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Reviewer	1	
Comment3	
	
In section 2.3.3: Why was a 
Gaussian plume model used 
for the middle-distance 
analysis when NAME LPDM 
particle trajectories were 
available for Haddenham 
Church (and were used in the 
landscape analysis)?  

 

The NAME model can 
calculate concentrations as 
well so I guess the two 
methods could have been 
used and cross-compared.  
However, given the short 
distance from the landfill to 
the monitoring station and the 
availability of observed 
meteorology it was decided 
that the Gaussian Plume 
model would be better suited 
for our purposes. 
 

The following was added at 
P6 L2: “The particle 
trajectories were calculated in 
the NAME model and could 
have been used the calculate 
emissions, however given the 
short distance from the 
landfill to the monitoring 
station and the availability of 
observed meteorology it was 
decided that a Gaussian 
Plume model would be better 
suited for our purposes.” 

	
Comment	4	
	
Is auto-correlation of error 
accounted for in the 
uncertainty analyses? Can the 
uncertainties be evaluated 
somehow (reduced chi-square 
statistic, cross-validation)?  

 

Uncertainty correlation is not 
considered in InTEM, errors 
are considered independent of 
each other. This is a 
weakness of the setup 
employed and further analysis 
is needed using other cost 
functions can help with this 
(i.e. the Bayesian cost 
function). 

Added at P7 L30: 
“Uncertainty correlation was 
not considered in the 
modelling, errors are 
considered independent of 
each other. This is a 
weaknesses and further 
analysis is needed using other 
cost functions (e.g. the 
Bayesian cost function).” 

	
Comment	P9	L14	
	
Have you removed the 
hyphen as requested for 
"eight-time series"? I agree 
with the reviewer, this should 
read "eight timeseries". 

Changes as suggested at P9 
L27. 

P9 L27: 
“eight-time series” changed 
to "eight timeseries" 

	
Reviewer	2		
Comment	2	
	
P6, L9-10: “The standard 
deviation of the lateral (σy, 
m) and vertical (σz, m) 

The values used can be found 
in the Supplementary 
Material Section 1. 

Text added at P6 L13: 



mixing ratio distribution are 
calculated from the stability 
class of the air (Pasquill, 
1974).” So what are the 
values for the standard 
deviation used in this paper?  

 

“the	values	used	in	our	
analyses	are	presented	in	
Supplementary	Material	
Section	1	(Pasquill,	1974).” 

	
Comment	3	
	
P7, L19: “This allows for any 
potential bias due to highly 
uncertain observations to be 
accounted for.” I don’t see 
how the bias would be 
accounted for.  

 

High methane concentration 
values seen at Haddenham 
are usually short lived and 
appear as peaks lasting only a 
few hours (max). They 
usually occur at night time 
and, as the isotopic analysis 
shows, probably come from a 
landfill, which is an 
intermittent of methane. 
These are therefore more 
uncertain. The values would 
have a relatively high cost 
score at these times. So, by 
including the hourly SD into 
the uncertainty calculation 
this helps to de-weight the 
large concentrations, which 
have higher uncertainty, from 
increasing the overall cost 
score.   

Text added at P7 L22: 
“High CH4 concentration 
values seen at Haddenham 
are usually short lived and 
only appear as peaks lasting a 
maximum of only a few 
hours. These usually occur at 
night time and, as the isotopic 
analysis shows, probably 
come from a landfill, which is 
an intermittent of CH4. These 
are therefore more uncertain. 
The values would have a 
relatively high cost score at 
these times. So, including an 
hourly standard deviation into 
the uncertainty calculation 
helps to de-weight the large 
concentrations, which have 
higher uncertainty, from 
increasing the overall cost 
score.” 

	
Comment	4	
P9, L14-15: “A statistical 
filtering technique separated 
methane mixing ratios at each 
site into. . .” What is this 
statistical filtering?  

 

See comment above.  A new paragraph is included 
(P9 L12) to make the link to 
the Connors et al paper, Sarah 
Connors’ thesis and the new 
information in the 
supplementary material 
clearer. 
“The results presented here 
are taken from a study 
developing a method to 
estimate regional CH4 



emissions in East Anglia 
(Connors et al., in prep.). 
More details on the 
measurements sites, the 
inversion set-up used for 
InTEM, the diagnostics used 
and the emission uncertainties 
can be found there and in 
Connors (2015). The main 
points for the purposes of this 
paper are summarised below 
and in the Supplementary 
Material Section 2.” 

	
Comment	5	
P9, L16: Why “18th 
percentile”? Why not 10th or 
25th?  

 

This percentile is used as a 
result of sensitivity analysis 
showing that the resulting 
InTEM inversion results 
produced the lowest cost 
scores. Therefore, the 
emissions produced are closer 
to the measured observations 
than any of the other 
percentiles tested. We tested 
from the 5th to the 45th. 
Sensitivity analysis shows 
this baseline produces 
emission results with 
consistently stable emissions 
with the lowest cost score of 
all baselines tested. 
 

Text added at P9 L29: 
“This percentile was chosen 
as a result of a sensitivity 
analysis which showed that 
InTEM inversion results 
using the 18th percentile 
produced the lowest cost 
scores, i.e. the calculated 
emissions are closer to the 
measured observations 
compared to any of the other 
percentiles tested (percentiles 
from the 5th to the 45th were 
tested).” 

	
- Both reviewers suggest 
OSSEs to strengthen support 
for the landscape scale 
approach. Are the authors 
sure they do not wish to add 
this at this stage?  

- Following on from this: In 
the current state, I think you 
need to remove the last 
sentence of the abstract. Both 
reviewers agree you cannot 

Unfortunately, due to a lack 
of resources we are unable to 
perform OSSEs.  As 
suggested the last sentence of 
the abstract has been 
removed. 
 

 



"suggest the landscape 
inverse modelling approach 
described in this paper can be 
used to identify point-sources 
within an emission 
landscape" without additional 
support. 

 
	
My issue is that the authors 
included a plot that shows 
troubling results. This is the 
plot under “Supplementary 
Material Section 2: 
Scatterplot of posterior 
enhancements vs. observed 
enhancements”.  
  
First: these are not 
enhancements, they are 
concentrations. In the inverse 
modeling literature an 
enhancement is the 
concentration of the 
constituent at the observation 
site minus the background. In 
my review I asked for a plot 
of modeled vs observed 
enhancements in order to 
separate the variability in the 
background from the 
variability in the influence of 
emissions. When one plots 
modeled vs. observed 
concentrations, a well 
modeled background will 
hide problems with the model 
of the emissions.  
  
Second: the points in this plot 
are so dense that they are 
indistinguishable. There are 
plotting strategies that can 
ameliorate this.  
  

The reviewer has raised an 
interesting point, but we 
disagree as to its importance. 
Before going into detail, we 
think there are two options: 
(a) remove the NAME 
InTEM material and put it in 
a later paper which describes 
the method in more detail; 
and (b) leaving the material in 
with more explanation and 
context as to the message we 
are trying to make with that 
material. We strongly prefer 
the latter as there is a real 
need to start addressing the 
issue of the consistency of 
GHG emission estimates 
across scales which is 
currently lacking. 
  
The first point we would like 
to clarify is that the 
calculation in NAME InTEM 
does subtract out a baseline 
before the emissions are 
estimated. The procedure for 
baseline estimation is 
summarised in section 3.2.2 
with more information given 
in Sarah Connors’s thesis 
(now referenced) as well as in 
the Connors et al paper (in 
prep). In the inversion, 
NAME InTEM only 
calculates enhancements. The 

Text added to manuscript 
before P13 L17, i.e. as a new 
penultimate paragraph: 
“Even though the annual 
emission estimate calculated 
using the InTEM inversion 
model is close to that 
calculated by the Gaussian 
Plume model, the uncertainty 
associated with the InTEM 
inversion estimate is large.  
Comparison of the 
measurements with the CH4 
time series produced by 
NAME InTEM 
(Supplementary Figures 1 and 
2) shows the model to 
consistently underestimate 
the larger and sharper 
observed peaks.  This arises 
as a result of the smaller 
weighting given to the peaks 
in the observed atmospheric 
concentrations in the NAME 
InTEM analysis (which uses 
all data) than in the WindTrax 
and Gaussian plume analyses 
which focus on these peaks. 
In particular, high peaks are 
underweighted because they 
are small scale features not 
easily delineated in the 
regional inversions and the 
boundary layer is harder to 
model accurately at night 
when the highest peaks tend 



Third, and most importantly, 
I think this plot indicates a 
problem in the model. There 
is a clear heteroscedasticity in 
the residuals. This is likely 
due to the fact that the 
background was not 
subtracted. The variation in 
the model and 
observed background is likely 
falling along the 1-1 line, and 
the enhancements are likely 
falling off of it, and are likely 
heteroscedastic. 
  
A plot of modeled vs 
observed enhancements is 
generally considered the most 
basic diagnostic plot for this 
type of analysis. I would 
actually like to see this type 
of plot for every site and 
every model. It isn’t clear for 
which model this plot is 
showing.  

baseline values have been 
added back in to that figure. 
  
The second point we are 
trying to make is that we are 
not trying to hide anything. 
While the data points are 
dense in that figure, they are 
much clearer in the 
accompanying time series 
showing the measurements 
and the calculated values. We 
have changed the order of 
those two figures in order to 
make the point more clearly. 
The figures could be redrawn, 
but it would take a few 
weeks. 
  
Thirdly, we are not sure why 
this behaviour should be 
expected for a large-scale 
inversion model attempting to 
estimate point source 
emissions: 

(a)     The different 
models give different 
weightings to the 
large peaks observed 
in the concentrations. 
The emissions 
calculated by 
WindTrax and the 
Gaussian Plume 
model use those peaks 
as their major source 
of information. The 
NAME InTEM 
approach, on the other 
hand, tends to give 
them low statistical 
weighting because (i) 
it is hard to model 
such small-scale 
signals in the regional 
inversion and (ii) the 

to occur due to their 
containment within the 
shallow nocturnal boundary 
layer. The heteroscedasticity 
seen in Supplementary Figure 
2 is therefore to be expected 
as NAME InTEM reproduces 
the lower values better than 
the high ones. 
The inherent challenges in 
inversion modelling, such as 
assuming a constant monthly 
emission (Supplementary 
Material Section 2 Figure 
SM2.3) and the atmospheric 
variability at night which is 
poorly resolved by the model, 
result in the emission 
estimates calculated in this 
research having an 
uncertainty of ± 91%.  This 
research is presented as an 
example of inversion 
modelling: a work in progress 
and, while the emission 
estimates are currently 
uncertain, the location of the 
emissions are well 
represented.” 



events occur most 
strongly at night when 
the meteorological 
description is poorer. 

(b)     There is a large 
variability in 
emissions (as shown 
in several Figures) 
while NAME InTEM 
is producing an annual 
estimate.  Further, the 
emissions are not 
normally distributed 
(see new Figure in 
Supplementary info). 

  
The discrepancies shown in 
the figure are entirely 
consistent with these factors 
as the ‘outliers’ are nearly all 
occasions when the 
measurements are higher than 
the modelled values. The 
point of including the 
analysis in the paper (and it is 
not a major part) is to 
examine the consistency 
between the 3 approaches. 
We are not trying to 
exaggerate its importance, but 
we are trying to highlight its 
potential for (a) identification 
of point source emissions, 
and (b), in time, their 
quantification. On-going 
work is underway to improve 
baseline estimation and error 
analysis. 
  
Finally, similar anomaly plots 
cannot be straightforwardly 
produced for the WindTrax 
and Gaussian Plume 
approaches because they 
solve for the emissions values 
which match the 



observations. (In terms of the 
3rd point above, they use all 
the information contained in 
each peak studied.) We are 
therefore unclear as to why 
putting these back into 
concentrations is meaningful. 
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Abstract. High methane (CH4) mixing ratios (up to 4 ppm) have occurred sporadically at our measurement site in 

Haddenham, Cambridgeshire since July 2012. Isotopic measurements and back trajectories show that the source is the 

Waterbeach Waste management park 7 km SE of Haddenham. To investigate this further, measurements were made 

on June 30th and July 1st 2015 at other locations nearer to the source. Landfill emissions have been estimated using 

three different approaches at different scales; near-source using the WindTrax inversion dispersion model, middle-

distance using a Gaussian plume model and at the landscape scale using the NAME InTEM inversion. The emission 

estimates derived using the WindTrax and Gaussian plume approaches agree well for the period of intense 

observations. Applying the Gaussian plume approach to all periods of elevated measurements seen at Haddenham 

produces year-round and monthly landfill emission estimates with an estimated annual emission of 11.6 Gg CH4 yr-1. 

The monthly emission estimates are highest in winter (2160 kg hr-1 in February) and lowest in summer (620 kg hr-1 in 

July). These data identify the effects of environmental conditions on landfill CH4 production and highlight the 

importance of year-round measurement to capture seasonal variability in CH4 emission.  

1 Introduction 

Atmospheric methane (CH4) gas is both a greenhouse gas and partially responsible for modulating tropospheric ozone 

production and loss. As such, changes in atmospheric CH4 mixing ratios can cause significant shifts in local and 

regional atmospheric chemistry and global climate. Current research suggests the most significant CH4 sources are 

natural wetlands (top-down, 142–208 Tg CH4 yr–1; and bottom-up, 177–284 Tg CH4 yr–1) and agriculture and waste 

emissions (top-down, 180–241 Tg CH4 yr–1; and bottom-up, 187–224 Tg CH4 yr–1), with further contributions from 

fugitive emission due to the use of fossil fuels, natural emissions and biomass burning (IPCC., 2013; Kirschke et al., 

2013). Anthropogenic sources contribute ~60% of modern-day emissions (Saunois et al. 2016). Included in these 

estimates, decomposition of organic matter at landfills is estimated to comprise between 3% and 19% of global 

anthropogenic emissions (Chen & Prinn, 2006).  Given this large and important uncertainty, the aim of this study is 

to estimate CH4 mass flux from an operational landfill in Cambridgeshire using a variety of methods. 



Approximately 60% of gas emitted from typical landfills is CH4, 40% is carbon dioxide and trace amounts are given 

off as nitrogen, oxygen and water vapour (Hegde et al., 2003).  At the surface, anoxic microbial processes form CH4, 

whereas oxidation forms both carbon dioxide and water.  Deeper below the surface anaerobic processes dictate gas 

formation due to the oxygen-poor environment.  Simple organic acids (e.g. carboxylic acid), carbon dioxide (CO2) 

and hydrogen (H2) are formed from the hydrolysis of organic matter. Methanogenic bacteria then convert carboxylic 

acid (RCOOH) to CH4 which can diffuse through the refuse to be emitted to the atmosphere (Xu et al., 2012).  Riddick 

et al. (2016) suggest that instead of heterogeneous emission across the landscape landfill, CH4 is emitted in discrete 

hot-spots which may be caused by variability in the materials that can degrade to form CH4 throughout the landfill 

and the nature of physical transmission pathways to the surface.  Modern landfills in the UK have extensive 

reticulations of gas pipes to extract methane, and fractures or leaks in the pipes create potent point sources of methane 

to escape past the soil oxidation barrier.  

The emitted CH4 can be identified by measuring its δ13C isotopic signature. Typically, biogenic methane has a δ13C 

isotopic signature of between -55 and -70‰ (Dlugokencky et al., 2011). However, landfill methane emissions, which 

comprise the residual gas after the methane flux has passed through the oxidation barrier in the soil cover, tend to fall 

at the isotopically heavier end of this range as oxidative methanotrophy is selective for the lighter carbon.  Typically, 

the δ13C isotopic signature for landfill CH4 in the south east of the UK has been measured at -58 ± 3‰ (Zazzeri et al., 

2015). 

Although landfill interiors are well-isolated from day-to-day weather, and even seasonality, emissions from the landfill 

surface can be strongly affected by environmental conditions. Xu et al. (2012) and Riddick et al. (2016) observed 

decreasing landfill CH4 emission as surface atmospheric pressure increased at landfill sites in Lincoln, USA and 

Ipswich, UK, respectively. Emission of landfill CH4 may be suppressed as atmospheric pressure increases; conversely, 

the passage of depressions may pneumatically draw gas out from the landfill.  Landfill CH4 emissions decrease with 

increased ground temperature in dry soil conditions (Scheutz et al., 2004; Riddick et al., 2016). This is consistent with 

the hypothesis that bacterial methanotrophic oxidation of methane in the aerobic cover soil has an Arrhenius 

relationship with temperature, increasing exponentially with ground temperature between 2 and 25 °C (Maurice & 

Lagerkvist, 2004; Scheutz et al., 2004).  

A variety of methods have been used to estimate CH4 emission estimates from landfill sites using on-site and near-

site measurements. These include chamber methods, tracer plume and eddy covariance. Tracer release (TR) methods 

have been used to good effect, where pollutant mixing ratios are estimated using the co-release of a tracer at a known 

rate.  However, this methodology needs the spatial distribution of tracer emissions to be configured so that it 

approximately matches the landfill CH4 emissions (Mønster et al., 2014), presenting logistical challenges when 

operating on active landfill sites. Landfill CH4 emissions have been measured using eddy covariance techniques, which 

use the covariance between vertical wind speed and gas mixing ratio to estimate emissions at a high sampling rate (Xu 

et al., 2012).  However, the assumption of homogeneity by eddy covariance calculations is invalidated by the 

heterogeneous nature of landfill CH4 emissions. Furthermore, these estimates strictly apply to the area and time where 

the measurements are made. Estimates produced in a heterogeneous environment such as a landfill can thus be hard 

to interpret or extrapolate to the whole landfill and to other times of year. 



Riddick et al. (2016) treated a landfill site in Suffolk, UK as a point source and estimated a mean CH4 emission of 709 

µg m-2 s-1 using CH4 concentration data, collected 800 m from the landfill, and meteorological data in an inverse 

dispersion model.  At a farther distance, 2 km, Hensen and Scharff (2001) used a Gaussian plume model to estimate 

emissions of between 66 and 292 µg m-2 s-1 from three landfill sites near Amsterdam in the Netherlands.  To our 

knowledge no research has been conducted on using a Gaussian plume approach at more than 2 km.  Also, we a 

believe that no other study has attempted to use an inversion model to identify emission hotspots within a landscape 

In this study we use methane measurements made at Haddenham, Cambridgeshire in which we record intermittently 

high values of up to 4 ppm when the wind is from the southeast. Methane emissions from the Waterbeach Landfill 

site, 7 km to the SE of our measurement site at Haddenham, are a likely source of these enhancements.  To aid 

identification of this CH4 source, we collected air samples during a south-easterly air flow and measured the relative 

abundance of δ13C isotopes. These are compared with additional measurements made nearer the landfill. Short time 

series of CH4 measurements taken near the landfill are used to estimate emissions using the inverse dispersion model 

WindTrax (www.thunderbeachscientific.com). The emissions are compared with a Gaussian plume estimate made 

using the Haddenham data for the same period.  The Gaussian plume calculations are extended to cover the whole of 

the first two years of measurements at Haddenham in order to investigate how the emissions vary over time. Finally, 

we aim to compare the annual emission estimate found using the Gaussian model with the estimate from the NAME 

InTEM inversion model that uses two years’ CH4 measurement data from a network throughout East Anglia to 

estimate the regional annual emission. 

The measurement and modelling techniques used are described in Sect. 2. The modelling studies performed are 

described in Sect. 3. The results are then presented in Sect. 4. The paper concludes with a short discussion and the 

conclusions of the results and the broader applicability of the approach. 

2 Methods 

This paper presents methane emission estimates from a landfill made by three methods at different scales: near-source, 

middle-distance and landscape, a summary of each method is presented in Table 1.  Waterbeach Waste Management 

Park (52.302 N, 0.180 E) is used to deposit unrecyclable waste on an open active area approximately 700 m by 300 

m.  Surrounding the active area is an area of decomposing waste capped with a welded high-density polyethylene 

(HDPE) geo-membrane and covered with at least two meters of top soil.  Landfill gas is extracted from this capped 

area under suction using a network of pipes and wells and is used as fuel for the on-site electricity generators.  The 

various measurement techniques are now described in turn. 

2.1 Isotopic methane measurements 

Whole air samples were collected in 3L Teflon bags at Haddenham Church (Fig. 1). These samples were taken over 

the 11th February 2015 when the wind was from the south/south-east, i.e. from the direction of the landfill. Air samples 

were taken at Haddenham in the early morning in order to capture the elevated mixing ratio of landfill emissions 

within the nocturnal boundary layer. The carbon isotopic ratio, expressed in ‰, was measured in triplicate to high 



precision (±0.05‰) by continuous flow gas chromatography isotope ratio mass spectrometry (CF GC-IRMS) (Fisher 

et al., 2006), at Royal Holloway, University of London (RHUL).   

2.2 Near-Source 

2.2.1 Measurements – Los Gatos UGGA 

The Los Gatos Research Ultra-portable Greenhouse Gas Analyser (UGGA; www.lgrinc.com) is a laser absorption 

spectrometer that measures CH4 and CO2 concentration in air using off-axis integrated cavity output spectroscopy 

(Paul et al., 2001). The UGGA reports CO2 mixing ratio and CH4 mixing ratio every second, with a stated precision 

of < 2 ppb (1σ @ 1 Hz) over an operating range of 0.1 to 100 ppm. Calibration of the UGGA was done before and 

after deployment using low (1.93 ppm), target (2.03 ppm) and high (2.74 ppm) gases calibrated on the WMO scale. 

The UGGA was deployed on a farm road on Mitchell Hill Farm, Cottenham (52.304 N, 0.170 E) where it measured 

the mixing ratio of CH4 downwind of the landfill. The measurement site was 300 m NW of the landfill site. The inlet 

line was attached to a mast 2.5 m above the ground, protected from water incursion using an aluminium funnel and 

filtered using a 2 µm filter.  15-minute averaged background methane concentration was measured background CH4 

mixing ratios were measured using the Los Gatos UGGA downwind of the landfill site before, at 12 pm and after each 

day’s measurements.   

2.2.2 Meteorological Data 

In situ meteorological data were collected using a wireless weather station (Maplin, UK) attached to a mast at 2 m 

from the ground at the measurement site on Mitchell Hill Farm. Meteorological data were sampled and recorded at 

five-minute intervals and include: wind speed (u, m s-1), wind direction (WD, ° to North), air temperature at 2 m (Ta, 

K), relative humidity (RH, %), rain rate (R, mm hr-1) and air pressure (P, Pa).   

Micrometeorological parameters used for subsequent modelling were calculated from data collected at the same 

measurement site on Mitchell Hill Farm. Roughness height (z0, m) and Monin-Obukhov length (L, m) are calculated 

from the wind speeds measured at three heights. The roughness length is calculated as the exponential of the intercept, 

with the natural logarithm of wind measurement heights plotted against wind speeds. The Monin-Obukhov length is 

calculated (Eq. 1) from the density of air (ρ, kg m-3), the specific heat capacity of air at constant pressure (cp, J kg-1 K-

1), the absolute temperature of air at z = 0 (T0, K), the acceleration due to gravity (g, m s-1), and the sensible heat flux 

(H, W m-2). The sensible heat flux (H, W m-2) is calculated (Eq. 2) from the transfer coefficient for heat flux (CH, 

1x10-3) (Pan et al., 2003). 

  𝐿 = − $%&'()∗+

,-.
  (1) 

  𝐻 = 𝜌𝑐2𝐶𝐻 𝑇5 − 𝑇6 𝑢 (2) 

2.2.3 Model used – WindTrax Inverse Dispersion Model 

The inversion function of the WindTrax atmospheric dispersion model version 2.0 (Flesch et al., 1995) is used to infer 

the CH4 emissions from the landfill. Methane emissions are calculated using measured CH4 mixing ratios downwind, 



measured background CH4 mixing ratios upwind and the simulated ratio of CH4 mixing ratio enhancement to emission 

(Flesch et al., 2004; 2005).  WindTrax calculates the ratio of CH4 mixing ratio to emission by back-calculating the 

movement of many CH4 particles from the detector to the landfill emission area and estimating the vertical velocity 

as they leave the emission area. Following the method of Laubach et al. (2008) and Flesch et al. (2009), CH4 mixing 

ratios and meteorological data were averaged over 15 minutes to preserve real changes to CH4 emission caused by 

changing environmental or atmospheric factors.  Each 15-minute-averaged measurement is used as an input to back-

calculate the CH4 emission using 50,000 particle trajectories. 

2.3 Middle-Distance 

2.3.1 Measurements – GC-FID 

Methane mixing ratios were measured every 75 seconds from July 2012 to July 2015 at the Holy Trinity church, 

Haddenham (52.359° N, 0.148° E) since July 2012 (see Fig. 1) using a 200 series Ellutia GC-FID (www.ellutia.com). 

The site elevation is 40 metres above sea level and the inlet is on the tower, 25 m above the ground.  The GC-FID 

takes air to be assayed for CH4 mixing ratio mixed with a carrier gas which passes through a column of alumina coated 

tubing heated in an oven at 90°C. As the gases exit the column they are pyrolyzed by a hydrogen/air mixture within 

the flame ionization detector. Ions formed during the combustion are measured to indicate the mixing ratio of the gas 

species. The Ellutia GC-FID, as used here, has a detection limit of approximately 1.5 ppb, a range of 1.5 to 3 ppm and 

measures mixing ratios every 75 s. The instrument is calibrated every 30 minutes using a gas standard.  The Teflon 

inlet line is attached to the church roof 30 m above the ground and is protected from water incursion using an 

aluminium funnel and a 2 µm particle filter. 

The data are transmitted data back to the laboratory for processing. Data processing of individual chromatograms is 

done using IGOR Pro (Wavemetrics, USA) to determine peak height. Measurements from all sites are calibrated to 

the WMO (World Meteorological Office) calibration scale (Dlugokencky et al., 2005). Hourly WMO calibrated 

mixing ratios are then calculated using Openair in R. 

2.3.2 Meteorological Data 

Data were taken from UK Met Office’s Numerical Atmospheric Modelling Environment (NAME) model, as described 

later in Sect. 2.4.2. 

2.3.3 Model used – Gaussian Plume 

The Gaussian Plume (GP) model describes the mixing ratio of a gas as a function of distance downwind from a point 

source (Seinfeld and Pandis, 2006). The particle trajectories were calculated in the NAME model and could have been 

used the calculate emissions, however given the short distance from the landfill to the monitoring station and the 

availability of observed meteorology it was decided that a Gaussian Plume model would be better suited for our 

purposes. As a gas is emitted, it is entrained in the prevailing ambient air flow and disperses in the y and z directions 

(relative to a mean horizontal flow in the x direction) with time, forming a cone. The gas is considered to be well 

mixed within the volume of the cone, such that the mixing ratio of the gas as a function of distance downwind depends 



on the emission flux at source, the advective wind speed (u, m s-1), and the rate of dispersion (governed by boundary 

layer micrometeorological factors described in Sect. 2.2). The mixing ratio of the gas (Χ, µg m-3), at any point x metres 

downwind of the source, y metres laterally from the centre line of the plume, and z metres above ground level can be 

calculated (Eq. 3) using the source strength (Q, g s-1), the height of the source (hs, m) and the air stability.  The standard 

deviation of the lateral (σy, m) and vertical (σz, m) mixing ratio distribution are calculated from the stability class of 

the air, the values used in our analyses are presented in Supplementary Material Section 1 (Pasquill, 1974).  The 

Gaussian plume approach assumes that the vertical eddy diffusivity and wind speed are constant and there is total 

reflection of methane at the surface (e.g. Zannetti, 1990; Hensen and Scharff, 2001; Hensen et al., 2009).   

  𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛	 𝑥, 𝑦, 𝑧 = D
EF)GHGI

𝑒
J HK

KLH
K
𝑒J

IMNO K

KLI K + 𝑒J
IQNO K

KLI K  (3) 

2.4 Landscape 

2.4.1 Measurements – East Anglia Network 

Methane mixing rations were measured by a network of four sites throughout East Anglia: Tilney-All-Saints Church, 

Haddenham Church, Weybourne and Tacolneston (Fig. 1).  Ellutia GC-FIDs, as described in Sect 2.3.1, were used at 

Tilney-All-Saints Church, Haddenham Church and Weybourne.  Measurement at Haddenham church is described in 

Sect. 2.3.1, similar systems were arranged at Tilney-All-Saints and Weybourne where inlet were positioned at 25 and 

15 m from the ground, respectively.  A Picarro CRDS measured the CH4 mixing ratios in air at Tacolneston at 50 m 

and 100 m from the ground. Calibration of the Picarro CRDS was done daily for 10 minutes using low (1.93 ppm), 

target (2.03 ppm) and high (2.74 ppm) CH4 gases calibrated on the World Meteorological Organization (WMO) scale.   

2.4.2 Model used - InTEM Inversion Modelling 

The dispersion model used to represent air flow from potential methane sources to the measurement site is the UK 

Met Office’s Numerical Atmospheric Modelling Environment (NAME) model (Jones et al., 2007). This is a 

Lagrangian dispersion model which runs using 3D meteorological fields produced by the UK Met Office’s numerical 

weather prediction model, the Unified Model (UM) (Cullen, 1993). These meteorological fields are available on two 

resolutions: global (three hourly, 25 km) and UK (hourly, 1.5 km). NAME was run using a combination of both 

resolutions with the 1.5 km UK fields nested within the global data. 

NAME produces a modelled representation of the contributing surface influence (defined as the 100 m above ground 

level in NAME) to a particular source location over a defined period of time. This is done by releasing chemically-

inert particles (10,000 hr-1) from the x, y, z coordinate of a measurement site location. Their movements and 

geolocation are tracked backwards in time every minute for five days. NAME produces a time-integrated particle 

density map for each source (units g s m-3), which shows, on a gridded output, what relative contribution each grid 

square has had over the five day period (Manning et al., 2011). The resolution of this air history map is equal to 1.5 x 

1.5 km.  

Emissions are inferred in InTEM by using an iterative best fit technique, simulated annealing, which compares the 

hourly-measured observations with derived modelled observations, based on the NAME InTEM method described in 



Manning (2003) and Manning et al. (2011). These modelled, or ‘pseudo’, observations are created by multiplying a 

simulated emissions field (g s-1 m-3) with a representation of the physical atmospheric processes for each measurement 

(Eq. 4).  

 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠	 𝑔	𝑠JU	𝑚JE 	×𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛	 𝑠	𝑚JU 	= 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛	 𝑔	𝑚JY  (4) 

The dilution matrix (units s m-1), which links the simulated emission field (g s m-3) with the observations (g m-2) is 

produced from the hourly NAME air history maps by dividing by the mass released (g) and then multiplying by a 

surface area matrix (m2). This dilution matrix is multiplied by the InTEM generated emissions field (both are gridded 

to the solution grid resolution).  

The two observation time series are quantitatively assessed using a ‘least squares’ cost function, shown in Eq. 5. For 

each time step, the difference between the measured (yi) and the pseudo observations ((kx)i) is weighted by the total 

uncertainty ((𝜎\E)^), where the uncertainty is defined as the total error estimated in measurement observations, 

modelling and baselines (Connors et al., in prep). This allows for any potential bias due to highly uncertain 

observations to be accounted for.  High CH4 concentration values seen at Haddenham are usually short lived and only 

appear as peaks lasting a maximum of only a few hours. These usually occur at night time and, as the isotopic analysis 

shows, probably come from a landfill, which is an intermittent of CH4. These are therefore more uncertain. The values 

would have a relatively high cost score at these times. So, including an hourly standard deviation into the uncertainty 

calculation helps to de-weight the large concentrations, which have higher uncertainty, from increasing the overall 

cost score. 

 

InTEM then iterates for thousands of potential emission fields through the simulated annealing technique to find an 

optimum result with the lowest cost score (Eq. 5).  Uncertainty correlation was not considered in the modelling, errors 

are considered independent of each other. This is a weaknesses and further analysis is needed using other cost functions 

(e.g. the Bayesian cost function). 

 𝐽 𝑋 = 	 (abJ(cd)b)K

(Ge)b
K

f
^gU  (5) 

3. Model runs 

3.1 Instantaneous methane emissions – Summer 2015 case study  

3.1.1 Near-source - Inverse dispersion modelling 

The inversion function of the WindTrax atmospheric dispersion model version 2.0 (Flesch et al., 1995) is used to infer 

the CH4 emissions from the Waterbeach landfill using the mixing ratio data collected at Mitchell Hill Farm on the 30th 

June 2015 and 1st July 2015. Data used as input to WindTrax are: wind speed (u, m s-1), wind direction (WD, °), 

temperature (T, °C), CH4 mixing ratio at 4 m (Χ, µg m-3), background CH4 mixing ratio (Χb, µg m-3), the Monin-

Obukhov Length and the surface roughness. 15-minute-averaged CH4 mixing ratio data are screened for erroneous 

values, and data are removed for any periods where wind did not come from the landfill or for high atmospheric 

stability events, i.e. wind speed, u < 0.15 ms-1.  



An uncertainty analysis is conducted, where potential variant input values are used in re-run WindTrax scenarios to 

calculate the resultant change in calculated CH4 emission. These uncertainties are then combined as the square root of 

the sum of the squares of the individual uncertainties to give an overall uncertainty in emission estimate. The main 

sources of error are the size of the emission area, as it changed daily, wind speed, the roughness length, and Monin-

Obukhov length. The values used to estimate the uncertainty are from published data. 

3.1.2 Emissions from middle-distance – Gaussian Plume model 

A Gaussian Plume (GP) approach, was used to infer the CH4 emissions from the Waterbeach landfill using the mixing 

ratio data collected at Haddenham Church on the 30th June 2015 and 1st July 2015. Data used as input to the GP model 

are: wind speed, wind direction, temperature, CH4 mixing ratio at 4 m, background CH4 mixing ratio and the Pasquill-

Gifford atmospheric stability class. The Pasquill-Gifford stability classes are estimated from calculated values of the 

Monin-Obukhov length as measured at Mitchell Hill Farm.  As with the inverse dispersion modelling approach, 15-

minute-averaged data are used and screened for erroneous values, any periods where the prevailing wind did not come 

from the direction of the landfill or for high atmospheric stability events. 

The main uncertainty using the GP approach is in estimating the Pasquill-Gifford atmospheric stability class. The 

Monin-Obukhov length is used to assign this value and an uncertainty of ± 7 % was used here because L is calculated 

using two anemometers each with 5 % uncertainty. Other sources of uncertainty were in the instruments used to 

measure CH4 mixing ratio and temperature, with uncertainty ranges discussed in Sect. 2. In addition to these sources, 

a potentially important, yet unquantifiable uncertainty could be off-site sources of emission; unlike the inverse 

dispersion approach, the GP used in the configuration assumes the landfill is the only point source emitter situated 6 

km to the south east of the measurement location and does not take into account other nearby sources, such as 

emissions from the on-site generator or other sources upwind. However, any significant difference between the 

emission estimates calculated using the inversion and the GP approaches may usefully serve to indicate the size of 

emission from the rest of the Waterbeach Waste Management Park and beyond 

3.2 Annual and seasonal emission estimates 

3.2.1 Middle-distance – Gaussian Plume model 

The GP approach is described above. Data used as input to GP model are: wind speed, wind direction, temperature, 

CH4 mixing ratio, background CH4 mixing ratio and the Pasquill atmospheric stability class. Hourly data are used and 

screened for erroneous values, any periods where wind did not come from the landfill or for high atmospheric stability 

events. 

As with the case study in 3.1.1, the main source of error used as input for the GP approach is the size of the uncertainty 

in estimating the Pasquill-Gifford atmospheric stability class. The study also includes the instrument precision and 

wind speed and temperature uncertainties as derived from the NAME model.  Also, we assume the landfill is the only 

point source emitter 6 km to the south east and does not take into account other nearby sources, such as emissions 

from the on-site generator and further upwind.  



3.2.2 Landscape - InTEM Inversion Model 

The results presented here are taken from a study developing a method to estimate regional CH4 emissions in East 

Anglia (Connors et al., in prep.). More details on the measurements sites, the inversion set-up used for InTEM, the 

diagnostics used and the emission uncertainties can be found there and in Connors (2015). The main points for the 

purposes of this paper are summarised below and in the Supplementary Material Section 2.  

InTEM was run using data from all four measurement sites (Fig. 1) between 1st June 2013 and 31st May 2014. 

Repeating the inversion method gives slightly different cost scores and emission totals due to the stochastic nature of 

the changes made during the simulated annealing process (Manning et al., 2011). For this study, InTEM was repeated 

25 times as this resulting in consistent methane emission estimates, standard deviations and cost score.  

Methane emissions are produced on a solution grid of varying spatial resolution. This resolution is determined using 

the NAME air history maps and the National Atmospheric Emissions Inventory (NAEI) for methane. Surface regions 

which have a larger influence on the observation sites and have a large emission in the NAEI produce boxes at a higher 

spatial resolution. The smallest resolution allowed for the emission grid is set equal to the NAME grid resolution (1.5 

x 1.5 km). The box which contains the Cottenham landfill site is roughly 9 x 4.5 km. 

An estimated methane baseline mixing ratio is calculated to represent the methane mixing ratio that would have been 

measured at a given site in the absence of emissions from within the dispersion domain. A statistical filtering technique 

separated methane mixing ratios at each site into eight timeseries using the NAME air history maps by wind direction. 

A rolling 18th percentile spanning one week is then passed through each time series. Sensitivity analysis shows this 

baseline produces emission results with consistently stable emissions with the lowest cost score of all baselines tested.  

This percentile was chosen as a result of a sensitivity analysis which showed that InTEM inversion results using the 

18th percentile produced the lowest cost scores, i.e. the calculated emissions are closer to the measured observations 

compared to any of the other percentiles tested (percentiles from the 5th to the 45th were tested). 

The uncertainty estimates used within InTEM reflect the variability of the resulting emission estimates. Uncertainty 

is defined as the total of the calibration gas uncertainty range, the GC instrument precision and the standard deviation 

within the hourly observation, plus a default mixing ratio of 5 ppb to represent uncertainty with the baseline and 

dispersion modelling. For a more detailed description of the measurement sites and the InTEM setup please refer to 

Connors et al. (in prep). 

4. Results 

4.1 Isotopic methane measurements 

Several large CH4 plumes were measured by the GC-FID in Haddenham Church on the 11th February 2015 (Fig. 2) 

during a wind event from the south east ranging from background, c. 1900 ppb, to a maximum mixing ratio of 2460 

ppb. Air samples collected in Tedlar bags at the same time at the same location and analysed later for CH4 mixing 

ratio using a Picarro CRDS at RHUL show good agreement in measurement between the GC-FID and Picarro CRDS. 

The δ13C isotopic signature of the source contributing to excess methane over background can be calculated using the 

Keeling plot approach (e.g. Zazzeri et al., 2015). This is a plot of 1/ CH4 (ppm) vs measured isotopic signature for 



each sample. The intercept of the correlation line fit where 1/CH4 = O closely approximates the source signature. The 

Keeling plot of the air samples taken at Haddenham Church between 0600 and 1400 hours on 11th February 2015 

estimates the δ13C isotopic signature at -58.3 ‰ (Fig. 3). The typical δ13C isotopic signature value for a landfill in the 

south east of the UK has been estimated to be -58 ± 3 ‰ (Zazzeri et al., 2015), which is very different from other 

possible local source signatures such as fossil fuels or combustion. This strongly suggests that the air measured at the 

church has come from a landfill. Air samples were taken closer to the landfill, 10 m from the active site. 

4.2 Estimating methane emissions – Case study June 2015 

The average CH4 emission for the Waterbeach landfill in July based on near source CH4 measurements used in 

WindTrax is estimated at 565 µg m-2 s-1 (453 kg hr-1). In general, emissions on the 30th June (average = 256 µg m-2 s-

1) are ten times lower than those on the 1st July (average = 2840 µg m-2 s-1), corresponding to less stable conditions 

and lower atmospheric pressure on the 1st (Fig. 4). The maximum emission is estimated at 18700 µg m-2 s-1 at 1215 

UTC on the 1st July. 

A range of scenarios were run in WindTrax to investigate the uncertainty in CH4 emissions caused by the CH4 

measurement, the wind speed measurement, estimating the roughness length and estimating the Monin-Obukhov 

length. Realistic uncertainty in the Monin-Obukhov length and instrument uncertainty for the CH4 measurement have 

little effect on the emission estimate. Uncertainty in estimating the emission area and roughness length have a 

noticeable effect on CH4 emission, resulting in an uncertainty of ± 3 % and ± 4 % on modelled CH4 emissions, 

respectively. WindTrax has the greatest response to the uncertainty in estimating wind speed, resulting in an emission 

uncertainty of ± 19 %. The overall uncertainty in CH4 emission, calculated as the root of the sum of each component 

squared, is estimated at ± 20 % (Table 2). 

The methane emissions calculated using the WindTrax model can be compared with those calculated by a Gaussian 

plume model using the same measurements. As with WindTrax, the emissions on the 30th June (average = 408 µg m-

2 s-1) are lower than those on the 1st July (average = 1270 µg m-2 s-1). However, the difference in emissions is not as 

large (Fig. 5). The maximum emission is estimated at 2590 µg m-2 s-1 at 1215 UTC on the 1st July, which suggests that 

the Gaussian plume approach measures a more mixed emission than the inversion dispersion model.  

A range of scenarios were also configured using the Gaussian plume approach to reflect uncertainty in CH4 

measurement, wind speed measurement, temperature measurement and the Monin-Obukhov length (Table 3). 

Changing the Monin-Obukhov length had no detectable effect on the emission estimate because the change in L is not 

enough to vary the assigned Pasquill-Gifford Stability class use in the emission calculation. Varying the temperature 

and wind speed had little effect on CH4 emission and resulted in an uncertainty of ± 1 % and ± 5 % on modelled CH4 

emissions, respectively. The uncertainty in estimating CH4 emissions caused by the instrument precision is the greatest 

source of uncertainty and results in an uncertainty of the emission estimate of ± 22 %. The overall uncertainty in CH4 

emission, calculated as the root of sum of each component squared, is estimated to be ± 23 %. 



4.3 Annual and seasonal emission estimates 

Methane emissions from the landfill at the Waterbeach Waste Management Park were calculated using 1171 hourly 

averaged CH4 mixing ratio data measured at Haddenham Church between July 2012 and June 2015. The GP model 

can only be used to calculate the emission when the wind is blowing from the SE (i.e. from the landfill).  For this 

particular time series, the wind was only from the SE for 1171 hours.  Meteorological data from the Unified Model 

analyses are used to calculate the Pasquill-Gifford stability class. When applied in the Gaussian Plume model, the 

monthly average CH4 emission for July is estimated at 616 kg hr-1, in reasonable agreement with the estimates of 453 

and 641 kg hr-1 of the WindTrax inverse dispersion and Gaussian Plume models using measured meteorological data. 

Emissions for all months are shown in Table 4.  

In general, CH4 emission rates are higher during the winter months and lower during the summer months (Fig. 6).  

During the winter months (December, January, February) CH4 emission from the landfill is estimated at 1860 kg hr-1 

(441 µg m-2 s-1), whereas in the summer months (June, July, August) the CH4 emission drops to more than half to 930 

kg hr-1 (207 µg m-2 s-1).  Variability in emissions is also larger in winter than in summer. The mean annual emission, 

calculated as the sum of the monthly mean emissions, is estimated at 11.6 Gg yr-1.  

As before scenarios were ran using the GP approach to reflect variability in instrument precision, wind speed, 

temperature and the Pasquill-Gifford stability class (Table 5). Changing the temperature had no effect on the emission 

estimate, and instrument precision was a larger source of uncertainty, ± 9 %.  However, the effect of instrument 

precision was smaller than the uncertainty in the case study possibly because the measured mixing ratios are at their 

lowest during the summer. The calculation of the PGSC and the uncertainty in wind speed were the highest source of 

uncertainty resulting in variability in CH4 emission of ± 24 % and ± 20 %, respectively. The overall uncertainty in 

CH4 emission is estimated to be ± 32 %. 

4.3.2 InTEM Inversion Model Methane Emission Estimates 

The average annual CH4 emission from the landfill calculated using ~24,000 hourly averaged CH4 mixing ratio data 

measured by the East Anglia network (Fig. 1) and NAME modelled met data in the InTEM model is estimated at 13.7 

Gg yr-1 (Table 4). The emission estimate was calculated from the average CH4 emission 19.9 µg m-2 s-1 calculated for 

an area of 2.17x107 m2. The standard deviation of the CH4 emission for 25 repeat runs of the InTEM model is 1.8 x 

10-5 g s-1 m-2 (91 %). 

5. Discussion and Conclusions 

The data presented in this paper gives the first comparison of methane emissions from a working landfill calculated 

using three models at different scales: (a) near-source < 1 km (WindTrax); mid-distance 1-7 km (Gaussian Plume); 

and far field 7 – 70 km (InTEM). Near-source measurements were taken 300 m to the north west of the Waterbeach 

Waste Management Park, Cambridgeshire on the 30th June and 1st of July 2015. Mid-distance measurements were 

taken from Haddenham Church, 7 km north west of the landfill, between July 2012 and July 2015. Far-field 



measurements were taken throughout East Anglia, ranging from 7 km to 100 km from the landfill, between July 2012 

and July 2015. 

After using 13CH4 signatures to confirm that the source of the large CH4 mixing ratios is a nearby landfill, average 

CH4 emissions estimated using near-source measurements are 453 kg hr-1 on 30th June and 1st July 2015 and agree 

within associated uncertainties when compared to the mid-distance emission estimates of 641 kg hr-1. From the limited 

observation period, we also observe greater variability in emissions using the near-source method, in accord with the 

finding of Riddick et al (2016) that suggest that near-source estimates can be affected by the heterogeneous nature of 

the landfill.  We suggest that the agreement in emissions estimates between the near-source and middle-distance 

methods indicate that a Gaussian plume approach can be used to estimate emissions up to 7 km from a relatively large 

source.  However, this may be an upper estimate of the distance that this approach is effective as the fetch between 

the source and detector was relatively flat and a more aerodynamically complex landscape may reduce the model’s 

efficacy. 

Using mid-distance measurement throughout the year we estimate the annual CH4 emissions from the site to be 11.6 

Gg yr-1 which is comparable to the CH4 emission estimate as calculated using the InTEM inversion method of 13.7 

Gg yr-1.  Our results suggest that larger emission hot-spots can be detected within the emission landscape generated 

by an inversion model.  However, we would suggest that future sensitivity studies should be conducted to estimate 

the size of emission hot-spots within a landscape where the source is farther from a measurement site used as input to 

the inversion model. 

The CH4 emissions from this landfill site are seasonal with the largest emissions during the winter months (February 

2160 kg hr-1) and the lowest emissions during the summer months (616 kg hr-1). This may be linked to the seasonal 

cycle in environmental conditions as there is an inverse relationship between CH4 emission and temperature. The 

temperature relationship may be explained by the increased activity of methanotrophic bacteria in the top layers of 

landfill as the temperature increases.  

The CH4 emissions from this landfill site are seasonal with the largest emissions during the winter, colder months 

(February: 2160 kg hr-1) and the lowest emissions during the summer, warmer months (616 kg hr-1). This is explained 

by the following mechanism (Börjesson and Svensson, 1997). The temperature within the landfill is relatively stable 

so that the sub-surface production of CH4 is roughly constant. In summer when the surface temperature is higher, the 

activity of methanotrophic bacteria in the top layers of landfill is enhanced, so that the net emission into the atmosphere 

is reduced. Our measurements are the first off-site measurements to demonstrate this and so are not susceptible to the 

sampling uncertainties associated with chamber techniques. 

The CH4 emission estimate made by this study of 11.6 Gg yr-1 from this site is an important contribution to the waste 

component (714 Gg yr-1) of the 2014 total UK CH4 emission inventory (2,157 Gg yr-1; NAEI, 2016). We estimate the 

11.6 Gg yr-1 emitted is produced from the 400 Gg of total waste processed each year at the site (AMEY, 2016). The 

inferred CH4 emission to waste ratio at this site is lower (0.029) than the current UK ratio (0.045), where 1.0 Tg CH4 

yr-1 (EC-JRC/PBL, 2010) is emitted from 22 Tg of solid waste disposed in landfill (UK Gov, 2016). This may be the 

result of differing environmental and management factors, such as differing mass fractions for each decomposing 

waste category (Jung et al., 2010), movement of landfill leachate (Attenborough et al., 2002) and site specific weather 



conditions (Maurice & Lagerkvist, 2004; Scheutz et al., 2004; Xu et al., 2014). Alternatively, CH4 emissions from 

new landfills which include a high component of recycling are currently overestimated.  

Even though the annual emission estimate calculated using the InTEM inversion model is close to that calculated by 

the Gaussian Plume model, the uncertainty associated with the InTEM inversion estimate is large.  Comparison of the 

measurements with the CH4 time series produced by NAME InTEM (Supplementary Figures 1 and 2) shows the model 

to consistently underestimate the larger and sharper observed peaks.  This arises as a result of the smaller weighting 

given to the peaks in the observed atmospheric concentrations in the NAME InTEM analysis (which uses all data) 

than in the WindTrax and Gaussian plume analyses which focus on these peaks. In particular, high peaks are 

underweighted because they are small scale features not easily delineated in the regional inversions and the boundary 

layer is harder to model accurately at night when the highest peaks tend to occur due to their containment within the 

shallow nocturnal boundary layer. The heteroscedasticity seen in Supplementary Figure 2 is therefore to be expected 

as NAME InTEM reproduces the lower values better than the high ones. 

The inherent challenges in inversion modelling, such as assuming a constant monthly emission (Supplementary 

Material Section 2 Figure SM2.3) and the atmospheric variability at night which is poorly resolved by the model, 

result in the emission estimates calculated in this research having an uncertainty of ± 91%.  This research is presented 

as an example of inversion modelling: a work in progress and, while the emission estimates are currently uncertain, 

the location of the emissions are well represented. 

The output from NAME InTEM inversion model shows that reasonably dense measurement networks can be used to 

identify emission hotspots within an emission landscape. Once potential hotspot emission sources have been 

identified, year-round measurements coupled to a relatively simple Gaussian plume model could be used to estimate 

the annual average and any seasonality in the CH4 emissions. As lower cost sensors become available, a cost-effective 

system to monitor point source emissions should become available. 
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Figure 1. Location of the East Anglia Measurement Network (Tilney-All-Saints Church, Haddenham Church, Weybourne 
& Tacolneston), landfill at the Waterbeach Waste Management Park and the measurement site at Mitchells Hill farm, 
Cambridgeshire. The map was taken on 23rd July 2015 (Google Earth, 2015). 

  



 

 
Figure 2 Methane mixing ratios measured by the GC-FID in Haddenham Church on 11th February 2015 are presented in 
grey.  Matching methane mixing ratios collected in Tedlar bags on the 11th February 21015 and analysed on the 20th 
February 2015 using a Picarro CRDS at Royal Holloway University of London are presented as red points. 

  



 
Figure 3 Keeling plot of the air samples taken at Haddenham Church between 0600 and 1400 hours on 11th February 2015. 

  



 
Figure 4 Measured wind Speed (top), measured temperature (middle-top), measured pressure (middle-bottom) and 
methane emission rate as calculated by the WindTrax atmospheric dispersion model (bottom) from data collected at 
Mitchell Hill Farm, Cottenham from the landfill at the Waterbeach Waste Management Park on the 30th June and 1st July 
2015.    



 
Figure 5 Methane emission rate as calculated by the Gaussian Plume modelling approach (black crosses) and the WindTrax 
atmospheric dispersion model (red crosses) from data collected at Mitchell Hill Farm, Cottenham from the landfill at the 
Waterbeach Waste Management Park on the 30th June and 1st July 2015.   



 
Figure 7 Box plot of hourly emissions calculated using the Gaussian Plume modelling approach showing the monthly 
variability in methane emissions using data from 2012 to 2014.   

  



Table 1 Summary of methods used to calculate methane emission estimates from a landfill at different scales: near-source, 
middle-distance and landscape.  

Scale Measurement 
location (Fig. 1) 

Measurement method Meteorological data Model used to 
calculate emission 

Near-source Mitchel’s Farm, 
Cottenham, 
Cambridgeshire 

Los Gatos UGGA  
(Sect. 2.2.1) 

In-situ at Mitchells’ 
Farm 
(Sect. 2.2.2) 

WindTrax Inverse 
Dispersion Model 
(Sect. 2.2.3) 

Middle-distance Haddenham Church, 
Cambridgeshire 

Ellutia 200 Series GC-FID 
(Sect. 2.3.1) 

NAME Model 
Runs (Sect. 2.4.2) 

Gaussian Plume 
(Sect. 2.3.3) 

Landscape East Anglia 
measurement 
Network 

Ellutia 200 Series GC-FID 
(Sect. 2.3.1) 
Picarros CRDS  
(Sect. 2.4.1) 

NAME Model 
Runs (Sect. 2.4.2) 

InTEM Model 
(Sect. 2.4.2) 

  



 

Table 2 Uncertainty analysis conducted on the case study (June 2015) methane emission from the landfill at the Waterbeach 
Waste Management Park as calculated within the WindTrax atmospheric dispersion model. 

Variable Value used Average Emission  

(µg m-2 s-1) 

Uncertainty (%) 

Baseline  565  

Monin-Obukhov Length ± 7% 563 ± 0.3 

Precision Roughness Length ± 7% 588 ± 4 

CH4 Instrument ± 0.01% 567 ± 0.3 

Wind Speed Measurement ± 5% 671 ± 19 

Emission area ± 20% 547 ± 3 

  Total ± 20 

 

  



Table 3 Uncertainty analysis conducted on the case study (June 2015) methane emission from the landfill at the Waterbeach 
Waste Management Park as calculated within the Gaussian Plume modelling approach. 

Variable Value used Average Emission  

(µg m-2 s-1) 

Average 

Emission  

(kg hr-1) 

Uncertainty 

(%) 

Baseline  800 641  

CH4 Instrument Precision ± 0.5% 973 781 22 

Wind Speed Measurement ± 5% 840 674 5 

Monin-Obukhov Length ± 7% 800 641 0 

Temperature Measurement ± 5% 795 638 0.4 

   Total 23 

 

  



Table 4 Methane emission estimates from the landfill at the Waterbeach Waste Management Park as calculated by the 
WindTrax and Gaussian Plume approaches for the case study (June 2015) and the annual estimates for the Gaussian Plume 
and InTEM inversion modelling approach for 2012 – 2104. 

Month Case Study Annual Estimate 

 Inverse dispersion 

(kg hr-1) 

Gaussian Plume  

(kg hr-1) 

Gaussian Plume  

(kg hr-1) 

InTEM 

January   1370  

February   2160  

March   1580  

April   1110  

May   830  

June   1070  

July 453 ± 20% 641 ± 23% 616  

August   1100  

September   1480  

October   1350  

November   1210  

December   2040  

  Total Emission (Gg yr-1) 11.6 ± 32% 13.7 ± 91% 

  



Table 5 Uncertainty analysis conducted on the annual methane emission from the landfill at the Waterbeach Waste 
Management Park as calculated within the Gaussian Plume modelling approach 

Variable Value used Average Emission  

(µg m-2 s-1) 

Average 

Emission  

(kg hr-1) 

Uncertainty 

(%) 

Baseline  1650 1320  

CH4 Instrument Precision ± 0.5% 1790 1440 9 

Wind Speed Measurement ± 20% 1980 1590 20 

PGSC ± 1 SC 1490 1200 24 

Temperature Measurement ± 20% 1640 1320 1 

   Total 32 

 

	


