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Reviewer 1
Comment3

In section 2.3.3: Why was a
Gaussian plume model used
for the middle-distance
analysis when NAME LPDM
particle trajectories were
available for Haddenham
Church (and were used in the
landscape analysis)?

The NAME model can
calculate concentrations as
well so I guess the two
methods could have been
used and cross-compared.
However, given the short
distance from the landfill to
the monitoring station and the
availability of observed
meteorology it was decided
that the Gaussian Plume
model would be better suited
for our purposes.

The following was added at
P6 L2: “The particle
trajectories were calculated in
the NAME model and could
have been used the calculate
emissions, however given the
short distance from the
landfill to the monitoring
station and the availability of
observed meteorology it was
decided that a Gaussian
Plume model would be better
suited for our purposes.”

Comment 4

Is auto-correlation of error
accounted for in the
uncertainty analyses? Can the
uncertainties be evaluated
somehow (reduced chi-square
statistic, cross-validation)?

Uncertainty correlation is not
considered in INTEM, errors
are considered independent of
each other. This is a
weakness of the setup
employed and further analysis
is needed using other cost
functions can help with this
(i.e. the Bayesian cost
function).

Added at P7 L30:
“Uncertainty correlation was
not considered in the
modelling, errors are
considered independent of
each other. This is a
weaknesses and further
analysis is needed using other
cost functions (e.g. the
Bayesian cost function).”

Comment P9 L14

Have you removed the
hyphen as requested for
"eight-time series"? I agree
with the reviewer, this should
read "eight timeseries".

Changes as suggested at P9
L27.

P9 L27:
“eight-time series” changed
to "eight timeseries"

Reviewer 2
Comment 2

P6, L9-10: “The standard
deviation of the lateral (oy,
m) and vertical (6z, m)

The values used can be found
in the Supplementary
Material Section 1.

Text added at P6 L13:




mixing ratio distribution are
calculated from the stability
class of the air (Pasquill,
1974).” So what are the
values for the standard
deviation used in this paper?

“the values used in our
analyses are presented in
Supplementary Material
Section 1 (Pasquill, 1974).”

Comment 3

P7, L19: “This allows for any
potential bias due to highly
uncertain observations to be
accounted for.” I don’t see
how the bias would be
accounted for.

High methane concentration
values seen at Haddenham
are usually short lived and
appear as peaks lasting only a
few hours (max). They
usually occur at night time
and, as the isotopic analysis
shows, probably come from a
landfill, which is an
intermittent of methane.
These are therefore more
uncertain. The values would
have a relatively high cost
score at these times. So, by
including the hourly SD into
the uncertainty calculation
this helps to de-weight the
large concentrations, which
have higher uncertainty, from
increasing the overall cost
score.

Text added at P7 L22:

“High CH4 concentration
values seen at Haddenham
are usually short lived and
only appear as peaks lasting a
maximum of only a few
hours. These usually occur at
night time and, as the isotopic
analysis shows, probably
come from a landfill, which is
an intermittent of CHy4. These
are therefore more uncertain.
The values would have a
relatively high cost score at
these times. So, including an
hourly standard deviation into
the uncertainty calculation
helps to de-weight the large
concentrations, which have
higher uncertainty, from
increasing the overall cost
score.”

Comment 4

P9, L14-15: “A statistical
filtering technique separated
methane mixing ratios at each
site into. . .” What is this
statistical filtering?

See comment above.

A new paragraph is included
(P9 L12) to make the link to
the Connors et al paper, Sarah
Connors’ thesis and the new
information in the
supplementary material
clearer.

“The results presented here
are taken from a study
developing a method to
estimate regional CHy




emissions in East Anglia
(Connors et al., in prep.).
More details on the
measurements sites, the
inversion set-up used for
InTEM, the diagnostics used
and the emission uncertainties
can be found there and in
Connors (2015). The main
points for the purposes of this
paper are summarised below
and in the Supplementary
Material Section 2.”

Comment 5

P9, L16: Why “18th
percentile”? Why not 10th or
25th?

This percentile is used as a
result of sensitivity analysis
showing that the resulting
InTEM inversion results
produced the lowest cost
scores. Therefore, the
emissions produced are closer
to the measured observations
than any of the other
percentiles tested. We tested
from the 5™ to the 45"
Sensitivity analysis shows
this baseline produces
emission results with
consistently stable emissions
with the lowest cost score of
all baselines tested.

Text added at P9 L.29:

“This percentile was chosen
as a result of a sensitivity
analysis which showed that
InTEM inversion results
using the 18" percentile
produced the lowest cost
scores, 1.e. the calculated
emissions are closer to the
measured observations
compared to any of the other
percentiles tested (percentiles
from the 5™ to the 45" were
tested).”

- Both reviewers suggest
OSSE:s to strengthen support
for the landscape scale
approach. Are the authors
sure they do not wish to add
this at this stage?

- Following on from this: In
the current state, I think you
need to remove the last
sentence of the abstract. Both
reviewers agree you cannot

Unfortunately, due to a lack
of resources we are unable to
perform OSSEs. As
suggested the last sentence of
the abstract has been
removed.




"suggest the landscape
inverse modelling approach
described in this paper can be
used to identify point-sources
within an emission
landscape" without additional
support.

My issue is that the authors
included a plot that shows
troubling results. This is the
plot under “Supplementary
Material Section 2:
Scatterplot of posterior
enhancements vs. observed
enhancements”.

First: these are not
enhancements, they are
concentrations. In the inverse
modeling literature an
enhancement is the
concentration of the
constituent at the observation
site minus the background. In
my review I asked for a plot
of modeled vs observed
enhancements in order to
separate the variability in the
background from the
variability in the influence of
emissions. When one plots
modeled vs. observed
concentrations, a well
modeled background will
hide problems with the model
of the emissions.

Second: the points in this plot
are so dense that they are
indistinguishable. There are
plotting strategies that can
ameliorate this.

The reviewer has raised an
interesting point, but we
disagree as to its importance.
Before going into detail, we
think there are two options:
(a) remove the NAME
InTEM material and put it in
a later paper which describes
the method in more detail;
and (b) leaving the material in
with more explanation and
context as to the message we
are trying to make with that
material. We strongly prefer
the latter as there is a real
need to start addressing the
issue of the consistency of
GHG emission estimates
across scales which is
currently lacking.

The first point we would like
to clarify is that the
calculation in NAME InTEM
does subtract out a baseline
before the emissions are
estimated. The procedure for
baseline estimation is
summarised in section 3.2.2
with more information given
in Sarah Connors’s thesis
(now referenced) as well as in
the Connors et al paper (in
prep). In the inversion,
NAME InTEM only
calculates enhancements. The

Text added to manuscript
before P13 L17, i.e. as a new
penultimate paragraph:
“Even though the annual
emission estimate calculated
using the INTEM inversion
model is close to that
calculated by the Gaussian
Plume model, the uncertainty
associated with the INTEM
inversion estimate is large.
Comparison of the
measurements with the CHy
time series produced by
NAME InTEM
(Supplementary Figures 1 and
2) shows the model to
consistently underestimate
the larger and sharper
observed peaks. This arises
as a result of the smaller
weighting given to the peaks
in the observed atmospheric
concentrations in the NAME
InTEM analysis (which uses
all data) than in the WindTrax
and Gaussian plume analyses
which focus on these peaks.
In particular, high peaks are
underweighted because they
are small scale features not
easily delineated in the
regional inversions and the
boundary layer is harder to
model accurately at night
when the highest peaks tend




Third, and most importantly,
I think this plot indicates a
problem in the model. There
is a clear heteroscedasticity in
the residuals. This is likely
due to the fact that the
background was not
subtracted. The variation in
the model and

observed background is likely
falling along the 1-1 line, and
the enhancements are likely
falling off of it, and are likely
heteroscedastic.

A plot of modeled vs
observed enhancements is
generally considered the most
basic diagnostic plot for this
type of analysis. I would
actually like to see this type
of plot for every site and
every model. It isn’t clear for
which model this plot is
showing.

baseline values have been
added back in to that figure.

The second point we are
trying to make is that we are
not trying to hide anything.
While the data points are
dense in that figure, they are
much clearer in the
accompanying time series
showing the measurements
and the calculated values. We
have changed the order of
those two figures in order to
make the point more clearly.
The figures could be redrawn,
but it would take a few
weeks.

Thirdly, we are not sure why
this behaviour should be
expected for a large-scale
inversion model attempting to
estimate point source
emissions:

(a) The different
models give different
weightings to the
large peaks observed
in the concentrations.
The emissions
calculated by
WindTrax and the
Gaussian Plume
model use those peaks
as their major source
of information. The
NAME InTEM
approach, on the other
hand, tends to give
them low statistical
weighting because (i)
it is hard to model
such small-scale
signals in the regional
inversion and (ii) the

to occur due to their
containment within the
shallow nocturnal boundary
layer. The heteroscedasticity
seen in Supplementary Figure
2 is therefore to be expected
as NAME InTEM reproduces
the lower values better than
the high ones.

The inherent challenges in
inversion modelling, such as
assuming a constant monthly
emission (Supplementary
Material Section 2 Figure
SM2.3) and the atmospheric
variability at night which is
poorly resolved by the model,
result in the emission
estimates calculated in this
research having an
uncertainty of £ 91%. This
research is presented as an
example of inversion
modelling: a work in progress
and, while the emission
estimates are currently
uncertain, the location of the
emissions are well
represented.”




events occur most
strongly at night when
the meteorological
description is poorer.
(b) There is a large
variability in
emissions (as shown
in several Figures)
while NAME InTEM
is producing an annual
estimate. Further, the
emissions are not
normally distributed
(see new Figure in
Supplementary info).

The discrepancies shown in
the figure are entirely
consistent with these factors
as the ‘outliers’ are nearly all
occasions when the
measurements are higher than
the modelled values. The
point of including the
analysis in the paper (and it is
not a major part) is to
examine the consistency
between the 3 approaches.
We are not trying to
exaggerate its importance, but
we are trying to highlight its
potential for (a) identification
of point source emissions,
and (b), in time, their
quantification. On-going
work is underway to improve
baseline estimation and error
analysis.

Finally, similar anomaly plots
cannot be straightforwardly
produced for the WindTrax
and Gaussian Plume
approaches because they
solve for the emissions values
which match the




observations. (In terms of the
3™ point above, they use all
the information contained in
each peak studied.) We are
therefore unclear as to why
putting these back into
concentrations is meaningful.
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Abstract. High methane (CHy4) mixing ratios (up to 4 ppm) have occurred sporadically at our measurement site in
Haddenham, Cambridgeshire since July 2012. Isotopic measurements and back trajectories show that the source is the
Waterbeach Waste management park 7 km SE of Haddenham. To investigate this further, measurements were made
on June 30" and July 1% 2015 at other locations nearer to the source. Landfill emissions have been estimated using
three different approaches at different scales; near-source using the WindTrax inversion dispersion model, middle-
distance using a Gaussian plume model and at the landscape scale using the NAME InTEM inversion. The emission
estimates derived using the WindTrax and Gaussian plume approaches agree well for the period of intense
observations. Applying the Gaussian plume approach to all periods of elevated measurements seen at Haddenham
produces year-round and monthly landfill emission estimates with an estimated annual emission of 11.6 Gg CH, yr''.
The monthly emission estimates are highest in winter (2160 kg hr™' in February) and lowest in summer (620 kg hr™' in
July). These data identify the effects of environmental conditions on landfill CH4 production and highlight the

importance of year-round measurement to capture seasonal variability in CH4 emission.

1 Introduction

Atmospheric methane (CHy) gas is both a greenhouse gas and partially responsible for modulating tropospheric ozone
production and loss. As such, changes in atmospheric CH4 mixing ratios can cause significant shifts in local and
regional atmospheric chemistry and global climate. Current research suggests the most significant CH, sources are
natural wetlands (top-down, 142-208 Tg CH, yr '; and bottom-up, 177-284 Tg CH, yr ') and agriculture and waste
emissions (top-down, 180-241 Tg CH, yr '; and bottom-up, 187-224 Tg CH, yr "), with further contributions from
fugitive emission due to the use of fossil fuels, natural emissions and biomass burning (IPCC., 2013; Kirschke et al.,
2013). Anthropogenic sources contribute ~60% of modern-day emissions (Saunois et al. 2016). Included in these
estimates, decomposition of organic matter at landfills is estimated to comprise between 3% and 19% of global
anthropogenic emissions (Chen & Prinn, 2006). Given this large and important uncertainty, the aim of this study is

to estimate CH4 mass flux from an operational landfill in Cambridgeshire using a variety of methods.



Approximately 60% of gas emitted from typical landfills is CH4, 40% is carbon dioxide and trace amounts are given
off as nitrogen, oxygen and water vapour (Hegde et al., 2003). At the surface, anoxic microbial processes form CHa,
whereas oxidation forms both carbon dioxide and water. Deeper below the surface anaerobic processes dictate gas
formation due to the oxygen-poor environment. Simple organic acids (e.g. carboxylic acid), carbon dioxide (CO,)
and hydrogen (H;) are formed from the hydrolysis of organic matter. Methanogenic bacteria then convert carboxylic
acid (RCOOH) to CH4 which can diffuse through the refuse to be emitted to the atmosphere (Xu et al., 2012). Riddick
et al. (2016) suggest that instead of heterogeneous emission across the landscape landfill, CHy is emitted in discrete
hot-spots which may be caused by variability in the materials that can degrade to form CH,4 throughout the landfill
and the nature of physical transmission pathways to the surface. Modern landfills in the UK have extensive
reticulations of gas pipes to extract methane, and fractures or leaks in the pipes create potent point sources of methane
to escape past the soil oxidation barrier.

The emitted CH, can be identified by measuring its 8'"°C isotopic signature. Typically, biogenic methane has a §'°C
isotopic signature of between -55 and -70%o (Dlugokencky et al., 2011). However, landfill methane emissions, which
comprise the residual gas after the methane flux has passed through the oxidation barrier in the soil cover, tend to fall
at the isotopically heavier end of this range as oxidative methanotrophy is selective for the lighter carbon. Typically,
the 8°C isotopic signature for landfill CHy in the south east of the UK has been measured at -58 + 3%o (Zazzeri et al.,
2015).

Although landfill interiors are well-isolated from day-to-day weather, and even seasonality, emissions from the landfill
surface can be strongly affected by environmental conditions. Xu et al. (2012) and Riddick et al. (2016) observed
decreasing landfill CH, emission as surface atmospheric pressure increased at landfill sites in Lincoln, USA and
Ipswich, UK, respectively. Emission of landfill CH, may be suppressed as atmospheric pressure increases; conversely,
the passage of depressions may pneumatically draw gas out from the landfill. Landfill CH4 emissions decrease with
increased ground temperature in dry soil conditions (Scheutz et al., 2004; Riddick et al., 2016). This is consistent with
the hypothesis that bacterial methanotrophic oxidation of methane in the aerobic cover soil has an Arrhenius
relationship with temperature, increasing exponentially with ground temperature between 2 and 25 °C (Maurice &
Lagerkvist, 2004; Scheutz et al., 2004).

A variety of methods have been used to estimate CH4 emission estimates from landfill sites using on-site and near-
site measurements. These include chamber methods, tracer plume and eddy covariance. Tracer release (TR) methods
have been used to good effect, where pollutant mixing ratios are estimated using the co-release of a tracer at a known
rate. However, this methodology needs the spatial distribution of tracer emissions to be configured so that it
approximately matches the landfill CH, emissions (Menster et al., 2014), presenting logistical challenges when
operating on active landfill sites. Landfill CH4 emissions have been measured using eddy covariance techniques, which
use the covariance between vertical wind speed and gas mixing ratio to estimate emissions at a high sampling rate (Xu
et al.,, 2012). However, the assumption of homogeneity by eddy covariance calculations is invalidated by the
heterogeneous nature of landfill CH, emissions. Furthermore, these estimates strictly apply to the area and time where
the measurements are made. Estimates produced in a heterogeneous environment such as a landfill can thus be hard

to interpret or extrapolate to the whole landfill and to other times of year.



Riddick et al. (2016) treated a landfill site in Suffolk, UK as a point source and estimated a mean CH4 emission of 709
pg m~ s using CHy4 concentration data, collected 800 m from the landfill, and meteorological data in an inverse
dispersion model. At a farther distance, 2 km, Hensen and Scharff (2001) used a Gaussian plume model to estimate
emissions of between 66 and 292 pg m~ s™' from three landfill sites near Amsterdam in the Netherlands. To our
knowledge no research has been conducted on using a Gaussian plume approach at more than 2 km. Also, we a
believe that no other study has attempted to use an inversion model to identify emission hotspots within a landscape
In this study we use methane measurements made at Haddenham, Cambridgeshire in which we record intermittently
high values of up to 4 ppm when the wind is from the southeast. Methane emissions from the Waterbeach Landfill
site, 7 km to the SE of our measurement site at Haddenham, are a likely source of these enhancements. To aid
identification of this CH,4 source, we collected air samples during a south-easterly air flow and measured the relative
abundance of 8"°C isotopes. These are compared with additional measurements made nearer the landfill. Short time
series of CH4 measurements taken near the landfill are used to estimate emissions using the inverse dispersion model
WindTrax (www.thunderbeachscientific.com). The emissions are compared with a Gaussian plume estimate made
using the Haddenham data for the same period. The Gaussian plume calculations are extended to cover the whole of
the first two years of measurements at Haddenham in order to investigate how the emissions vary over time. Finally,
we aim to compare the annual emission estimate found using the Gaussian model with the estimate from the NAME
InTEM inversion model that uses two years’ CH4 measurement data from a network throughout East Anglia to
estimate the regional annual emission.

The measurement and modelling techniques used are described in Sect. 2. The modelling studies performed are
described in Sect. 3. The results are then presented in Sect. 4. The paper concludes with a short discussion and the

conclusions of the results and the broader applicability of the approach.

2 Methods

This paper presents methane emission estimates from a landfill made by three methods at different scales: near-source,
middle-distance and landscape, a summary of each method is presented in Table 1. Waterbeach Waste Management
Park (52.302 N, 0.180 E) is used to deposit unrecyclable waste on an open active area approximately 700 m by 300
m. Surrounding the active area is an area of decomposing waste capped with a welded high-density polyethylene
(HDPE) geo-membrane and covered with at least two meters of top soil. Landfill gas is extracted from this capped
area under suction using a network of pipes and wells and is used as fuel for the on-site electricity generators. The

various measurement techniques are now described in turn.

2.1 Isotopic methane measurements

Whole air samples were collected in 3L Teflon bags at Haddenham Church (Fig. 1). These samples were taken over
the 11™ February 2015 when the wind was from the south/south-east, i.e. from the direction of the landfill. Air samples
were taken at Haddenham in the early morning in order to capture the elevated mixing ratio of landfill emissions

within the nocturnal boundary layer. The carbon isotopic ratio, expressed in %o, was measured in triplicate to high



precision (£0.05%o) by continuous flow gas chromatography isotope ratio mass spectrometry (CF GC-IRMS) (Fisher
et al., 2006), at Royal Holloway, University of London (RHUL).

2.2 Near-Source
2.2.1 Measurements — Los Gatos UGGA

The Los Gatos Research Ultra-portable Greenhouse Gas Analyser (UGGA; www.lgrinc.com) is a laser absorption
spectrometer that measures CH4 and CO, concentration in air using off-axis integrated cavity output spectroscopy
(Paul et al., 2001). The UGGA reports CO, mixing ratio and CH4 mixing ratio every second, with a stated precision
of <2 ppb (16 @ 1 Hz) over an operating range of 0.1 to 100 ppm. Calibration of the UGGA was done before and
after deployment using low (1.93 ppm), target (2.03 ppm) and high (2.74 ppm) gases calibrated on the WMO scale.

The UGGA was deployed on a farm road on Mitchell Hill Farm, Cottenham (52.304 N, 0.170 E) where it measured
the mixing ratio of CH4 downwind of the landfill. The measurement site was 300 m NW of the landfill site. The inlet
line was attached to a mast 2.5 m above the ground, protected from water incursion using an aluminium funnel and
filtered using a 2 um filter. 15-minute averaged background methane concentration was measured background CHy
mixing ratios were measured using the Los Gatos UGGA downwind of the landfill site before, at 12 pm and after each

day’s measurements.

2.2.2 Meteorological Data

In situ meteorological data were collected using a wireless weather station (Maplin, UK) attached to a mast at 2 m
from the ground at the measurement site on Mitchell Hill Farm. Meteorological data were sampled and recorded at
five-minute intervals and include: wind speed (u, m s'l), wind direction (WD, ° to North), air temperature at 2 m (7,
K), relative humidity (RH, %), rain rate (R, mm hr™') and air pressure (P, Pa).

Micrometeorological parameters used for subsequent modelling were calculated from data collected at the same
measurement site on Mitchell Hill Farm. Roughness height (z), m) and Monin-Obukhov length (L, m) are calculated
from the wind speeds measured at three heights. The roughness length is calculated as the exponential of the intercept,
with the natural logarithm of wind measurement heights plotted against wind speeds. The Monin-Obukhov length is
calculated (Eq. 1) from the density of air (p, kg m™), the specific heat capacity of air at constant pressure (cp, T kg' K
", the absolute temperature of air at z = 0 (T, K), the acceleration due to gravity (g, m s™), and the sensible heat flux
(H, W m™). The sensible heat flux (H, W m™) is calculated (Eq. 2) from the transfer coefficient for heat flux (CH,
1x107) (Pan et al., 2003).

pepTous

L=-22%

KgH
H = pc,CH(T, — To)u (2)
2.2.3 Model used — WindTrax Inverse Dispersion Model

The inversion function of the WindTrax atmospheric dispersion model version 2.0 (Flesch et al., 1995) is used to infer

the CH4 emissions from the landfill. Methane emissions are calculated using measured CH4 mixing ratios downwind,



measured background CH4 mixing ratios upwind and the simulated ratio of CH, mixing ratio enhancement to emission
(Flesch et al., 2004; 2005). WindTrax calculates the ratio of CH, mixing ratio to emission by back-calculating the
movement of many CHy particles from the detector to the landfill emission area and estimating the vertical velocity
as they leave the emission area. Following the method of Laubach et al. (2008) and Flesch et al. (2009), CH, mixing
ratios and meteorological data were averaged over 15 minutes to preserve real changes to CH4 emission caused by
changing environmental or atmospheric factors. Each 15-minute-averaged measurement is used as an input to back-

calculate the CH,4 emission using 50,000 particle trajectories.

2.3 Middle-Distance
2.3.1 Measurements — GC-FID

Methane mixing ratios were measured every 75 seconds from July 2012 to July 2015 at the Holy Trinity church,
Haddenham (52.359° N, 0.148° E) since July 2012 (see Fig. 1) using a 200 series Ellutia GC-FID (www.ellutia.com).
The site elevation is 40 metres above sea level and the inlet is on the tower, 25 m above the ground. The GC-FID
takes air to be assayed for CH4 mixing ratio mixed with a carrier gas which passes through a column of alumina coated
tubing heated in an oven at 90°C. As the gases exit the column they are pyrolyzed by a hydrogen/air mixture within
the flame ionization detector. Ions formed during the combustion are measured to indicate the mixing ratio of the gas
species. The Ellutia GC-FID, as used here, has a detection limit of approximately 1.5 ppb, a range of 1.5 to 3 ppm and
measures mixing ratios every 75 s. The instrument is calibrated every 30 minutes using a gas standard. The Teflon
inlet line is attached to the church roof 30 m above the ground and is protected from water incursion using an
aluminium funnel and a 2 um particle filter.

The data are transmitted data back to the laboratory for processing. Data processing of individual chromatograms is
done using IGOR Pro (Wavemetrics, USA) to determine peak height. Measurements from all sites are calibrated to
the WMO (World Meteorological Office) calibration scale (Dlugokencky et al., 2005). Hourly WMO calibrated

mixing ratios are then calculated using Openair in R.

2.3.2 Meteorological Data

Data were taken from UK Met Office’s Numerical Atmospheric Modelling Environment (NAME) model, as described
later in Sect. 2.4.2.

2.3.3 Model used — Gaussian Plume

The Gaussian Plume (GP) model describes the mixing ratio of a gas as a function of distance downwind from a point
source (Seinfeld and Pandis, 2006). The particle trajectories were calculated in the NAME model and could have been
used the calculate emissions, however given the short distance from the landfill to the monitoring station and the
availability of observed meteorology it was decided that a Gaussian Plume model would be better suited for our
purposes. As a gas is emitted, it is entrained in the prevailing ambient air flow and disperses in the y and z directions
(relative to a mean horizontal flow in the x direction) with time, forming a cone. The gas is considered to be well

mixed within the volume of the cone, such that the mixing ratio of the gas as a function of distance downwind depends



on the emission flux at source, the advective wind speed (u, m s™), and the rate of dispersion (governed by boundary
layer micrometeorological factors described in Sect. 2.2). The mixing ratio of the gas (X, ug m™), at any point x metres
downwind of the source, y metres laterally from the centre line of the plume, and z metres above ground level can be
calculated (Eq. 3) using the source strength (Q, g s), the height of the source (%,, m) and the air stability. The standard
deviation of the lateral (g,, m) and vertical (6,, m) mixing ratio distribution are calculated from the stability class of
the air, the values used in our analyses are presented in Supplementary Material Section 1 (Pasquill, 1974). The
Gaussian plume approach assumes that the vertical eddy diffusivity and wind speed are constant and there is total

reflection of methane at the surface (e.g. Zannetti, 1990; Hensen and Scharff, 2001; Hensen et al., 2009).
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2.4 Landscape
2.4.1 Measurements — East Anglia Network

Methane mixing rations were measured by a network of four sites throughout East Anglia: Tilney-All-Saints Church,
Haddenham Church, Weybourne and Tacolneston (Fig. 1). Ellutia GC-FIDs, as described in Sect 2.3.1, were used at
Tilney-All-Saints Church, Haddenham Church and Weybourne. Measurement at Haddenham church is described in
Sect. 2.3.1, similar systems were arranged at Tilney-All-Saints and Weybourne where inlet were positioned at 25 and
15 m from the ground, respectively. A Picarro CRDS measured the CH4 mixing ratios in air at Tacolneston at 50 m
and 100 m from the ground. Calibration of the Picarro CRDS was done daily for 10 minutes using low (1.93 ppm),
target (2.03 ppm) and high (2.74 ppm) CH, gases calibrated on the World Meteorological Organization (WMO) scale.

2.4.2 Model used - INTEM Inversion Modelling

The dispersion model used to represent air flow from potential methane sources to the measurement site is the UK
Met Office’s Numerical Atmospheric Modelling Environment (NAME) model (Jones et al., 2007). This is a
Lagrangian dispersion model which runs using 3D meteorological fields produced by the UK Met Office’s numerical
weather prediction model, the Unified Model (UM) (Cullen, 1993). These meteorological fields are available on two
resolutions: global (three hourly, 25 km) and UK (hourly, 1.5 km). NAME was run using a combination of both
resolutions with the 1.5 km UK fields nested within the global data.

NAME produces a modelled representation of the contributing surface influence (defined as the 100 m above ground
level in NAME) to a particular source location over a defined period of time. This is done by releasing chemically-
inert particles (10,000 hr'') from the x, y, z coordinate of a measurement site location. Their movements and
geolocation are tracked backwards in time every minute for five days. NAME produces a time-integrated particle
density map for each source (units g s m™), which shows, on a gridded output, what relative contribution each grid
square has had over the five day period (Manning et al., 2011). The resolution of this air history map is equal to 1.5 x
1.5 km.

Emissions are inferred in INTEM by using an iterative best fit technique, simulated annealing, which compares the

hourly-measured observations with derived modelled observations, based on the NAME InTEM method described in



Manning (2003) and Manning et al. (2011). These modelled, or ‘pseudo’, observations are created by multiplying a

simulated emissions field (g s m™) with a representation of the physical atmospheric processes for each measurement

(Eq. 4).

1 m~2) xdilution (s m™') = concentration (g m™3) 4)

emissions (g s~
The dilution matrix (units s m™), which links the simulated emission field (g s m™) with the observations (g m?) is
produced from the hourly NAME air history maps by dividing by the mass released (g) and then multiplying by a
surface area matrix (m?). This dilution matrix is multiplied by the INTEM generated emissions field (both are gridded
to the solution grid resolution).
The two observation time series are quantitatively assessed using a ‘least squares’ cost function, shown in Eq. 5. For
each time step, the difference between the measured (y;) and the pseudo observations ((kx);) is weighted by the total
uncertainty ((62);), where the uncertainty is defined as the total error estimated in measurement observations,
modelling and baselines (Connors et al., in prep). This allows for any potential bias due to highly uncertain
observations to be accounted for. High CH,4 concentration values seen at Haddenham are usually short lived and only
appear as peaks lasting a maximum of only a few hours. These usually occur at night time and, as the isotopic analysis
shows, probably come from a landfill, which is an intermittent of CH,. These are therefore more uncertain. The values
would have a relatively high cost score at these times. So, including an hourly standard deviation into the uncertainty
calculation helps to de-weight the large concentrations, which have higher uncertainty, from increasing the overall

cost score.

InTEM then iterates for thousands of potential emission fields through the simulated annealing technique to find an
optimum result with the lowest cost score (Eq. 5). Uncertainty correlation was not considered in the modelling, errors
are considered independent of each other. This is a weaknesses and further analysis is needed using other cost functions

(e.g. the Bayesian cost function).

J&x) = g, Qe®t (s

(oe)?

3. Model runs
3.1 Instantaneous methane emissions — Summer 2015 case study
3.1.1 Near-source - Inverse dispersion modelling

The inversion function of the WindTrax atmospheric dispersion model version 2.0 (Flesch et al., 1995) is used to infer
the CH, emissions from the Waterbeach landfill using the mixing ratio data collected at Mitchell Hill Farm on the 30™
June 2015 and 1% July 2015. Data used as input to WindTrax are: wind speed (1, m s™), wind direction (WD, °),
temperature (7, °C), CH, mixing ratio at 4 m (X, ug m™), background CH, mixing ratio (X,, ug m™), the Monin-
Obukhov Length and the surface roughness. 15-minute-averaged CH4 mixing ratio data are screened for erroneous
values, and data are removed for any periods where wind did not come from the landfill or for high atmospheric

stability events, i.e. wind speed, u < 0.15 ms™.



An uncertainty analysis is conducted, where potential variant input values are used in re-run WindTrax scenarios to
calculate the resultant change in calculated CH4 emission. These uncertainties are then combined as the square root of
the sum of the squares of the individual uncertainties to give an overall uncertainty in emission estimate. The main
sources of error are the size of the emission area, as it changed daily, wind speed, the roughness length, and Monin-

Obukhov length. The values used to estimate the uncertainty are from published data.

3.1.2 Emissions from middle-distance — Gaussian Plume model

A Gaussian Plume (GP) approach, was used to infer the CH4 emissions from the Waterbeach landfill using the mixing
ratio data collected at Haddenham Church on the 30™ June 2015 and 1 July 2015. Data used as input to the GP model
are: wind speed, wind direction, temperature, CH4 mixing ratio at 4 m, background CH4 mixing ratio and the Pasquill-
Gifford atmospheric stability class. The Pasquill-Gifford stability classes are estimated from calculated values of the
Monin-Obukhov length as measured at Mitchell Hill Farm. As with the inverse dispersion modelling approach, 15-
minute-averaged data are used and screened for erroneous values, any periods where the prevailing wind did not come
from the direction of the landfill or for high atmospheric stability events.

The main uncertainty using the GP approach is in estimating the Pasquill-Gifford atmospheric stability class. The
Monin-Obukhov length is used to assign this value and an uncertainty of + 7 % was used here because L is calculated
using two anemometers each with 5 % uncertainty. Other sources of uncertainty were in the instruments used to
measure CH4 mixing ratio and temperature, with uncertainty ranges discussed in Sect. 2. In addition to these sources,
a potentially important, yet unquantifiable uncertainty could be off-site sources of emission; unlike the inverse
dispersion approach, the GP used in the configuration assumes the landfill is the only point source emitter situated 6
km to the south east of the measurement location and does not take into account other nearby sources, such as
emissions from the on-site generator or other sources upwind. However, any significant difference between the
emission estimates calculated using the inversion and the GP approaches may usefully serve to indicate the size of

emission from the rest of the Waterbeach Waste Management Park and beyond

3.2 Annual and seasonal emission estimates
3.2.1 Middle-distance — Gaussian Plume model

The GP approach is described above. Data used as input to GP model are: wind speed, wind direction, temperature,
CH,4 mixing ratio, background CH4 mixing ratio and the Pasquill atmospheric stability class. Hourly data are used and
screened for erroneous values, any periods where wind did not come from the landfill or for high atmospheric stability
events.

As with the case study in 3.1.1, the main source of error used as input for the GP approach is the size of the uncertainty
in estimating the Pasquill-Gifford atmospheric stability class. The study also includes the instrument precision and
wind speed and temperature uncertainties as derived from the NAME model. Also, we assume the landfill is the only
point source emitter 6 km to the south east and does not take into account other nearby sources, such as emissions

from the on-site generator and further upwind.



3.2.2 Landscape - INTEM Inversion Model

The results presented here are taken from a study developing a method to estimate regional CH, emissions in East
Anglia (Connors et al., in prep.). More details on the measurements sites, the inversion set-up used for INTEM, the
diagnostics used and the emission uncertainties can be found there and in Connors (2015). The main points for the
purposes of this paper are summarised below and in the Supplementary Material Section 2.

InTEM was run using data from all four measurement sites (Fig. 1) between 1* June 2013 and 31* May 2014.
Repeating the inversion method gives slightly different cost scores and emission totals due to the stochastic nature of
the changes made during the simulated annealing process (Manning et al., 2011). For this study, INTEM was repeated
25 times as this resulting in consistent methane emission estimates, standard deviations and cost score.

Methane emissions are produced on a solution grid of varying spatial resolution. This resolution is determined using
the NAME air history maps and the National Atmospheric Emissions Inventory (NAEI) for methane. Surface regions
which have a larger influence on the observation sites and have a large emission in the NAEI produce boxes at a higher
spatial resolution. The smallest resolution allowed for the emission grid is set equal to the NAME grid resolution (1.5
x 1.5 km). The box which contains the Cottenham landfill site is roughly 9 x 4.5 km.

An estimated methane baseline mixing ratio is calculated to represent the methane mixing ratio that would have been
measured at a given site in the absence of emissions from within the dispersion domain. A statistical filtering technique
separated methane mixing ratios at each site into eight timeseries using the NAME air history maps by wind direction.
A rolling 18" percentile spanning one week is then passed through each time series. Sensitivity analysis shows this
baseline produces emission results with consistently stable emissions with the lowest cost score of all baselines tested.
This percentile was chosen as a result of a sensitivity analysis which showed that INTEM inversion results using the
18™ percentile produced the lowest cost scores, i.e. the calculated emissions are closer to the measured observations
compared to any of the other percentiles tested (percentiles from the 5 to the 45™ were tested).

The uncertainty estimates used within INTEM reflect the variability of the resulting emission estimates. Uncertainty
is defined as the total of the calibration gas uncertainty range, the GC instrument precision and the standard deviation
within the hourly observation, plus a default mixing ratio of 5 ppb to represent uncertainty with the baseline and
dispersion modelling. For a more detailed description of the measurement sites and the INTEM setup please refer to

Connors et al. (in prep).

4. Results
4.1 Isotopic methane measurements

Several large CH4 plumes were measured by the GC-FID in Haddenham Church on the 1" February 2015 (Fig. 2)
during a wind event from the south east ranging from background, ¢. 1900 ppb, to a maximum mixing ratio of 2460
ppb. Air samples collected in Tedlar bags at the same time at the same location and analysed later for CH4 mixing
ratio using a Picarro CRDS at RHUL show good agreement in measurement between the GC-FID and Picarro CRDS.
The 8"°C isotopic signature of the source contributing to excess methane over background can be calculated using the

Keeling plot approach (e.g. Zazzeri et al., 2015). This is a plot of 1/ CH4 (ppm) vs measured isotopic signature for



each sample. The intercept of the correlation line fit where 1/CH, = O closely approximates the source signature. The
Keeling plot of the air samples taken at Haddenham Church between 0600 and 1400 hours on 11" February 2015
estimates the 5'"°C isotopic signature at -58.3 %o (Fig. 3). The typical 8"°C isotopic signature value for a landfill in the
south east of the UK has been estimated to be -58 = 3 %o (Zazzeri et al., 2015), which is very different from other
possible local source signatures such as fossil fuels or combustion. This strongly suggests that the air measured at the

church has come from a landfill. Air samples were taken closer to the landfill, 10 m from the active site.

4.2 Estimating methane emissions — Case study June 2015

The average CH,4 emission for the Waterbeach landfill in July based on near source CH; measurements used in
WindTrax is estimated at 565 g m™ s (453 kg hr'). In general, emissions on the 30™ June (average = 256 pg m>s°
") are ten times lower than those on the 1 July (average = 2840 pg m~ s), corresponding to less stable conditions
and lower atmospheric pressure on the 1% (Fig. 4). The maximum emission is estimated at 18700 pg m? s’ at 1215
UTC on the 1* July.

A range of scenarios were run in WindTrax to investigate the uncertainty in CH4 emissions caused by the CHy
measurement, the wind speed measurement, estimating the roughness length and estimating the Monin-Obukhov
length. Realistic uncertainty in the Monin-Obukhov length and instrument uncertainty for the CH4 measurement have
little effect on the emission estimate. Uncertainty in estimating the emission area and roughness length have a
noticeable effect on CH, emission, resulting in an uncertainty of = 3 % and + 4 % on modelled CH, emissions,
respectively. WindTrax has the greatest response to the uncertainty in estimating wind speed, resulting in an emission
uncertainty of + 19 %. The overall uncertainty in CH4 emission, calculated as the root of the sum of each component
squared, is estimated at + 20 % (Table 2).

The methane emissions calculated using the WindTrax model can be compared with those calculated by a Gaussian
plume model using the same measurements. As with WindTrax, the emissions on the 30™ June (average = 408 pg m’
% 5™ are lower than those on the 1% July (average = 1270 pg m™~ s™). However, the difference in emissions is not as
large (Fig. 5). The maximum emission is estimated at 2590 pg m™s™ at 1215 UTC on the 1* July, which suggests that
the Gaussian plume approach measures a more mixed emission than the inversion dispersion model.

A range of scenarios were also configured using the Gaussian plume approach to reflect uncertainty in CHy
measurement, wind speed measurement, temperature measurement and the Monin-Obukhov length (Table 3).
Changing the Monin-Obukhov length had no detectable effect on the emission estimate because the change in L is not
enough to vary the assigned Pasquill-Gifford Stability class use in the emission calculation. Varying the temperature
and wind speed had little effect on CH4 emission and resulted in an uncertainty of = 1 % and = 5 % on modelled CHy
emissions, respectively. The uncertainty in estimating CH4 emissions caused by the instrument precision is the greatest
source of uncertainty and results in an uncertainty of the emission estimate of + 22 %. The overall uncertainty in CHy

emission, calculated as the root of sum of each component squared, is estimated to be + 23 %.



4.3 Annual and seasonal emission estimates

Methane emissions from the landfill at the Waterbeach Waste Management Park were calculated using 1171 hourly
averaged CH4 mixing ratio data measured at Haddenham Church between July 2012 and June 2015. The GP model
can only be used to calculate the emission when the wind is blowing from the SE (i.e. from the landfill). For this
particular time series, the wind was only from the SE for 1171 hours. Meteorological data from the Unified Model
analyses are used to calculate the Pasquill-Gifford stability class. When applied in the Gaussian Plume model, the
monthly average CH, emission for July is estimated at 616 kg hr”', in reasonable agreement with the estimates of 453
and 641 kg hr'' of the WindTrax inverse dispersion and Gaussian Plume models using measured meteorological data.
Emissions for all months are shown in Table 4.

In general, CH4 emission rates are higher during the winter months and lower during the summer months (Fig. 6).
During the winter months (December, January, February) CH, emission from the landfill is estimated at 1860 kg hr’'
(441 pg m™s™), whereas in the summer months (June, July, August) the CH4 emission drops to more than half to 930
kg hr' (207 pg m™ s™"). Variability in emissions is also larger in winter than in summer. The mean annual emission,
calculated as the sum of the monthly mean emissions, is estimated at 11.6 Gg yr.

As before scenarios were ran using the GP approach to reflect variability in instrument precision, wind speed,
temperature and the Pasquill-Gifford stability class (Table 5). Changing the temperature had no effect on the emission
estimate, and instrument precision was a larger source of uncertainty, + 9 %. However, the effect of instrument
precision was smaller than the uncertainty in the case study possibly because the measured mixing ratios are at their
lowest during the summer. The calculation of the PGSC and the uncertainty in wind speed were the highest source of
uncertainty resulting in variability in CH4 emission of + 24 % and + 20 %, respectively. The overall uncertainty in

CH, emission is estimated to be + 32 %.

4.3.2 InTEM Inversion Model Methane Emission Estimates

The average annual CH4 emission from the landfill calculated using ~24,000 hourly averaged CH4 mixing ratio data
measured by the East Anglia network (Fig. 1) and NAME modelled met data in the INTEM model is estimated at 13.7
Gg yr' (Table 4). The emission estimate was calculated from the average CH, emission 19.9 ug m™ s™' calculated for
an area of 2.17x10” m”. The standard deviation of the CH4 emission for 25 repeat runs of the INTEM model is 1.8 x

10° g s' m™ (91 %).

5. Discussion and Conclusions

The data presented in this paper gives the first comparison of methane emissions from a working landfill calculated
using three models at different scales: (a) near-source < 1 km (WindTrax); mid-distance 1-7 km (Gaussian Plume);
and far field 7 — 70 km (InTEM). Near-source measurements were taken 300 m to the north west of the Waterbeach
Waste Management Park, Cambridgeshire on the 30™ June and 1% of July 2015. Mid-distance measurements were

taken from Haddenham Church, 7 km north west of the landfill, between July 2012 and July 2015. Far-field



measurements were taken throughout East Anglia, ranging from 7 km to 100 km from the landfill, between July 2012
and July 2015.

After using *CH, signatures to confirm that the source of the large CH, mixing ratios is a nearby landfill, average
CH, emissions estimated using near-source measurements are 453 kg hr' on 30™ June and 1 July 2015 and agree
within associated uncertainties when compared to the mid-distance emission estimates of 641 kg hr™'. From the limited
observation period, we also observe greater variability in emissions using the near-source method, in accord with the
finding of Riddick et al (2016) that suggest that near-source estimates can be affected by the heterogeneous nature of
the landfill. We suggest that the agreement in emissions estimates between the near-source and middle-distance
methods indicate that a Gaussian plume approach can be used to estimate emissions up to 7 km from a relatively large
source. However, this may be an upper estimate of the distance that this approach is effective as the fetch between
the source and detector was relatively flat and a more aerodynamically complex landscape may reduce the model’s
efficacy.

Using mid-distance measurement throughout the year we estimate the annual CH4 emissions from the site to be 11.6
Gg yr’' which is comparable to the CH, emission estimate as calculated using the INTEM inversion method of 13.7
Gg yr'. Our results suggest that larger emission hot-spots can be detected within the emission landscape generated
by an inversion model. However, we would suggest that future sensitivity studies should be conducted to estimate
the size of emission hot-spots within a landscape where the source is farther from a measurement site used as input to
the inversion model.

The CH,4 emissions from this landfill site are seasonal with the largest emissions during the winter months (February
2160 kg hr'") and the lowest emissions during the summer months (616 kg hr™'). This may be linked to the seasonal
cycle in environmental conditions as there is an inverse relationship between CH,4 emission and temperature. The
temperature relationship may be explained by the increased activity of methanotrophic bacteria in the top layers of
landfill as the temperature increases.

The CH4 emissions from this landfill site are seasonal with the largest emissions during the winter, colder months
(February: 2160 kg hr'') and the lowest emissions during the summer, warmer months (616 kg hr™"). This is explained
by the following mechanism (Borjesson and Svensson, 1997). The temperature within the landfill is relatively stable
so that the sub-surface production of CHy is roughly constant. In summer when the surface temperature is higher, the
activity of methanotrophic bacteria in the top layers of landfill is enhanced, so that the net emission into the atmosphere
is reduced. Our measurements are the first off-site measurements to demonstrate this and so are not susceptible to the
sampling uncertainties associated with chamber techniques.

The CH, emission estimate made by this study of 11.6 Gg yr™' from this site is an important contribution to the waste
component (714 Gg yr'l) of the 2014 total UK CH,4 emission inventory (2,157 Gg yr'l; NAEI, 2016). We estimate the
11.6 Gg yr' emitted is produced from the 400 Gg of total waste processed each year at the site (AMEY, 2016). The
inferred CH,4 emission to waste ratio at this site is lower (0.029) than the current UK ratio (0.045), where 1.0 Tg CHy
yr'1 (EC-JRC/PBL, 2010) is emitted from 22 Tg of solid waste disposed in landfill (UK Gov, 2016). This may be the
result of differing environmental and management factors, such as differing mass fractions for each decomposing

waste category (Jung et al., 2010), movement of landfill leachate (Attenborough et al., 2002) and site specific weather



conditions (Maurice & Lagerkvist, 2004; Scheutz et al., 2004; Xu et al., 2014). Alternatively, CH4 emissions from
new landfills which include a high component of recycling are currently overestimated.

Even though the annual emission estimate calculated using the INTEM inversion model is close to that calculated by
the Gaussian Plume model, the uncertainty associated with the INTEM inversion estimate is large. Comparison of the
measurements with the CH, time series produced by NAME InTEM (Supplementary Figures 1 and 2) shows the model
to consistently underestimate the larger and sharper observed peaks. This arises as a result of the smaller weighting
given to the peaks in the observed atmospheric concentrations in the NAME InTEM analysis (which uses all data)
than in the WindTrax and Gaussian plume analyses which focus on these peaks. In particular, high peaks are
underweighted because they are small scale features not easily delineated in the regional inversions and the boundary
layer is harder to model accurately at night when the highest peaks tend to occur due to their containment within the
shallow nocturnal boundary layer. The heteroscedasticity seen in Supplementary Figure 2 is therefore to be expected
as NAME InTEM reproduces the lower values better than the high ones.

The inherent challenges in inversion modelling, such as assuming a constant monthly emission (Supplementary
Material Section 2 Figure SM2.3) and the atmospheric variability at night which is poorly resolved by the model,
result in the emission estimates calculated in this research having an uncertainty of + 91%. This research is presented
as an example of inversion modelling: a work in progress and, while the emission estimates are currently uncertain,
the location of the emissions are well represented.

The output from NAME InTEM inversion model shows that reasonably dense measurement networks can be used to
identify emission hotspots within an emission landscape. Once potential hotspot emission sources have been
identified, year-round measurements coupled to a relatively simple Gaussian plume model could be used to estimate
the annual average and any seasonality in the CH4 emissions. As lower cost sensors become available, a cost-effective

system to monitor point source emissions should become available.
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Figure 1. Location of the East Anglia Measurement Network (Tilney-All-Saints Church, Haddenham Church, Weybourne
& Tacolneston), landfill at the Waterbeach Waste Management Park and the measurement site at Mitchells Hill farm,
Cambridgeshire. The map was taken on 23" July 2015 (Google Earth, 2015).
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Figure 2 Methane mixing ratios measured by the GC-FID in Haddenham Church on 11th February 2015 are presented in

grey. Matching methane mixing ratios collected in Tedlar bags on the 11th February 21015 and analysed on the 20th
February 2015 using a Picarro CRDS at Royal Holloway University of London are presented as red points.
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Figure 3 Keeling plot of the air samples taken at Haddenham Church between 0600 and 1400 hours on 11th February 2015.
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Figure 4 Measured wind Speed (top), measured temperature (middle-top), measured pressure (middle-bottom) and
methane emission rate as calculated by the WindTrax atmospheric dispersion model (bottom) from data collected at
Mitchell Hill Farm, Cottenham from the landfill at the Waterbeach Waste Management Park on the 30" June and 1% July
2015.
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Figure 5 Methane emission rate as calculated by the Gaussian Plume modelling approach (black crosses) and the WindTrax
atmospheric dispersion model (red crosses) from data collected at Mitchell Hill Farm, Cottenham from the landfill at the

Waterbeach Waste Management Park on the 30™ June and 1 July 2015.
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Figure 7 Box plot of hourly emissions calculated using the Gaussian Plume modelling approach showing the monthly

variability in methane emissions using data from 2012 to 2014.



Table 1 Summary of methods used to calculate methane emission estimates from a landfill at different scales: near-source,
middle-distance and landscape.

Scale

Measurement
location (Fig. 1)

Measurement method

Meteorological data

Model used to
calculate emission

Near-source

Middle-distance

Landscape

Mitchel’s Farm,
Cottenham,
Cambridgeshire
Haddenham Church,
Cambridgeshire
East Anglia
measurement
Network

Los Gatos UGGA
(Sect. 2.2.1)

Ellutia 200 Series GC-FID
(Sect. 2.3.1)

Ellutia 200 Series GC-FID
(Sect. 2.3.1)

Picarros CRDS

(Sect. 2.4.1)

In-situ at Mitchells’
Farm

(Sect. 2.2.2)
NAME Model
Runs (Sect. 2.4.2)
NAME Model
Runs (Sect. 2.4.2)

WindTrax Inverse
Dispersion Model
(Sect. 2.2.3)
Gaussian Plume
(Sect. 2.3.3)
InTEM Model
(Sect. 2.4.2)




Table 2 Uncertainty analysis conducted on the case study (June 2015) methane emission from the landfill at the Waterbeach
Waste Management Park as calculated within the WindTrax atmospheric dispersion model.

Variable Value used Average Emission Uncertainty (%)
(ngm™s™)

Baseline 565

Monin-Obukhov Length + 7% 563 +0.3

Precision Roughness Length + 7% 588 +4

CH, Instrument +0.01% 567 +0.3

Wind Speed Measurement + 5% 671 +19

Emission area +20% 547 +3

Total +20




Table 3 Uncertainty analysis conducted on the case study (June 2015) methane emission from the landfill at the Waterbeach
Waste Management Park as calculated within the Gaussian Plume modelling approach.

Variable Value used Average Emission Average Uncertainty
(ng m?’s™h) Emission (%)

(kg hr')
Baseline 800 641
CH,4 Instrument Precision +0.5% 973 781 22
Wind Speed Measurement + 5% 840 674 5
Monin-Obukhov Length + 7% 800 641 0
Temperature Measurement + 5% 795 638 0.4

Total 23




Table 4 Methane emission estimates from the landfill at the Waterbeach Waste Management Park as calculated by the
WindTrax and Gaussian Plume approaches for the case study (June 2015) and the annual estimates for the Gaussian Plume
and InTEM inversion modelling approach for 2012 — 2104.

Month Case Study Annual Estimate
Inverse dispersion Gaussian Plume Gaussian Plume InTEM
(kg hr™) (kg hr™) (kg hr™)

January 1370

February 2160

March 1580

April 1110

May 830

June 1070

July 453 +£20% 641 £23% 616

August 1100

September 1480

October 1350

November 1210

December 2040

Total Emission (Gg yr'') 11.6 £32% 13.7+91%




Table 5 Uncertainty analysis conducted on the annual methane emission from the landfill at the Waterbeach Waste

Management Park as calculated within the Gaussian Plume modelling approach

Variable Value used Average Emission Average Uncertainty
(ng m?’s™h) Emission (%)
(kg hr™)
Baseline 1650 1320
CH,; Instrument Precision +0.5% 1790 1440 9
Wind Speed Measurement +20% 1980 1590 20
PGSC +1SC 1490 1200 24
Temperature Measurement +20% 1640 1320 1
Total 32




