

1 WRF-Chem simulation of aerosol seasonal 2 variability in the San Joaquin Valley

3

4 Longtao Wu¹, Hui Su¹, Olga V. Kalashnikova¹, Jonathan H. Jiang¹, Chun Zhao²,
5 Michael J. Garay¹, James R. Campbell³ and Nanpeng Yu⁴

6 *1. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA*

7 *2. School of Earth and Space Sciences, University of Science and Technology of China,
8 Hefei, Anhui, China*

9 *3. Naval Research Laboratory, Monterey, CA, USA*

10 *4. University of California, Riverside, Riverside, CA, USA*

11 Submitted to *Atmospheric Chemistry and Physics*

12 March, 2017

13 Copyright: © 2017 California Institute of Technology.

14 All rights reserved.

15 _____
16 *Corresponding author address:* Longtao Wu, 4800 Oak Grove Dr., Pasadena, CA 91109
17 E-mail: Longtao.Wu@jpl.nasa.gov

18 Highlights:

19 1. The WRF-Chem simulation successfully captures aerosol variations in the cold season in the
20 San Joaquin Valley (SJV), but has poor performance in the warm season.

21 2. High resolution model simulation can better resolve inhomogeneous distribution of
22 anthropogenic emissions in urban areas, resulting in better simulation of aerosols in the cold
23 season in the SJV.

24 3. Observations show that dust is a major component of aerosols in the SJV, especially in the
25 warm season. Poor performance of the WRF-Chem model in the warm season is mainly due
26 to misrepresentation of dust emission and vertical mixing.

27 **Abstract**

28 WRF-Chem simulations of aerosol seasonal variability in the San Joaquin Valley (SJV),
29 California are evaluated by satellite and in-situ observations. Results show that the WRF-Chem
30 model successfully captures the distribution, magnitude and variation of SJV aerosols during the
31 cold season. However, aerosols are not well represented in the warm season. Aerosol simulations
32 in urban areas during the cold season are sensitive to model horizontal resolution, with better
33 simulations at 4 km resolution than at 20 km resolution, mainly due to inhomogeneous distribution
34 of anthropogenic emissions and better represented precipitation in the 4 km simulation. In rural
35 areas, the model sensitivity to grid size is rather small. Our observational analysis reveals that dust
36 is a primary contributor to aerosols in the SJV, especially during the warm season. Aerosol
37 simulations in the warm season are sensitive to parameterization of dust emission in WRF-Chem.
38 The GOCART (Goddard Global Ozone Chemistry Aerosol Radiation and Transport) dust scheme
39 produces very little dust in the SJV while the DUSTTRAN (DUST TRANsport model) scheme
40 overestimates dust emission. Vertical mixing of aerosols is not adequately represented in the model
41 based on CALIPSO (Cloud-Aerosol Lidar and Infrared pathfinder Satellite Observation) aerosol
42 extinction profiles. Improved representation of dust emission and vertical mixing in the boundary
43 layer are needed for better simulations of aerosols during the warm season in the SJV.

44

45 **1. Introduction**

46 The San Joaquin Valley (SJV) in the southern portion of the California Central Valley is
47 surrounded by coastal mountain range to the west and the Sierra Nevada range to the east. With
48 cool wet winters and hot dry summers, the unique natural environment makes SJV one of the most
49 productive agricultural regions in the world (SJV APCD, 2012 and references therein). However,
50 SJV is also one of the most polluted regions in US due to its unique geographical location. Frequent
51 stagnant weather systems are conducive to air pollution formation, while the surrounding
52 mountains block air flow and trap pollutions. Large seasonal and spatial variation of aerosol
53 occurrence and distribution are observed in the SJV. Although significant progress made to
54 improving local air quality in past decades has been achieved through strong emission controls,
55 PM2.5 (particulate matter with diameter $\leq 2.5 \mu\text{m}$) concentrations in the SJV remain well above
56 the national ambient air quality standards (NAAQS) threshold of $12 \mu\text{g m}^{-3}$ on an annual basis and
57 $35 \mu\text{g m}^{-3}$ on daily basis, occurring mainly during the cold season. Improved understanding of the
58 aerosol variability and impacts is needed to provide further guidance for emission control strategies
59 in the SJV.

60 Air quality models are a useful tool to understanding the formation and evolution of
61 aerosols and their impacts on air quality, weather and climate. However, it is quite challenging to
62 accurately simulate aerosol properties (Fast et al., 2014). Fast et al. (2014) summarized the factors
63 contributing to the errors in regional-scale modeling of aerosol properties. They include 1)
64 emission sources; 2) meteorological parameterizations; 3) representation of aerosol chemistry; 4)
65 limited understanding of the formation processes of secondary organic aerosol (SOA); 5) spatial
66 resolution; and 6) boundary conditions.

67 As one of the advanced regional air quality models available presently to the community,
68 the Weather Research and Forecasting model with Chemistry (WRF-Chem) has been widely used
69 to study aerosols and their impacts on regional air quality, weather and climate (e.g., Misenis and
70 Zhang, 2010; Zhang et al., 2010; Zhao et al., 2010; 2013a, 2013b; 2014; Wu et al., 2011a, 2011b,
71 2013; Fast et al., 2012, 2014; Scarino et al., 2014; Tessum et al., 2015; Campbell et al., 2016; Hu
72 et al., 2016). For example, Fast et al. (2014) showed that WRF-Chem simulations at 4 km
73 horizontal resolution captured the observed meteorology and boundary layer structure over
74 California in May and June of 2010 and the spatial and temporal variations of aerosols were
75 reasonably simulated. Aerosol simulations by WRF-Chem are usually sensitive to both local
76 emission and long-range transport of aerosols from the boundary conditions provided by the global
77 Model for Ozone and Related chemical Tracers, version 4 (MOZART-4). With a similar model
78 set-up, Zhao et al. (2013b) conducted a one-year simulation at 12 km horizontal resolution and
79 found that the WRF-Chem model represented the observed seasonal and spatial variation of
80 surface particulate matter (PM) concentration over California. However, underestimation of
81 elemental carbon (EC) and organic matter (OM) were noticed in the model simulation, with weak
82 sensitivity to horizontal resolution.

83 In this study, we focus on simulating aerosol seasonal variability in the SJV, California
84 using similar model configurations as that used in Zhao et al. (2013b) and Fast et al. (2014). This
85 paper serves as the first step for future investigation of the aerosol impact on regional climate and
86 the water cycle in California. Previous studies have demonstrated that aerosols are better simulated
87 at higher model resolution (Misenis and Zhang et al., 2010; Qian et al., 2010; Stroud et al., 2011;
88 Fountoukis et al., 2013). However, most regional climate studies are still performed with coarse
89 model resolutions (on the order of 10 km) due to the availability of computational resources. This

90 study will investigate the sensitivity of aerosol simulations to horizontal resolution and identify
91 optimal model physical choices for reasonable representation of aerosol variabilities in the SJV.

92 Another application of air quality modeling is to provide initial *a priori* fields for remote
93 sensing retrievals. The WRF-Chem model has been proposed as an input for retrieval algorithms
94 to be developed for the recently-selected NASA (National Aeronautics and Space Administration)
95 MAIA (Multi-Angle Imager for Aerosols) mission, which aims to map PM component
96 concentrations in major urban areas (including the SJV, a testbed for the MAIA retrieval algorithm
97 development). A significant challenge for aerosol remote sensing in retrieving spatial information
98 on specific aerosol types, especially near the surface, is caused by the lack of information on the
99 vertical distribution of aerosols in the atmospheric column and limited instrument sensitivity to
100 aerosol types over land. The WRF-Chem model will be used to provide near-real-time estimation
101 of particle properties, aerosol layer heights, and aerosol optical depths (AOD) to constrain the
102 instrument-based PM retrievals. A reasonable estimate of aerosol properties from WRF-Chem is
103 critical to ensuring retrieval speed and quality. Considering the sensitivity of WRF-Chem
104 simulations to various factors such as initial and boundary conditions, model parameterizations
105 and emission sources (e.g., Wu and Petty, 2010; Zhao et al., 2010, 2013a, 2013b; Wu et al., 2011a,
106 2015; Fast et al., 2014; Campbell et al., 2016; Morabito et al., 2016), careful model evaluations
107 are needed before the simulations can be used operationally for remote sensing retrievals. Thus,
108 this study is important for the development of MAIA retrieval algorithms, critical to the success
109 of the MAIA mission.

110 This paper is organized as follows. Section 2 describes observational datasets used for
111 model evaluation. Section 3 provides the description of the WRF-Chem model and experiment

112 setup. Model simulations and their comparison with observations are discussed in section 4.
113 Section 5 presents the conclusions.

114 **2. Observations**

115 **2.1 Column-integrated Aerosol Optical Properties**

116 AOD is a measure of column-integrated light extinction by aerosols and a proxy for total
117 aerosol loading in the atmospheric column. The Aerosol Robotic Network (AERONET) provides
118 ground measurements of AOD every 15 minutes during daytime under clear skies (Holben et al.,
119 1998), with an accuracy approaching ± 0.01 (Eck et al., 1999; Holben et al., 2001; Chew et al.,
120 2011). The monthly level 2.0 AOD product with cloud screening and quality control is used in this
121 study. Ångström exponent (AE) is an indicator of aerosol particle size. Small (large) AE values
122 are generally associated with large (small) aerosol particles (Ångström, 1929; Schuster et al.,
123 2006). The AE between 0.4 μm and 0.6 μm is derived from AERONET observed AODs, and is
124 used to evaluate the model-simulated AE. For comparison with simulated AOD, AERONET AOD
125 is interpolated to 0.55 μm from 0.50 μm and 0.675 μm using the AE. In the SJV, only one
126 AERONET station at Fresno, CA (36.79°N, 119.77°W) has regular observations throughout the
127 California water year 2013 (WY2013) from October 2012 to September 2013.

128 The Multiangle Imaging Spectroradiometer (MISR) (Diner et al., 1998) instrument
129 onboard the Terra satellite has provided global coverage of AOD once a week since December
130 1999. The standard MISR retrieval algorithm provides AOD observations at 17.6 km resolution
131 using 16x16 pixels of 1.1 km x 1.1 km each. About 70% of MISR AOD retrievals are within 20%
132 of the paired AERONET AOD, and about 50% of MISR AOD falls within 10% of the AERONET
133 AOD, except in dusty and hybrid (smoke+dust) sites (Kahn et al., 2010). We use version 22 of
134 Level 3 monthly AOD product at 0.5° resolution in this study.

135 **2.2 Surface Mass Concentration**

136 Surface PM_{2.5} speciation and PM₁₀ (particulate matter with diameter $\leq 10 \mu\text{m}$) data are
137 routinely collected by two national chemical speciation monitoring networks: Interagency
138 Monitoring of Protected Visual Environments (IMPROVE) and the PM_{2.5} National Chemical
139 Speciation Network (CSN) operated by Environmental Protection Agency (EPA) (Hand et al.
140 2011; Solomon et al., 2014). IMPROVE collects 24-h aerosol speciation every third day at mostly
141 rural sites since 1988. The same frequency of aerosol speciation dataset was collected at EPA CSN
142 sites in urban and suburban areas since 2000. The observed organic carbon is converted to OM by
143 multiplying by 1.4 (Zhao et al., 2013b; Hu et al., 2016). Some precursors of aerosol pollutions
144 (such as NO₂ and SO₂) are observed hourly by EPA (data available at:
145 https://aqsdr1.epa.gov/aqsweb/aqstmp/airdata/download_files.html) and are used in this study.
146 Selected IMPROVE and EPA CSN sites used in this study are shown in Figure 1a.

147 **2.3 Aerosol Extinction Profile**

148 The aerosol extinction coefficient profile reflects the attenuation of the light passing
149 through the atmosphere due to the scattering and absorption by aerosol particles as a function of
150 range. Version 3 Level 2 532 nm aerosol extinction profiles derived from Cloud-Aerosol Lidar
151 with Orthogonal Polarization (CALIOP) backscatter profiles collected onboard the Cloud-Aerosol
152 Lidar and Infrared pathfinder Satellite Observation (CALIPSO) satellite are used (Omar et al.,
153 2009; Young and Vaughan, 2009). Seasonal mean profiles are derived for WY2013 based on the
154 methodology outlined in Campbell et al. (2012), whereby quality-assurance protocols are applied
155 to individual profiles before aggregating and averaging the data. We highlight that no individual
156 profiles are included in the averages if the CALIOP Level 2 retrieval failed to resolve any
157 extinction within the column, a potential issue to create bias that has recently been described by

158 Toth et al. (2017). Level 2 532 nm aerosol extinction data classify aerosols into 6 types: clean
159 marine, dust, polluted continental, clean continental, polluted dust and smoke. Dust and polluted
160 dust are distinguished in the averages in this study for their contribution to total extinction and the
161 vertical profile seasonally in the SJV.

162 **2.4 Meteorology**

163 AIRS (Atmospheric Infrared Sounder) onboard the Aqua satellite (Susskind et al., 2003;
164 Divakarla et al., 2006) has provided global coverage of the tropospheric temperature and moisture
165 at approximately 01:30 and 13:30 local time since 2002. AIRS retrievals have root-mean-squared
166 (RMS) error of ~1 K for temperature and ~15% for water vapor (Divakarla et al., 2006). Level 3
167 monthly temperature and moisture retrievals (version 6) at $1^{\circ} \times 1^{\circ}$ grid are used in this study.
168 Vertical gradient of equivalent potential temperature (θ_e) marks atmospheric stability and is
169 computed from temperature and moisture profiles observed by AIRS. Surface observations,
170 including air temperature, relative humidity (RH) and wind speed, are routinely collected at the
171 California Irrigation Management Information System (CIMIS; <http://www.cimis.water.ca.gov/>).
172 Precipitation used in this study is the Climate Prediction Center (CPC) Unified Gauge-Based
173 Analysis of Daily Precipitation product at $0.25^{\circ} \times 0.25^{\circ}$ resolution.

174 **3. Model Description and Experiment Setup**

175 The WRF-Chem model Version 3.5.1 (Grell et al., 2005) updated by Pacific Northwest
176 National Laboratory (PNNL) is used in this study (Zhao et al., 2014). This study uses the CBM-Z
177 (carbon bond mechanism) photochemical mechanism (Zaveri and Peters, 1999) coupled with the
178 sectional-bin MOSAIC (Model for Simulating Aerosol Interactions and Chemistry) aerosol
179 scheme (Zaveri et al., 2008) as the chemical driver. The major components of aerosols (nitrate,
180 ammonium, EC, primary OM, sulfate, sea salt, dust, water and other inorganic matter) as well as

181 their physical and chemical processes are simulated in the model. For computational efficiency,
182 aerosol particles in this study are partitioned into four-sectional bins with dry diameter within
183 0.039-0.156 μm , 0.156-0.625 μm , 0.625-2.5 μm , and 2.5-10.0 μm . Zhao et al. (2013a) compared
184 the impact of aerosol size partition on dust simulations. It showed that the 4-bin approach
185 reasonably produces dust mass loading and AOD compared with the 8-bin approach. The size
186 distribution of the 4-bin approach follows that of the 8-bin approach with coarser resolution,
187 resulting in $\pm 5\%$ difference on the ratio of $\text{PM}_{2.5}\text{-dust}/\text{PM}_{10}\text{-dust}$ in dusty regions (more large
188 particles and less small particles). Dust number loading and absorptivity are biased high in the 4-
189 bin approach compared with the 8-bin approach.

190 Aerosols are considered to be spherical and internally mixed in each bin (Barnard et al.,
191 2006; Zhao et al., 2013b). The bulk refractive index for each particle is calculated by volume
192 averaging in each bin. Mie calculations as described by Ghan et al. (2001) are used to derive
193 aerosol optical properties (such as extinction, single-scattering albedo, and the asymmetry
194 parameter for scattering) as a function of wavelength. Aerosol radiation interaction is included in
195 the shortwave and longwave radiation schemes (Fast et al., 2006; Zhao et al., 2011). By linking
196 simulated cloud droplet number with shortwave radiation and microphysics schemes, aerosol
197 cloud interaction is effectively simulated in WRF-Chem (Chapman et al., 2009). Aerosol snow
198 interaction is implemented in this version of WRF-Chem (Zhao et al., 2014) by considering aerosol
199 deposition on snow and the subsequent radiative impacts through the SNICAR (SNow, ICe, and
200 Aerosol Radiative) model (Flanner and Zender, 2005, 2006).

201 The model simulations start on 1 September 2012 and run continuously for 13 months.
202 With the first month used for the model spin-up, our analysis focuses on WY2013 from October
203 2012 to September 2013. The model is configured with 40 vertical levels and a model top at 50

204 hPa. The vertical resolution from the surface to 1 km gradually increases from 28 m to 250 m. The
205 model center is placed at 38°N, 121°W, with 250 x 350 grid points at 4 km horizontal resolution
206 (referred to as “4km” hereafter; Table 1), covering California and the surrounding area. To test the
207 sensitivity of the aerosol simulations to horizontal resolution, one simulation with the same model
208 settings and domain coverage is conducted at 20 km horizontal resolution (referred to as “20km”
209 hereafter).

210 The physics parameterizations used in the simulations include the Morrison double-
211 moment microphysics scheme (Morrison et al., 2009), Rapid Radiative Transfer Model for General
212 circulation model (RRTMG) shortwave and longwave radiation schemes (Iacono et al., 2008),
213 Community Land Model (CLM) Version 4 land surface scheme (Lawrence et al., 2011). The
214 Yonsei University (YSU) planetary boundary layer (PBL) scheme (Hong et al., 2006) is used in
215 all of the simulations, except one sensitivity experiment that uses the ACM2 (Asymmetric
216 Convective Model with non-local upward mixing and local downward mixing; Pleim, 2007) PBL
217 scheme (referred to as “20km_P7” hereafter, Table 1). Subgrid convection, convective transport
218 of chemical constituents and aerosols, and wet deposition from subgrid convection are
219 parameterized using the Grell 3D ensemble cumulus scheme (Grell and Devenyi, 2002) in the 20
220 km simulations while convective processes are resolved in the 4 km simulations. The Interim
221 European Center for Medium-Range Weather Forecasts Re-Analysis (ERA-Interim; Dee et al.,
222 2011) serves as initial and boundary meteorological conditions for WRF-Chem. The MOZART-4
223 global chemical transport model (Emmons et al., 2010) is used for initial and boundary chemical
224 conditions. Fast et al. (2014) found that the MOZART-4 model overestimates aerosols in the free
225 troposphere over California, which is also found in one of our sensitivity experiments

226 (“20km_BC1” in the supplementary). Following Fast et al. (2014), the chemical initial and
 227 boundary conditions from MOZART-4 are divided by two in all simulations except 20km_BC1.

228 Anthropogenic emissions are provided by US EPA 2005 National Emissions Inventory
 229 (NEI05), with area-type emissions on a structured 4-km grid and point-type emissions at specific
 230 latitude and longitude locations (US EPA, 2010). Nineteen gases (including SO₂, NO, NH₃ etc.)
 231 are emitted, and aerosol emissions include SO₄, NO₃, EC, organic aerosols, and total PM_{2.5} and
 232 PM₁₀ masses. Anthropogenic emissions are updated every hour to account for diurnal variability,
 233 while its seasonal variation is not considered in the simulations. A sensitivity experiment with
 234 2011 NEI emissions (“20km_NEI11” in the supplementary) does not produce significantly
 235 different results from the 2005 NEI emissions. Biogenic emissions are calculated online using the
 236 Model of Emissions of Gases and Aerosols from Nature (MEGAN) model (Guenther et al., 2006).
 237 Biomass burning emissions are obtained from the Global Fire Emissions Database version 2.1,
 238 with eight-day temporal resolution (Randerson et al., 2007) and updated monthly. Sea salt
 239 emissions are derived from the PNNL-updated sea salt emission scheme that includes the
 240 correction of particles with radius less than 0.2 μm (Gong et al., 2003) and dependence on sea
 241 surface temperature (Jaeglé et al., 2011).

242 Following Zhao et al. (2013b), dust emission is computed from the GOCART (Goddard
 243 Global Ozone Chemistry Aerosol Radiation and Transport) dust scheme (Ginoux et al., 2001) in
 244 the 20km and 4km simulations. The GOCART dust scheme estimates the dust emission flux F as

$$245 \quad F = CSs_p u_{10m}^2 (u_{10m} - u_t) \quad ,$$

246 where C is an empirical proportionality constant, S is a source function for potential wind erosion
 247 that is derived from 1° x 1° GOCART database (Freitas et al., 2011), s_p is a fraction of each size
 248 class dust in emission, u_{10m} is 10-m wind speed and u_t is a threshold speed for dust emission.

249 As shown later, a significant amount of dust is observed in the SJV, whereas the GOCART
 250 dust scheme produces little dust. Two sensitivity experiments at 20 km and 4 km horizontal
 251 resolution (hereafter referred to as “20km_D2” and “4km_D2”, respectively) are conducted by
 252 switching the dust emission scheme to the DUST TRANsport model (DUSTTRAN) scheme (Shaw
 253 et al., 2008). The DUSTTRAN scheme estimates F as

$$254 \quad F = \alpha C u_*^4 \left(1 - \frac{f_w u_{*t}}{u_*}\right) \quad ,$$

255 where C is an empirical proportionality constant, α is the vegetation mask, u_* is the friction
 256 velocity, u_{*t} is a threshold friction velocity and f_w is the soil wetness factor. The C value in both
 257 GOCART and DUSTTRAN is highly tunable for different regions. The original C values, $1.0 \mu\text{g s}^2$
 258 m^5 in GOCART (Ginoux et al., 2001) and $1.0 \times 10^{-14} \text{ g cm}^{-6} \text{s}^{-3}$ in DUSTTRAN (Shaw et al., 2008),
 259 are used in this study.

260 4. Model Simulation Results

261 Shown in Fig. 1a, our model domain includes three urban sites (Fresno, Bakersfield and
 262 Modesto) and two rural sites (Pinnacles and Kaiser) where surface measurements of aerosols are
 263 available. Because aerosols properties and model performance are similar at all urban sites, our
 264 discussion is focused on the results at Fresno and the simulations for other urban sites are provided
 265 in the supplementary materials. Model simulations in the rural areas are presented in the last
 266 subsection.

267 4.1 Sensitivity to Horizontal Resolution

268 Figure 1 features daily mean anthropogenic $\text{PM}_{2.5}$ emission rates used in the 20km and
 269 4km simulations, respectively. Although both emission rates are derived from the 4 km NEI05
 270 dataset, localized high emission rates with sharp gradients are evident in urban areas from the 4km
 271 simulation (Fig. 1b). The 20km simulation exhibits lower emission rates at the urban areas with

272 weaker gradients due to the reapportionment process (Fig. 1a). As precipitation is an important
273 process that removes aerosols, we examine the simulated precipitation for the 20km and 4km runs
274 and find that the 20km simulation produces 51% more precipitation, although the domain averaged
275 precipitation is lower in the 20km run than the 4km run (Fig. 2a).

276 Consistent with higher emission rates and lower precipitation at Fresno, the 4km run
277 simulates higher AOD than the 20km run in the cold season (October-November-December and
278 January-February-March; OND and JFM in Fig. 3). Averaged over a broad area encompassing
279 Fresno and Bakersfield, the most polluted region in the SJV (red box in Fig. 1a), the AOD is 0.090
280 in the 4km and 0.073 in the 20km, a 23% difference. Compared to the MISR observations, the
281 4km simulation reproduces the spatial distribution and magnitude of AOD in the cold season.
282 However, the AOD difference between the 20km and 4km runs is small in the warm season (April-
283 May-June and July-August-September; AMJ and JAS in Fig. 3), and both runs underestimate AOD
284 by ~50% with respect to the MISR observations.

285 Comparing the point values at Fresno in the 4km and 20km simulations (Fig. 4a), we find
286 similar results: the 4km AOD is closer to the AERONET measurements and is about 23% higher
287 than that in the 20km run during the cold season, while both runs are biased low in AOD during
288 the warm season. The different model sensitivities to horizontal resolution between the cold and
289 warm seasons suggest that the dominant aerosol sources may be different for the two seasons. We
290 will elaborate upon the aerosol composition in the following section. MISR and AERONET
291 observations display weak seasonal AOD variation in the SJV and at Fresno, respectively, which
292 is not well represented in the 20km and 4km simulations (Fig. 3 and 4a).

293 Aside from AOD, significant seasonal variability of AE (Fig. 4b) is shown at Fresno. AE
294 exhibits a maximum about 1.50 in January and a minimum of 0.98 in April, suggesting relatively

295 small particles in the winter and large particles in the spring. A relatively large AE value of 1.40
296 (corresponding to small particles) is observed in July, possibly related to the wild fires in late July
297 in the SJV. WRF-Chem captures the seasonal variability of the AE well, with a correlation of 0.90
298 in both the 20km and 4km simulations. The magnitude of AE is also approximately simulated in
299 the cold season, with a mean of 1.15 (1.20) in the 20km (4km) runs compared to 1.33 in the
300 observation. However, the simulated AE is underestimated by ~30% in the warm season,
301 indicating that the simulated particle size is biased high during this period.

302 Significant seasonal variability of $PM_{2.5}$ is observed in the SJV urban areas (Fig. 5a and
303 Supplementary Fig. 4a and 5a). $PM_{2.5}$ at Fresno peaks in January ($26.18 \mu g m^{-3}$) and reaches a
304 minimum of $7.03 \mu g m^{-3}$ in June, with an annual nonattainment value of $12.64 \mu g m^{-3}$ (Fig. 5a).
305 Both the 20km and 4km runs approximately capture the observed seasonal variability of $PM_{2.5}$,
306 with a correlation around 0.90 (Table 2). In the cold season, the 4km simulation overestimates
307 $PM_{2.5}$ by 27% while the 20km simulation exhibits a low bias of 19% compared with IMPROVE
308 observations at Fresno (Table 3). The 4km simulation of PM_{10} is in good agreement with
309 IMPROVE in the winter (December, January and February), but has significant low biases of
310 between 30% and 85% in other months (Fig. 5b). The 20km simulation underestimates PM_{10}
311 throughout WY2013.

312 $PM_{2.5}$ is a mixture of nitrate (NO_3), ammonia (NH_4), OM, EC, sulfate (SO_4), dust and other
313 aerosols. High concentrations of $PM_{2.5}$ are primarily the result of NO_3 at Fresno (Fig. 5c). Both
314 simulations produce the seasonal variability of NO_3 with a correlation of 0.94, but high bias of
315 17% (75%) is found in the 20km (4km) simulations during the cold season. As one precursor of
316 NO_3 , NO_2 is underestimated by 43% in the 20km run (Fig. 6a). The overestimation in NO_3 and
317 underestimation in NO_2 suggest that the precursor emissions may not be the reason for the high biases

318 in NO_3 . NH_4 shows a similar performance to NO_3 , with an overestimation by 38% (111%) in the
319 20km (4km) runs during the cold seasons (Fig. 5d). As shown later in section 4.3, both NO_3 and
320 NH_4 simulations are quite sensitive to the PBL scheme applied.

321 OM, the second largest contributing species to cold season $\text{PM}_{2.5}$ in the SJV (Table 3), is
322 significantly underestimated by 82% in the 20km simulation (Fig. 5f). The 4km simulation
323 produces higher OM, but it is still lower than the IMPROVE observations by 63%. The
324 underestimation of OM is expected, because SOA processes are not included in our model
325 infrastructure. Fast et al. (2014) used the simplified two-product volatility basis set
326 parameterization to simulate equilibrium SOA partitioning in WRF-Chem although SOA was still
327 underestimated in their simulation. It remains ongoing research how to correctly represent SOA
328 processes in regional climate models.

329 Both the 20km and 4km simulations reproduce the seasonal variability of EC, with a
330 correlation of 0.98 between the modeled and observed time series (Table 2). The 20km simulation
331 underestimates EC by 52% (16%) in the cold (warm) season (Fig. 5e and Table 3). The 4km
332 simulated EC ($1.12 \mu\text{g m}^{-3}$) exhibits good agreement with IMPROVE ($1.08 \mu\text{g m}^{-3}$) in the cold
333 season, but overestimates EC by 53% in the warm season.

334 The seasonal variability of SO_4 at Fresno is very different from other $\text{PM}_{2.5}$ species. It peaks
335 in May at $1.35 \mu\text{g m}^{-3}$ and reaches the minimum of $0.67 \mu\text{g m}^{-3}$ in August (Fig. 5g). The 20km
336 simulated SO_4 exhibits good correlation of 0.63 with the observation (Table 2), but is biased low
337 by 28% to 63% throughout WY2013 (Fig. 5g). Although the observed SO_2 , the precursor of SO_4 ,
338 has approximately similar seasonal variation to the observed SO_4 (Fig. 6b), the 20km simulated
339 seasonal variability of SO_2 resembles other anthropogenic emissions, with high values in the cold
340 season and low values in the warm season, out of phase with the simulated SO_4 and the observed

341 SO₂. The 4km simulation produces higher SO₄ than the 20km run, resulting in better agreement
342 with the observation (0.82 $\mu\text{g m}^{-3}$ vs. 0.87 $\mu\text{g m}^{-3}$) during the cold season (Fig. 5g and Table 3).
343 However, the 4km run produces an increase of SO₄ by only 13% comparing to the 20km run in
344 the warm season, resulting in a correlation of -0.16 between the 4km simulation and the
345 observation.

346 To explore the possible cause for the underestimation of SO₄ and SO₂ in the warm season
347 in both the 20km and 4km simulations, we conduct a sensitivity experiment with different chemical
348 boundary conditions from the baseline runs (20km_BC1 in the supplementary). We find that SO₄
349 in the SJV is partly contributed to by marine intrusions (the different chemical boundary conditions
350 between 20km_BC1 and 20km_D2) throughout the year (supplementary Fig. 2g), as pointed out
351 by Fast et al. (2014). Including the marine intrusions, the 20km_BC1 simulated SO₄ tracks the
352 observation at a correlation of 0.78. Doubled chemical boundary conditions in the 20km simulation
353 results in 41% increase in SO₄ at Fresno, with a stronger increase in the warm season. Compared
354 to the observed SO₄ of 1.04 $\mu\text{g m}^{-3}$ in the warm season, the simulated SO₄ of 0.79 $\mu\text{g m}^{-3}$ in the
355 20km_BC1 run is closer to the observation than that simulated in the 20km_D2 run (0.53 $\mu\text{g m}^{-3}$).
356 The relative contributions of local emissions and remote transports (as well as other emission
357 sources, such as wild fires) to SO₄ concentrations in different seasons of the SJV require further
358 investigation.

359 Overall, the 4km simulation produces higher AOD and surface PM than the 20km
360 simulation in urban areas of the SJV, especially during the cold season, resulting in better
361 agreement with satellite and surface observations than the 20km simulation. Both the 20km and
362 4km simulations approximately capture the seasonal variability of PM_{2.5} and most of its speciation.
363 However, significant low biases of AOD and PM₁₀ are found during the warm season in both

364 simulations. The underestimation also exists in a sensitivity experiment (not shown) with the same
365 model setups except initialized in April, indicating that the identified model biases during the warm
366 season are not caused by potential model drift after a relatively long simulation period. The
367 relatively good performance in simulating $PM_{2.5}$ but not PM_{10} during the warm season suggests
368 that coarse aerosol particle mass (CM; $10 \mu\text{m} \geq$ particulate matter with diameter $> 2.5 \mu\text{m}$), mainly
369 dust in the SJV, is not properly represented in the model. The impact of dust parameterizations is
370 investigated in the 4km_D2 experiment.

371 **4.2 Sensitivity to Dust Scheme**

372 Limited amounts of $PM_{2.5}$ _dust (dust with diameter $\leq 2.5 \mu\text{m}$) are observed in the SJV cold
373 season, with a minimum of $0.37 \mu\text{g m}^{-3}$ in December (Fig. 7a). The amount of $PM_{2.5}$ _dust increases
374 in the warm season, with a peak of $3.86 \mu\text{g m}^{-3}$ in September. The 4km simulation produces
375 comparable $PM_{2.5}$ _dust relative to IMPROVE in the winter, but almost no dust in other months
376 (Fig. 7 and upper panel in Fig. 8). On the other hand, the dust emission rate in the 4km_D2 run is
377 significantly higher than the 4km run. We have found that the source function, S , for potential
378 wind erosion in the SJV is set to zero in the $1^\circ \times 1^\circ$ GOCART dataset used for the 4km simulation
379 (Fig. 9). An updated source function, S , at higher resolution is needed for the GOCART dust
380 scheme to correctly represent dust emissions in the SJV.

381 The 4km_D2 simulation reproduces the amount of $PM_{2.5}$ _dust in OND (Fig. 7a). However,
382 it overestimates $PM_{2.5}$ _dust by up to a factor of 3 in the warm season, resulting in an overestimation
383 of $PM_{2.5}$ by 52% (Fig. 7b and Table 3). $PM_{2.5}$ _dust is not sensitive to long-range transport (from
384 chemical boundary conditions in the model simulation; Supplementary Fig. 2h). Both the 4km and
385 4km_D2 simulations capture the seasonal variability of $PM_{2.5}$, but not that of PM_{10} (Fig. 7c). The
386 magnitude of PM_{10} in the 4km_D2 run is larger than the 4km simulation. PM_{10} in the 4km_D2 run

387 is overestimated in April-May-June (AMJ) but underestimated in July-August-September (JAS),
388 leading to a comparable season mean of $38.12 \mu\text{g m}^{-3}$ with IMPROVE observed $34.82 \mu\text{g m}^{-3}$. The
389 overestimation of AMJ PM_{10} and $\text{PM}_{2.5\text{-dust}}$ in the 4km_D2 run is likely associated with the high
390 bias in the simulated wind speed (Fig. 2b).

391 On the relative contribution of different aerosol species, IMPROVE observations at Fresno
392 show that NO_3 is the primary contributor (32.3%) to $\text{PM}_{2.5}$ while only 5.3% of $\text{PM}_{2.5}$ is dust in the
393 cold season (panel 1 of Fig. 10). Both the 4km and 4km_D2 runs roughly reproduce the relative
394 contributions to $\text{PM}_{2.5}$ in the cold season, with an overestimation of NO_3 and NH_4 and an
395 underestimation of OM, consistent with the time series in Fig. 5. Relative contributions of dust to
396 $\text{PM}_{2.5}$ are better simulated in the 4km_D2 run (7.3%) than the 4km one (<1.0%). IMPROVE shows
397 that 46.6% of PM_{10} is CM in the cold season (panel 2 of Fig. 10). Both the 4km (6.3%) and
398 4km_D2 (20.6%) runs underestimate the contribution of CM to PM_{10} , mainly in October and
399 November. In the warm season, dust (24.6%) becomes the primary contributor to $\text{PM}_{2.5}$ while the
400 contribution from NO_3 decreases to 9.9% in IMPROVE observations (panel 3 of Fig. 10). Almost
401 no $\text{PM}_{2.5\text{-dust}}$ is simulated in the 4km run while too much $\text{PM}_{2.5\text{-dust}}$ is produced in the 4km_D2
402 (50.5%) run during the warm season. The relative contribution of CM to PM_{10} is too small (27.6%)
403 in the 4km run, while the 4km_D2 run reflects a better relative contribution of 66.3% as compared
404 to an IMPROVE observed 75.8% (panel 4 of Fig. 10).

405 AOD simulations are improved in the 4km_D2 experiment (Fig. 11), with better agreement
406 found from MISR (Fig. 3) in AMJ. AOD (0.114) in the 4km_D2 run is comparable to observations
407 (0.131) in AMJ, but still underestimated by 53% in JAS. Consistent with AOD, the vertical
408 distribution of aerosol extinction is reasonably simulated during the cold season in the WRF-Chem
409 simulations, while large discrepancies are found in the warm season (Fig. 12). As observed by

410 CALIOP at 532 nm, aerosols are mainly confined below 1 km above the surface in the cold season.
411 Model simulations roughly capture the vertical distribution of aerosol extinction observed by
412 CALIOP, with low biases in the boundary layer and high biases in the free atmosphere. Similar
413 discrepancy between the model simulations and CALIOP is shown in other studies (Wu et al.,
414 2011a; Hu et al., 2016). The difference between the 4km and 4km_D2 runs is small during the
415 cold season.

416 Dust in the boundary layer is a primary factor contributing to aerosol extinction in the SJV,
417 as illustrated by the differences between the bulk seasonal CALIOP mean profile and those
418 excluding the contributions of the dust and polluted dust (CALIOP_nodust) profiles (Fig. 12).
419 Simulated aerosol extinction falls between the two in all seasons, suggesting that dust is the
420 primary factor contributing to the model biases in aerosol extinction. Although a small portion of
421 PM_{2.5} is dust in the cold season, it contributes to about 50% of total aerosol extinction (Fig. 12a
422 and 12b). A predominant portion of aerosol extinction in the boundary layer is contributed by dust
423 in the warm season (Fig. 12c and 12d). There, the 4km_D2 simulation produces higher aerosol
424 extinction in the boundary layer than the 4km simulation, although it is still lower than CALIOP.
425 The simulated aerosol extinction in the free troposphere above the boundary layer is close to or
426 larger than CALIOP, suggesting that aerosols transported from remote areas through chemical
427 boundary conditions (e.g., the differences between the 20km_BC1 and 20km_D2 runs in
428 Supplementary Fig. 3) may not be the major factor contributing to the underestimation of dust in
429 the boundary layer in the SJV.

430 Overall, the poor simulations of dust in the boundary layer play a dominant role in the low
431 bias of aerosols during the warm season. Both the GOCART and DUSTTRAN dust emission
432 schemes used in this study have difficulties in reproducing dust emissions in the SJV, with an

433 underestimation in GOCART and an overestimation in DUSTTRAN (Fig. 7). Improvement on the
434 dust emission schemes is needed for capturing the seasonal variability of aerosols in the SJV.

435 **4.3 The Role of Meteorology**

436 The WRF-Chem simulations approximately reproduce the seasonal variations of
437 meteorological variables near the surface (correlations > 0.80), including temperature, RH, wind
438 speed and precipitation (Supplementary Fig. 6 and Supplementary Table 1). All of the model
439 simulations exhibit warm and dry biases near surface and in the boundary layer, with cold and wet
440 biases in the free atmosphere (Supplementary Fig. 6-8 and Supplementary Table 2). The dry bias
441 in the 4km_D2 run is about 10% near the surface throughout WY2013. Due to the relative dry
442 environment (RH<50%) in the warm season, the dry bias is likely not responsible for the
443 underestimation of boundary layer aerosol extinctions and column-integrated AOD through
444 hygroscopic effects (Feingold and Morley, 2003). In the cold season, the surface wind speed is
445 underestimated by 0.67 m/s (1.00 m/s) in the 4km_D2 (20km_D2) runs. In the warm season, the
446 4km_D2 run overestimates wind speed by 0.78 m/s, while the 20km_D2 run has an
447 underestimation of 0.16 m/s. These results suggest that wind speed is also not the primary factor
448 contributing to low biases in the boundary layer aerosols. The seasonal variability of precipitation
449 is well captured in the simulations, while the magnitude of precipitation is smaller than the
450 observations during the warm season (Supplementary Table 2). Wet removal processes are thus
451 not likely the primary reason for the aerosol biases in the warm season.

452 In the warm season, more aerosols are observed at higher altitude than during the cold
453 season (Fig. 12). A well-mixed layer of aerosols is observed below 1.5 km in AMJ (Fig. 12c),
454 consistent with the unstable layers below 1.5 km observed by AIRS (Fig. 13c). However, the WRF-
455 Chem model simulates neutral (or weakly stable) layers below 1.5 km (Fig. 13c), which may lead

456 to a failure in capturing the well-mixed layer of aerosols (Fig. 12c). Although the dust emission at
457 the surface is large in the 4km_D2 run, not enough convective vertical mixing is produced in the
458 simulations, plausibly resulting in the low biases found in the boundary layer. Aerosol extinction
459 gradually decreases with height in the simulations. Similar biases of aerosol and instability in the
460 boundary layer are also shown in JAS (Fig. 12d and 13d). Relative static stability in the simulations,
461 which limits convective vertical mixing of aerosols, likely enhances the low bias of column-
462 integrated AOD in JAS (Fig. 11). Although the 4km_D2 experiment produces comparable AOD
463 and surface PM mass in AMJ (Fig. 6 and Fig. 11), the vertical distribution of aerosols is not well
464 represented (Fig. 12). The comparable AOD in the 4km_D2 run results from the low bias in the
465 boundary layer and the high bias in the free atmosphere. In JAS (Fig. 12d), comparable aerosol
466 extinction to CALIOP is simulated in the free atmosphere, suggesting that the low bias in AOD is
467 not due to the halved chemical boundary conditions from MOZART-4. Albeit some discrepancies
468 in the magnitude of atmospheric stability, all of the simulations capture the stable environment in
469 the cold season (Fig. 13a and 13b), consistent with relatively good performance of aerosol
470 simulations in the cold season.

471 As biases in the model simulations are found mainly within the boundary layer, a sensitivity
472 experiment is conducted at 20 km resolution using the ACM2 PBL scheme (20km_P7). Although
473 the changes in the meteorological variables (Supplementary Fig. 6-8) and atmospheric static
474 stability (Fig. 13) are rather small, the simulated surface NO_3 and NH_4 in the 20km_P7 run
475 decrease by 50% compared to the 20km_D2 run (Fig. 14c, 14d and Table 3). Considering that
476 more NO_3 and NH_4 are simulated at 4 km resolution than at 20 km resolution as shown in section
477 4.1, the use of the ACM2 PBL scheme at 4 km simulation would largely resolve the high biases
478 of NO_3 and NH_4 in the 4km_D2 simulation. The decrease of NO_3 and NH_4 at the surface is because

479 more aerosols are transported to the layers above 0.5 km (Fig. 15a and 15b), resulting from
480 different convective vertical mixing in the PBL schemes. However, PM_{2.5}_dust is significantly
481 overestimated by a factor of 4 in the 20km_P7 simulation (Fig. 14h), leading to a small decrease
482 of PM_{2.5} by only 8% compared with the 20km_D2 run in the cold season. In the warm season,
483 PM_{2.5}_dust in the 20km_P7 run is overestimated by a factor of 5, causing an overestimation of
484 PM_{2.5} and PM₁₀ (Fig. 14a and 14b). Aerosol extinctions in the boundary layer increase in the warm
485 season (Fig. 15c and 15d), possibly related to overestimation of dust emissions and more
486 conducive convective vertical transport in the PBL scheme.

487 In summary, the WRF-Chem model captures the seasonal variations of meteorological
488 variables (temperature, RH, wind speed and precipitation), despite some deviations in magnitude.
489 The low biases in aerosol optical properties of the warm season likely do not originate from
490 hygroscopic effects, wet removal processes or dust emissions associated with the wind speed bias.
491 The model simulates a stable environment in the warm season, which is opposite to the observed
492 unstable environment. The simulated stable environment may be most likely responsible for low
493 biases in the aerosol extinction in the boundary layer and the column-integrated AOD in the warm
494 season. Switching to the ACM2 PBL scheme leads to improved vertical mixing in the boundary
495 layer, thus an improvement in the simulations of NO₃ and NH₄ in the cold season. However, dust
496 emissions are significantly overestimated with the ACM2 PBL scheme, which contributes partly
497 to the better simulation of aerosol extinction in the boundary layer and AOD in the column. These
498 results highlight that improving the simulation of boundary layer structure and processes are
499 critical for capturing the vertical profiles of aerosol extinction.

500 **4.4 Results in Rural Areas**

501 In general, low values of PM concentration are observed in the rural areas, Pinnacles and
502 Kaiser (Fig. 16 and 17). The rural areas share some similar model performance to the urban areas,
503 such as the overestimation of NO_3 , reasonable simulation of EC, good representation of SO_4 in the
504 cold season and underestimation of SO_4 in the warm season. However, the results are not sensitive
505 to model resolution. It suggests that high resolution is particularly important for heavily polluted
506 areas due to the inhomogeneity of emission sources, but less important for relatively lightly
507 polluted areas.

508 In late July/early August, MODIS (Moderate Resolution Imaging Spectroradiometer) fire
509 data (not shown) showed active wild fires close to Kaiser, which resulted in high concentration of
510 aerosols locally (Fig. 17). Our model simulations with monthly-varying fire emissions fail to
511 reproduce these fire events. Previous studies (e.g., Grell et al., 2011; Wu et al. 2011a; Archer-
512 Nicholls et al., 2015) demonstrated that the WRF-Chem model can capture aerosols distributions
513 from wild fires based on fire locations from satellite observations. Campbell et al. (2016) further
514 described the difficulties in constraining total aerosol mass from operational satellite fire
515 observations and the time needed by the model for diffusion within the near-surface layers to
516 render both reasonable AOD and vertical profiles of aerosol extinction. For operational application
517 of the WRF-Chem model in MAIA retrievals, the observations of daily fire events need to be more
518 appropriately considered.

519 **5. Summary**

520 The WRF-Chem (Weather Research and Forecasting model with Chemistry) model is
521 employed to simulate the seasonal variability of aerosols in WY2013 (water year 2013) in the SJV
522 (San Joaquin Valley). Model simulations are evaluated using satellite and in-situ observations. In
523 general, the model simulations conducted at 4 km resolution reproduce the spatial and temporal

524 variations of regional aerosols in the cold season, when aerosols are mainly contributed to by
525 anthropogenic emissions in the SJV. The magnitude of simulated aerosols in the cold season
526 however, especially in relatively dense urban areas, is sensitive to model horizontal resolution.
527 The 4km simulation has comparable magnitude to available observations, while the 20km
528 simulation underestimates aerosols. Differences in aerosol simulation fidelity as a function of
529 variable resolutions are mainly due to the difference in aerosol emissions and simulated
530 precipitation. Emissions at higher resolution can better resolve the inhomogeneity of
531 anthropogenic emissions in the SJV than at lower resolution. The sensitivity to horizontal
532 resolution is small in rural areas and during warm season, where/when the relative contribution of
533 anthropogenic emissions is small.

534 Previous studies in the SJV are mainly focused on $PM_{2.5}$ (particulate matter with diameter
535 $\leq 2.5 \mu m$) and during cold season (e.g. Chow et al., 2006; Herner et al., 2006; Pun et al., 2009;
536 Ying and Kleeman, 2009; Zhang et al., 2010; Chen et al., 2014; Hasheminassab et al., 2014; Kelly
537 et al., 2014; Baker et al., 2015; Brown et al., 2016). CALIOP (Cloud-Aerosol Lidar with
538 Orthogonal Polarization) and IMPROVE (Interagency Monitoring of Protected Visual
539 Environments) observations show that dust is a primary contributor to the aerosols in the SJV,
540 especially in the warm season. Dust contributes 24.6% to $PM_{2.5}$ while more than 75.8% to PM_{10} in
541 the warm season. For all seasons, the major component of aerosol extinction in the boundary layer
542 is dust as observed by CALIOP, consistent with Kassianov et al. (2012). For a complete
543 understanding of aerosol impacts on air quality, weather and climate, the full spectrum of aerosols
544 should be considered during all seasons.

545 All the model simulations conducted fail to capture aerosol vertical distribution and
546 variability in the SJV warm season, largely due to the misrepresentation of dust emissions, static

547 stability and vertical mixing in the boundary layer. The GOCART (Goddard Global Ozone
548 Chemistry Aerosol Radiation and Transport) dust emission scheme significantly underestimates
549 dust due to the non-active source function, S , for potential wind erosion used in this study while
550 the DUSTTRAN (DUST TRANsport model) scheme may overestimate dust emission in the SJV.
551 Along with the bias in dust emissions, our simulations produce a relatively stable boundary layer
552 in the warm season, in contrast with observations suggesting a more unstable environment, leading
553 to a weak vertical mixing of aerosols in the boundary layer. Improved dust emission and better
554 simulations of the boundary layer properties are needed for accurate simulation of aerosols in the
555 SJV warm season.

556 Other biases are also identified in the model simulations. NO_3 and NH_4 in the cold season
557 are overestimated in the model, but the results are sensitive to the choice of the PBL (planetary
558 boundary layer) scheme. The SOA (secondary organic aerosol) processes contribute to the
559 underestimation of OM (organic matter) in this study. The underestimation of sulfate in the warm
560 season may be caused by the misrepresentation of emissions and the chemical boundary conditions
561 related to marine intrusions. Aerosols from wild fires are not captured in the simulations with
562 monthly updated fire data. Further investigations are needed to improve model simulations in the
563 SJV for both scientific and operational applications.

564 **Acknowledgements**

565 This study was carried out at the Jet Propulsion Laboratory, California Institute of
566 Technology, under a contract with the National Aeronautics and Space Administration. The
567 authors thank the funding support from the NASA ACMAP program and JPL PDF program. This
568 work is partially sponsored by California Energy Commission under grant #EPC-14-064. Author

569 JRC acknowledges the support of the NASA ACCDAM program and its manager Hal Maring.
570 The authors thank the three anonymous reviewers for their helpful comments.

571 **References**

572 Archer-Nicholls, S., Lowe, D., Darbyshire, E., Morgan, W. T., Bela, M. M., Pereira, G., Trembath,
573 J., Kaiser, J. W., Longo, K. M., Freitas, S. R., Coe, H., and McFiggans, G.: Characterising
574 Brazilian biomass burning emissions using WRF-Chem with MOSAIC sectional aerosol,
575 Geosci. Model Dev., 8, 549-577, doi:10.5194/gmd-8-549-2015, 2015.

576 Ångström, A.: On the atmospheric transmission of Sun radiation and on dust in the air, Geogr.
577 Ann., 11, 156–166, 1929.

578 Baker, K. R., Carlton, A. G., Kleindienst, T. E., Offenberg, J. H., Beaver, M. R., Gentner, D. R.,
579 Goldstein, A. H., Hayes, P. L., Jimenez, J. L., Gilman, J. B., de Gouw, J. A., Woody, M. C.,
580 Pye, H. O. T., Kelly, J. T., Lewandowski, M., Jaoui, M., Stevens, P. S., Brune, W. H., Lin, Y.-
581 H., Rubitschun, C. L., and Surratt, J. D.: Gas and aerosol carbon in California: comparison of
582 measurements and model predictions in Pasadena and Bakersfield, Atmos. Chem. Phys., 15,
583 5243-5258, doi:10.5194/acp-15-5243-2015, 2015.

584 Barnard, J. C., Fast, J. D., Paredes-Miranda, G., Arnott, W. P., and Laskin, A.: Technical Note:
585 Evaluation of the WRF-Chem “Aerosol Chemical to Aerosol Optical Properties” Module using
586 data from the MILAGRO campaign, Atmos. Chem. Phys., 10, 7325–7340, doi:10.5194/acp-
587 10-7325-2010, 2010.

588 Brown, S. G., Hyslop, N. P., Roberts, P. T., McCarthy, M. C., and Lurmann, F. W.: Wintertime
589 vertical variations in particulate matter (PM) and precursor concentrations in the San Joaquin
590 Valley during the California Regional Coarse PM/Fine PM Air Quality Study, J. Air Waste
591 Manage., 56, 1267–1277, 2006.

592 Campbell, J. R., Tackett, J. L., Reid, J. S., Zhang, J., Curtis, C. A., Hyer, E. J., Sessions, W. R.,
593 Westphal, D. L., Prospero, J. M., Welton, E. J., Omar, A. H., Vaughan, M. A., and Winker, D.
594 M.: Evaluating nighttime CALIOP 0.532 μm aerosol optical depth and extinction coefficient
595 retrievals, Atmos. Meas. Tech., 5, 2143-2160, doi:10.5194/amt-5-2143-2012, 2012.

596 Campbell, J. R., Ge, C., Wang, J., Welton, E. J., Bucholtz, A., Hyer, E. J., Reid, E. A., Chew, B.
597 N., Liew, S.-C., Salinas, S. V., Lolli, S., Kaku, K. C., Lynch, P., Mahmud, M., Mohamad, M.,
598 and Holben, B. N.: Applying Advanced Ground-Based Remote Sensing in the Southeast Asian
599 Maritime Continent to Characterize Regional Proficiencies in Smoke Transport Modeling, *J.
600 Appl. Meteorol. Climatol.*, 55, 3-22, doi: <http://dx.doi.org/10.1175/JAMC-D-15-0083.1>, 2016.

601 Chapman, E. G., Gustafson Jr., W. I., Easter, R. C., Barnard, J. C., Ghan, S. J., Pekour, M. S., and
602 Fast, J. D.: Coupling aerosolcloud-radiative processes in the WRF-Chem model: Investigating
603 the radiative impact of elevated point sources, *Atmos. Chem. Phys.*, 9, 945–964,
604 doi:10.5194/acp-9-945-2009, 2009.

605 Chen, J., Lu, J., Avise, J. C., DaMassa, J. A., Kleeman, M. J., and Kaduwela, A. P.: Seasonal
606 modeling of PM2.5 in California's San Joaquin Valley, *Atmos. Environ.*, 92, 182–190, 2014.

607 Chew, B. N., J. R. Campbell, J. S. Reid, D. M. Giles, E. J. Welton, S. V. Salinas and S. C. Liew:
608 Tropical cirrus cloud contamination in sun photometer data, *Atmos. Env.*, 45, 6724-6731,
609 doi:10.1016/j.atmosenv.2011.08.017, 2011.

610 Chow, J. C., Chen, L. W. A., Watson, J. G., Lowenthal, D. H., Magliano, K. A., Turkiewicz, K.,
611 Lehrman, D. E.: PM2.5 chemical composition and spatiotemporal variability during the
612 California regional PM10/PM2.5 air quality study (CRPAQS), *J. Geophys. Res.-Atmos.*, 111,
613 D10S04, doi:10.1029/2005JD006457, 2006.

614 Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U.,
615 Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L.,
616 Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L.,
617 Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kallberg, P., Köhler, M., Matricardi, M.,
618 McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P.,
619 Tavolato, C., Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis: configuration and
620 performance of the data assimilation system, *Q. J. R. Meteorol. Soc.*, 137, 553–597, 2011.

621 Diner, D. J., Beckert, J. C., Reilly, T. H., Bruegge, C. J., Conel, J. E., Kahn, R. A., Martonchik, J.
622 V., Ackerman, T. P., Davies, R., Gerstl, S. A. W., Gordon, H. R., Muller, J. P., Myneni, R. B.,
623 Sellers, P. J., Pinty, B., and Verstraete, M. M.: Multi-angle Imaging SpectroRadiometer

624 (MISR) Instrument Description and Experiment Overview, IEEE T. Geosci. Remote, 36,
625 1072–1087, 1998.

626 Divakarla, M. G., Barnet, C. D., Goldberg, M. D., McMillin, L. M., Maddy, E., Wolf, W., Zhou,
627 L., and Liu, X.: Validation of Atmospheric Infrared Sounder temperature and water vapor
628 retrievals with matched radiosonde measurements and forecasts, J. Geophys. Res., 111,
629 D09S15, doi:10.1029/2005JD006116, 2006.

630 Eck, T. F., Holben, B. N., Reid, J. S., Dubovik, O., Smirnov, A., O'Neill, N. T., Slutsker, I., and
631 Kinn, S.: Wavelength dependence of the optical depth of biomass burning urban, and desert
632 dust aerosols, J. Geophys. Res., 104, 31333–31349, 1999.

633 Emmons, L. K., Walters, S., Hess, P. G., Lamarque, J.-F., Pfister, G. G., Fillmore, D., Granier, C.,
634 Guenther, A., Kinnison, D., Laepple, T., Orlando, J., Tie, X., Tyndall, G., Wiedinmyer, C.,
635 Baughcum, S. L., and Kloster, S.: Description and evaluation of the Model for Ozone and
636 Related chemical Tracers, version 4 (MOZART-4), Geosci. Model Dev., 3, 43–67, doi:
637 10.5194/gmd-3-43-2010, 2010.

638 Fast, J. D., Gustafson Jr., W. I., Easter, R. C., Zaveri, R. A., Barnard, J. C., Chapman, E. G., Grell,
639 G. A. and Peckham, S. E.: Evolution of ozone, particulates, and aerosol direct radiative forcing
640 in the vicinity of Houston using a fully coupled meteorology-chemistry-aerosol model, J.
641 Geophys. Res., 111, D21305, doi:10.1029/2005JD006721, 2006.

642 Fast, J. D., Gustafson Jr., W. I., Berg, L. K., Shaw, W. J., Pekour, M., Shrivastava, M., Barnard, J.
643 C., Ferrare, R. A., Hostetler, C. A., Hair, J. A., Erickson, M., Jobson, B. T., Flowers, B., Dubey,
644 M. K., Springston, S., Pierce, R. B., Dolislager, L., Pederson, J., and Zaveri, R. A.: Transport
645 and mixing patterns over Central California during the carbonaceous aerosol and radiative
646 effects study (CARES), Atmos. Chem. Phys., 12, 1759–1783, doi:10.5194/acp-12-1759-2012,
647 2012.

648 Fast, J. D., Allan, J., Bahreini, R., Craven, J., Emmons, L., Ferrare, R., Hayes, P. L., Hodzic, A.,
649 Holloway, J., Hostetler, C., Jimenez, J. L., Jonsson, H., Liu, S., Liu, Y., Metcalf, A.,
650 Middlebrook, A., Nowak, J., Pekour, M., Perring, A., Russell, L., Sedlacek, A., Seinfeld, J.,
651 Setyan, A., Shilling, J., Shrivastava, M., Springston, S., Song, C., Subramanian, R., Taylor, J.
652 W., Vinoj, V., Yang, Q., Zaveri, R. A., and Zhang, Q.: Modeling regional aerosol and aerosol

653 precursor variability over California and its sensitivity to emissions and long-range transport
654 during the 2010 CalNex and CARES campaigns, *Atmos. Chem. Phys.*, 14, 10013-10060,
655 doi:10.5194/acp-14-10013-2014, 2014.

656 Feingold, G., and Morley, B.: Aerosol hygroscopic properties as measured by lidar and comparison
657 with in situ measurements, *J. Geophys. Res.*, 108(D11), 4327, doi:10.1029/2002JD002842,
658 2003.

659 Flanner, M. G., and Zender, C. S.: Snowpack radiative heating: Influence on Tibetan Plateau
660 climate, *Geophys. Res. Lett.*, 32, L06501, doi:10.1029/2004GL022076, 2005.

661 Flanner, M. G., and Zender, C. S.: Linking snowpack microphysics and albedo evolution, *J.*
662 *Geophys. Res.*, 111, D12208, doi:10.1029/2005JD006834, 2006.

663 Fountoukis, C., Koraj, D., Denier van der Gon, H. A. C., Charalampidis, P. E., Pilinis, C., and
664 Pandis, S. N.: Impact of grid resolution on the predicted fine PM by a regional 3-D chemical
665 transport model, *Atmos. Environ.*, 68, 24–32, 2013.

666 Freitas, S. R., Longo, K. M., Alonso, M. F., Pirre, M., Marecal, V., Grell, G., Stockler, R., Mello,
667 R. F., and Sánchez Gárita, M.: PREP-CHEM-SRC – 1.0: a preprocessor of trace gas and
668 aerosol emission fields for regional and global atmospheric chemistry models, *Geosci. Model*
669 *Dev.*, 4, 419-433, doi:10.5194/gmd-4-419-2011, 2011.

670 Ghan, S., Laulainen, N., Easter, R., Wagener, R., Nemesure, S., Chapman, E., Zhang, Y., and
671 Leung, R.: Evaluation of aerosol direct radiative forcing in MIRAGE, *J. Geophys. Res.*,
672 106(D6), 5295–5316, doi:10.1029/2000JD900502, 2001.

673 Ginoux, P., Chin, M., Tegen, I., Prospero, J. M., Holben, B., Dubovik, O., and Lin, S.: Sources
674 and distributions of dust aerosols simulated with the GOCART model, *J. Geophys. Res.*, 106,
675 20225–20273, 2001.

676 Gong, S. L.: A parameterization of sea-salt aerosol source function for sub- and super-micron
677 particles, *Global Biogeochem. Cy.*, 17, 1097, doi:10.1029/2003GB002079, 2003.

678 Grell, G. and Devenyi, D.: A generalized approach to parameterizing convection combining
679 ensemble and data assimilation techniques, *Geophys. Res. Lett.*, 29(14),
680 doi:10.1029/2002GL015311, 2002.

681 Grell, G., Peckham, S., Schmitz, R., et al.: Fully coupled “online” chemistry within the WRF
682 model, *Atmos. Environ.*, 39(37), 6957–6975, 2005.

683 Grell, G., Freitas, S. R., Stuefer, M., and Fast, J.: Inclusion of biomass burning in WRF-Chem:
684 impact of wildfires on weather forecasts, *Atmos. Chem. Phys.*, 11, 5289-5303,
685 doi:10.5194/acp-11-5289-2011, 2011.

686 Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., and Geron, C.: Estimates of
687 global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and
688 Aerosols from Nature), *Atmos. Chem. Phys.*, 6, 3181–3210, doi: 10.5194/acp-6-3181-2006,
689 2006.

690 Hand, J., Copeland, S. A., Day, D. E., Dillner, A. M., Indresand, H., Malm, W. C., McDade, C.
691 E., Moore Jr., C. T., Pitchford, M. L., Schichtel, B. A., and Watson, J. G.: Spatial and seasonal
692 patterns and temporal variability of haze and its constituents in the United States: Report V,
693 June 2011, available at: <http://vista.cira.colostate.edu/Improve/spatial-and-seasonal-patterns-and-temporal-variability-of-haze-and-its-constituents-in-the-united-states-report-v-june-2011/>, 2011.

696 Hasheminassab, S., Daher, N., Saffari, A., Wang, D., Ostro, B. D., and Sioutas, C.: Spatial and
697 temporal variability of sources of ambient fine particulate matter (PM_{2.5}) in California, *Atmos.*
698 *Chem. Phys.*, 14, 12085-12097, doi:10.5194/acp-14-12085-2014, 2014.

699 Herner, J. D., Ying, Q., Aw, J., Gao, O., Chang, D. P. Y., and Kleeman, M.: Dominant mechanisms
700 that shape the airborne particle size and composition in central California, *Aerosol Sci.*
701 *Technol.*, 40, 827–844, 2006.

702 Holben, B. N., Eck, T. F., Slutsker, I., Tanre, D., Buis, J. P., Setzer, A., Vermote, E., Reagan, J.
703 A., Kaufman, Y. J., Nakajima, T., Lavenu, F., Jankowiak, I., and Smirnov, A.: AERONET –
704 A Federated Instrument Network and Data Archive for Aerosol Characterization, *Remote*
705 *Sens. Environ.*, 66, 1–16, 1998.

706 Holben, B. N., Tanr, D., Smirnov, A., Eck, T. F., Slutsker, I., Abuhassan, N., Newcomb, W. W.,
707 Schafer, J. S., Chatenet, B., Lavenu, F., Kaufman, Y. J., Castle, J. V., Setzer, A., Markham,
708 B., Clark, D., Frouin, R., Halthore, R., Karneli, A., O'Neill, N. T., Pietras, C., Pinker, R. T.,

709 Voss, K., and Zibordi, G.: An emerging ground-based aerosol climatology: Aerosol optical
710 depth from AERONET, *J. Geophys. Res.*, 106, 12067–12097, 2001.

711 Hong, S., Noh, Y., and Dudhia, J.: A new vertical diffusion package with an explicit treatment of
712 entrainment processes, *Mon. Weather Rev.*, 134, 2318–2341, 2006.

713 Hu, Z., Zhao, C., Huang, J., Leung, L. R., Qian, Y., Yu, H., Huang, L., and Kalashnikova, O. V.:
714 Trans-Pacific transport and evolution of aerosols: evaluation of quasi-global WRF-Chem
715 simulation with multiple observations, *Geosci. Model Dev.*, 9, 1725–1746, doi:10.5194/gmd-
716 9-1725-2016, 2016.

717 Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A., and Collins, W. D.:
718 Radiative forcing by long-lived greenhouse gases: calculations with the AER radiative transfer
719 models, *J. Geophys. Res.*, 113, D13103, doi:10.1029/2008JD009944, 2008.

720 Jaeglé, L., Quinn, P. K., Bates, T. S., Alexander, B., and Lin, J.-T.: Global distribution of sea salt
721 aerosols: new constraints from in situ and remote sensing observations, *Atmos. Chem. Phys.*,
722 11, 3137–3157, doi:10.5194/acp-11-3137-2011, 2011.

723 Kahn, R. A., Gaitley, B. J., Garay, M. J., Diner, D. J., Eck, T. F., Smirnov, A., and Holben, B. N.:
724 Multiangle Imaging SpectroRadiometer global aerosol product assessment by comparison with
725 the Aerosol Robotic Network, *J. Geophys. Res.*, 115, D23209, doi:10.1029/2010JD014601,
726 2010.

727 Kassianov, E., Pekour, M., and Barnard, J.: Aerosols in central California: Unexpectedly large
728 contribution of coarse mode to aerosol radiative forcing, *Geophys. Res. Lett.*, 39, L20806, doi:
729 10.1029/2012GL053469, 2012.

730 Kelly, J. T., Baker, K. R., Nowak, J. B., Murphy, J. G., Markovic, M. Z., VandenBoer, T. C., Ellis,
731 R. A., Neuman, J. A., Weber, R. J., and Roberts, J. M.: Fine-scale simulation of ammonium
732 and nitrate over the South Coast Air Basin and San Joaquin Valley of California during
733 CalNex-2010, *J. Geophys. Res.-Atmos.*, 119, 3600–3614, 2014.

734 Lawrence, D. M., Oleson, K. W., Flanner, M. G., Thornton, P. E., Swenson, S. C., Lawrence, P.
735 J., Zeng, X., Yang, Z.-L., Levis, S., Sakaguchi, K., Bonan, G. B., and Slater, A. G.:
736 Parameterization improvements and functional and structural advances in version 4 of the

737 Community Land Model, J. Adv. Model. Earth Sys., 3, M03001, doi:
738 10.1029/2011MS000045, 2011.

739 Misenis, C. and Zhang, Y.: An examination of sensitivity of WRF/Chem predictions to physical
740 parameterizations, horizontal grid spacing, and nesting options, Atmos. Res., 97, 315–334,
741 doi:10.1016/j.atmosres.2010.04.005, 2010.

742 Morabito, D., Wu, L., and Slobin, S.: Weather Forecasting for Ka-band Operations: Initial Study
743 Results, IPN PR 42-206, pp. 1-24, August 15, 2016. Available at:
744 http://ipnpr.jpl.nasa.gov/progress_report/42-206/206C.pdf, 2016.

745 Morrison, H., Thompson, G., and Tatarskii, V.: Impact of cloud microphysics on the development
746 of trailing stratiform precipitation in a simulated squall line: comparison of one- and two-
747 moment schemes, Mon. Weather Rev., 137, 991–1007, 2009.

748 Omar, A.H., Winker, D.M., Kittaka, C., Vaughan, M.A., Liu, Z., Hu, Y., Trepte, C.R., Rogers,
749 R.R., Ferrare, R.A., Lee, K.P., Kuehn, R.E., Hostetler, C.A.: The CALIPSO automated aerosol
750 classification and lidar ratio selection algorithm. J. Atmos. Ocean. Technol. 26, 1994–2014,
751 2009.

752 Pleim, J. E.: A combined local and nonlocal closure model for the atmospheric boundary layer.
753 Part I: Model description and testing, J. Appl. Meteorol. Clim., 46, 1383–1395, 2007.

754 Pun, B. K., Balmori, R. T. F., and Seigneur, C.: Modeling wintertime particulate matter formation
755 in central California, Atmos. Environ., 43, 402–409, 2009.

756 Qian, Y., Gustafson Jr., W. I., and Fast, J. D.: An investigation of the sub-grid variability of trace
757 gases and aerosols for global climate modeling, Atmos. Chem. Phys., 10, 6917-6946,
758 doi:10.5194/acp-10-6917-2010, 2010.

759 Randerson, J. T., van der Werf, G. R., Giglio, L., Collatz, G. J., and Kasibhatla, P. S.: Global Fire
760 Emissions Database, Version 2 (GFEDv2.1). Data set. Available on-line [<http://daac.ornl.gov/>]
761 from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge,
762 Tennessee, U.S.A. doi:10.3334/ORNLDaac/849, 2007.

763 San Joaquin Valley Air Pollution Control District: 2012 PM2.5 plan. Available from:
764 http://www.valleyair.org/Air_Quality_Plans/PM25Plans2012.htm, 2012.

765 Scarino, A. J., Obland, M. D., Fast, J. D., Burton, S. P., Ferrare, R. A., Hostetler, C. A., Berg, L.
766 K., Lefer, B., Haman, C., Hair, J. W., Rogers, R. R., Butler, C., Cook, A. L., and Harper, D.
767 B.: Comparison of mixed layer heights from airborne high spectral resolution lidar, ground-
768 based measurements, and the WRF-Chem model during CalNex and CARES, *Atmos. Chem.*
769 *Phys.*, 14, 5547-5560, doi:10.5194/acp-14-5547-2014, 2014.

770 Shaw, W., Allwine, K. J., Fritz, B. G., Rutz, F. C., Rishel, J. P., and Chapman, E. G.: An evaluation
771 of the wind erosion module in DUSTRAN, *Atmos. Environ.*, 42, 1907–1921, 2008.

772 Solomon, P. A., Crumpler, D., Flanagan, J. B., Jayanty, R. K. M., Rickman, E. E., and McDade C.
773 E.: U.S. National PM 2.5 Chemical Speciation Monitoring Networks – CSN and IMPROVE:
774 Description of Networks, *J. Air Waste Manage.*, 64, 1410–1438,
775 doi:10.1080/10962247.2014.956904, 2014.

776 Susskind, J., Barnet, C. D., and Blaisdell, J.: Retrieval of atmospheric and surface parameters from
777 AIRS/AMSU/HSB data under cloudy conditions, *IEEE Trans. Geosci. Remote Sens.*, 41(2),
778 390–409, doi:10.1109/TGRS.2002.808236, 2003.

779 Schuster, G. L., Dubovik, O., and Holben, B. N.: Angström exponent and bimodal aerosol size
780 distributions, *J. Geophys. Res.*, 111, D07207, doi:10.1029/2005JD006328, 2006.

781 Tessum, C. W., Hill, J. D., and Marshall, J. D.: Twelve-month, 12 km resolution North American
782 WRF-Chem v3.4 air quality simulation: performance evaluation, *Geosci. Model Dev.*, 8, 957-
783 973, doi:10.5194/gmd-8-957-2015, 2015.

784 Toth, T. D., Campbell, J. R., Reid, J. S., Tackett, J. L., Vaughan, M. A. and Zhang, J.: Lower
785 daytime threshold sensitivities to aerosol optical thickness in CALIPSO Level 2 products, *J.*
786 *Geophys. Res.*, in review, 2017.

787 US Environmental Protection Agency, 2010: Technical Support Document: Preparation of
788 Emissions Inventories for the Version 4, 2005-based Platform, 73 pp., Office of Air Quality
789 Planning and Standards, Air Quality Assessment Division, available at:
790 https://www3.epa.gov/crossstaterule/pdfs/2005_emissions_tsds_07jul2010.pdf, 2010.

791 Wu, L., and Petty, G. W. : Intercomparison of Bulk Microphysics Schemes in Simulations of Polar
792 lows. *Mon. Wea. Rev.*, 138, 2211-2228. doi: 10.1175/2010MWR3122.1, 2010.

793 Wu, L., Su, H. and Jiang, J. H.: Regional simulations of deep convection and biomass burning
794 over South America: 1. Model evaluations using multiple satellite data sets, *J. Geophys. Res.*,
795 116, D17208, doi:10.1029/2011JD016105, 2011a.

796 Wu, L., Su, H. and Jiang, J. H.: Regional simulations of deep convection and biomass burning
797 over South America: 2. Biomass burning aerosol effects on clouds and precipitation, *J.*
798 *Geophys. Res.*, 116, D17209, doi:10.1029/2011JD016106, 2011b.

799 Wu, L., Su, H. and Jiang, J. H.: Regional simulations of aerosol impacts on precipitation during
800 the East Asian summer monsoon. *J. Geophys. Res. Atmos.*, 118, doi: 10.1002/jgrd.50527 ,
801 2013.

802 Wu, L., Li, J.-L. F., Pi, C.-J., Yu, J.-Y., and Chen, J.-P.: An observationally based evaluation of
803 WRF seasonal simulations over the Central and Eastern Pacific, *J. Geophys. Res. Atmos.*, 120,
804 doi:10.1002/2015JD023561, 2015.

805 Ying, Q. and Kleeman, M. J.: Regional contributions to airborne particulate matter in central
806 California during a severe pollution episode, *Atmos. Environ.*, 43, 1218–1228, 2009.

807 Young, S.A. and Vaughan, M.A.: The retrieval of profiles of particulate extinction from Cloud–
808 Aerosol Lidar Infrared Pathfinder Satellite Observations (CALIPSO) data: algorithm
809 description. *J. Atmos. Ocean. Technol.* 26, 1105–1119, 2009.

810 Zaveri, R. A. and Peters, L. K.: A new lumped structure photochemical mechanism for large-scale
811 applications, *J. Geophys. Res.*, 104, 30387–30415, 1999.

812 Zaveri, R. A., Easter, R. C., Fast, J. D., and Peters, L. K.: Model for Simulating Aerosol
813 Interactions and Chemistry (MOSAIC), *J. Geophys. Res.*, 113, D13204,
814 doi:10.1029/2007JD008782, 2008.

815 Zhang, Y., Liu, P., Liu, X.-H., Pun, B., Seigneur, C., Jacobson, M. Z., and Wang, W.-X.: Fine
816 scale modeling of wintertime aerosol mass, number, and size distributions in central California,
817 *J. Geophys. Res.-Atmos.*, 115, D15207, doi:10.1029/2009jd012950, 2010.

818 Zhao, C., Liu, X., Leung, L. R., Johnson, B., McFarlane, S. A., Gustafson Jr., W. I., Fast, J. D.,
819 and Easter, R.: The spatial distribution of mineral dust and its shortwave radiative forcing over
820 North Africa: modeling sensitivities to dust emissions and aerosol size treatments, *Atmos.*
821 *Chem. Phys.*, 10, 8821–8838, doi: 10.5194/acp-10-8821-2010, 2010.

822 Zhao, C., Liu, X., Ruby Leung, L., and Hagos, S.: Radiative impact of mineral dust on monsoon
823 precipitation variability over West Africa, *Atmos. Chem. Phys.*, 11, 1879–1893,
824 doi:10.5194/acp-11-1879-2011, 2011.

825 Zhao, C., Chen, S., Leung, L. R., Qian, Y., Kok, J. F., Zaveri, R. A., and Huang, J.: Uncertainty in
826 modeling dust mass balance and radiative forcing from size parameterization, *Atmos. Chem.*
827 *Phys.*, 13, 10733-10753, doi:10.5194/acp-13-10733-2013, 2013a.

828 Zhao, C., Leung, L. R., Easter, R., Hand, J., and Avise, J.: Characterization of speciated aerosol
829 direct radiative forcing over California, *J. Geophys. Res.*, 118, 2372–2388, doi:
830 10.1029/2012JD018364, 2013b.

831 Zhao, C., Hu, Z., Qian, Y., Ruby Leung, L., Huang, J., Huang, M., Jin, J., Flanner, M. G., Zhang,
832 R., Wang, H., Yan, H., Lu, Z., and Streets, D. G.: Simulating black carbon and dust and their
833 radiative forcing in seasonal snow: a case study over North China with field campaign
834 measurements, *Atmos. Chem. Phys.*, 14, 11475-11491, doi:10.5194/acp-14-11475-2014,
835 2014.

836 **List of Table**

837 Table 1. Experiment description

Experiment ID	Experiment description
20km	Simulation with the GOCART dust scheme at 20 km horizontal resolution.
20km_D2	Same as 20km, but with the DUSTTRAN dust scheme.
20km_P7	Same as 20km_D2, but with the ACM2 PBL scheme.
4km	Same as 20km, but at 4 km horizontal resolution.
4km_D2	Same as 4km, but with the DUSTTRAN dust scheme.

838

839 Table 2. Correlation with observations for different species at Fresno, CA

Species	20km	4km	4km_D2	20km_D2	20km_P7
PM _{2.5}	0.89	0.90	0.86	0.78	0.03
PM _{2.5} _NO ₃	0.94	0.95	0.94	0.94	0.91
PM _{2.5} _NH ₄	0.97	0.96	0.96	0.98	0.96
PM _{2.5} _OM	0.93	0.93	0.94	0.93	0.91
PM _{2.5} _EC	0.98	0.98	0.98	0.98	0.96
PM _{2.5} _SO ₄	0.63	-0.16	-0.14	0.61	0.63
PM _{2.5} _dust	-0.55	-0.50	0.48	0.55	0.36
PM ₁₀	-0.25	-0.23	-0.08	0.01	-0.03

840

841 Table 3. Surface aerosol mass ($\mu\text{g m}^{-3}$) for different species at Fresno, CA

Species	Cold season						Warm season					
	OBS	20km	4km	4km_D2	20km_D2	20km_P7	OBS	20km	4km	4km_D2	20km_D2	20km_P7
PM _{2.5}	16.84	13.71	21.38	22.48	14.90	13.77	8.44	4.91	6.29	12.85	10.12	14.85
PM _{2.5} _NO ₃	5.43	6.36	9.54	9.22	6.22	3.16	0.84	0.55	0.69	0.79	0.66	0.57
PM _{2.5} _NH ₄	1.42	1.97	2.99	2.88	1.91	0.98	0.40	0.19	0.24	0.20	0.16	0.13
PM _{2.5} _OM	5.39	0.92	2.07	2.07	0.93	1.04	2.47	0.49	0.87	0.87	0.50	0.55
PM _{2.5} _EC	1.08	0.52	1.12	1.13	0.52	0.58	0.32	0.27	0.49	0.49	0.27	0.30
PM _{2.5} _SO ₄	0.87	0.53	0.82	0.81	0.53	0.46	1.04	0.54	0.61	0.60	0.53	0.49
PM _{2.5} _dust	0.90	0.11	0.11	1.65	1.50	4.18	2.08	0.04	0.03	6.49	5.16	10.05
PM ₁₀	31.55	14.93	22.81	28.32	20.10	24.52	34.82	7.08	8.69	38.12	30.19	48.02

842

843 Supplementary Table 1. Correlation with surface observations for meteorological variables at
844 Fresno, CA

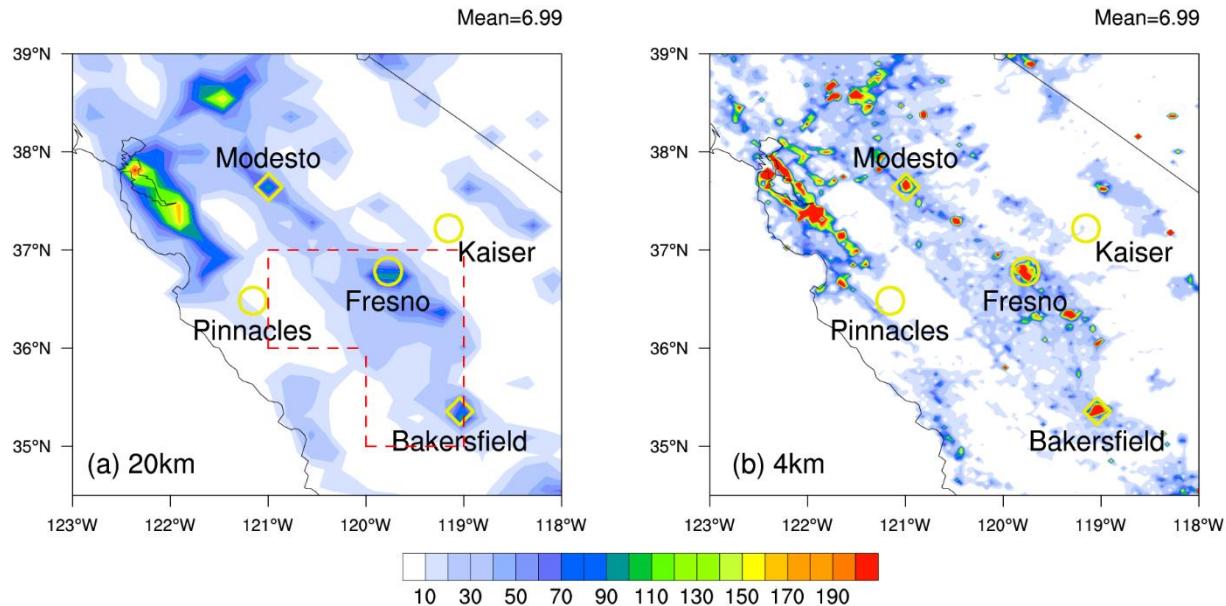
	4km_D2	20km_D2	20km_P7
T	0.94	0.94	0.94
RH	0.98	0.98	0.96
Wind	0.83	0.84	0.85
Rain	0.97	0.97	0.97

845

846 Supplementary Table 2. Bias for surface meteorological variables at Fresno, CA

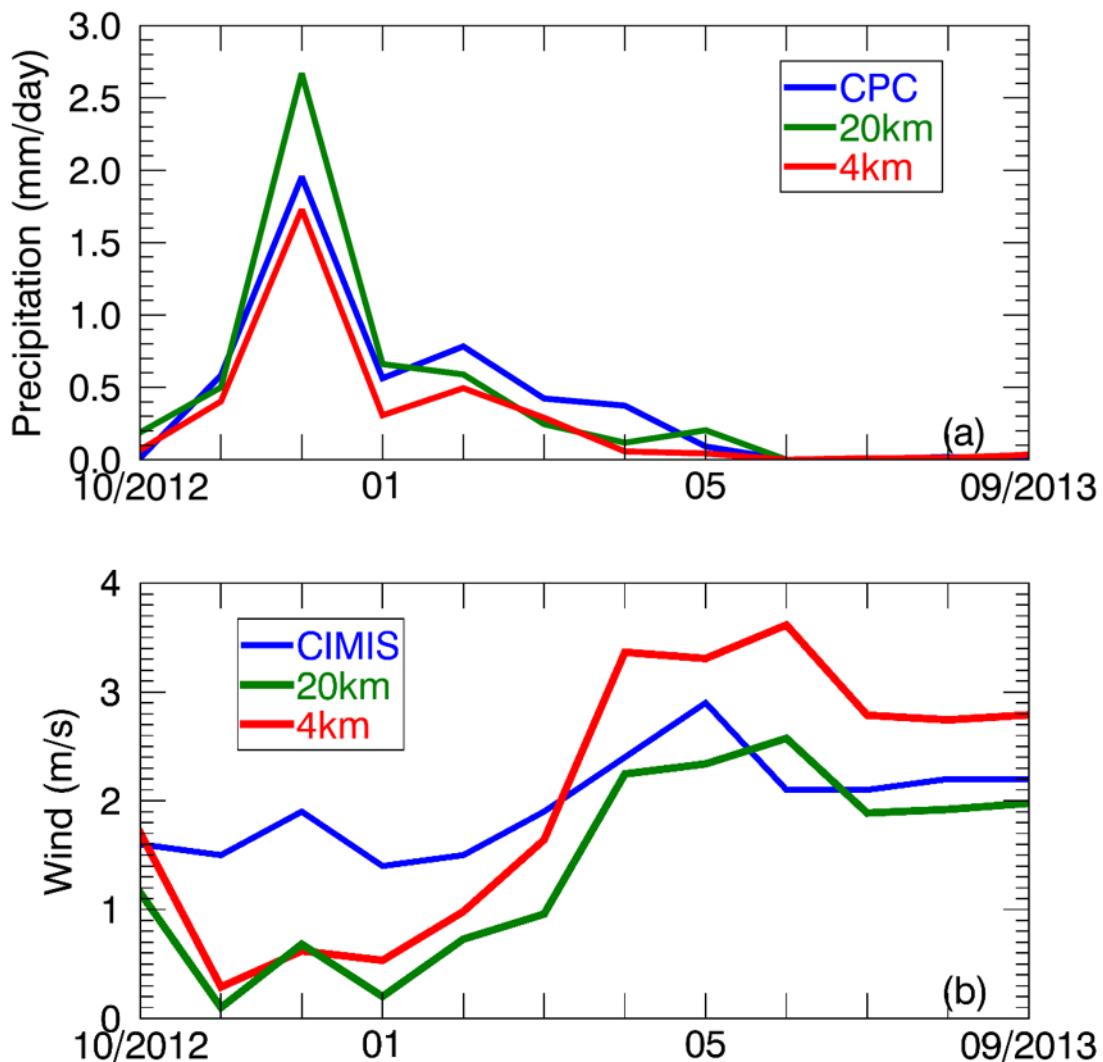
	Cold season			Warm season		
	4km_D2	20km_D2	20km_P7	4km_D2	20km_D2	20km_P7
T (K)	3.89	3.56	3.69	2.44	1.50	1.35
RH (%)	-9.78	-14.55	-19.35	-9.48	-9.32	-11.16
Wind (m/s)	-0.67	-1.00	-1.05	0.78	-0.16	-0.49
Rain (mm/day)	-0.15	0.14	-0.03	-0.06	-0.03	-0.04

847

848 **List of Figures**

849

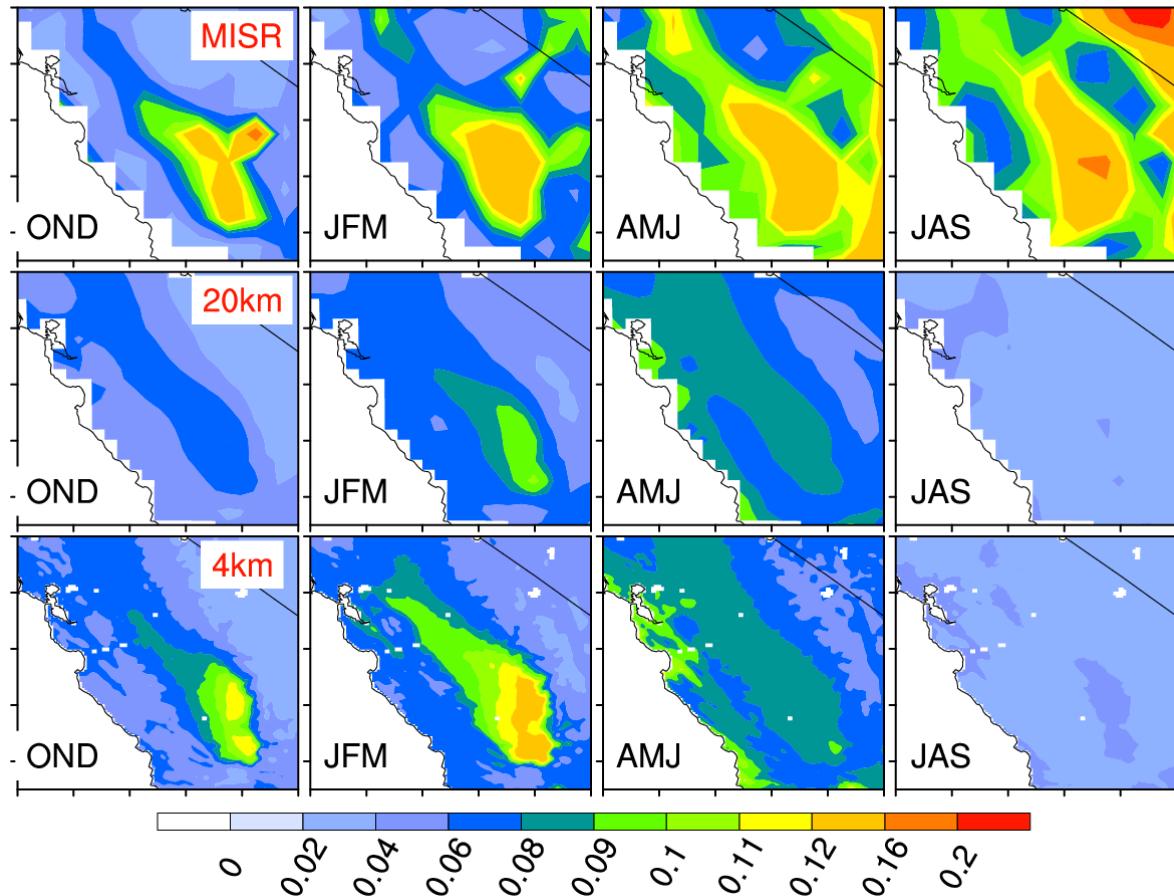
850 Figure 1. Daily mean anthropogenic $\text{PM}_{2.5}$ emission rate ($\mu\text{g m}^{-2} \text{ hr}^{-1}$) at (a) 20km and (b) 4km
 851 simulation. Domain-averaged emission rate is shown at right corner of each figure. Red dashed
 852 lines in Figure 1a represent the region used for the domain averages in the discussions. Yellow
 853 circle: IMPROVE site; yellow diamond: EPA CSN site. Three urban sites: Fresno, Bakersfield and
 854 Modesto; two rural sites: Pinnacles and Kaiser.



855

856 Figure 2. (a) Monthly precipitation (mm/day) from CPC, 20km and 4km; (b) monthly wind speed

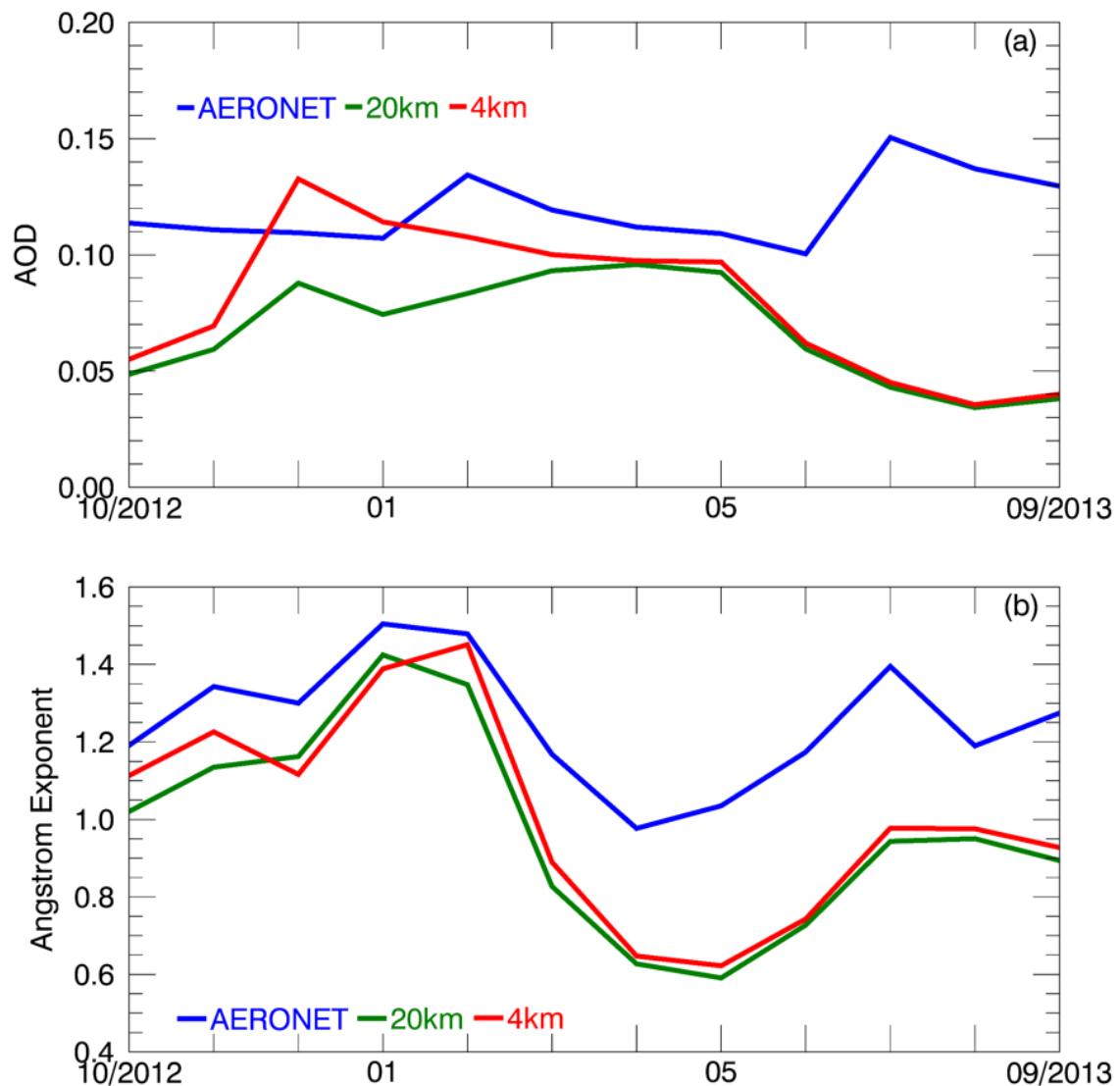
857 (m/s) from CIMIS, 20km and 4km. 4km_D2 (not shown) is similar to 4km.



858

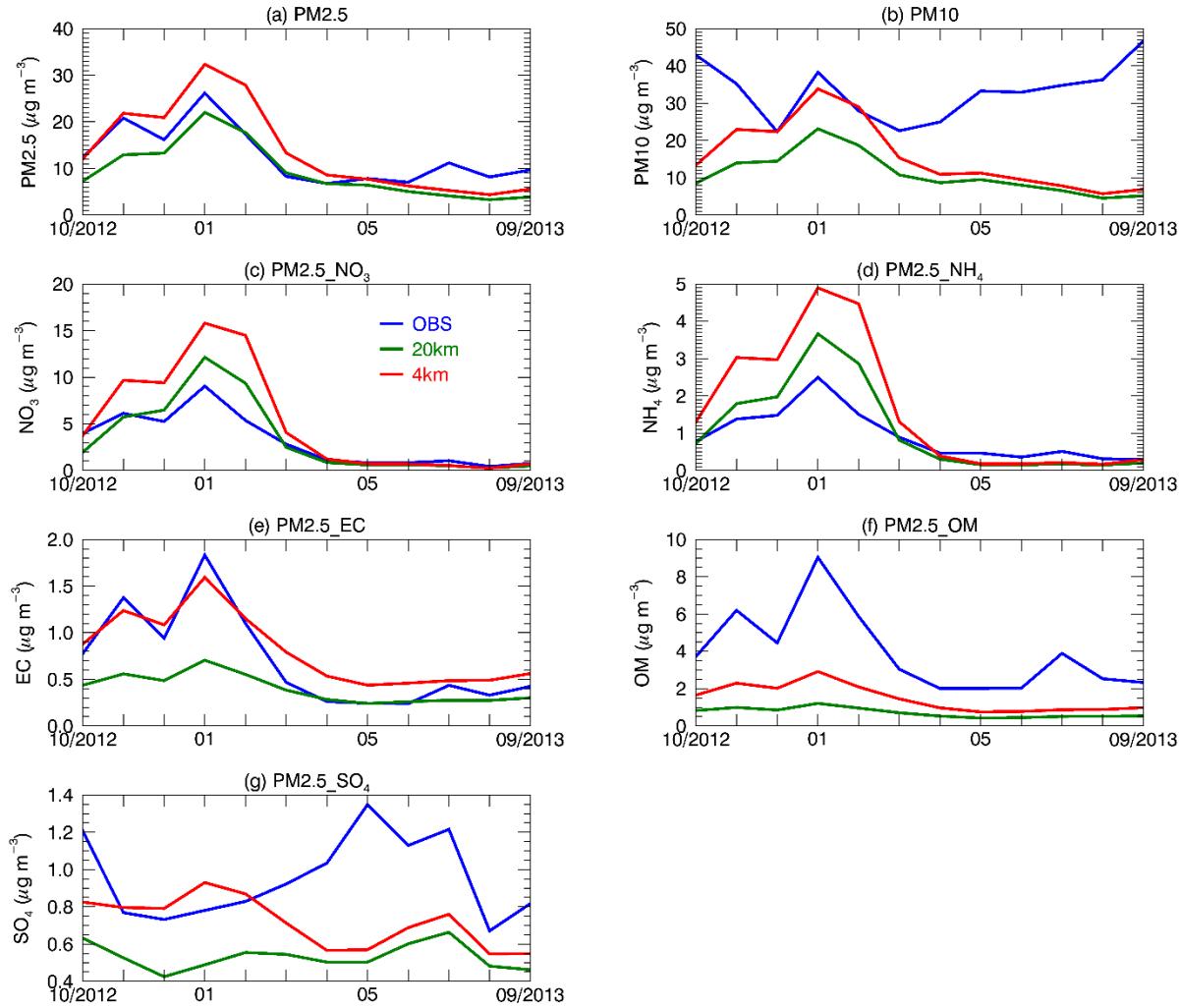
859 Figure 3. Spatial distribution of seasonal mean 550 nm AOD from MISR and the WRF-Chem
860 (20km and 4km) simulations in WY2013. OND: October-November-December; JFM: January-
861 February-March; AMJ: April-May-June; JAS: July-August-September.

862



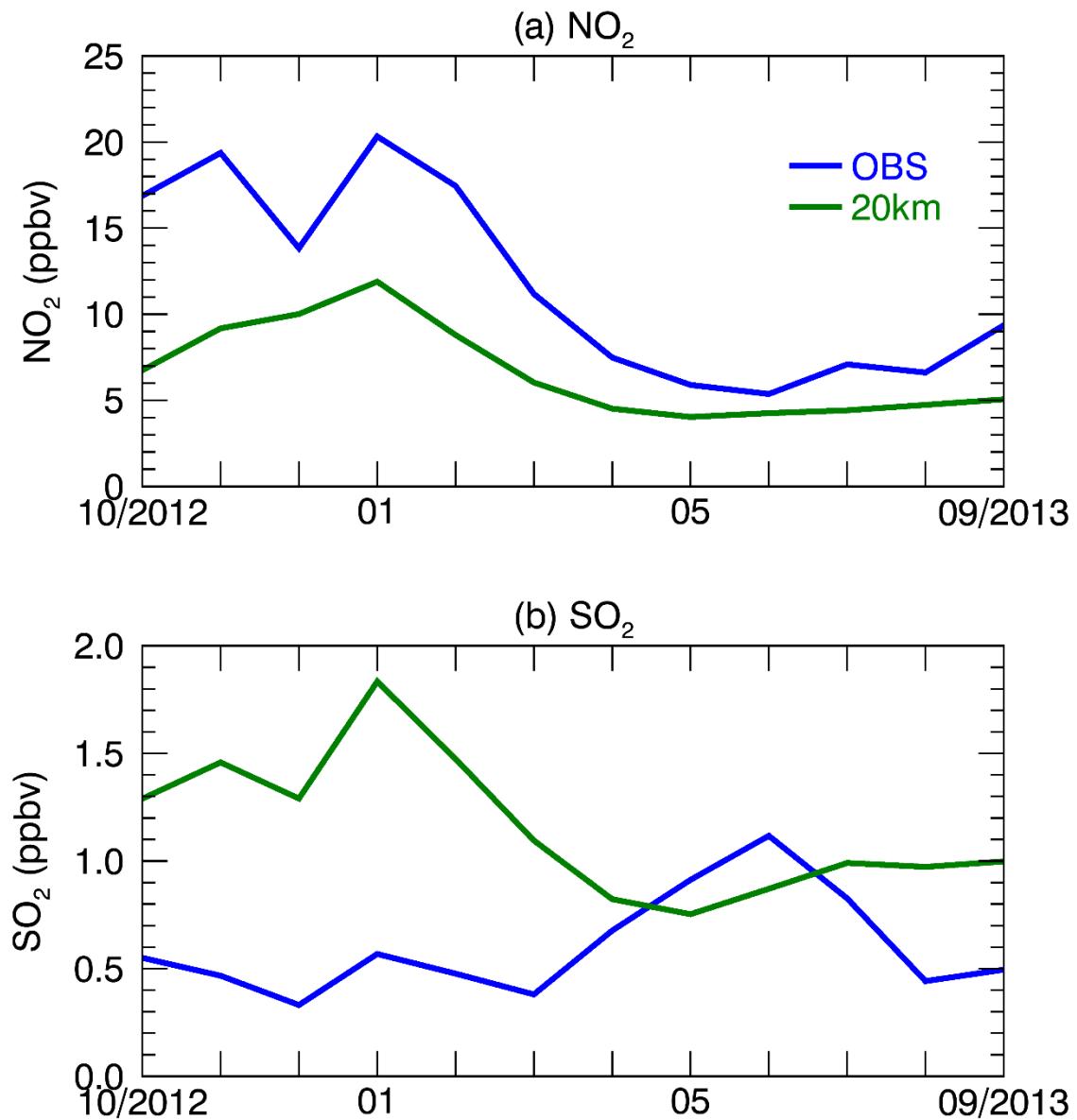
863

864 Figure 4. (a) Monthly mean 550 nm AOD; (b) monthly mean 400-600 nm Ångström exponent at
 865 Fresno, CA from October 2012 to September 2013.



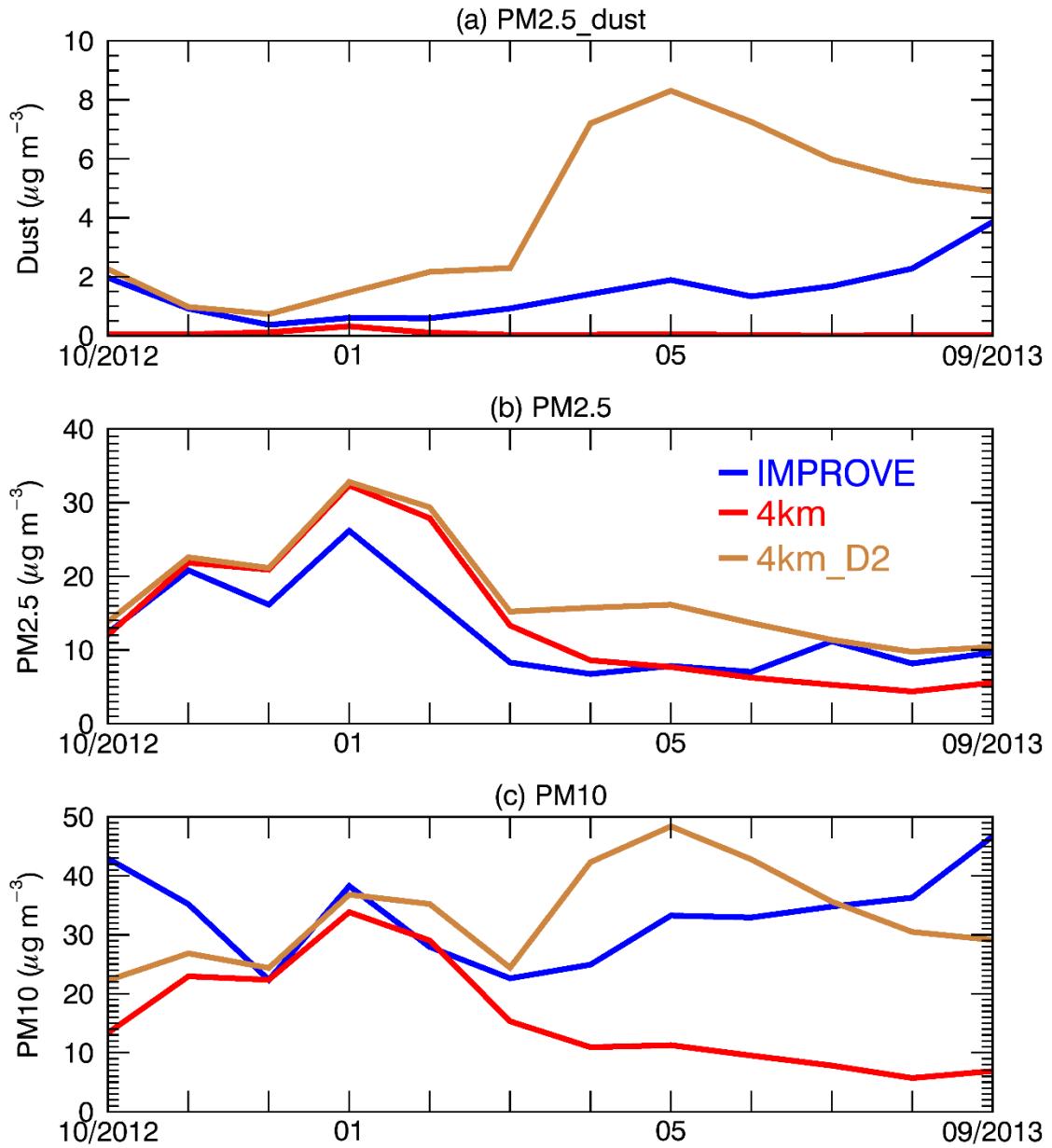
866

867 Figure 5. Aerosol mass ($\mu\text{g m}^{-3}$) for different species from OBS, the 20km and 4km simulations at
 868 Fresno, CA. NH₄ observations are from EPA; other observations are from IMPROVE. PM_{2.5}_NO₃
 869 represents NO₃ with diameter $\leq 2.5 \mu\text{m}$. Similar definition for NH₄, EC, OM and SO₄ in the figures.



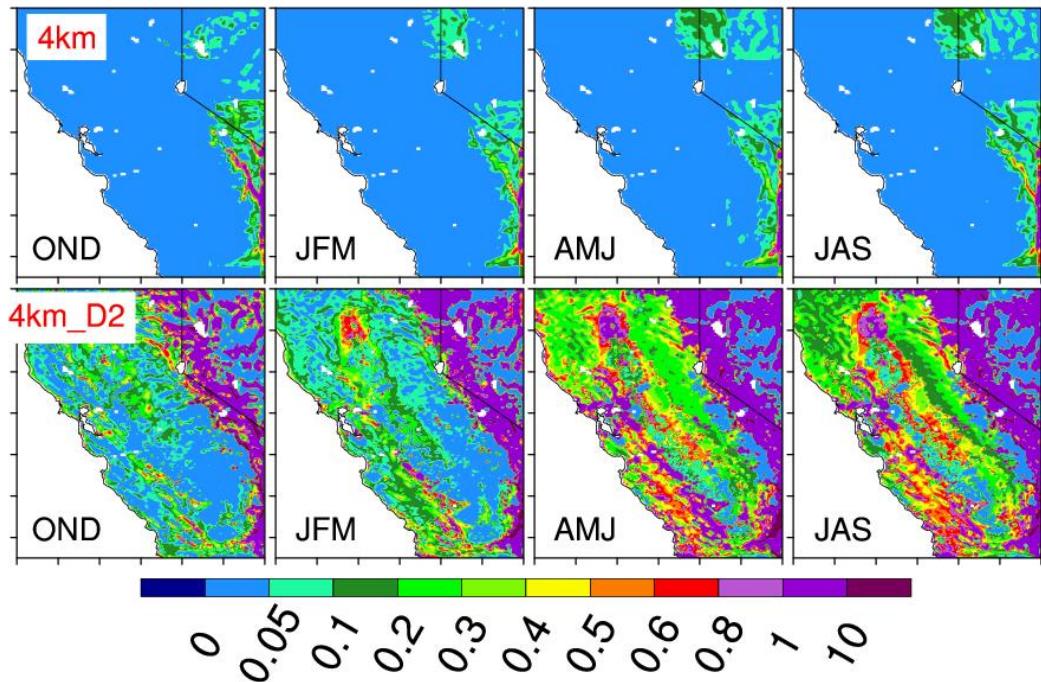
870

871 Figure 6. (a) NO_2 and (b) SO_2 from EPA (OBS) and the 20km run at Fresno, CA.



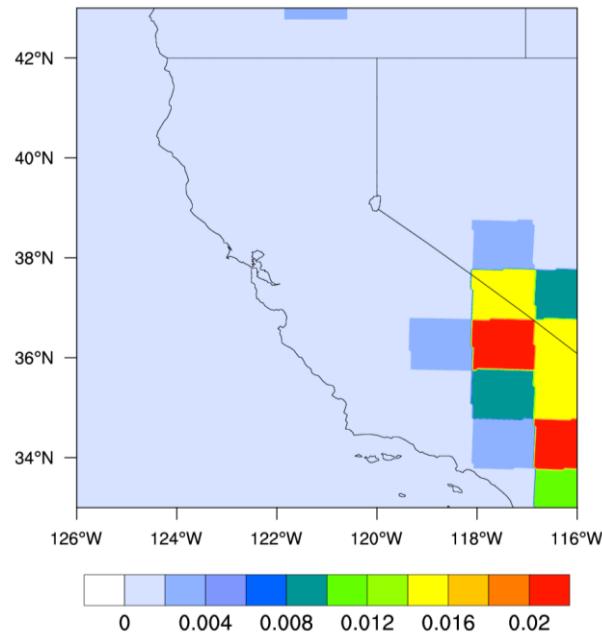
872

873 Figure 7. (a) PM_{2.5}_dust; (b) PM_{2.5}; and (c) PM₁₀ from IMPROVE, the 4km and 4km_D2
 874 simulations at Fresno, CA.



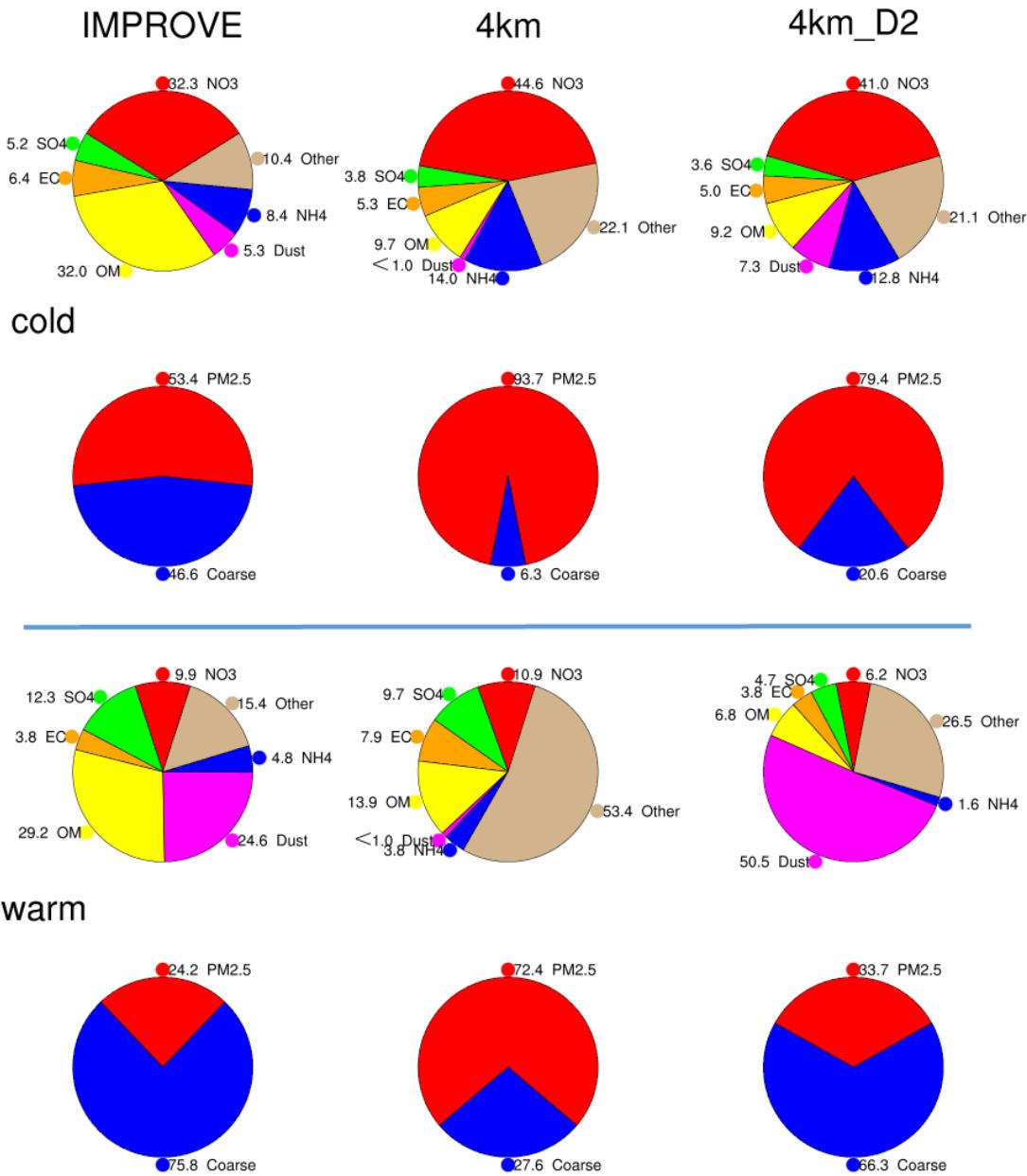
875

876 Figure 8. Mean dust emission rate ($\mu\text{g m}^{-2} \text{s}^{-1}$) from the 4km and 4km_D2 runs.



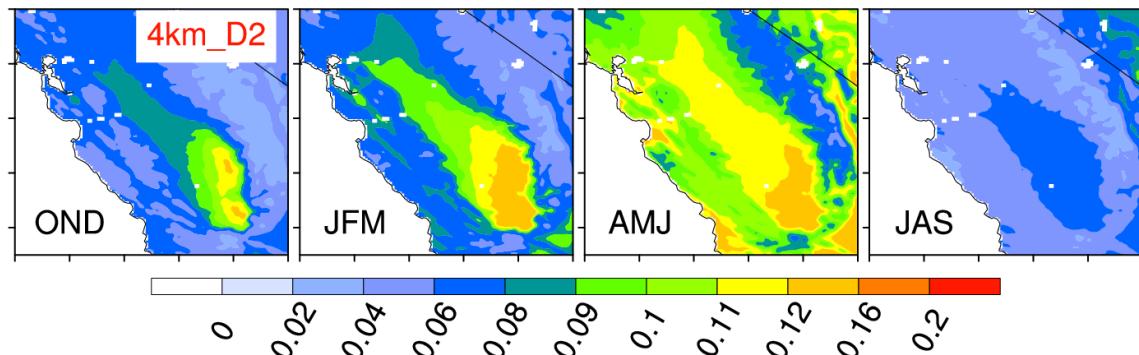
877

878 Figure 9. Fraction of erodible surface in the GOCART dataset used in this study.



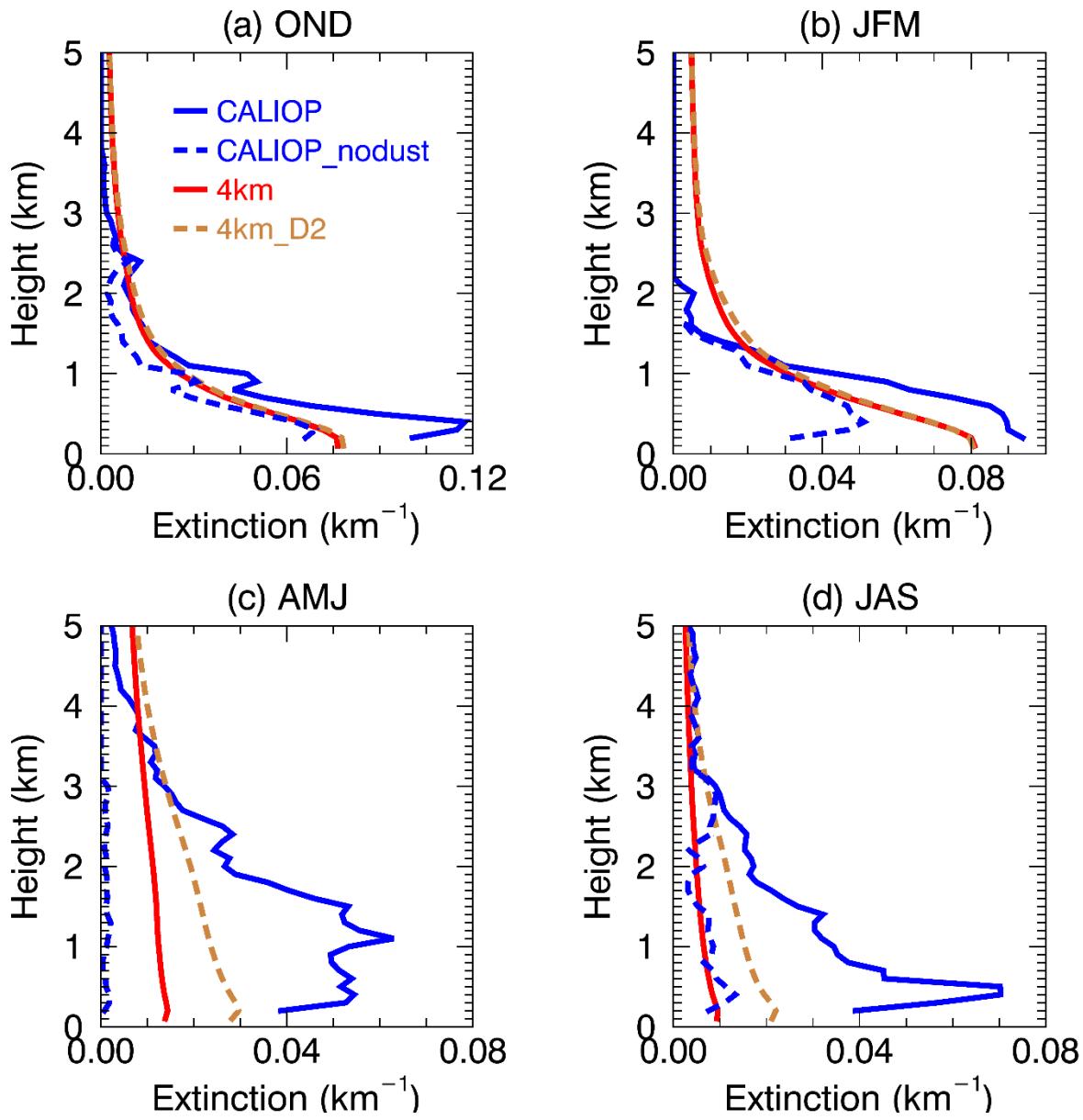
879

880 Figure 10. Relative contribution (%) of aerosol species from IMPROVE and the WRF-Chem (4km
 881 and 4km_D2) simulations at Fresno, CA in WY2013. (Panel 1) Contribution to PM_{2.5} in the cold
 882 season; (Panel 2) relative contribution of PM_{2.5} and coarse mass (CM) to PM₁₀ in the cold season;
 883 (Panel 3) same as Panel 1 but in the warm season; (Panel 4) same as Panel 2 but in the warm season.
 884 “Other” refers to the difference of PM_{2.5} total mass and specified PM_{2.5} (NO₃, NH₄, OM, EC, SO₄
 885 and dust).



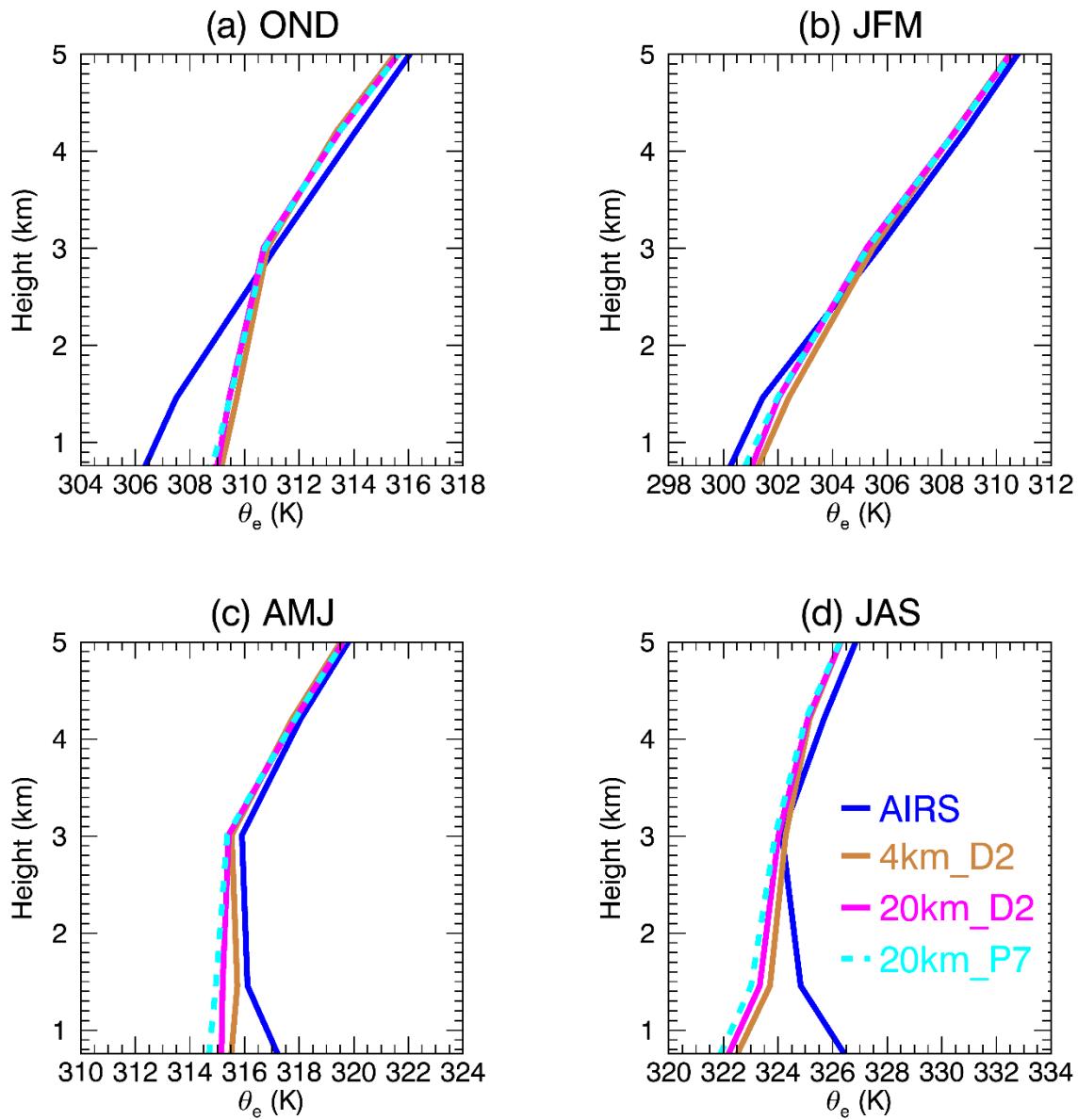
886

887 Figure 11. Spatial distribution of seasonal mean 550 nm AOD from the 4km_D2 run in WY2013.



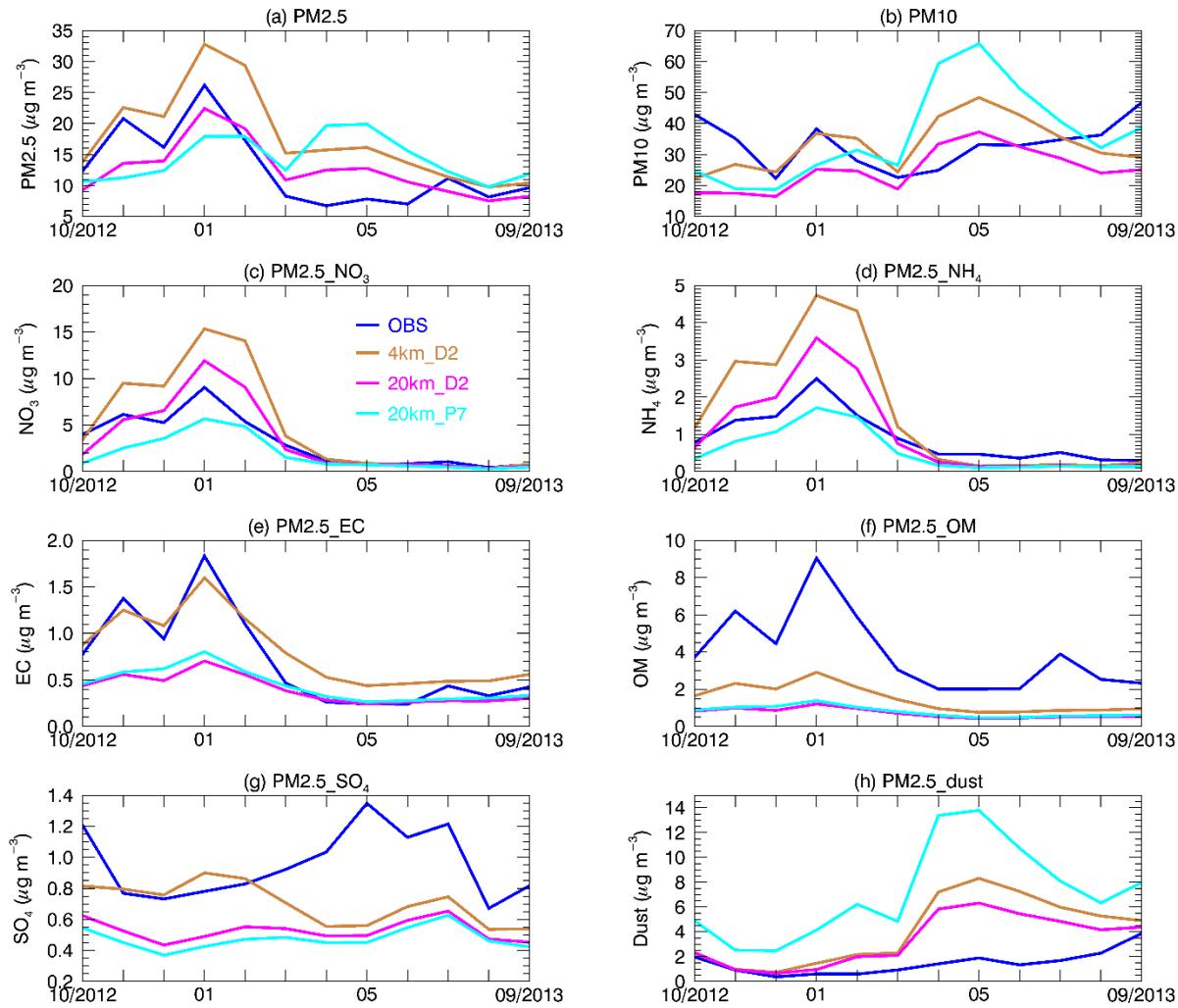
888

889 Figure 12. Vertical distribution of seasonal mean 532 nm aerosol extinction coefficient (km^{-1})
 890 from CALIOP (blue) and the WRF-Chem (4km and 4km_D2) simulations over the red box
 891 region in Fig. 1a in WY2013. Blue dashed lines (CALIOP_nodust) represent the CALIOP
 892 profiles without dust (dust and polluted dust).



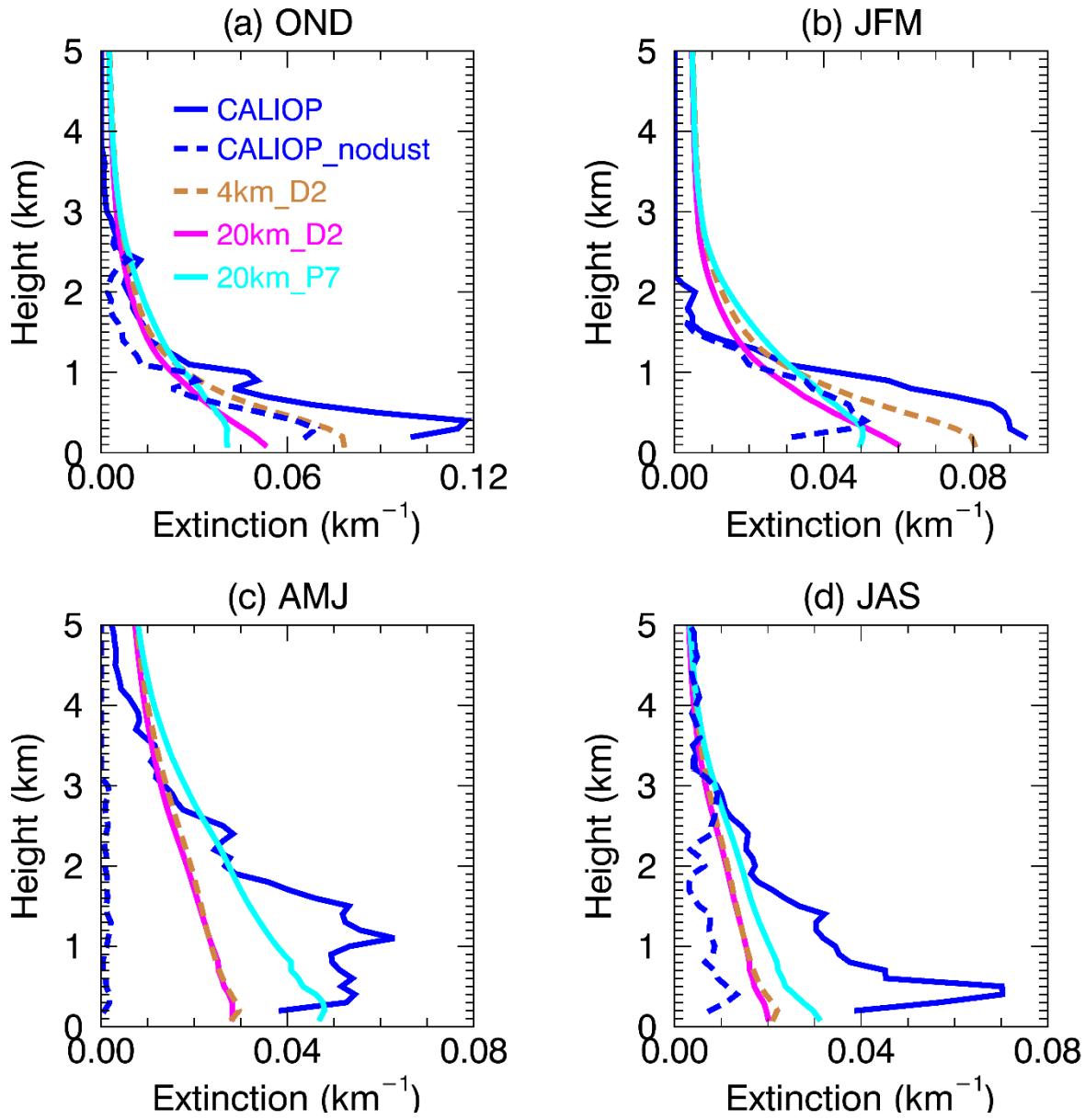
893

894 Figure 13. Vertical distribution of season mean equivalent potential temperature (θ_e ; K) from AIRS
 895 and the WRF-Chem (4km_D2, 20km_D2 and 20km_P7) simulations over the red box region in
 896 Fig. 1a in WY2013. The 4km run (not shown) is similar to the 4km_D2 run.



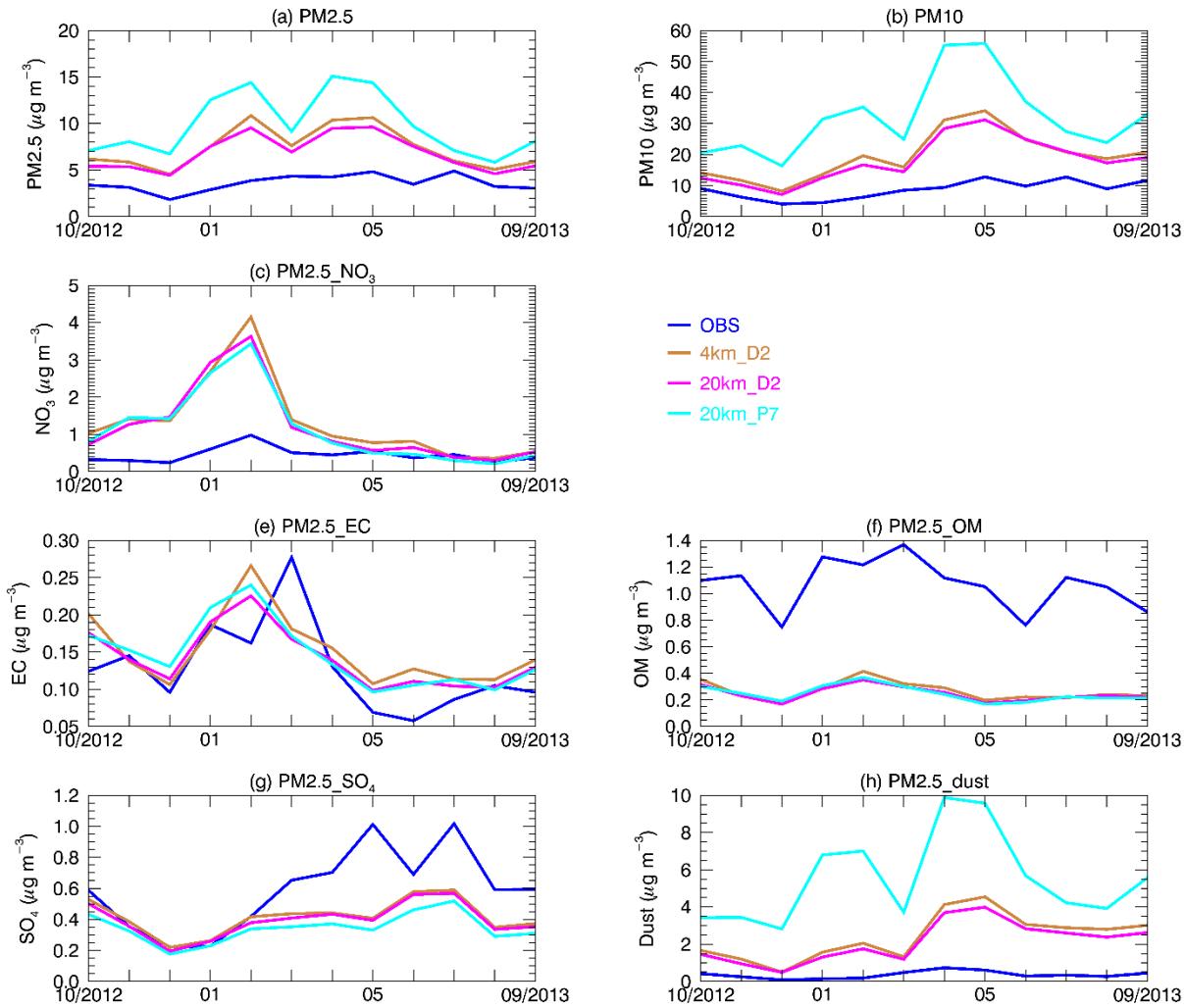
897

898 Figure 14. Aerosol mass ($\mu\text{g m}^{-3}$) for different species from OBS, the 4km_D2, 20km_D2 and
 899 20km_P7 simulations at Fresno, CA. NH₄ observations are from EPA; other observations are from
 900 IMPROVE. PM_{2.5}_NO₃ represents NO₃ with diameter $\leq 2.5 \mu\text{m}$. Similar definition for NH₄, EC,
 901 OM, SO₄ and dust in the figures.



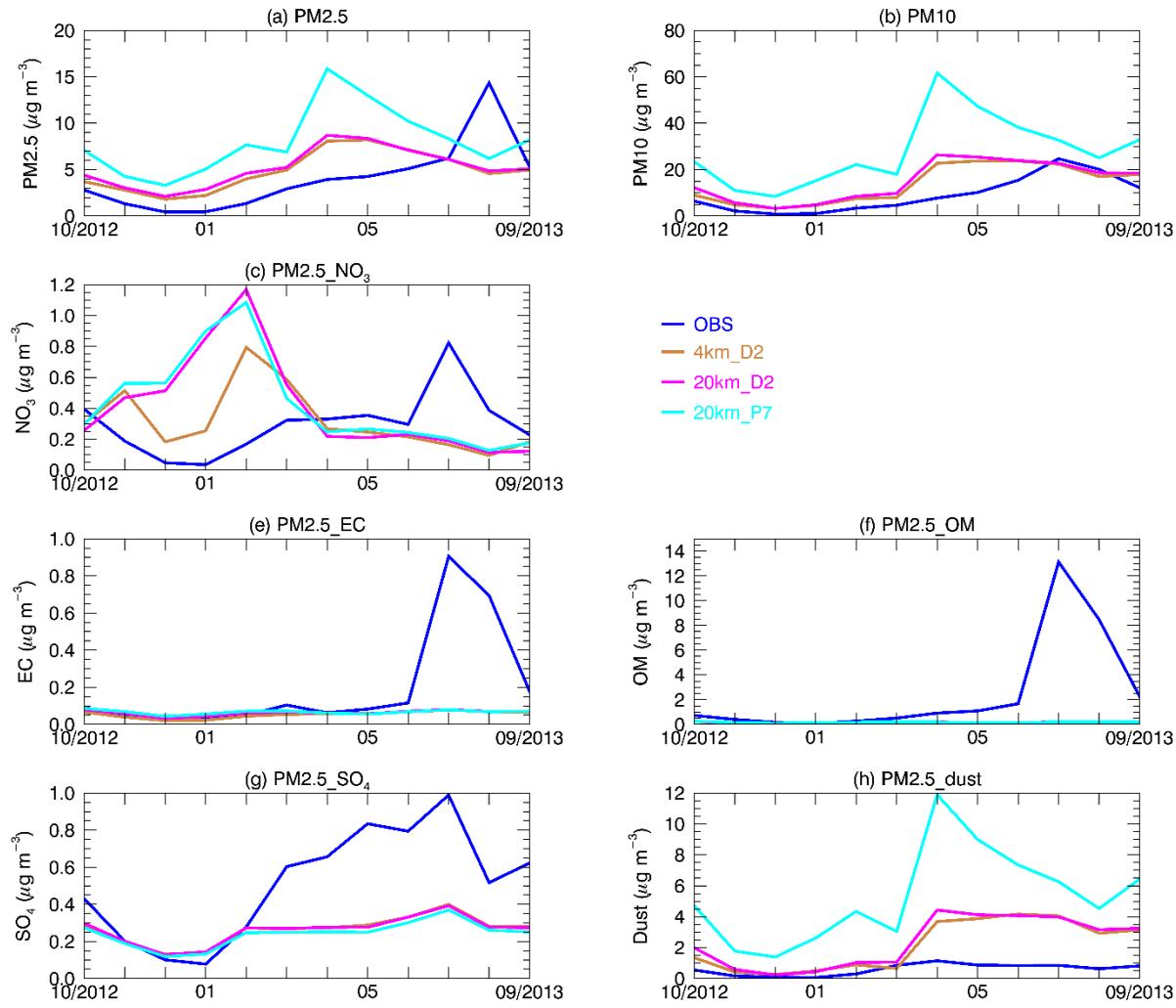
902

903 Figure 15. Vertical distribution of seasonal mean 532 nm aerosol extinction coefficient (km^{-1})
 904 from CALIOP, CALIOP_nodust, and the WRF-Chem (4km_D2, 20km_D2 and 20km_P7)
 905 simulations over the red box region in Fig. 1a in WY2013.



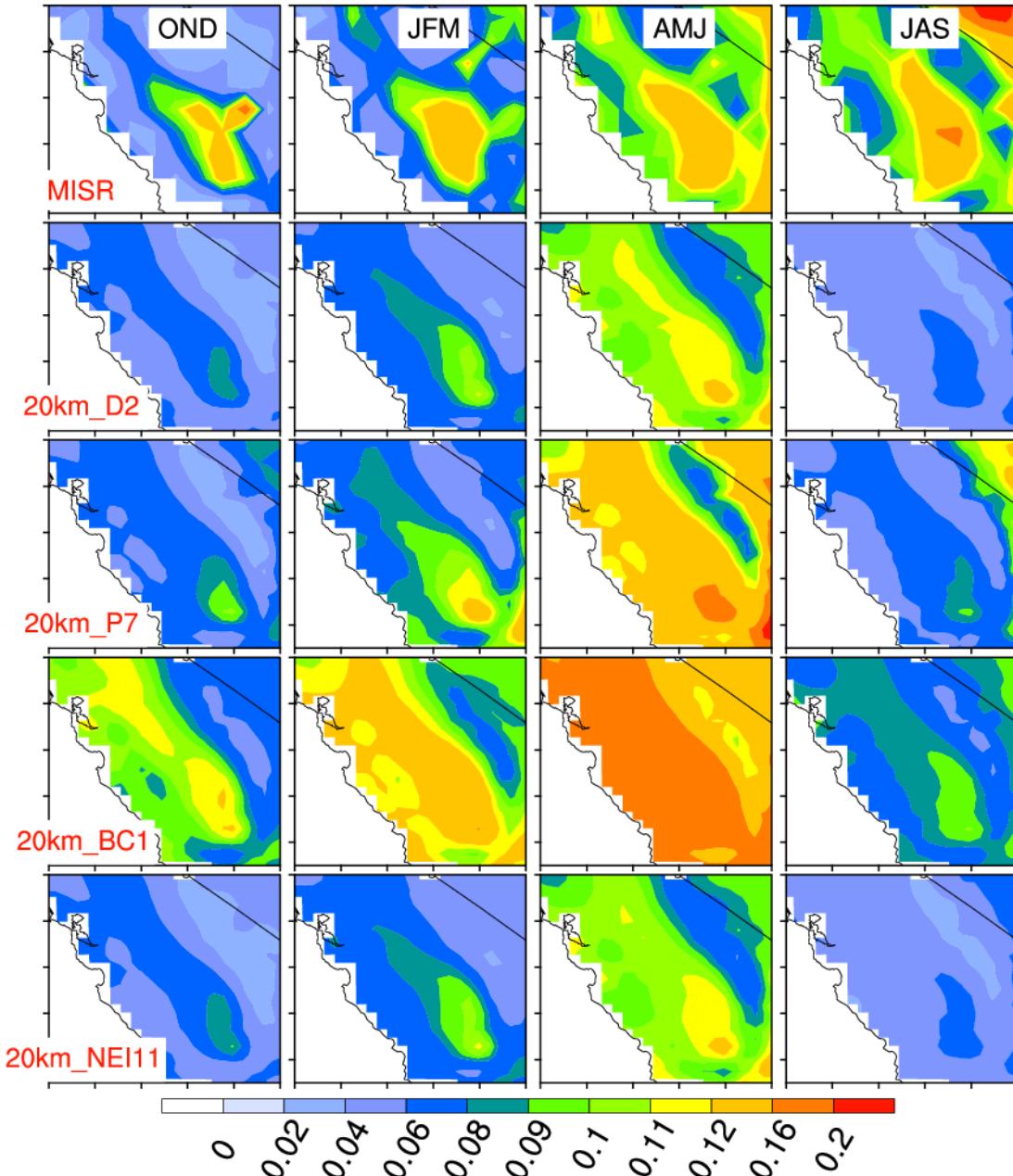
906

907 Figure 16. Aerosol mass ($\mu\text{g m}^{-3}$) for different species from IMPROVE (OBS), the 4km_D2,
 908 20km_D2 and 20km_P7 simulations at Pinnacles, CA.



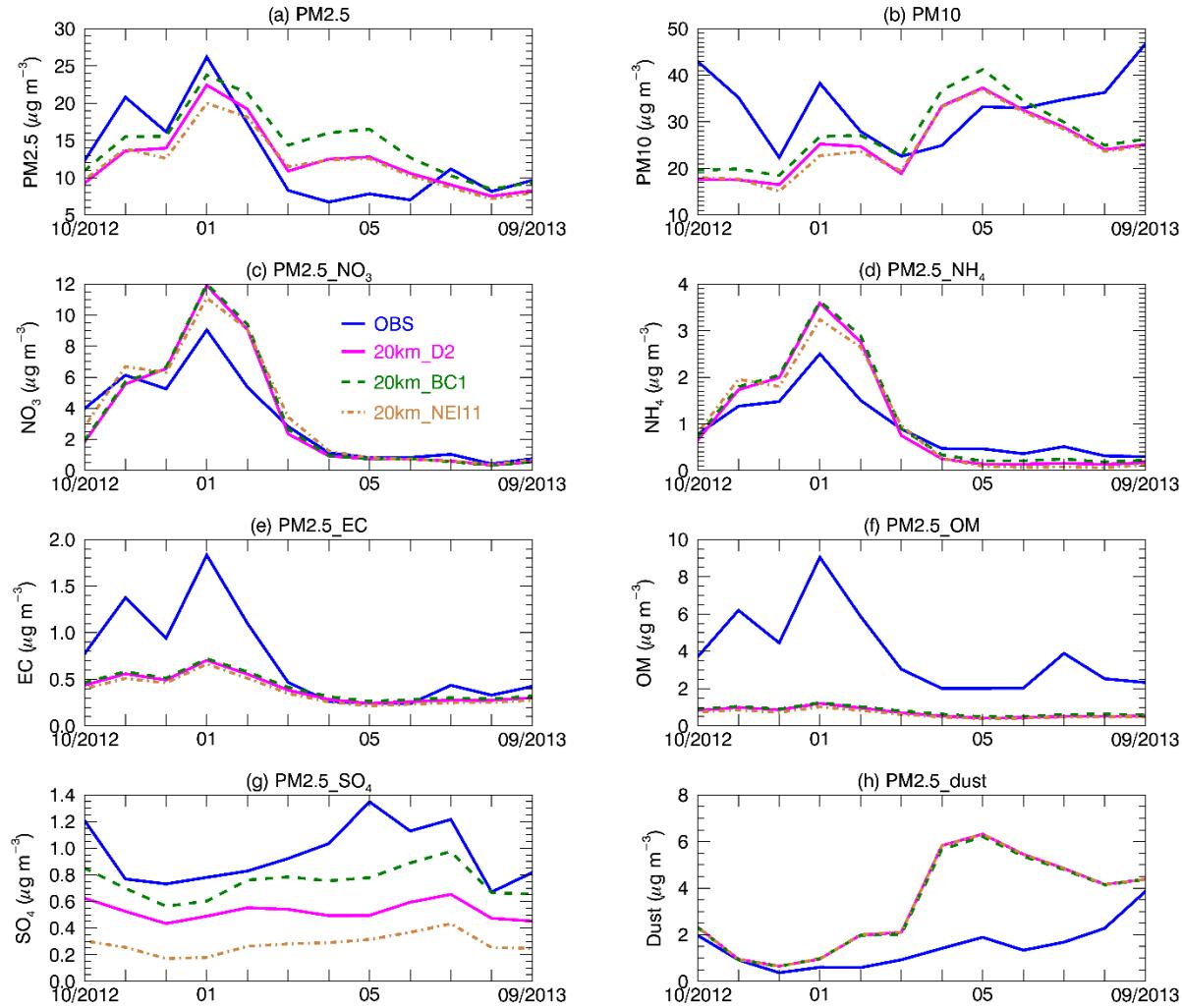
909

910 Figure 17. Aerosol mass ($\mu\text{g m}^{-3}$) for different species from IMPROVE (OBS), the 4km_D2,
 911 20km_D2 and 20km_P7 simulations at Kaiser, CA.



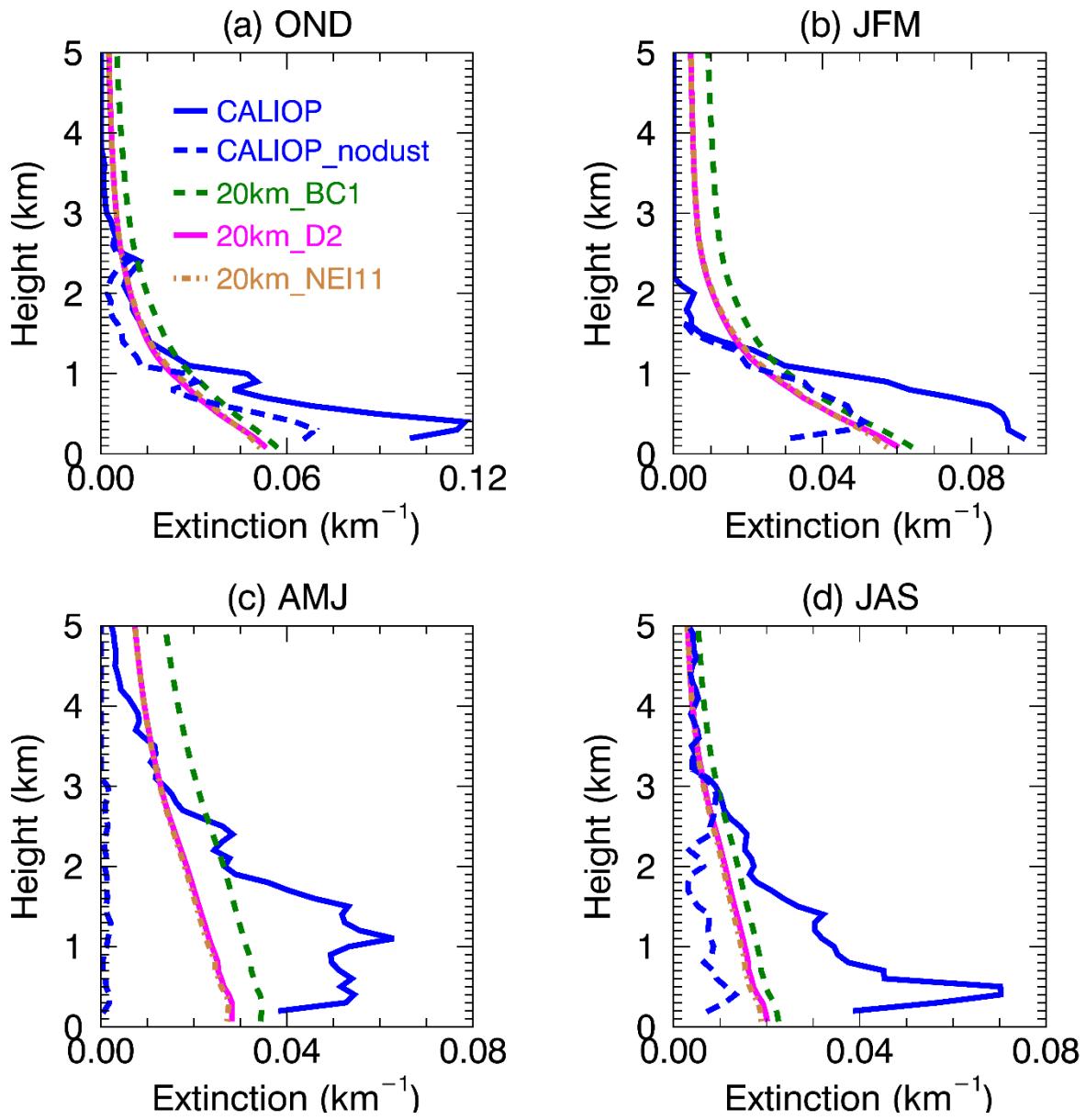
912

913 Supplementary Figure 1. Spatial distribution of seasonal mean 550 nm AOD from MISR and the
 914 WRF-Chem (20km_D2, 20km_P7, 20km_BC1 and 20km_NEI11) simulations in WY2013. OND:
 915 October-November-December; JFM: January-February-March; AMJ: April-May-June; JAS: July-
 916 August-September. The 20km_BC1 run is the same as the 20km_D2 run except that chemical
 917 boundary conditions use MOZART-4 original data. The 20km_NEI11 run is the same as the
 918 20km_D2 run except with NEI11 anthropogenic emissions.



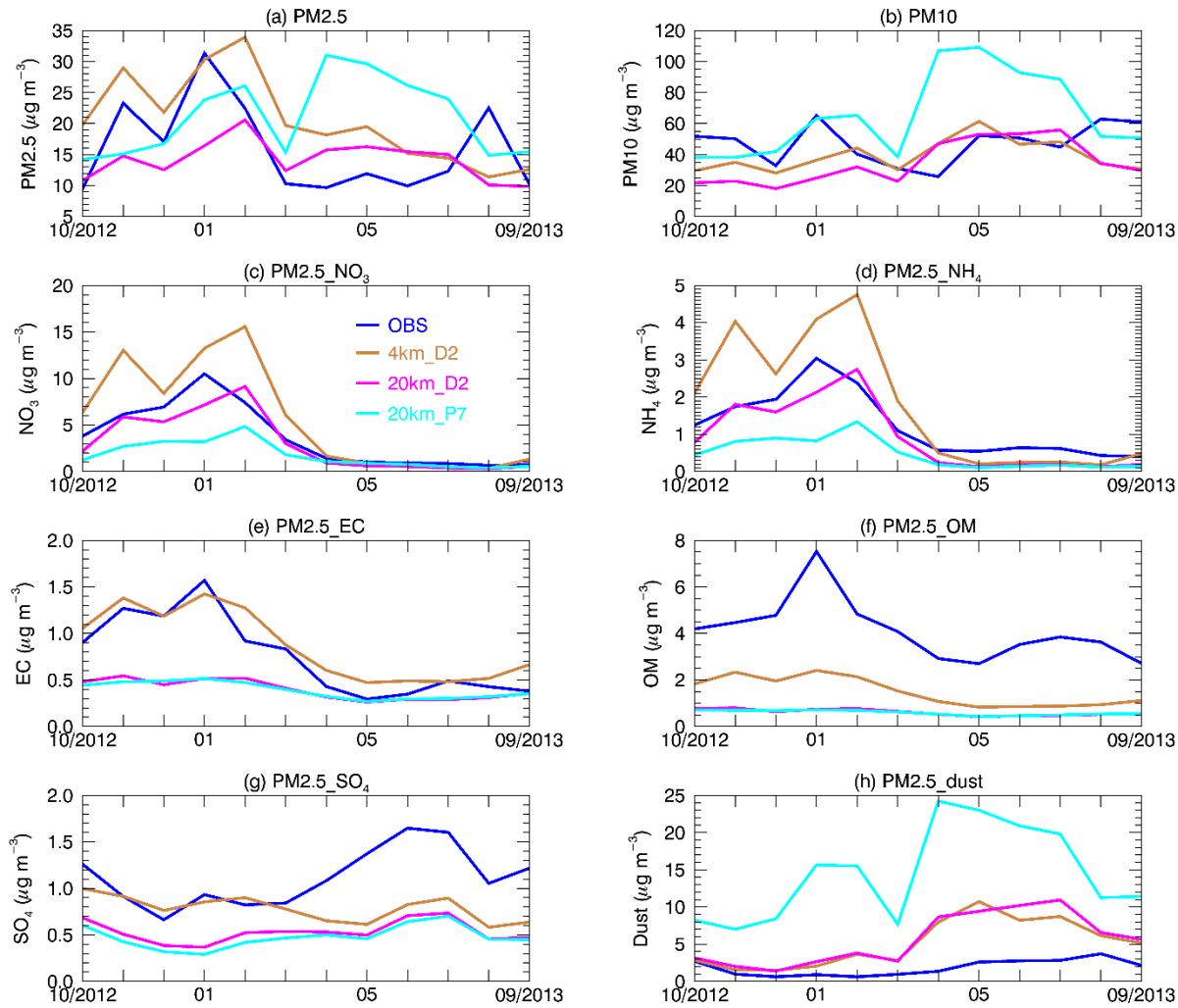
919

920 Supplementary Figure 2. Aerosol mass ($\mu\text{g m}^{-3}$) for different species from OBS, the 20km_D2,
 921 20km_BC1 and 20km_NEI11 simulations at Fresno, CA. NH₄ observations are from EPA; other
 922 observations are from IMPROVE. PM_{2.5}_NO₃ represents NO₃ with diameter $\leq 2.5 \mu\text{m}$. Similar
 923 definition for NH₄, EC, OM, SO₄ and dust in the figures.



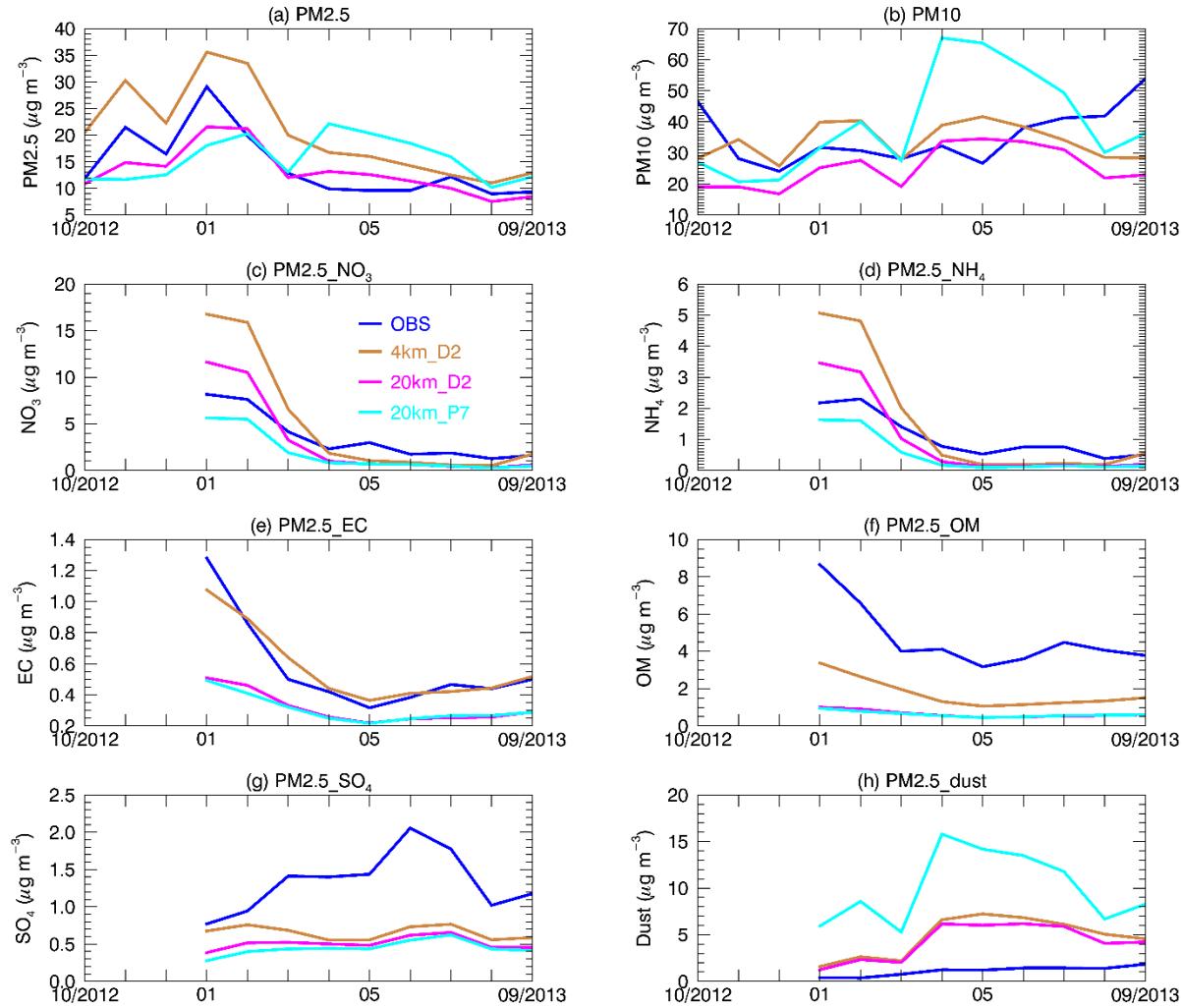
924

925 Supplementary Figure 3. Vertical distribution of seasonal mean 532 nm aerosol extinction
 926 coefficient (km^{-1}) from CALIOP, CALIOP_nodust, and the WRF-Chem (20km_D2, 20km_BC1
 927 and 20km_NEI11) simulations over the red box region in Fig. 1a in WY2013.



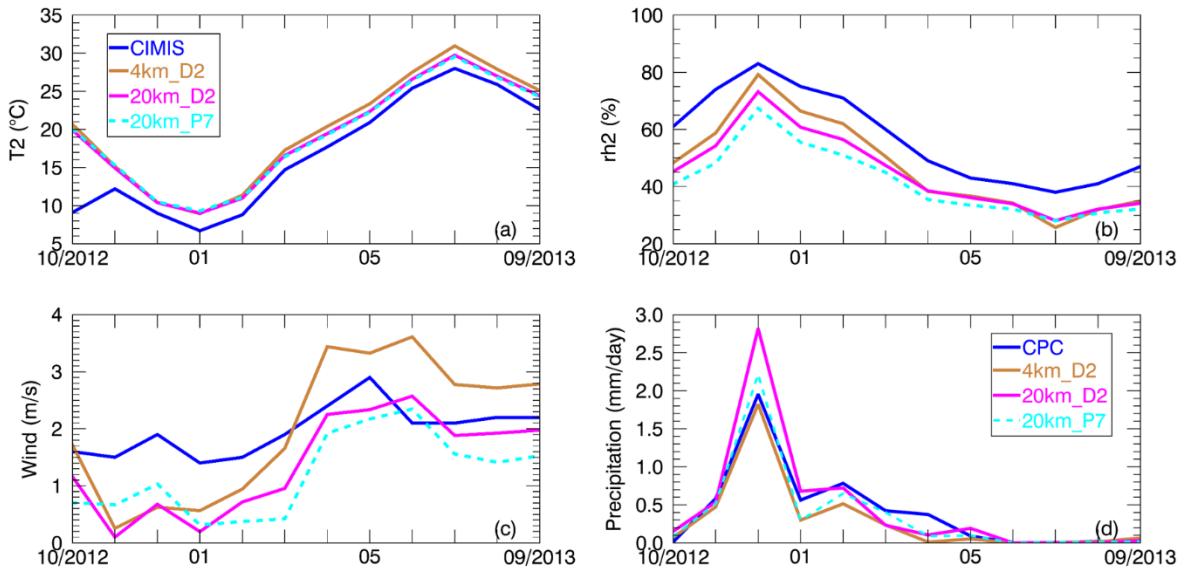
928

929 Supplementary Figure 4. Aerosol mass ($\mu\text{g m}^{-3}$) for different species from EPA CSN (OBS), the
 930 4km_D2, 20km_D2 and 20km_P7 simulations at Bakersfield, CA. PM_{2.5}_NO₃ represents NO₃
 931 with diameter $\leq 2.5 \mu\text{m}$. Similar definition for SO₄, EC, OM, NH₄ and dust in the figures.



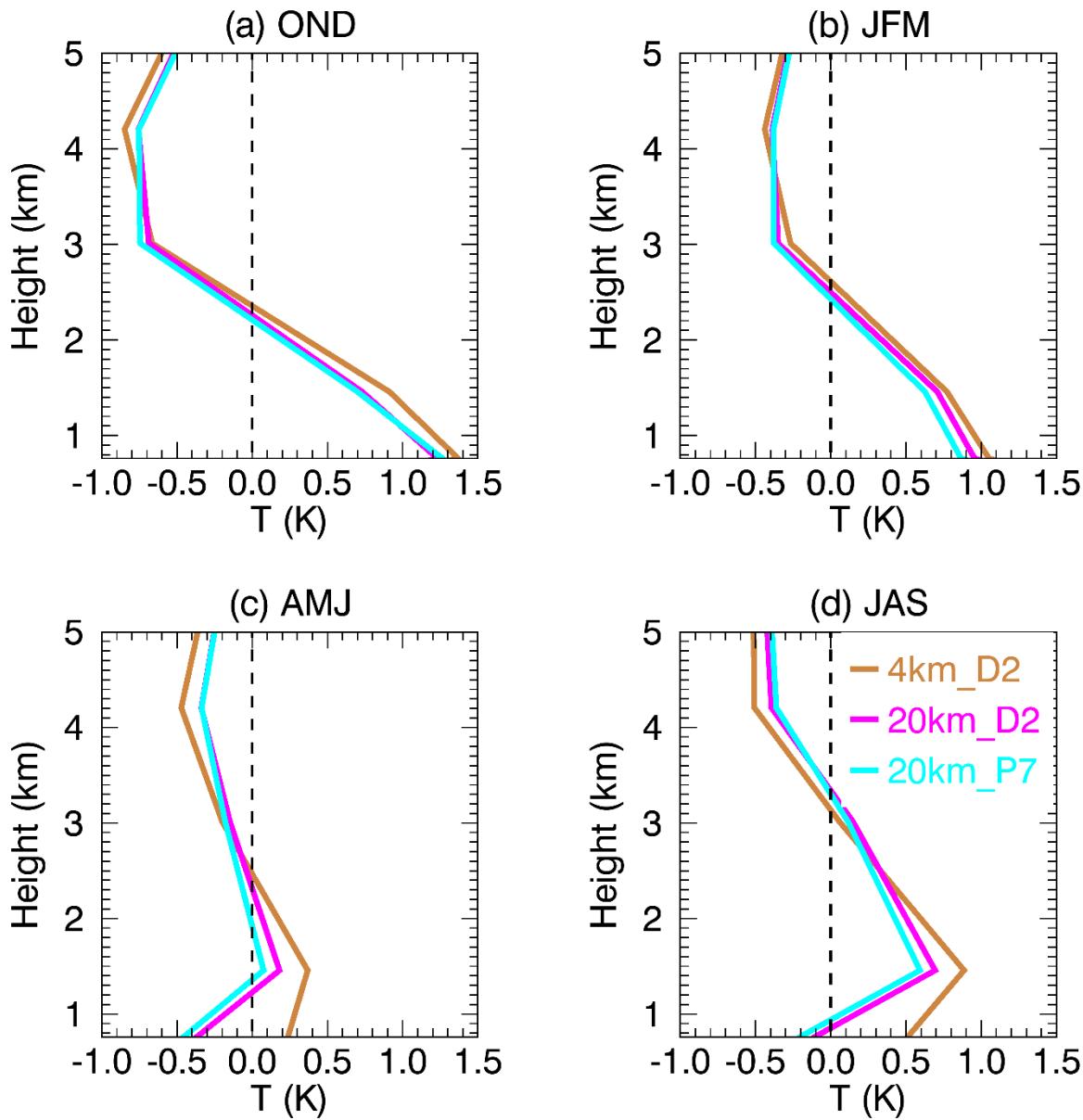
932

933 Supplementary Figure 5. Aerosol mass ($\mu\text{g m}^{-3}$) for different species from EPA CSN (OBS), the
 934 4km_D2, 20km_D2 and 20km_P7 simulations at Modesto, CA.



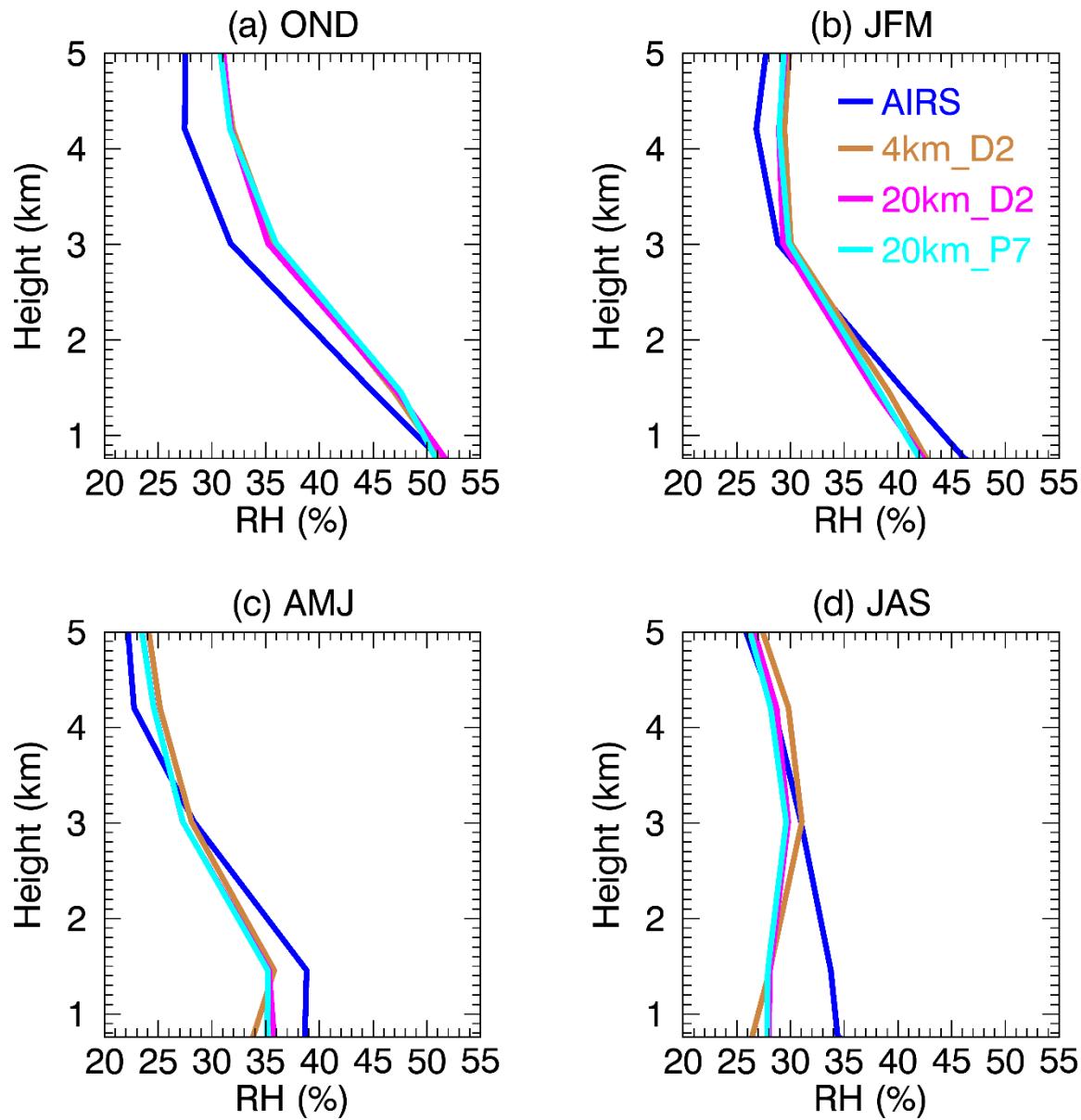
935

936 Supplementary Figure 6. Monthly mean of (a) 2-m temperature ($^{\circ}\text{C}$); (b) 2-m relative humidity
 937 (%) ; (c) 10-m wind speed (m/s); (d) precipitation (mm/day) at Fresno, CA. The 20km (not shown)
 938 run is similar to the 20km_D2 run while the 4km (not shown) run is similar to the 4km_D2 run.



939

940 Supplementary Figure 7. Vertical profile of seasonal mean temperature (K) bias in the WRF-Chem
 941 simulations comparing to AIRS. The 20km run (not shown) is similar to the 20km_D2 run while
 942 the 4km run (not shown) is similar to the 4km_D2 run.



943

944 Supplementary Figure 8. Vertical profile of seasonal mean relative humidity (%) in the WRF-Chem
 945 simulations comparing to AIRS. The 20km run (not shown) is similar to the 20km_D2 run while
 946 the 4km run (not shown) is similar to the 4km_D2 run.