistry Aerosol Radiation and Transport) dust scheme (Ginoux et al., 2001) in 243 

the 20km and 4km simulations. The GOCART dust scheme estimates the dust emission flux F as  244 

𝐹 = 𝐶𝑆𝑠𝑝𝑢10𝑚
2 (𝑢10𝑚 − 𝑢𝑡)                , 245 

where C is an empirical proportionality constant, S is a source function for potential wind erosion 246 

that is derived from 1° x 1° GOCART database (Freitas et al., 2011), 𝑠𝑝 is a fraction of each size 247 

class dust in emission,  𝑢10𝑚 is 10-m wind speed and 𝑢𝑡 is a threshold speed for dust emission.   248 
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As shown later, a significant amount of dust is observed in the SJV, whereas the GOCART 249 

dust scheme produces little dust. Two sensitivity experiments at 20 km and 4 km horizontal 250 

resolution (hereafter referred to as “20km_D2” and “4km_D2”, respectively) are conducted by 251 

switching the dust emission scheme to the DUST TRANsport model (DUSTRAN) scheme (Shaw 252 

et al., 2008). The DUSTRAN scheme estimates F as 253 

𝐹 = 𝛼𝐶𝑢∗
4(1 −

𝑓𝑤𝑢∗𝑡

𝑢∗
)                , 254 

where C is an empirical proportionality constant, 𝛼 is the vegetation mask,  𝑢∗ is the friction 255 

velocity, 𝑢∗𝑡 is a threshold friction velocity and 𝑓𝑤 is the soil wetness factor. The C value in both 256 

GOCART and DUSTRAN is highly tunable for different regions. The original C values, 1.0 µg s2 257 

m-5 in GOCART (Ginoux et al., 2001) and 1.0×10-14 g cm-6 s-3 in DUSTRAN (Shaw et al., 2008), 258 

are used in this study.  259 

4. Model Simulation Results 260 

Shown in Fig. 1a, our model domain includes three urban sites (Fresno, Bakersfield and 261 

Modesto) and two rural sites (Pinnacles and Kaiser) where surface measurements of aerosols are 262 

available. Because aerosols properties and model performance are similar at all urban sites, our 263 

discussion is focused on the results at Fresno and the simulations for other urban sites are provided 264 

in the supplementary materials. Model simulations in the rural areas are presented in the last 265 

subsection.  266 

4.1  Sensitivity to Horizontal Resolution 267 

Figure 1 features daily mean anthropogenic PM2.5 emission rates used in the 20km and 268 

4km simulations, respectively. Although both emission rates are derived from the 4 km NEI05 269 

dataset, localized high emission rates with sharp gradients are evident in urban areas from the 4km 270 

simulation (Fig. 1b). The 20km simulation exhibits lower emission rates at the urban areas with 271 
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weaker gradients due to the reapportionment process (Fig. 1a). As precipitation is an important 272 

process that removes aerosols, we examine the simulated precipitation for the 20km and 4km runs 273 

and find that the 20km simulation produces 51% more precipitation, although the domain averaged 274 

precipitation is lower in the 20km run than the 4km run (Fig. 2a).    275 

Consistent with higher emission rates and lower precipitation at Fresno, the 4km run 276 

simulates higher AOD than the 20km run in the cold season (October-November-December and 277 

January-February-March; OND and JFM in Fig. 3). Averaged over a broad area encompassing 278 

Fresno and Bakersfield, the most polluted region in the SJV (red box in Fig. 1a), the AOD is 0.090 279 

in the 4km and 0.073 in the 20km, a 23% difference. Compared to the MISR observations, the 280 

4km simulation reproduces the spatial distribution and magnitude of AOD in the cold season. 281 

However, the AOD difference between the 20km and 4km runs is small in the warm season (April-282 

May-June and July-August-September; AMJ and JAS in Fig. 3), and both runs underestimate AOD 283 

by ~50% with respect to the MISR observations.  284 

Comparing the point values at Fresno in the 4km and 20km simulations (Fig. 4a), we find 285 

similar results: the 4km AOD is closer to the AERONET measurements and is about 23% higher 286 

than that in the 20km run during the cold season, while both runs are biased low in AOD during 287 

the warm season. The different model sensitivities to horizontal resolution between the cold and 288 

warm seasons suggest that the dominant aerosol sources may be different for the two seasons. We 289 

will elaborate upon the aerosol composition in the following section. MISR and AERONET 290 

observations display weak seasonal AOD variation in the SJV and at Fresno, respectively, which 291 

is not well represented in the 20km and 4km simulations (Fig. 3 and 4a).   292 

Aside from AOD, significant seasonal variability of AE (Fig. 4b) is shown at Fresno. AE 293 

exhibits a maximum about 1.50 in January and a minimum of 0.98 in April, suggesting relatively 294 
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small particles in the winter and large particles in the spring. A relatively large AE value of 1.40 295 

(corresponding to small particles) is observed in July, possibly related to the wild fires in late July 296 

in the SJV. WRF-Chem captures the seasonal variability of the AE well, with a correlation of 0.90 297 

in both the 20km and 4km simulations. The magnitude of AE is also approximately simulated in 298 

the cold season, with a mean of 1.15 (1.20) in the 20km (4km) runs compared to 1.33 in the 299 

observation. However, the simulated AE is underestimated by ~30% in the warm season, 300 

indicating that the simulated particle size is biased high during this period.   301 

Significant seasonal variability of PM2.5 is observed in the SJV urban areas (Fig. 5a and 302 

Supplementary Fig. 4a and 5a). PM2.5 at Fresno peaks in January (26.18 µg m-3) and reaches a 303 

minimum of 7.03 µg m-3 in June, with an annual nonattainment value of 12.64 µg m-3 (Fig. 5a). 304 

Both the 20km and 4km runs approximately capture the observed seasonal variability of PM2.5, 305 

with a correlation around 0.90 (Table 2). In the cold season, the 4km simulation overestimates 306 

PM2.5 by 27% while the 20km simulation exhibits a low bias of 19% compared with IMPROVE 307 

observations at Fresno (Table 3). The 4km simulation of PM10 is in good agreement with 308 

IMPROVE in the winter (December, January and February), but has significant low biases of 309 

between 30% and 85% in other months (Fig. 5b). The 20km simulation underestimates PM10 310 

throughout WY2013.  311 

PM2.5 is a mixture of nitrate (NO3), ammonia (NH4), OM, EC, sulfate (SO4), dust and other 312 

aerosols. High concentrations of PM2.5 are primarily the result of NO3 at Fresno (Fig. 5c). Both 313 

simulations produce the seasonal variability of  NO3 with a correlation of 0.94, but high bias of 314 

17% (75%) is found in the 20km (4km) simulations during the cold season. As one precursor of 315 

NO3, NO2 is underestimated by 43% in the 20km run (Fig. 6a). The overestimation in NO3 and 316 

underestimation in NO2 suggest that the precursor emissions may not the reason for the high biases 317 
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in NO3. NH4 shows a similar performance to NO3, with an overestimation by 38% (111%) in the 318 

20km (4km) runs during the cold seasons (Fig. 5d). As shown later in section 4.3, both NO3 and 319 

NH4 simulations are quite sensitive to the PBL scheme applied.     320 

OM, the second largest contributing species to cold season PM2.5 in the SJV (Table 3), is 321 

significantly underestimated by 82% in the 20km simulation (Fig. 5f). The 4km simulation 322 

produces higher OM, but it is still lower than the IMPROVE observations by 63%. The 323 

underestimation of OM is expected, because SOA processes are not included in our model 324 

infrastructure. Fast et al. (2014) used the simplified two-product volatility basis set 325 

parameterization to simulate equilibrium SOA partitioning in WRF-Chem although SOA was still 326 

underestimated in their simulation. It remains ongoing research how to correctly represent SOA 327 

processes in regional climate models.  328 

Both the 20km and 4km simulations reproduce the seasonal variability of EC, with a 329 

correlation of 0.98 between the modeled and observed time series (Table 2). The 20km simulation 330 

underestimates EC by 52% (16%) in the cold (warm) season (Fig. 5e and Table 3). The 4km 331 

simulated EC (1.12 µg m-3) exhibits good agreement with IMPROVE (1.08 µg m-3) in the cold 332 

season, but overestimates EC by 53% in the warm season.  333 

The seasonal variability of SO4 at Fresno is very different from other PM2.5 species. It peaks 334 

in May at 1.35 µg m-3 and reaches the minimum of 0.67 µg m-3 in August (Fig. 5g). The 20km 335 

simulated SO4 exhibits good correlation of 0.63 with the observation (Table 2), but is biased low 336 

by 28% to 63% throughout WY2013 (Fig. 5g). Although the observed SO2, the precursor of SO4, 337 

has approximately similar seasonal variation to the observed SO4 (Fig. 6b), the 20km simulated 338 

seasonal variability of SO2 resembles other anthropogenic emissions, with high values in the cold 339 

season and low values in the warm season, out of phase with the simulated SO4 and the observed 340 
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SO2. The 4km simulation produces higher SO4 than the 20km run, resulting in better agreement 341 

with the observation (0.82 µg m-3 vs. 0.87 µg m-3) during the cold season (Fig. 5g and Table 3). 342 

However, the 4km run produces an increase of SO4 by only 13% comparing to the 20km run in 343 

the warm season, resulting in a correlation of -0.16 between the 4km simulation and the 344 

observation.  345 

To explore the possible cause for the underestimation of SO4 and SO2 in the warm season 346 

in both the 20km and 4km simulations, we conduct a sensitivity experiment with different chemical 347 

boundary conditions from the baseline runs (20km_BC1 in the supplementary). We find that SO4 348 

in the SJV is partly contributed to by marine intrusions (the different chemical boundary conditions 349 

between 20km_BC1 and 20km_D2) throughout the year (supplementary Fig. 2g), as pointed out 350 

by Fast et al. (2014). Including the marine intrusions, the 20km_BC1 simulated SO4 tracks the 351 

observation at a correlation of 0.78. Doubled chemical boundary conditions in the 20km simulation 352 

results in 41% increase in SO4 at Fresno, with a stronger increase in the warm season. Compared 353 

to the observed SO4 of 1.04 µg m-3 in the warm season, the simulated SO4 of 0.79 µg m-3 in the 354 

20km_BC1 run is closer to the observation than that simulated in the 20km_D2 run (0.53 µg m-3).  355 

The relative contributions of local emissions and remote transports (as well as other emission 356 

sources, such as wild fires) to SO4 concentrations in different seasons of the SJV require further 357 

investigation.  358 

Overall, the 4km simulation produces higher AOD and surface PM than the 20km 359 

simulation in urban areas of the SJV, especially during the cold season, resulting in better 360 

agreement with satellite and surface observations than the 20km simulation. Both the 20km and 361 

4km simulations approximately capture the seasonal variability of PM2.5 and most of its speciation. 362 

However, significant low biases of AOD and PM10 are found during the warm season in both 363 
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simulations. The underestimation also exists in a sensitivity experiment (not shown) with the same 364 

model setups except initialized in April, indicating that the identified model biases during the warm 365 

season are not caused by potential model drift after a relatively long simulation period. The 366 

relatively good performance in simulating PM2.5 but not PM10 during the warm season suggests 367 

that coarse aerosol particle mass (CM; 10 µm ≥ particulate matter with diameter > 2.5 µm), mainly 368 

dust in the SJV, is not properly represented in the model. The impact of dust parameterizations is 369 

investigated in the 4km_D2 experiment.  370 

4.2  Sensitivity to Dust Scheme 371 

Limited amounts of PM2.5_dust (dust with diameter ≤ 2.5 µm) are observed in the SJV cold 372 

season, with a minimum of 0.37 µg m-3 in December (Fig. 7a). The amount of PM2.5_dust increases 373 

in the warm season, with a peak of 3.86 µg m-3 in September. The 4km simulation produces 374 

comparable PM2.5_dust relative to IMPROVE in the winter, but almost no dust in other months  375 

(Fig. 7 and upper panel in Fig. 8). On the other hand, the dust emission rate in the 4km_D2 run is 376 

significantly higher than the 4km run. We have found that the source function, S, for potential 377 

wind erosion in the SJV is set to zero in the 1°x1° GOCART dataset used for the 4km simulation 378 

(Fig. 9). An updated source function, S, at higher resolution is needed for the GOCART dust 379 

scheme to correctly represent dust emissions in the SJV.   380 

The 4km_D2 simulation reproduces the amount of PM2.5_dust in OND (Fig. 7a). However, 381 

it overestimates PM2.5_dust by up to a factor of 3 in the warm season, resulting in an overestimation 382 

of PM2.5 by 52% (Fig. 7b and Table 3). PM2.5_dust is not sensitive to long-range transport (from 383 

chemical boundary conditions in the model simulation; Supplementary Fig. 2h). Both the 4km and 384 

4km_D2 simulations capture the seasonal variability of PM2.5, but not that of PM10 (Fig. 7c). The 385 

magnitude of PM10 in the 4km_D2 run is larger than the 4km simulation. PM10 in the 4km_D2 run 386 
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is overestimated in April-May-June (AMJ) but underestimated in July-August-September (JAS), 387 

leading to a comparable season mean of 38.12 µg m-3 with IMPROVE observed 34.82 µg m-3. The 388 

overestimation of AMJ PM10 and PM2.5_dust in the 4km_D2 run is likely associated with the high 389 

bias in the simulated wind speed (Fig. 2b).   390 

On the relative contribution of different aerosol species, IMPROVE observations at Fresno 391 

show that NO3 is the primary contributor (32.3%) to PM2.5 while only 5.3% of PM2.5 is dust in the 392 

cold season (panel 1 of Fig. 10). Both the 4km and 4km_D2 runs roughly reproduce the relative 393 

contributions to PM2.5 in the cold season, with an overestimation of NO3 and NH4 and an 394 

underestimation of OM, consistent with the time series in Fig. 5. Relative contributions of dust to 395 

PM2.5 are better simulated in the 4km_D2 run (7.3%) than the 4km one (<1.0%). IMPROVE shows 396 

that 46.6% of PM10 is CM in the cold season (panel 2 of Fig. 10). Both the 4km (6.3%) and 397 

4km_D2 (20.6%) runs underestimate the contribution of CM to PM10, mainly in October and 398 

November. In the warm season, dust (24.6%) becomes the primary contributor to PM2.5 while the 399 

contribution from NO3 decreases to 9.9% in IMPROVE observations (panel 3 of Fig. 10). Almost 400 

no PM2.5_dust is simulated in the 4km run while too much PM2.5_dust is produced in the 4km_D2 401 

(50.5%) run during the warm season. The relative contribution of CM to PM10 is too small (27.6%) 402 

in the 4km run, while the 4km_D2 run reflects an better relative contribution of 66.3% as compared 403 

to an IMPROVE observed 75.8% (panel 4 of Fig. 10).        404 

AOD simulations are improved in the 4km_D2 experiment (Fig. 11), with better agreement 405 

found from MISR (Fig. 3) in AMJ. AOD (0.114) in the 4km_D2 run is comparable to observations  406 

(0.131) in AMJ, but still underestimated by 53% in JAS. Consistent with AOD, the vertical 407 

distribution of aerosol extinction is reasonably simulated during the cold season in the WRF-Chem 408 

simulations, while large discrepancies are found in the warm season (Fig. 12). As observed by 409 
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CALIOP at 532 nm, aerosols are mainly confined below 1 km above the surface in the cold season. 410 

Model simulations roughly capture the vertical distribution of aerosol extinction observed by 411 

CALIOP, with low biases in the boundary layer and high biases in the free atmosphere. Similar 412 

discrepancy between the model simulations and CALIOP is shown in other studies (Wu et al., 413 

2011a; Hu et al., 2016). The difference between the 4km and 4km_D2 runs is small during the 414 

cold season. 415 

Dust in the boundary layer is a primary factor contributing to aerosol extinction in the SJV, 416 

as illustrated by the differences between the bulk seasonal CALIOP mean profile and those 417 

excluding the contributions of the dust and polluted dust (CALIOP_nodust) profiles (Fig. 12). 418 

Simulated aerosol extinction falls between the two in all seasons, suggesting that dust is the 419 

primary factor contributing to the model biases in aerosol extinction. Although a small portion of 420 

PM2.5 is dust in the cold season, it contributes to about 50% of total aerosol extinction (Fig. 12a 421 

and 12b). A predominant portion of aerosol extinction in the boundary layer is contributed by dust 422 

in the warm season (Fig. 12c and 12d). There, the 4km_D2 simulation produces higher aerosol 423 

extinction in the boundary layer than the 4km simulation, although it is still lower than CALIOP. 424 

The simulated aerosol extinction in the free troposphere above the boundary layer is close to or 425 

larger than CALIOP, suggesting that aerosols transported from remote areas through chemical 426 

boundary conditions (e.g., the differences between the 20km_BC1 and 20km_D2 runs in 427 

Supplementary Fig. 3) may not be the major factor contributing to the underestimation of dust in 428 

the boundary layer in the SJV.   429 

Overall, the poor simulations of dust in the boundary layer play a dominant role in the low 430 

bias of aerosols during the warm season. Both the GOCART and DUSTRAN dust emission 431 

schemes used in this study have difficulties in reproducing dust emissions in the SJV, with an 432 
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underestimation in GOCART and an overestimation in DUSTRAN (Fig. 7). Improvement on the 433 

dust emission schemes is needed for capturing the seasonal variability of aerosols in the SJV.  434 

4.3  The Role of Meteorology 435 

The WRF-Chem simulations approximately reproduce the seasonal variations of 436 

meteorological variables near the surface (correlations > 0.80), including temperature, RH, wind 437 

speed and precipitation (Supplementary Fig. 6 and Supplementary Table 1). All of the model 438 

simulations exhibit warm and dry biases near surface and in the boundary layer, with cold and wet 439 

biases in the free atmosphere (Supplementary Fig. 6-8 and Supplementary Table 2). The dry bias 440 

in the 4km_D2 run is about 10% near the surface throughout WY2013. Due to the relative dry 441 

environment (RH<50%) in the warm season, the dry bias is likely not responsible for the 442 

underestimation of boundary layer aerosol extinctions and column-integrated AOD through 443 

hygroscopic effects (Feingold and Morley, 2003). In the cold season, the surface wind speed is 444 

underestimated by 0.67 m/s (1.00 m/s) in the 4km_D2 (20km_D2) runs. In the warm season, the 445 

4km_D2 run overestimates wind speed by 0.78 m/s, while the 20km_D2 run has an 446 

underestimation of 0.16 m/s. These results suggest that wind speed is also not the primary factor 447 

contributing to low biases in the boundary layer aerosols. The seasonal variability of precipitation 448 

is well captured in the simulations, while the magnitude of precipitation is smaller than the 449 

observations during the warm season (Supplementary Table 2). Wet removal processes are thus 450 

not likely the primary reason for the aerosol biases in the warm season.                                                                                                                                                   451 

In the warm season, more aerosols are observed at higher altitude than during the cold 452 

season (Fig. 12). A well-mixed layer of aerosols is observed below 1.5 km in AMJ (Fig. 12c), 453 

consistent with the unstable layers below 1.5 km observed by AIRS (Fig. 13c). However, the WRF-454 

Chem model simulates neutral (or weakly stable) layers below 1.5 km (Fig. 13c), which may lead 455 
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to a failure in capturing the well-mixed layer of aerosols (Fig. 12c). Although the dust emission at 456 

the surface is large in the 4km_D2 run, not enough convective vertical mixing is produced in the 457 

simulations, plausibly resulting in the low biases found in the boundary layer. Aerosol extinction 458 

gradually decreases with height in the simulations. Similar biases of aerosol and instability in the 459 

boundary layer are also shown in JAS (Fig. 12d and 13d). Relative static stability in the simulations , 460 

which limits convective vertical mixing of aerosols, likely enhances the low bias of column-461 

integrated AOD in JAS (Fig. 11). Although the 4km_D2 experiment produces comparable AOD 462 

and surface PM mass in AMJ (Fig. 6 and Fig. 11), the vertical distribution of aerosols is not well 463 

represented (Fig. 12). The comparable AOD in the 4km_D2 run results from the low bias in the 464 

boundary layer and the high bias in the free atmosphere. In JAS (Fig. 12d), comparable aerosol 465 

extinction to CALIOP is simulated in the free atmosphere, suggesting that the low bias in AOD is 466 

not due to the halved chemical boundary conditions from MOZART-4. Albeit some discrepancies 467 

in the magnitude of atmospheric stability, all of the simulations capture the stable environment in 468 

the cold season (Fig. 13a and 13b), consistent with relatively good performance of aerosol 469 

simulations in the cold season.  470 

As biases in the model simulations are found mainly within the boundary layer, a sensitivity 471 

experiment is conducted at 20 km resolution using the ACM2 PBL scheme (20km_P7). Although 472 

the changes in the meteorological variables (Supplementary Fig. 6-8) and atmospheric static 473 

stability (Fig. 13) are rather small, the simulated surface NO3 and NH4 in the 20km_P7 run 474 

decrease by 50% compared to the 20km_D2 run (Fig. 14c, 14d and Table 3). Considering that 475 

more NO3 and NH4 are simulated at 4 km resolution than at 20 km resolution as shown in section 476 

4.1, the use of the ACM2 PBL scheme at 4 km simulation would largely resolve the high biases 477 

of NO3 and NH4 in the 4km_D2 simulation. The decrease of NO3 and NH4 at the surface is because 478 
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more aerosols are transported to the layers above 0.5 km (Fig. 15a and 15b), resulting from 479 

different convective vertical mixing in the PBL schemes. However, PM2.5_dust is significant ly 480 

overestimated by a factor of 4 in the 20km_P7 simulation (Fig. 14h), leading to a small decrease 481 

of PM2.5 by only 8% compared with the 20km_D2 run in the cold season. In the warm season, 482 

PM2.5_dust in the 20km_P7 run is overestimated by a factor of 5, causing an overestimation of 483 

PM2.5 and PM10 (Fig. 14a and 14b). Aerosol extinctions in the boundary layer increase in the warm 484 

season (Fig. 15c and 15d), possibly related to overestimation of dust emissions and more 485 

conducive convective vertical transport in the PBL scheme.       486 

In summary, the WRF-Chem model captures the seasonal variations of meteorological 487 

variables (temperature, RH, wind speed and precipitation), despite some deviations in magnitude. 488 

The low biases in aerosol optical properties of the warm season likely do not originate from 489 

hygroscopic effects, wet removal processes or dust emissions associated with the wind speed bias.  490 

The model simulates a stable environment in the warm season, which is opposite to the observed 491 

unstable environment. The simulated stable environment may be most likely responsible for low 492 

biases in the aerosol extinction in the boundary layer and the column-integrated AOD in the warm 493 

season. Switching to the ACM2 PBL scheme leads to improved vertical mixing in the boundary 494 

layer, thus an improvement in the simulations of NO3 and NH4 in the cold season. However, dust 495 

emissions are significantly overestimated with the ACM2 PBL scheme, which contributes partly 496 

to the better simulation of aerosol extinction in the boundary layer and AOD in the column. These 497 

results highlight that improving the simulation of boundary layer structure and processes are 498 

critical for capturing the vertical profiles of aerosol extinction.          499 

4.4  Results in Rural Areas 500 
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In general, low values of PM concentration are observed in the rural areas, Pinnacles and 501 

Kaiser (Fig. 16 and 17). The rural areas share some similar model performance to the urban areas, 502 

such as the overestimation of NO3, reasonable simulation of EC, good representation of SO4 in the 503 

cold season and underestimation of SO4 in the warm season. However, the results are not sensitive 504 

to model resolution. It suggests that high resolution is particularly important for heavily polluted 505 

areas due to the inhomogeneity of emission sources, but less important for relatively lightly 506 

polluted areas.  507 

In late July/early August, MODIS (Moderate Resolution Imaging Spectroradiometer) fire 508 

data (not shown) showed active wild fires close to Kaiser, which resulted in high concentration of 509 

aerosols locally (Fig. 17). Our model simulations with monthly-varying fire emissions fail to 510 

reproduce these fire events. Previous studies (e.g., Grell et al., 2011; Wu et al. 2011a; Archer-511 

Nicholls et al., 2015) demonstrated that the WRF-Chem model can capture aerosols distributions 512 

from wild fires based on fire locations from satellite observations. Campbell et al. (2016) further 513 

described the difficulties in constraining total aerosol mass from operational satellite fire 514 

observations and the time needed by the model for diffusion within the near-surface layers to 515 

render both reasonable AOD and vertical profiles of aerosol extinction. For operational application 516 

of the WRF-Chem model in MAIA retrievals, the observations of daily fire events need to be more 517 

appropriately considered. 518 

5. Summary 519 

The WRF-Chem (Weather Research and Forecasting model with Chemistry) model is 520 

employed to simulate the seasonal variability of aerosols in WY2013 (water year 2013) in the SJV 521 

(San Joaquin Valley). Model simulations are evaluated using satellite and in-situ observations. In 522 

general, the model simulations conducted at 4 km resolution reproduce the spatial and temporal 523 
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variations of regional aerosols in the cold season, when aerosols are mainly contributed to by 524 

anthropogenic emissions in the SJV. The magnitude of simulated aerosols in the cold season 525 

however, especially in relatively dense urban areas, is sensitive to model horizontal resolution. 526 

The 4km simulation has comparable magnitude to available observations, while the 20km 527 

simulation underestimates aerosols. Differences in aerosol simulation fidelity as a function of 528 

variable resolutions are mainly due to the difference in aerosol emissions and simulated 529 

precipitation. Emissions at higher resolution can better resolve the inhomogeneity of 530 

anthropogenic emissions in the SJV than at lower resolution. The sensitivity to horizontal 531 

resolution is small in rural areas and during warm season, where/when the relative contribution of 532 

anthropogenic emissions is small.   533 

Previous studies in the SJV are mainly focused on PM2.5 (particulate matter with diameter 534 

≤ 2.5 µm) and during cold season (e.g. Chow et al., 2006; Herner et al., 2006; Pun et al., 2009; 535 

Ying and Kleeman, 2009; Zhang et al., 2010; Chen et al., 2014; Hasheminassab et al., 2014; Kelly 536 

et al., 2014; Baker et al., 2015; Brown et al., 2016). CALIOP (Cloud-Aerosol Lidar with 537 

Orthogonal Polarization) and IMPROVE (Interagency Monitoring of Protected Visual 538 

Environments) observations show that dust is a primary contributor to the aerosols in the SJV, 539 

especially in the warm season. Dust contributes 24.6% to PM2.5 while more than 75.8% to PM10 in 540 

the warm season. For all seasons, the major component of aerosol extinction in the boundary layer 541 

is dust as observed by CALIOP, consistent with Kassianov et al. (2012). For a complete 542 

understanding of aerosol impacts on air quality, weather and climate, the full spectrum of aerosols 543 

should be considered during all seasons.  544 

All the model simulations conducted fail to capture aerosol vertical distribution and 545 

variability in the SJV warm season, largely due to the misrepresentation of dust emissions, static 546 
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stability and vertical mixing in the boundary layer. The GOCART (Goddard Global Ozone 547 

Chemistry Aerosol Radiation and Transport) dust emission scheme significantly underestimates 548 

dust due to the non-active source function, S, for potential wind erosion used in this study while 549 

the DUSTRAN (DUST TRANsport model) scheme may overestimate dust emission in the SJV. 550 

Along with the bias in dust emissions, our simulations produce a relatively stable boundary layer 551 

in the warm season, in contrast with observations suggesting a more unstable environment, leading 552 

to a weak vertical mixing of aerosols in the boundary layer. Improved dust emission and better 553 

simulations of the boundary layer properties are needed for accurate simulation of aerosols in the 554 

SJV warm season.  555 

Other biases are also identified in the model simulations. NO3 and NH4 in the cold season 556 

are overestimated in the model, but the results are sensitive to the choice of the PBL (planetary 557 

boundary layer) scheme. The SOA (secondary organic aerosol) processes contribute to the 558 

underestimation of OM (organic matter) in this study. The underestimation of sulfate in the warm 559 

season may be caused by the misrepresentation of emissions and the chemical boundary conditions 560 

related to marine intrusions. Aerosols from wild fires are not captured in the simulations with 561 

monthly updated fire data. Further investigations are needed to improve model simulations in the 562 

SJV for both scientific and operational applications.  563 
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List of Table 836 

Table 1. Experiment description 837 

Experiment ID Experiment description 

20km Simulation with the GOCART dust scheme at 20 km horizontal resolution. 

20km_D2 Same as 20km, but with the DUSTRAN dust scheme. 

20km_P7 Same as 20km_D2, but with the ACM2 PBL scheme. 

4km Same as 20km, but at 4 km horizontal resolution. 

4km_D2 Same as 4km, but with the DUSTRAN dust scheme. 

838 
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Table 2. Correlation with observations for different species at Fresno, CA 839 

Species 20km 4km 4km_D2 20km_D2 20km_P7 

PM2.5 0.89 0.90 0.86 0.78 0.03 

PM2.5_NO3 0.94 0.95 0.94 0.94 0.91 

PM2.5_NH4 0.97 0.96 0.96 0.98 0.96 

PM2.5_OM 0.93 0.93 0.94 0.93 0.91 

PM2.5_EC 0.98 0.98 0.98 0.98 0.96 

PM2.5_SO4 0.63 -0.16 -0.14 0.61 0.63 

PM2.5_dust -0.55 -0.50 0.48 0.55 0.36 

PM10 -0.25 -0.23 -0.08 0.01 -0.03 

840 
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Table 3. Surface aerosol mass (µg m-3) for different species at Fresno, CA 841 

Species Cold season Warm season 

OBS 20km 4km  4km_

D2 

20km

_D2 

20km

_P7 

OBS 20km 4km  4km_

D2 

20km

_D2 

20km

_P7 

PM2.5 16.84 13.71 21.38 22.48 14.90 13.77 8.44 4.91 6.29 12.85 10.12 14.85 

PM2.5_
NO3 

5.43 6.36 9.54 9.22 6.22 3.16 0.84 0.55 0.69 0.79 0.66 0.57 

PM2.5_

NH4 

1.42 1.97 2.99 2.88 1.91 0.98 0.40 0.19 0.24 0.20 0.16 0.13 

PM2.5_

OM 

5.39 0.92 2.07 2.07 0.93 1.04 2.47 0.49 0.87 0.87 0.50 0.55 

PM2.5_

EC 

1.08 0.52 1.12 1.13 0.52 0.58 0.32 0.27 0.49 0.49 0.27 0.30 

PM2.5_
SO4 

0.87 0.53 0.82 0.81 0.53 0.46 1.04 0.54 0.61 0.60 0.53 0.49 

PM2.5_

dust 

0.90 0.11 0.11 1.65 1.50 4.18 2.08 0.04 0.03 6.49 5.16 10.05 

PM10 31.55 14.93 22.81 28.32 20.10 24.52 34.82 7.08 8.69 38.12 30.19 48.02 

842 
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Supplementary Table 1. Correlation with surface observations for meteorological variables at 843 
Fresno, CA 844 

 4km_D2 20km_D2 20km_P7 

T 0.94 0.94 0.94 

RH 0.98 0.98 0.96 

Wind 0.83 0.84 0.85 

Rain 0.97 0.97 0.97 

845 
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Supplementary Table 2. Bias for surface meteorological variables at Fresno, CA 846 

 Cold season Warm season 

4km_D2 20km_D2 20km_P7 4km_D2 20km_D2 20km_P7 

T (K) 3.89 3.56 3.69 2.44 1.50 1.35 

RH (%) -9.78 -14.55 -19.35 -9.48 -9.32 -11.16 

Wind (m/s) -0.67 -1.00 -1.05 0.78 -0.16 -0.49 

Rain (mm/day) -0.15 0.14 -0.03 -0.06 -0.03 -0.04 

847 
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List of Figures  848 

 849 

Figure 1. Daily mean anthropogenic PM2.5 emission rate (µg m-2 hr-1) at (a) 20km and (b) 4km 850 

simulation. Domain-averaged emission rate is shown at right corner of each figure. Red dashed 851 

lines in Figure 1a represent the region used for the domain averages in the discussions. Yellow 852 

circle: IMPROVE site; yellow diamond: EPA CSN site. Three urban sites: Fresno, Bakersfield and 853 

Modesto; two rural sites: Pinnacles and Kaiser. 854 
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 855 

Figure 2. (a) Monthly precipitation (mm/day) from CPC, 20km and 4km; (b) monthly wind speed 856 

(m/s) from CIMIS, 20km and 4km. 4km_D2 (not shown) is similar to 4km.   857 
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 858 

Figure 3. Spatial distribution of seasonal mean 550 nm AOD from MISR and the WRF-Chem 859 

(20km and 4km) simulations in WY2013. OND: October-November-December; JFM: January-860 

February-March; AMJ: April-May-June; JAS: July-August-September.      861 
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 862 

 863 

Figure 4. (a) Monthly mean 550 nm AOD; (b) monthly mean 400-600 nm Ångström exponent at 864 

Fresno, CA from October 2012 to September 2013.  865 
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 866 

Figure 5. Aerosol mass (µg m-3) for different species from OBS, the 20km and 4km simulations at 867 

Fresno, CA. NH4 observations are from EPA; other observations are from IMPROVE. PM2.5_NO3 868 

represents NO3 with diameter ≤ 2.5 µm. Similar definition for NH4, EC, OM and SO4 in the figures.   869 
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 870 

Figure 6. (a) NO2 and (b) SO2 from EPA (OBS) and the 20km run at Fresno, CA. 871 
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 872 

Figure 7. (a) PM2.5_dust; (b) PM2.5; and (c) PM10 from IMPROVE, the 4km and 4km_D2 873 

simulations at Fresno, CA. 874 
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 875 

Figure 8. Mean dust emission rate (µg m-2 s-1) from the 4km and 4km_D2 runs.  876 
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 877 

Figure 9. Fraction of erodible surface in the GOCART dataset used in this study.  878 
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 879 

Figure 10. Relative contribution (%) of aerosol species from IMPROVE and the WRF-Chem (4km 880 

and 4km_D2) simulations at Fresno, CA in WY2013. (Panel 1) Contribution to PM2.5 in the cold 881 

season; (Panel 2) relative contribution of PM2.5 and coarse mass (CM) to PM10 in the cold season; 882 

(Panel 3) same as Panel 1 but in the warm season; (Panel 4) same as Panel 2 but in the warm season. 883 

“Other” refers to the difference of PM2.5 total mass and specified PM2.5 (NO3, NH4, OM, EC, SO4 884 

and dust). 885 
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 886 

Figure 11. Spatial distribution of seasonal mean 550 nm AOD from the 4km_D2 run in WY2013.    887 
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 888 

Figure 12. Vertical distribution of seasonal mean 532 nm aerosol extinction coefficient (km-1) 889 

from CALIOP (blue) and the WRF-Chem (4km and 4km_D2) simulations over the red box 890 

region in Fig. 1a in WY2013. Blue dashed lines (CALIOP_nodust) represent the CALIOP 891 

profiles without dust (dust and polluted dust).   892 
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 893 

Figure 13. Vertical distribution of season mean equivalent potential temperature (𝜃𝑒; K) from AIRS 894 

and the WRF-Chem (4km_D2, 20km_D2 and 20km_P7) simulations over the red box region in 895 

Fig. 1a in WY2013. The 4km run (not shown) is similar to the 4km_D2 run. 896 
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 897 

Figure 14. Aerosol mass (µg m-3) for different species from OBS, the 4km_D2, 20km_D2 and 898 

20km_P7 simulations at Fresno, CA. NH4 observations are from EPA; other observations are from 899 

IMPROVE. PM2.5_NO3 represents NO3 with diameter ≤ 2.5 µm. Similar definition for NH4, EC, 900 

OM, SO4 and dust in the figures. 901 
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 902 

Figure 15. Vertical distribution of seasonal mean 532 nm aerosol extinction coefficient (km-1) 903 

from CALIOP, CALIOP_nodust, and the WRF-Chem (4km_D2, 20km_D2 and 20km_P7) 904 

simulations over the red box region in Fig. 1a in WY2013.  905 
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 906 

Figure 16. Aerosol mass (µg m-3) for different species from IMPROVE (OBS), the 4km_D2, 907 

20km_D2 and 20km_P7 simulations at Pinnacles, CA.  908 
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 909 

Figure 17. Aerosol mass (µg m-3) for different species from IMPROVE (OBS), the 4km_D2, 910 

20km_D2 and 20km_P7 simulations at Kaiser, CA.  911 
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 912 

Supplementary Figure 1. Spatial distribution of seasonal mean 550 nm AOD from MISR and the 913 

WRF-Chem (20km_D2, 20km_P7, 20km_BC1 and 20km_NEI11) simulations in WY2013. OND: 914 

October-November-December; JFM: January-February-March; AMJ: April-May-June; JAS: July-915 

August-September. The 20km_BC1 run is the same as the 20km_D2 run except that chemical 916 

boundary conditions use MOZART-4 original data. The 20km_NEI11 run is the same as the 917 

20km_D2 run except with NEI11 anthropogenic emissions. 918 
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 919 

Supplementary Figure 2. Aerosol mass (µg m-3) for different species from OBS, the 20km_D2, 920 

20km_BC1 and 20km_NEI11 simulations at Fresno, CA. NH4 observations are from EPA; other 921 

observations are from IMPROVE. PM2.5_NO3 represents NO3 with diameter ≤ 2.5 µm. Similar 922 

definition for NH4, EC, OM, SO4 and dust in the figures. 923 
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 924 

Supplementary Figure 3. Vertical distribution of seasonal mean 532 nm aerosol extinction 925 

coefficient (km-1) from CALIOP, CALIOP_nodust, and the WRF-Chem (20km_D2, 20km_BC1 926 

and 20km_NEI11) simulations over the red box region in Fig. 1a in WY2013. 927 
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 928 

Supplementary Figure 4. Aerosol mass (µg m-3) for different species from EPA CSN (OBS), the 929 

4km_D2, 20km_D2 and 20km_P7 simulations at Bakersfield, CA. PM2.5_NO3 represents NO3 930 

with diameter ≤ 2.5 µm. Similar definition for SO4, EC, OM, NH4 and dust in the figures.  931 
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 932 

Supplementary Figure 5. Aerosol mass (µg m-3) for different species from EPA CSN (OBS), the 933 

4km_D2, 20km_D2 and 20km_P7 simulations at Modesto, CA. 934 
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 935 

Supplementary Figure 6. Monthly mean of (a) 2-m temperature (°C); (b) 2-m relative humidity 936 

(%); (c) 10-m wind speed (m/s); (d) precipitation (mm/day) at Fresno, CA. The 20km (not shown) 937 

run is similar to the 20km_D2 run while the 4km (not shown) run is similar to the 4km_D2 run. 938 
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 939 

Supplementary Figure 7. Vertical profile of seasonal mean temperature (K) bias in the WRF-Chem 940 

simulations comparing to AIRS. The 20km run (not shown) is similar to the 20km_D2 run while 941 

the 4km run (not shown) is similar to the 4km_D2 run. 942 
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 943 

Supplementary Figure 8. Vertical profile of seasonal mean relative humidity (%) in the WRF-Chem 944 

simulations comparing to AIRS. The 20km run (not shown) is similar to the 20km_D2 run while 945 

the 4km run (not shown) is similar to the 4km_D2 run. 946 


