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Highlights:

1. The WRF-Chem simulation successfully captures aerosol variations in the cold season in the
San Joaquin Valley (SJV), but has poor performance in the warm season.

2. High resolution model simulation can better resolve inhomogeneous distribution of
anthropogenic emissions in urban areas, resulting in better simulation of aerosols in the cold
season in the SJV.

3. Observations show that dust is a major component of aerosols in the SJV, especially in the
warm season. Poor performance of the WRF-Chem model in the warm season is mainly due

to misrepresentation of dust emission and vertical mixing.
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Abstract

WRF-Chem simulations of aerosol seasonal variability in the San Joaquin Valley (SJV),
California are evaluated by satellite and in-situ observations. Results show that the WRF-Chem
model successfully captures the distribution, magnitude and variation of SJV aerosols during the
cold season. However, aerosols are not well represented in the warm season. Aerosol simulations
in urban areas during the cold season are sensitive to model horizontal resolution, with better
simulations at 4 km resolution than at 20 km resolution, mainly due to inhomogeneous distribution
of anthropogenic emissions and better represented precipitation in the 4 km simulation. In rural
areas, the model sensitivity to grid size is rather small. Our observational analysis reveals that dust
is a primary contributor to aerosols in the SJV, especially during the warm season. Aerosol
simulations in the warm season are sensitive to parameterization of dust emission in WRF-Chem.
The GOCART (Goddard Global Ozone Chemistry Aerosol Radiation and Transport) dust scheme
produces very little dust in the SJV while the DUSTRAN (DUST TRANSsport model) scheme
overestimates dust emission. Vertical mixing of aerosols is not adequately represented in the model
based on CALIPSO (Cloud-Aerosol Lidar and Infrared pathfinder Satellite Observation) aerosol
extinction profiles. Improved representation of dust emission and vertical mixing in the boundary

layer are needed for better simulations of aerosols during the warm season in the SJV.
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1. Introduction

The San Joaquin Valley (SJV) in the southern portion of the California Central Valley is
surrounded by coastal mountain range to the west and the Sierra Nevada range to the east. With
cool wet winters and hot dry summers, the unique natural environment makes SJV one of the most
productive agricultural regions in the world (SJV APCD, 2012 and references therein). However,
SJV is also one of the most polluted regions in US due to its unique geographical location. Frequent
stagnant weather systems are conducive to air pollution formation, while the surrounding
mountains block air flow and trap pollutions. Large seasonal and spatial variation of aerosol
occurrence and distribution are observed in the SJV. Although significant progress made to
improving local air quality in past decades has been achieved through strong emission controls,
PM2.5 (particulate matter with diameter <2.5 um) concentrations in the SJV remain well above
the national ambient air quality standards (NAAQS) threshold of 12 g m- on an annual basis and
35 g m3 on daily basis, occurring mainly during the cold season. Improved understanding of the
aerosol variability and impacts is needed to provide further guidance for emission control strategies
in the SJV.

Air quality models are a useful tool to understanding the formation and evolution of
aerosols and their impacts on air quality, weather and climate. However, it is quite challenging to
accurately simulate aerosol properties (Fastetal., 2014). Fast etal. (2014) summarized the factors
contributing to the errors in regional-scale modeling of aerosol properties. They include 1)
emission sources; 2) meteorological parameterizations; 3) representation of aerosol chemistry; 4)
limited understanding of the formation processes of secondary organic aerosol (SOA); 5) spatial

resolution; and 6) boundary conditions.
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As one of the advanced regional air quality models available presently to the community,
the Weather Research and Forecasting model with Chemistry (WRF-Chem) has been widely used
to study aerosols and their impacts on regional air quality, weather and climate (e.g., Misenis and
Zhang, 2010; Zhang et al., 2010; Zhao et al., 2010; 2013a, 2013b; 2014; Wu etal., 2011a, 2011b,
2013; Fast et al., 2012, 2014; Scarino et al., 2014; Tessum etal., 2015; Campbell etal., 2016; Hu
et al., 2016). For example, Fast et al. (2014) showed that WRF-Chem simulations at 4 km
horizontal resolution captured the observed meteorology and boundary layer structure over
California in May and June of 2010 and the spatial and temporal variations of aerosols were
reasonably simulated. Aerosol simulations by WRF-Chem are usually sensitive to both local
emission and long-range transport of aerosols from the boundary conditions provided by the global
Model for Ozone and Related chemical Tracers, version 4 (MOZART-4). With a similar model
set-up, Zhao et al. (2013b) conducted a one-year simulation at 12 km horizontal resolution and
found that the WRF-Chem model represented the observed seasonal and spatial variation of
surface particulate matter (PM) concentration over California. However, underestimation of
elemental carbon (EC) and organic matter (OM) were noticed in the model simulation, with weak
sensitivity to horizontal resolution.

In this study, we focus on simulating aerosol seasonal variability in the SJV, California
using similar model configurations as that used in Zhao et al. (2013b) and Fast et al. (2014). This
paper serves as the first step for future investigation of the aerosol impact on regional climate and
the water cycle in California. Previous studies have demonstrated that aerosols are better simulated
at higher model resolution (Misenis and Zhang et al., 2010; Qian etal., 2010; Stround etal., 2011;
Fountoukis et al., 2013). However, most regional climate studies are still performed with coarse

model resolutions (on the order of 10 km) due to the availability of computational resources. This
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study will investigate the sensitivity of aerosol simulations to horizontal resolution and identify
optimal model physical choices for reasonable representation of aerosol variabilities in the SJV.

Another application of air quality modeling is to provide initial a priorifields for remote
sensing retrievals. The WRF-Chem model has been proposed as an input for retrieval algorithms
to be developed for the recently-selected NASA (National Aeronautics and Space Administration)
MAIA (Multi-Angle Imager for Aerosols) mission, which aims to map PM component
concentrations in major urban areas (including the SJV, a testbed for the MAIA retrieval algorithm
development). A significant challenge for aerosol remote sensing in retrieving spatial information
on specific aerosol types, especially near the surface, is caused by the lack of information on the
vertical distribution of aerosols in the atmospheric column and limited instrument sensitivity to
aerosol types over land. The WRF-Chem model will be used to provide near-real-time estimation
of particle properties, aerosol layer heights, and aerosol optical depths (AOD) to constrain the
instrument-based PM retrievals. A reasonable estimate of aerosol properties from WRF-Chem is
critical to ensuring retrieval speed and quality. Considering the sensitivity of WRF-Chem
simulations to various factors such as initial and boundary conditions, model parameterizations
and emission sources (e.g., Wu and Petty, 2010; Zhao etal., 2010, 2013a, 2013b; Wu etal., 2011a,
2015; Fast et al., 2014; Campbell et al., 2016; Morabito et al., 2016), careful model evaluations
are needed before the simulations can be used operationally for remote sensing retrievals. Thus,
this study is important for the development of MAIA retrieval algorithms, critical to the success
of the MAIA mission.

This paper is organized as follows. Section 2 describes observational datasets used for

model evaluation. Section 3 provides the description of the WRF-Chem model and experiment
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setup. Model simulations and their comparison with observations are discussed in section 4.

Section 5 presents the conclusions.
2. Observations

2.1 Column-integrated Aerosol Optical Properties

AOD is a measure of column-integrated light extinction by aerosols and a proxy for total
aerosol loading in the atmospheric column. The Aerosol Robotic Network (AERONET) provides
ground measurements of AOD every 15 minutes during daytime under clear skies (Holben et al.,
1998), with an accuracy approaching #0.01 (Eck et al., 1999; Holben et al., 2001; Chew et al.,
2011). The monthly level 2.0 AOD product with cloud screening and quality control is used in this
study. Angstrén exponent (AE) is an indicator of aerosol particle size. Small (large) AE values
are generally associated with large (small) aerosol particles (Angstrén, 1929; Schuster et al.,
2006). The AE between 0.4 pm and 0.6 pm is derived from AERONET observed AODs, and is
used to evaluate the model-simulated AE. For comparison with simulated AOD, AERONET AOD
is interpolated to 0.55 pm from 0.50 pm and 0.675 pm using the AE. In the SJV, only one
AERONET station at Fresno, CA (36.79N, 119.77<W) has regular observations throughout the
California water year 2013 (WY2013) from October 2012 to September 2013.

The Multiangle Imaging Spectroradiometer (MISR) (Diner et al., 1998) instrument
onboard the Terra satellite has provided global coverage of AOD once a week since December
1999. The standard MISR retrieval algorithm provides AOD observations at 17.6 km resolution
using 16x16 pixels of 1.1 km x 1.1 km each. About 70% of MISR AQOD retrievals are within 20%
of the paired AERONET AOD, and about 50% of MISR AOD falls within 10% of the AERONET
AOD, except in dusty and hybrid (smoke+dust) sites (Kahn et al., 2010). We use version 22 of

Level 3 monthly AOD product at 0.5<resolution in this study.
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2.2 Surface Mass Concentration

Surface PM, s speciation and PMjo (particulate matter with diameter < 10 um) data are
routinely collected by two national chemical speciation monitoring networks: Interagency
Monitoring of Protected Visual Environments (IMPROVE) and the PM,s National Chemical
Speciation Network (CSN) operated by Environmental Protection Agency (EPA) (Hand et al.
2011; Solomon et al., 2014). IMPROVE collects 24-h aerosol speciation every third day at mostly
rural sites since 1988. The same frequency of aerosol speciation dataset was collected at EPA CSN
sites in urban and suburban areas since 2000. The observed organic carbon is converted to OM by
multiplying by 1.4 (Zhao et al., 2013b; Hu et al., 2016). Some precursors of aerosol pollutions
(such as NO, and SO,) are observed hourly by EPA (data available at:
https://agsdrl.epa.gov/agsweb/agstmp/airdata/download_files.html) and are used in this study.
Selected IMPROVE and EPA CSN sites used in this study are shown in Figure 1a.
2.3 Aerosol Extinction Profile

The aerosol extinction coefficient profile reflects the attenuation of the light passing
through the atmosphere due to the scattering and absorption by aerosol particles as a function of
range. Version 3 Level 2 532 nm aerosol extinction profiles derived from Cloud-Aerosol Lidar
with Orthogonal Polarization (CALIOP) backscatter profiles collected onboard the Cloud-Aerosol
Lidar and Infrared pathfinder Satellite Observation (CALIPSO) satellite are used (Omar et al.,
2009; Young and Vaughan, 2009). Seasonal mean profiles are derived for WY 2013 based on the
methodology outlined in Campbell et al. (2012), whereby quality-assurance protocols are applied
to individual profiles before aggregating and averaging the data. We highlight that no individual
profiles are included in the averages if the CALIOP Level 2 retrieval failed to resolve any

extinction within the column, a potential issue to create bias that has recently been described by
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Toth et al. (2017). Level 2 532 nm aerosol extinction data classify aerosols into 6 types: clean
marine, dust, polluted continental, clean continental, polluted dust and smoke. Dust and polluted
dust are distinguished in the averages in this study for their contribution to total extinction and the
vertical profile seasonally in the SJV.
2.4 Meteorology

AIRS (Atmospheric Infrared Sounder) onboard the Aqua satellite (Susskind et al., 2003;
Divakarla etal., 2006) has provided global coverage of the tropospheric temperature and moisture
at approximately 01:30 and 13:30 local time since 2002. AIRS retrievals have root-mean-squared
(RMS) error of ~1 K for temperature and ~15% for water vapor (Divakarla et al., 2006). Level 3
monthly temperature and moisture retrievals (version 6) at 1°x 1°grid are used in this study.
Vertical gradient of equivalent potential temperature (6,) marks atmospheric stability and is
computed from temperature and moisture profiles observed by AIRS. Surface observations,
including air temperature, relative humidity (RH) and wind speed, are routinely collected at the
California Irrigation Management Information System (CIMIS; http://www.cimis.water.ca.gov/).
Precipitation used in this study is the Climate Prediction Center (CPC) Unified Gauge-Based
Analysis of Daily Precipitation product at0.25<x 0.25<resolution.
3. Model Description and Experiment Setup

The WRF-Chem model Version 3.5.1 (Grell et al., 2005) updated by Pacific Northwest
National Laboratory (PNNL) is used in this study (Zhao et al., 2014). This study uses the CBM-Z
(carbon bond mechanism) photochemical mechanism (Zaveri and Peters, 1999) coupled with the
sectional-bin  MOSAIC (Model for Simulating Aerosol Interactions and Chemistry) aerosol
scheme (Zaveri et al., 2008) as the chemical driver. The major components of aerosols (nitrate,

ammonium, EC, primary OM, sulfate, sea salt, dust, water and other inorganic matter) as well as
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their physical and chemical processes are simulated in the model. For computational efficiency,
aerosol particles in this study are partitioned into four-sectional bins with dry diameter within
0.039-0.156 pm, 0.156-0.625 pm, 0.625-2.5 pm, and 2.5-10.0 pm. Zhao et al. (2013a) compared
the impact of aerosol size partition on dust simulations. It showed that the 4-bin approach
reasonably produces dust mass loading and AOD compared with the 8-bin approach. The size
distribution of the 4-bin approach follows that of the 8-bin approach with coarser resolution,
resulting in 35% difference on the ratio of PM, s-dust/PM;o-dust in dusty regions (more large
particles and less small particles). Dust number loading and absorptivity are biased high in the 4-
bin approach compared with the 8-bin approach.

Aerosols are considered to be spherical and internally mixed in each bin (Barnard et al.,
2006; Zhao et al., 2013b). The bulk refractive index for each particle is calculated by volume
averaging in each bin. Mie calculations as described by Ghan et al. (2001) are used to derive
aerosol optical properties (such as extinction, single-scattering albedo, and the asymmetry
parameter for scattering) as a function of wavelength. Aerosol radiation interaction is included in
the shortwave and longwave radiation schemes (Fast et al., 2006; Zhao et al., 2011). By linking
simulated cloud droplet number with shortwave radiation and microphysics schemes, aerosol
cloud interaction is effectively simulated in WRF-Chem (Chapman et al., 2009). Aerosol snow
interaction is implemented in this version of WRF-Chem (Zhao et al., 2014) by considering aerosol
deposition on snow and the subsequent radiative impacts through the SNICAR (SNow, ICe, and
Aerosol Radiative) model (Flanner and Zender, 2005, 2006).

The model simulations start on 1 September 2012 and run continuously for 13 months.
With the first month used for the model spin-up, our analysis focuses on WY2013 from October

2012 to September 2013. The model is configured with 40 vertical levels and a model top at 50
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hPa. The vertical resolution from the surface to 1 km gradually increases from 28 m to 250 m. The
model centeris placed at 38N, 121<W, with 250 x 350 grid points at 4 km horizontal resolution
(referred to as “4km” hereafter; Table 1), covering California and the surrounding area. To test the
sensitivity of the aerosol simulations to horizontal resolution, one simulation with the same model
settings and domain coverage is conducted at 20 km horizontal resolution (referredto as “20km”
hereafter).

The physics parameterizations used in the simulations include the Morrison double -
moment microphysics scheme (Morrison et al., 2009), Rapid Radiative Transfer Model for General
circulation model (RRTMG) shortwave and longwave radiation schemes (lacono et al., 2008),
Community Land Model (CLM) Version 4 land surface scheme (Lawrence et al., 2011). The
Yonsei University (YSU) planetary boundary layer (PBL) scheme (Hong et al., 2006) is used in
all of the simulations, except one sensitivity experiment that uses the ACM2 (Asymmetric
Convective Model with non-local upward mixing and local downward mixing; Pleim, 2007) PBL
scheme (referred to as “20km_P7” hereafter, Table 1). Subgrid convection, convective transport
of chemical constituents and aerosols, and wet deposition from subgrid convection are
parameterized using the Grell 3D ensemble cumulus scheme (Grell and Devenyi, 2002) in the 20
km simulations while convective processes are resolved in the 4 km simulations. The Interim
European Center for Medium-Range Weather Forecasts Re-Analysis (ERA-Interim; Dee et al.,
2011) serves as initial and boundary meteorological conditions for WRF-Chem. The MOZART-4
global chemical transport model (Emmons et al., 2010) is used for initial and boundary chemical
conditions. Fast et al. (2014) found that the MOZART-4 model overestimates aerosols in the free

troposphere over California, which is also found in one of our sensitivity experiments
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(“20km_BC1” in the supplementary). Following Fast et al. (2014), the chemical initial and
boundary conditions from MOZART-4 are divided by two in all simulations except 20km_BC1.

Anthropogenic emissions are provided by US EPA 2005 National Emissions Inventory
(NEIO5), with area-type emissions on a structured 4-km grid and point-type emissions at specific
latitude and longitude locations (US EPA, 2010). Nineteen gases (including SO,, NO, NHj3 etc.)
are emitted, and aerosol emissions include SO4, NO3, EC, organic aerosols, and total PM, s and
PM3o masses. Anthropogenic emissions are updated every hour to account for diurnal variability,
while its seasonal variation is not considered in the simulations. A sensitivity experiment with
2011 NEI emissions (“20km_NEI11” in the supplementary) does not produce significantly
different results from the 2005 NEI emissions. Biogenic emissions are calculated online using the
Model of Emissions of Gases and Aerosols from Nature (MEGAN) model (Guenther et al., 2006).
Biomass burning emissions are obtained from the Global Fire Emissions Database version 2.1,
with eight-day temporal resolution (Randerson et al., 2007) and updated monthly. Sea salt
emissions are derived from the PNNL-updated sea salt emission scheme that includes the
correction of particles with radius less than 0.2 pm (Gong et al., 2003) and dependence on sea
surface temperature (Jaegléetal., 2011).

Following Zhao et al. (2013b), dust emission is computed from the GOCART (Goddard
Global Ozone Chemistry Aerosol Radiation and Transport) dust scheme (Ginoux et al., 2001) in
the 20km and 4km simulations. The GOCART dust scheme estimates the dust emission flux F as

F = CSspufom (Uiom — Ut) ,
where C is an empirical proportionality constant, S is a source function for potential wind erosion

that is derived from 1°x 1°GOCART database (Freitas et al., 2011), s, is a fraction of each size

class dust in emission, 4., IS 10-m wind speed and u; is a threshold speed for dust emission.
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As shown later, a significant amount of dust is observed in the SJV, whereas the GOCART
dust scheme produces little dust. Two sensitivity experiments at 20 km and 4 km horizontal
resolution (hereafter referred to as “20km D2” and “4km_D2”, respectively) are conducted by
switching the dust emission scheme to the DUST TRANSsport model (DUSTRAN) scheme (Shaw

et al., 2008). The DUSTRAN scheme estimates F as

F=aCu§(1—fW—u*t) :

U

where C is an empirical proportionality constant, a is the vegetation mask, wu, is the friction
velocity, u,; is athreshold friction velocity and f, is the soil wetness factor. The C value in both
GOCART and DUSTRAN is highly tunable for different regions. The original C values, 1.0 g s2
m® in GOCART (Ginoux etal., 2001) and 1.0x10-14 g cm s in DUSTRAN (Shaw etal., 2008),
are used in this study.

4. Model Simulation Results

Shown in Fig. 1a, our model domain includes three urban sites (Fresno, Bakersfield and
Modesto) and two rural sites (Pinnacles and Kaiser) where surface measurements of aerosols are
available. Because aerosols properties and model performance are similar at all urban sites, our
discussion is focused on the results at Fresno and the simulations for other urban sites are provided
in the supplementary materials. Model simulations in the rural areas are presented in the last
subsection.

4.1 Sensitivity to Horizontal Resolution

Figure 1 features daily mean anthropogenic PM, s emission rates used in the 20km and
4km simulations, respectively. Although both emission rates are derived from the 4 km NEI05
dataset, localized high emission rates with sharp gradients are evident in urban areas from the 4km

simulation (Fig. 1b). The 20km simulation exhibits lower emission rates at the urban areas with
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weaker gradients due to the reapportionment process (Fig. 1a). As precipitation is an important
process that removes aerosols, we examine the simulated precipitation for the 20km and 4km runs
and find that the 20km simulation produces 51% more precipitation, although the domain averaged
precipitation is lower in the 20km run than the 4km run (Fig. 2a).

Consistent with higher emission rates and lower precipitation at Fresno, the 4km run
simulates higher AOD than the 20km run in the cold season (October-November-December and
January-February-March; OND and JFM in Fig. 3). Averaged over a broad area encompassing
Fresno and Bakersfield, the most polluted region in the SJV (red box in Fig. 1a), the AOD is 0.090
in the 4km and 0.073 in the 20km, a 23% difference. Compared to the MISR observations, the
4km simulation reproduces the spatial distribution and magnitude of AOD in the cold season.
However, the AOD difference between the 20km and 4km runs is small in the warm season (April-
May-June and July-August-September; AMJ and JAS in Fig. 3), and both runs underestimate AOD
by ~50% with respect to the MISR observations.

Comparing the point values at Fresno in the 4km and 20km simulations (Fig. 4a), we find
similar results: the 4km AOD is closer to the AERONET measurements and is about 23% higher
than that in the 20km run during the cold season, while both runs are biased low in AOD during
the warm season. The different model sensitivities to horizontal resolution between the cold and
warm seasons suggest that the dominant aerosol sources may be different for the two seasons. We
will elaborate upon the aerosol composition in the following section. MISR and AERONET
observations display weak seasonal AOD variation in the SJV and at Fresno, respectively, which
is not well represented in the 20km and 4km simulations (Fig. 3 and 4a).

Aside from AQOD, significant seasonal variability of AE (Fig. 4b) is shown at Fresno. AE

exhibits a maximum about 1.50 in January and a minimum of 0.98 in April, suggesting relatively
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small particles in the winter and large particles in the spring. A relatively large AE value of 1.40
(corresponding to small particles) is observed in July, possibly related to the wild fires in late July
in the SJV. WRF-Chem captures the seasonal variability of the AE well, with a correlation of 0.90
in both the 20km and 4km simulations. The magnitude of AE is also approximately simulated in
the cold season, with a mean of 1.15 (1.20) in the 20km (4km) runs compared to 1.33 in the
observation. However, the simulated AE is underestimated by ~30% in the warm season,
indicating that the simulated particle size is biased high during this period.

Significant seasonal variability of PM, s is observed in the SJV urban areas (Fig. 5a and
Supplementary Fig. 4a and 5a). PM, s at Fresno peaks in January (26.18 |g m-) and reaches a
minimum of 7.03 g m3 in June, with an annual nonattainment value of 12.64 g m= (Fig. 5a).
Both the 20km and 4km runs approximately capture the observed seasonal variability of PM,s,
with a correlation around 0.90 (Table 2). In the cold season, the 4km simulation overestimates
PM, s by 27% while the 20km simulation exhibits a low bias of 19% compared with IMPROVE
observations at Fresno (Table 3). The 4km simulation of PMy, is in good agreement with
IMPROVE in the winter (December, January and February), but has significant low biases of
between 30% and 85% in other months (Fig. 5b). The 20km simulation underestimates PMjq
throughout WY 2013.

PM, s is a mixture of nitrate (NO3), ammonia (NH,4), OM, EC, sulfate (SO,), dust and other
aerosols. High concentrations of PM, s are primarily the result of NO3 at Fresno (Fig. 5c). Both
simulations produce the seasonal variability of NOj with a correlation of 0.94, but high bias of
17% (75%) is found in the 20km (4km) simulations during the cold season. As one precursor of
NOj3, NO; is underestimated by 43% in the 20km run (Fig. 6a). The overestimation in NO3 and

underestimation in NO,suggest that the precursor emissions may not the reason for the high biases
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in NO3. NH, shows a similar performance to NO3, with an overestimation by 38% (111%) in the
20km (4km) runs during the cold seasons (Fig. 5d). As shown later in section 4.3, both NO3 and
NH, simulations are quite sensitive to the PBL scheme applied.

OM, the second largest contributing species to cold season PM, s in the SJV (Table 3), is
significantly underestimated by 82% in the 20km simulation (Fig. 5f). The 4km simulation
produces higher OM, but it is still lower than the IMPROVE observations by 63%. The
underestimation of OM is expected, because SOA processes are not included in our model
infrastructure. Fast et al. (2014) used the simplified two-product volatility basis set
parameterization to simulate equilibrium SOA partitioning in WRF-Chem although SOA was still
underestimated in their simulation. It remains ongoing research how to correctly represent SOA
processes in regional climate models.

Both the 20km and 4km simulations reproduce the seasonal variability of EC, with a
correlation of 0.98 between the modeled and observed time series (Table 2). The 20km simulation
underestimates EC by 52% (16%) in the cold (warm) season (Fig. 5e and Table 3). The 4km
simulated EC (1.12 pg m3) exhibits good agreement with IMPROVE (1.08 g m=) in the cold
season, but overestimates EC by 53% in the warm season.

The seasonal variability of SO, at Fresno is very different from other PM, s species. It peaks
in May at 1.35 g m3 and reaches the minimum of 0.67 g m=3 in August (Fig. 5g). The 20km
simulated SO, exhibits good correlation of 0.63 with the observation (Table 2), but is biased low
by 28% to 63% throughout WY2013 (Fig. 5g). Although the observed SO,, the precursor of SOy,
has approximately similar seasonal variation to the observed SO, (Fig. 6b), the 20km simulated
seasonal variability of SO, resembles other anthropogenic emissions, with high values in the cold

season and low values in the warm season, out of phase with the simulated SO, and the observed
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SO,. The 4km simulation produces higher SO, than the 20km run, resulting in better agreement
with the observation (0.82 g m3 vs. 0.87 g m3) during the cold season (Fig. 5g and Table 3).
However, the 4km run produces an increase of SO4 by only 13% comparing to the 20km run in
the warm season, resulting in a correlation of -0.16 between the 4km simulation and the
observation.

To explore the possible cause for the underestimation of SO, and SO, in the warm season
in both the 20km and 4km simulations, we conduct a sensitivity experiment with different chemical
boundary conditions from the baseline runs (20km_BC1 in the supplementary). We find that SO,
in the SJV is partly contributed to by marine intrusions (the different chemical boundary conditions
between 20km_BC1 and 20km_D2) throughout the year (supplementary Fig. 2g), as pointed out
by Fast et al. (2014). Including the marine intrusions, the 20km BC1 simulated SO, tracks the
observation at acorrelation of 0.78. Doubled chemical boundary conditions in the 20km simulation
results in 41% increase in SO, at Fresno, with a stronger increase in the warm season. Compared
to the observed SO, of 1.04 g m=3 in the warm season, the simulated SO, of 0.79 g m=3 in the
20km_BC1 run is closer to the observation than that simulated in the 20km_D2 run (0.53 pg m=3).
The relative contributions of local emissions and remote transports (as well as other emission
sources, such as wild fires) to SO4 concentrations in different seasons of the SJV require further
investigation.

Overall, the 4km simulation produces higher AOD and surface PM than the 20km
simulation in urban areas of the SJV, especially during the cold season, resulting in better
agreement with satellite and surface observations than the 20km simulation. Both the 20km and
4km simulations approximately capture the seasonal variability of PM;sand most of its speciation.

However, significant low biases of AOD and PMy, are found during the warm season in both
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simulations. The underestimation also exists in a sensitivity experiment (not shown) with the same
model setups except initialized in April, indicating that the identified model biases during the warm
season are not caused by potential model drift after a relatively long simulation period. The
relatively good performance in simulating PMo, s but not PMy during the warm season suggests
that coarse aerosol particle mass (CM; 10 pm > particulate matter with diameter > 2.5 pm), mainly
dust in the SJV, is not properly represented in the model. The impact of dust parameterizations is

investigated in the 4km_D2 experiment.
4.2 Sensitivity to Dust Scheme

Limited amounts of PM, s_dust (dust with diameter <2.5 um) are observed in the SJV cold
season, with a minimum of 0.37 |.g m3 in December (Fig. 7a). The amount of PM, 5 _dust increases
in the warm season, with a peak of 3.86 g m? in September. The 4km simulation produces
comparable PM,s_dust relative to IMPROVE in the winter, but almost no dust in other months
(Fig. 7 and upper panel in Fig. 8). On the other hand, the dust emission rate in the 4km_D2 run is
significantly higher than the 4km run. We have found that the source function, S, for potential
wind erosion in the SJV is setto zero in the 11 GOCART dataset used for the 4km simulation
(Fig. 9). An updated source function, S, at higher resolution is needed for the GOCART dust
scheme to correctly represent dust emissions in the SJV.

The 4km_D2 simulation reproduces the amount of PM, s_dust in OND (Fig. 7a). However,
it overestimates PM, s_dust by up to a factor of 3 in the warm season, resulting in an overestimation
of PM, s by 52% (Fig. 7b and Table 3). PM,s_dust is not sensitive to long-range transport (from
chemical boundary conditions in the model simulation; Supplementary Fig. 2h). Both the 4km and
4km_D2 simulations capture the seasonal variability of PM, s, but not that of PMyo (Fig. 7c). The

magnitude of PMyg in the 4km_D?2 run is larger than the 4km simulation. PMyg in the 4km_D?2 run
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is overestimated in April-May-June (AMJ) but underestimated in July-August-September (JAS),
leading to a comparable season mean of 38.12 g m3 with IMPROVE observed 34.82 |.g m3. The
overestimation of AMJ PMy and PM,s_dust in the 4km_D2 run is likely associated with the high
bias in the simulated wind speed (Fig. 2b).

On the relative contribution of different aerosol species, IMPROVE observations at Fresno
show that NOj is the primary contributor (32.3%) to PM, s while only 5.3% of PM, s is dust in the
cold season (panel 1 of Fig. 10). Both the 4km and 4km_D2 runs roughly reproduce the relative
contributions to PM, s in the cold season, with an overestimation of NO; and NH,; and an
underestimation of OM, consistent with the time series in Fig. 5. Relative contributions of dust to
PM, s are better simulated in the 4km_D2 run (7.3%) than the 4km one (<1.0%). IMPROVE shows
that 46.6% of PMyo is CM in the cold season (panel 2 of Fig. 10). Both the 4km (6.3%) and
4km_D2 (20.6%) runs underestimate the contribution of CM to PMjo, mainly in October and
November. In the warm season, dust (24.6%) becomes the primary contributor to PM, s while the
contribution from NOg3 decreases to 9.9% in IMPROVE observations (panel 3 of Fig. 10). Almost
no PM,s_dustis simulated in the 4km run while too much PM;s_dustis produced in the 4km_D2
(50.5%) run during the warm season. The relative contribution of CM to PMy, is too small (27.6%)
in the 4km run, while the 4km_D2 run reflects an better relative contribution of 66.3% as compared
to an IMPROVE observed 75.8% (panel 4 of Fig. 10).

AOD simulations are improved in the 4km_D2 experiment (Fig. 11), with better agreement
found from MISR (Fig. 3) in AMJ. AOD (0.114) in the 4km_D2 run is comparable to observations
(0.131) in AMJ, but still underestimated by 53% in JAS. Consistent with AOD, the vertical
distribution of aerosol extinction is reasonably simulated during the cold season in the WRF-Chem

simulations, while large discrepancies are found in the warm season (Fig. 12). As observed by
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CALIOP at 532 nm, aerosols are mainly confined below 1 km above the surface in the cold season.
Model simulations roughly capture the vertical distribution of aerosol extinction observed by
CALIOP, with low biases in the boundary layer and high biases in the free atmosphere. Similar
discrepancy between the model simulations and CALIOP is shown in other studies (Wu et al.,
2011a; Hu et al., 2016). The difference between the 4km and 4km_D2 runs is small during the
cold season.

Dust in the boundary layer is a primary factor contributing to aerosol extinction in the SJV,
as illustrated by the differences between the bulk seasonal CALIOP mean profile and those
excluding the contributions of the dust and polluted dust (CALIOP _nodust) profiles (Fig. 12).
Simulated aerosol extinction falls between the two in all seasons, suggesting that dust is the
primary factor contributing to the model biases in aerosol extinction. Although a small portion of
PMy, s is dust in the cold season, it contributes to about 50% of total aerosol extinction (Fig. 12a
and 12b). A predominant portion of aerosol extinction in the boundary layer is contributed by dust
in the warm season (Fig. 12c and 12d). There, the 4km_D2 simulation produces higher aerosol
extinction in the boundary layer than the 4km simulation, although it is still lower than CALIOP.
The simulated aerosol extinction in the free troposphere above the boundary layer is close to or
larger than CALIOP, suggesting that aerosols transported from remote areas through chemical
boundary conditions (e.g., the differences between the 20km BC1 and 20km D2 runs in
Supplementary Fig. 3) may not be the major factor contributing to the underestimation of dust in
the boundary layer in the SJV.

Overall, the poor simulations of dust in the boundary layer play a dominant role in the low
bias of aerosols during the warm season. Both the GOCART and DUSTRAN dust emission

schemes used in this study have difficulties in reproducing dust emissions in the SJV, with an
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underestimation in GOCART and an overestimation in DUSTRAN (Fig. 7). Improvement on the

dust emission schemes is needed for capturing the seasonal variability of aerosols in the SJV.
4.3 The Role of Meteorology

The WRF-Chem simulations approximately reproduce the seasonal variations of
meteorological variables near the surface (correlations > 0.80), including temperature, RH, wind
speed and precipitation (Supplementary Fig. 6 and Supplementary Table 1). All of the model
simulations exhibit warmand dry biases near surface and in the boundary layer, with cold and wet
biases in the free atmosphere (Supplementary Fig. 6-8 and Supplementary Table 2). The dry bias
in the 4km_D?2 run is about 10% near the surface throughout WY2013. Due to the relative dry
environment (RH<50%) in the warm season, the dry bias is likely not responsible for the
underestimation of boundary layer aerosol extinctions and column-integrated AOD through
hygroscopic effects (Feingold and Morley, 2003). In the cold season, the surface wind speed is
underestimated by 0.67 m/s (1.00 m/s) in the 4km_D2 (20km_D2) runs. In the warm season, the
4km_D2 run overestimates wind speed by 0.78 m/s, while the 20km D2 run has an
underestimation of 0.16 m/s. These results suggest that wind speed is also not the primary factor
contributing to low biases in the boundary layer aerosols. The seasonal variability of precipitation
is well captured in the simulations, while the magnitude of precipitation is smaller than the
observations during the warm season (Supplementary Table 2). Wet removal processes are thus
not likely the primary reason for the aerosol biases in the warm season.

In the warm season, more aerosols are observed at higher altitude than during the cold
season (Fig. 12). A well-mixed layer of aerosols is observed below 1.5 km in AMJ (Fig. 12c),
consistent with the unstable layers below 1.5 km observed by AIRS (Fig. 13c). However, the WRF-

Chem model simulates neutral (or weakly stable) layers below 1.5 km (Fig. 13c), which may lead
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to a failure in capturing the well-mixed layer of aerosols (Fig. 12c). Although the dust emission at
the surface is large in the 4km_D2 run, not enough convective vertical mixing is produced in the
simulations, plausibly resulting in the low biases found in the boundary layer. Aerosol extinction
gradually decreases with height in the simulations. Similar biases of aerosol and instability in the
boundary layer are also shown in JAS (Fig. 12d and 13d). Relative static stability in the simulations,
which limits convective vertical mixing of aerosols, likely enhances the low bias of column-
integrated AOD in JAS (Fig. 11). Although the 4km_D2 experiment produces comparable AOD
and surface PM mass in AMJ (Fig. 6 and Fig. 11), the vertical distribution of aerosols is not well
represented (Fig. 12). The comparable AOD in the 4km_D2 run results from the low bias in the
boundary layer and the high bias in the free atmosphere. In JAS (Fig. 12d), comparable aerosol
extinction to CALIOP is simulated in the free atmosphere, suggesting that the low bias in AOD is
not due to the halved chemical boundary conditions from MOZART-4. Albeit some discrepancies
in the magnitude of atmospheric stability, all of the simulations capture the stable environment in
the cold season (Fig. 13a and 13b), consistent with relatively good performance of aerosol
simulations in the cold season.

As biases in the model simulations are found mainly within the boundary layer, asensitivity
experiment is conducted at 20 km resolution using the ACM2 PBL scheme (20km_P7). Although
the changes in the meteorological variables (Supplementary Fig. 6-8) and atmospheric static
stability (Fig. 13) are rather small, the simulated surface NO3 and NH, in the 20km_P7 run
decrease by 50% compared to the 20km_D2 run (Fig. 14c, 14d and Table 3). Considering that
more NOz;and NH, are simulated at 4 km resolution than at 20 km resolution as shown in section
4.1, the use of the ACM2 PBL scheme at 4 km simulation would largely resolve the high biases

of NOszand NHy, in the 4km_D2 simulation. The decrease of NO3 and NH, at the surface is because
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more aerosols are transported to the layers above 0.5 km (Fig. 15a and 15b), resulting from
different convective vertical mixing in the PBL schemes. However, PM,s_dust is significantly
overestimated by a factor of 4 in the 20km_P7 simulation (Fig. 14h), leading to a small decrease
of PMy5 by only 8% compared with the 20km_D2 run in the cold season. In the warm season,
PM,s_dust in the 20km_P7 run is overestimated by a factor of 5, causing an overestimation of
PM;sand PMyg (Fig. 14a and 14b). Aerosol extinctions in the boundary layer increase in the warm
season (Fig. 15¢ and 15d), possibly related to overestimation of dust emissions and more
conducive convective vertical transport in the PBL scheme.

In summary, the WRF-Chem model captures the seasonal variations of meteorological
variables (temperature, RH, wind speed and precipitation), despite some deviations in magnitude.
The low biases in aerosol optical properties of the warm season likely do not originate from
hygroscopic effects, wet removal processes or dust emissions associated with the wind speed bias.
The model simulates a stable environment in the warm season, which is opposite to the observed
unstable environment. The simulated stable environment may be most likely responsible for low
biases in the aerosol extinction in the boundary layer and the column-integrated AOD in the warm
season. Switching to the ACM2 PBL scheme leads to improved vertical mixing in the boundary
layer, thus an improvement in the simulations of NO3zand NHy in the cold season. However, dust
emissions are significantly overestimated with the ACM2 PBL scheme, which contributes partly
to the better simulation of aerosol extinction in the boundary layer and AOD in the column. These
results highlight that improving the simulation of boundary layer structure and processes are

critical for capturing the vertical profiles of aerosol extinction.

4.4 Results in Rural Areas
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In general, low values of PM concentration are observed in the rural areas, Pinnacles and
Kaiser (Fig. 16 and 17). The rural areas share some similar model performance to the urban areas,
such as the overestimation of NOj3, reasonable simulation of EC, good representation of SO, in the
cold season and underestimation of SO, in the warm season. However, the results are not sensitive
to model resolution. It suggests that high resolution is particularly important for heavily polluted
areas due to the inhomogeneity of emission sources, but less important for relatively lightly
polluted areas.

In late July/early August, MODIS (Moderate Resolution Imaging Spectroradiometer) fire
data (not shown) showed active wild fires close to Kaiser, which resulted in high concentration of
aerosols locally (Fig. 17). Our model simulations with monthly-varying fire emissions fail to
reproduce these fire events. Previous studies (e.g., Grell et al., 2011; Wu et al. 2011a; Archer-
Nicholls et al., 2015) demonstrated that the WRF-Chem model can capture aerosols distributions
from wild fires based on fire locations from satellite observations. Campbell et al. (2016) further
described the difficulties in constraining total aerosol mass from operational satellite fire
observations and the time needed by the model for diffusion within the near-surface layers to
render both reasonable AOD and vertical profiles of aerosol extinction. For operational application
of the WRF-Chem model in MAIA retrievals, the observations of daily fire events need to be more

appropriately considered.
5. Summary

The WRF-Chem (Weather Research and Forecasting model with Chemistry) model is
employed to simulate the seasonal variability of aerosols in WY 2013 (water year 2013) in the SJV
(San Joaquin Valley). Model simulations are evaluated using satellite and in-situ observations. In

general, the model simulations conducted at 4 km resolution reproduce the spatial and temporal
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variations of regional aerosols in the cold season, when aerosols are mainly contributed to by
anthropogenic emissions in the SJV. The magnitude of simulated aerosols in the cold season
however, especially in relatively dense urban areas, is sensitive to model horizontal resolution.
The 4km simulation has comparable magnitude to available observations, while the 20km
simulation underestimates aerosols. Differences in aerosol simulation fidelity as a function of
variable resolutions are mainly due to the difference in aerosol emissions and simulated
precipitation. Emissions at higher resolution can better resolve the inhomogeneity of
anthropogenic emissions in the SJV than at lower resolution. The sensitivity to horizontal
resolution is small in rural areas and during warm season, where/when the relative contribution of
anthropogenic emissions is small.

Previous studies in the SJV are mainly focused on PM, 5 (particulate matter with diameter
< 2.5 um) and during cold season (e.g. Chow et al., 2006; Herner et al., 2006; Pun et al., 2009;
Ying and Kleeman, 2009; Zhang et al., 2010; Chen etal., 2014; Hasheminassab etal., 2014; Kelly
et al., 2014; Baker et al, 2015; Brown et al., 2016). CALIOP (Cloud-Aerosol Lidar with
Orthogonal Polarization) and IMPROVE (Interagency Monitoring of Protected Visual
Environments) observations show that dust is a primary contributor to the aerosols in the SJV,
especially in the warm season. Dust contributes 24.6% to PM,.swhile more than 75.8% to PMyg in
the warm season. For all seasons, the major component of aerosol extinction in the boundary layer
is dust as observed by CALIOP, consistent with Kassianov et al. (2012). For a complete
understanding of aerosol impacts on air quality, weather and climate, the full spectrum of aerosols
should be considered during all seasons.

All the model simulations conducted fail to capture aerosol vertical distribution and

variability in the SJV warm season, largely due to the misrepresentation of dust emissions, static
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stability and vertical mixing in the boundary layer. The GOCART (Goddard Global Ozone
Chemistry Aerosol Radiation and Transport) dust emission scheme significantly underestimates
dust due to the non-active source function, S, for potential wind erosion used in this study while
the DUSTRAN (DUST TRANSsport model) scheme may overestimate dust emission in the SJV.
Along with the bias in dust emissions, our simulations produce a relatively stable boundary layer
in the warm season, in contrast with observations suggesting a more unstable environment, leading
to a weak vertical mixing of aerosols in the boundary layer. Improved dust emission and better
simulations of the boundary layer properties are needed for accurate simulation of aerosols in the
SJV warm season.

Other biases are also identified in the model simulations. NO3; and NH, in the cold season
are overestimated in the model, but the results are sensitive to the choice of the PBL (planetary
boundary layer) scheme. The SOA (secondary organic aerosol) processes contribute to the
underestimation of OM (organic matter) in this study. The underestimation of sulfate in the warm
season may be caused by the misrepresentation of emissions and the chemical boundary conditions
related to marine intrusions. Aerosols from wild fires are not captured in the simulations with
monthly updated fire data. Further investigations are needed to improve model simulations in the
SJV for both scientific and operational applications.
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Table 1. Experiment description
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Experiment 1D

Experiment description

20km Simulation with the GOCART dust scheme at 20 km horizontal resolution.
20km_D2 Same as 20km, but with the DUSTRAN dust scheme.

20km_P7 Same as 20km_D2, but with the ACM2 PBL scheme.

4km Same as 20km, but at4 km horizontal resolution.

4km_D2 Same as 4km, but with the DUSTRAN dust scheme.




839

840

Table 2. Correlation with observations for different species at Fresno, CA

Species 20km | 4km | 4km_D2 | 20km_D2 | 20km_P7
PM_ 5 0.89 | 0.90 0.86 0.78 0.03
PM,s_NO3; | 094 | 0.95 0.94 0.94 0.91
PM,s_NH, | 097 | 0.96 0.96 0.98 0.96
PM;5s_OM 0.93 | 0.93 0.94 0.93 0.91
PM,s EC | 098 | 098 | 0.98 0.98 0.96
PM,s SO, | 0.63 | -0.16 -0.14 0.61 0.63
PM;,s_dust | -0.55 | -0.50 0.48 0.55 0.36
PMyo -0.25 | -0.23 -0.08 0.01 -0.03
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Table 3. Surface aerosol mass (g m-3) for different species at Fresno, CA

39

Species Cold season Warm season
OBS | 20km | 4km | 4km_ | 20km | 20km [ OBS | 20km | 4km | 4km_ | 20km | 20km
D2 | D2 | P7 D2 | D2 | P7
PM2s 16.84 | 13.71| 21.38 | 22.48 | 14.90 | 13.77 | 8.44 | 491 | 6.29 | 12.85| 10.12 | 14.85
PMzs_ | 543 | 6.36 | 9.54 | 9.22 | 6.22 3.16 | 0.84 | 0.55 | 0.69 | 0.79 | 0.66 | 0.57
gl\o/lz,s_ 142 | 197 | 299 | 288 | 191 0.98 | 040 | 0.19 | 0.24 | 0.20 | 0.16 | 0.13
EII\H/IZ,s_ 539 | 092 | 2.07 | 207 | 0.93 1.04 | 247 | 049 [ 0.87 | 0.87 | 0.50 | 0.55
gl\l\//llz,s_ 1.08 | 052 | 112 | 1.13 | 0.52 0.58 | 0.32 | 0.27 | 0.49 | 0.49 | 0.27 | 0.30
E:\:/lz,s_ 0.87 | 0.53 | 0.82 | 0.81 | 0.53 0.46 | 1.04 | 0.54 | 0.61 | 0.60 | 0.53 | 0.49
Iif\)ﬂz.s_ 090 | 011 | 0.11 | 1.65 | 1.50 418 | 2.08 | 0.04 | 0.03 | 6.49 | 5.16 | 10.05
(Iillj\jlzo 31.55| 14.93 | 22.81 | 28.32| 20.10 | 24.52 | 34.82| 7.08 | 8.69 | 38.12 | 30.19 | 48.02
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Supplementary Table 1. Correlation with surface

40

observations for meteorological variables at

Fresno, CA
4km_D?2 20km_D2 20km_P7
T 0.94 0.94 0.94
RH 0.98 0.98 0.96
Wind 0.83 0.84 0.85
Rain 0.97 0.97 0.97




846  Supplementary Table 2. Bias for surface meteorological variables at Fresno, CA

Cold season Warm season
4km D2 [ 20km D2 | 20km _P7 | 4km_D2 | 20km_D2 | 20km_P7
T (K) 3.89 3.56 3.69 2.44 1.50 1.35
RH (%) -9.78 -14.55 -19.35 -9.48 -9.32 -11.16
Wind (m/s) -0.67 -1.00 -1.05 0.78 -0.16 -0.49
Rain (mm/day) -0.15 0.14 -0.03 -0.06 -0.03 -0.04
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Figure 1. Daily mean anthropogenic PM,; s emission rate (ug m2 hr!) at (a) 20km and (b) 4km
simulation. Domain-averaged emission rate is shown at right corner of each figure. Red dashed
lines in Figure la represent the region used for the domain averages in the discussions. Yellow
circle: IMPROVE site; yellow diamond: EPA CSN site. Three urban sites: Fresno, Bakersfield and

Modesto; two rural sites: Pinnacles and Kaiser.
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(m/s) from CIMIS, 20km and 4km. 4km D2 (not shown) is similar to 4km.
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Figure 3. Spatial distribution of seasonal mean 550 nm AOD from MISR and the WRF-Chem
(20km and 4km) simulations in WY2013. OND: October-November-December; JFM: January-
February-March; AMJ: April-May-June; JAS: July-August-September.
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864  Figure 4. (a) Monthly mean 550 nm AOD); (b) monthly mean 400-600 nm Angstrém exponent at
865  Fresno, CA from October 2012 to September 2013.
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867  Figure 5. Aerosol mass (ug m) for different species from OBS, the 20km and 4km simulations at
868  Fresno, CA. NH, observations are from EPA; other observations are from IMPROVE. PM; s NO;
869  represents NO; with diameter <2.5 pm. Similar definition for NH4, EC, OM and SO, in the figures.
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874  simulations at Fresno, CA.
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Figure 8. Mean dust emission rate (g m2 sT) from the 4km and 4km_D?2 runs.
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878  Figure 9. Fraction of erodible surface in the GOCART dataset used in this study.
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Figure 10. Relative contribution (%) of aerosol species from IMPROVE and the WRF-Chem (4km
and 4km_D2) simulations at Fresno, CA in WY2013. (Panel 1) Contribution to PM, s in the cold

season; (Panel 2) relative contribution of PM; 5 and coarse mass (CM) to PM; in the cold season;

(Panel 3) same as Panel 1 but in the warm season; (Panel4) same as Panel 2 but in the warm season.

“Other” refers to the difference of PM; s total mass and specified PM, 5 (NO3, NH4, OM, EC, SO4

and dust).
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Figure 11. Spatial distribution of seasonal mean 550 nm AOD from the 4km D2 run in WY2013.
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Figure 12. Vertical distribution of seasonal mean 532 nm aerosol extinction coefficient (km™)
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profiles without dust (dust and polluted dust).
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Figure 14. Aerosol mass (ug m?3) for different species from OBS, the 4km D2, 20km D2 and
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OM, SO4and dust in the figures.
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910  Figure 17. Aerosol mass (ug m3) for different species from IMPROVE (OBS), the 4km D2,
911 20km D2 and 20km_P7 simulations at Kaiser, CA.
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Supplementary Figure 1. Spatial distribution of seasonal mean 550 nm AOD from MISR and the
WREF-Chem (20km D2, 20km P7, 20km BC1 and 20km NEI11) simulations in WY2013. OND:
October-November-December; JFM: January-February-March; AMJ: April-May-June; JAS: July-
August-September. The 20km BCI1 run is the same as the 20km D2 run except that chemical
boundary conditions use MOZART-4 original data. The 20km NEII1 run is the same as the
20km D2 run except with NEI11 anthropogenic emissions.
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920  Supplementary Figure 2. Aerosol mass (pug m3) for different species from OBS, the 20km D2,
921  20km BCI1 and 20km NEI11 simulations at Fresno, CA. NH, observations are from EPA; other
922  observations are from IMPROVE. PM, s NOj;represents NO; with diameter < 2.5 pm. Similar
923  definition for NHy4, EC, OM, SO4 and dust in the figures.
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Supplementary Figure 3. Vertical distribution of seasonal mean 532 nm aerosol extinction
coefficient (km') from CALIOP, CALIOP_ nodust, and the WRF-Chem (20km D2, 20km BC1
and 20km_NEI11) simulations over the red box region in Fig. 1la n WY2013.
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929  Supplementary Figure 4. Aerosol mass (ug m?) for different species from EPA CSN (OBS), the
930 4km D2, 20km D2 and 20km P7 simulations at Bakersfield, CA. PM, s NOj represents NO3
931  with diameter <2.5 ym. Similar definition for SO4, EC, OM, NH4 and dust in the figures.
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933  Supplementary Figure 5. Aerosol mass (ug m?3) for different species from EPA CSN (OBS), the

934  4km D2, 20km D2 and 20km_P7 simulations at Modesto, CA.
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Supplementary Figure 6. Monthly mean of (a) 2-m temperature (°C); (b) 2-m relative humidity
(%); (c) 10-m wind speed (m/s); (d) precipitation (mm/day) at Fresno, CA. The 20km (not shown)
run is similar to the 20km D2 run while the 4km (not shown) run is similar to the 4km D2 run.
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Supplementary Figure 7. Vertical profile of seasonal mean temperature (K) bias in the WRF-Chem
simulations comparing to AIRS. The 20km run (not shown) is similar to the 20km D2 run while

the 4km run (not shown) is similar to the 4km D2 run.
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944  Supplementary Figure 8. Vertical profile of seasonal mean relative humidity (%) in the WRF-Chem
945  simulations comparing to AIRS. The 20km run (not shown) is similar to the 20km D2 run while
946  the 4km run (not shown) is similar to the 4km D2 run.



