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Reviewer #1 

 

I would suggest that the 

authors are left with two 

avenues of recourse. (1) They 

could repeal the claim on the 

power of the landscape 

inversion. This would leave a 

very nice paper focused on 

the emissions from the 

Waterbeach waste 

management park, and I 

would happily support its 

publication (with the other, 

smaller concerns in this 

review addressed). (2) They 

could conduct a well-

designed OSSE, testing their 

claim vigorously and 

assuaging my concerns 

directly.  

 

In light of the reviewers 

comments we would like to 

pursue avenue (1), where we 

have refocused the paper and 

made the point that distinct 

emission sources can be 

observed within an emission 

landscape. We suggest that 

landscape inversion models 

can be used to identify 

emission hot-spots within an 

emission landscape. 

 

Page 1 L25 the following has 

been removed: 

“is in good agreement with 

more labour-intensive near-

source approaches and” 

 

Page 1 L26 the following has 

been removed: 

 “to provide high-quality 

emission estimates” 

 

Page 12 L31 the following 

was removed: 

“agreement between the mid-

distance estimates and the” 

and 

“that provide data for 

regional inversion models” 

 

Page 13 L19 the following 

was added: 

“output from” 

 

Page 12 L32 the following 

was removed: 

“the network and even to 

quantify their emissions 

hotspots” 

 



Page 13 L20 the following 

was added “an emission 

landscape” 

The introduction gives a very 

good discussion of methane 

emissions from landfills, but 

not an adequate discussion of 

the issues surrounding the 

degree to which point sources 

can be resolved by 

atmospheric measurements at 

different scales (i.e., near-

source, middle-distance, and 

landscape).  

 

Changed as suggested, but we 

are not aware of many papers. 

The following was added at 

Page 3 L6 

“Riddick et al. (2016) treated 

a landfill site in Suffolk, UK 

as a point source and 

estimated a mean CH4 

emission of 709 µg m-2 s-1 

using CH4 concentration data, 

collected 800 m from the 

landfill, and meteorological 

data in an inverse dispersion 

model.  At a farther distance, 

2 km, Hensen and Scharff 

(2001) used a Gaussian 

plume model to estimate 

emissions of between 66 and 

292 µg m-2 s-1 from three 

landfill sites near Amsterdam 

in the Netherlands.  To our 

knowledge no research has 

been conducted on using a 

Gaussian plume approach at 

more than 2 km.  Also, we 

believe that no other study 

has attempted to use an 

inversion model to identify 

emission hotspots within a 



landscape.” 

In section 2.3.3: Why was a 

Gaussian plume model used 

for the middle-distance 

analysis when NAME LPDM 

particle trajectories were 

available for Haddenham 

Church (and were used in the 

landscape analysis)?  

 

The NAME model can 

calculate concentrations as 

well so I guess the two 

methods could have been 

used and cross-compared.  

However, the NAME 

trajectories would be more 

constrained because of the 3D 

met files used at 1.5km 

resolution and it was decided 

that a Gaussian Plume model 

would be better suited for our 

purposes. 

 

 

Is auto-correlation of error 

accounted for in the 

uncertainty analyses? Can the 

uncertainties be evaluated 

somehow (reduced chi-square 

statistic, cross-validation)?  

 

Uncertainty correlation is not 

considered in InTEM, errors 

are considered independent of 

each other. This is one of 

InTEM’s weaknesses and 

further analysis is needed 

using other cost functions can 

help with this (i.e. the 

Bayesian cost function). 

 

On page 5, line 4; the authors 

state that “Methane emissions 

are calculated using measured 

CH4 mixing ratio 

enhancement downwind, 

measured background CH4 

mixing ratios upwind and the 

As we only had access to one 

portable methane instrument 

a 15-minute averaged 

background methane 

concentration was measured 

upwind of the landfill site 

before, at 12 pm and after 

Text added to Page 4 L20: 

“Background CH4 mixing 

ratios were measured using 

the Los Gatos UGGA upwind 

of the landfill site before, at 

12 pm and after each day’s 

measurements and converted 



simulated ratio of CH4 

mixing ratio enhancement to 

emission.” There was no 

information given about the 

methodology used to measure 

and calculate the background 

mixing ratio. Please give the 

details on the methodology, 

show the data, and 

demonstrate that this is a 

valid representation of the 

background. Systematic 

errors in the background have 

a direct effect on the 

emissions estimate, so this is 

a critical aspect of the model. 

  

 

each day’s measurements.  To 

show this text has been added 

to the manuscript. 

into 15 minute averages.” 

Page 9, line 14: “A statistical 

filtering technique separated 

methane mixing ratios at each 

site into eight-time series...”. 

Please give a description of 

the technique and a citation if 

applicable. Also, remove the 

hyphen on “eight-time”.   

 

The timeseries of each of the 

4 site’s concentrations is 

separated into 8 different 

timeseries (based on which 

‘octrant’ the air history, 

calculated by NAME, has 

come from, e.g. NNW, NNE, 

SSE etc.). A rolling 18th 

percentile through these new 

8 timeseries. See comment 

below for why. 

 

A new paragraph is included 

(P9 L12) to make the link to 

the Connors et al paper, Sarah 

Connors’ thesis and the new 

information in the 

supplementary material 

clearer. 

“The results presented here 

are taken from a study 

developing a method to 

estimate regional CH4 

emissions in East Anglia 



(Connors et al., in prep.). 

More details on the 

measurements sites, the 

inversion set-up used for 

InTEM, the diagnostics used 

and the emission uncertainties 

can be found there and in 

Connors (2015). The main 

points for the purposes of this 

paper are summarised below 

and in the Supplementary 

Material.” 

Please provide the following 

inversion diagnostics to 

demonstrate that the 

assumptions implicit in the 

inversion framework are 

satisfied (These could be 

contained in supplementary 

material):   

o Scatterplots of posterior 

enhancements vs. observed 

enhancements.  

o Time-series of 

observations, background 

values, and posterior 

enhancements.  

o Scatterplots of residuals vs. 

fitted values, demonstrating 

Scatterplots of residuals vs. 

fitted values and the ime-

series of observations, 

background values and 

posterior enhancements. have 

been added in Supplementary 

Material Section 2. 

The scatterplots of residuals 

vs. fitted values and the time-

series of residuals are in 

presented in Connors et al (in 

prep.) and the author would 

prefer to keep them in this 

publication alone. 

The reduced chi-squared 

statistic is a Bayesian statistic 

and not available for the 

 



homoscedasticity.  

o Time-series of residuals, 

demonstrating that they do 

not drift  

(especially for the landscape 

scale, where emissions are 

not temporally resolved, even 

though a seasonal cycle is 

demonstrated in the middle-

distance analysis). 

 o The reduced chi-squared 

statistic, demonstrating well-

quantified uncertainties.  

 

least-squares cost function. 

Page 1, line 17: “Landfill 

emissions have been 

estimated using three 

different approaches 

(WindTrax, Gaussian plume, 

and NAME InTEM 

inversion) applied to the 

measurements made close to 

the source and at 

Haddenham.” This sentence 

is confusing because it does 

not accurately represent the 

scale of each method, and 

because it leaves out any 

Corrected as suggested Page 1 L17 

“Landfill emissions have 

been estimated using three 

different approaches at 

different scales; near-source 

using the WindTrax inversion 

dispersion model, middle-

distance using a Gaussian 

plume model and at the 

landscape scale using the 

NAME InTEM inversion.” 



mention of the greater East 

Anglia Network. Please 

rephrase.  

 

Page 1, line 21: “The 

estimated annual emissions 

vary between 11.6 and 13.7 

Gg CH4 / yr.” It is not 

initially clear to the reader if 

this is an uncertainty bounds 

or temporal variability. Please 

rephrase.  

 

Corrected as suggested Page 1 L22 changed text to: 

“with an estimated annual 

emission of 11.6 Gg CH4 yr-

1” 

Page 3, line 22: “This 

presents methane...” Should 

this be “this paper”?  

 

Corrected as suggested  

Page 5, line 4: “Methane 

emissions are calculated 

using measured CH4 mixing 

ratio enhancement downwind, 

measured background CH4 

mixing ratios upwind and...” 

please remove the first 

instance of the word 

“enhancement”, as it is 

redundant in this context.  

 

Corrected as suggested  
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Reviewer #2 

My main problem in this 

paper is the conclusion that 

the landscape inverse 

modeling approach can be 

used to identify point sources. 

The inversion method lacks 

details and the discussion is 

somewhat superficial. I think 

OSSEs would be required to 

determine the ability of 

observations at the landscape 

scale to constrain emission 

hotspots.  

 

We have refocused the paper 

and made the point that 

distinct emission sources can 

be observed within an 

emission landscape. We 

suggest that landscape 

inversion models can be used 

to identify emission hot-spots 

within an emission landscape. 

Page 1 L25 the following has 

been removed: 

“is in good agreement with 

more labour-intensive near-

source approaches and” 

 

Page 1 L26 the following has 

been removed: 

 “to provide high-quality 

emission estimates” 

 

Page 12 L31 the following 

was removed: 

“agreement between the mid-

distance estimates and the” 

and 

“that provide data for 

regional inversion models” 

 

Page 13 L19 the following 

was added: 

“output from” 

 

Page 12 L32 the following 

was removed: 

“the network and even to 

quantify their emissions 

hotspots” 

 

Page 13 L20 the following 



was added “an emission 

landscape” 

P6, L9-10: “The standard 

deviation of the lateral (σy, 

m) and vertical (σz, m) 

mixing ratio distribution are 

calculated from the stability 

class of the air (Pasquill, 

1974).” So what are the 

values for the standard 

deviation used in this paper?  

 

The values used can be found 

in the Supplementary 

Material Section 1. 

 

P7, L19: “This allows for any 

potential bias due to highly 

uncertain observations to be 

accounted for.” I don’t see 

how the bias would be 

accounted for.  

 

High methane concentration 

values seen at Haddenham 

are usually short lived and 

appear as peaks lasting only a 

few hours (max). They 

usually occur at nighttime 

and, as the isotopic analysis 

shows, probably come from a 

landfill, which is an 

intermittent of methane. 

These are therefore more 

uncertain. The values would 

have a relatively high cost 

score at these times. So, by 

including the hourly SD into 

the uncertainty calculation 

this helps to de-weight the 

large concentrations, which 

 



have higher uncertainty, from 

increasing the overall cost 

score.   

P9, L14-15: “A statistical 

filtering technique separated 

methane mixing ratios at each 

site into. . .” What is this 

statistical filtering?  

 

See comment above.   

P9, L16: Why “18th 

percentile”? Why not 10th or 

25th?  

 

This percentile is used as a 

result of sensitivity analysis 

showing that the resulting 

InTEM inversion results 

produced the lowest cost 

scores and therefore means 

the emissions produced are 

closer to the measured 

observations than any other 

percentiles tested. I tested 

from the 5th to the 45th. 

Sensitivity analysis shows 

this baseline produces 

emission results with 

consistently stable emissions 

with the lowest cost score of 

all baselines tested. 

 

 

P9, L21: “For a more detailed 

description of the 

measurement sites and the 

A new paragraph is included 

to make the link to the 

InTEM setup described in 

Text added at P9 L12: 

“The results presented here 

are taken from a study 



InTEM setup please refer to 

Connors et al. (in prep).” I 

think more details about the 

InTEM setup should be 

given. For example, what 

prior constraints or 

regularization do you use? 

This is crucial for an 

inversion.  

 

Connors et al. (in prep.), 

Sarah Connors’ thesis and the 

new information in the 

supplementary material 

clearer. 

This inversion does not use a 

prior, like the other studies 

referenced here. Priors are not 

essential but they are more 

commonly used than not. It 

uses a cost function similar to 

a least-squares approach. 

Bayesian cost-functions use 

priors and the analysis could 

(and probably should) be 

repeated with a Bayesian CF 

to comparison and a better 

assessment of errors. 

 

developing a method to 

estimate regional CH4 

emissions in East Anglia 

(Connors et al., in prep.). 

More details on the 

measurements sites, the 

inversion set-up used for 

InTEM, the diagnostics used 

and the emission uncertainties 

can be found there and in 

Connors (2015). The main 

points for the purposes of this 

paper are summarised below 

and in the Supplementary 

Material.” 

P12, L4: “. . .using near-

source measurements are 453 

kg hr-1 in June/July 2015. . .” 

I thought the near-source 

measurements cover only two 

days? This looks like two-

month data.  

 

Corrected as suggested Added at p12 L16: 

“30th June and 1st July 2015” 

P12, L15-20: Table 4 shows 

the lowest emissions month is 

in April (111 kg/hr). I am not 

This was typo and should be 

1110 kg/hr and has been 

corrected.  The response of 

 



very convinced that 

seasonality is due to 

temperature. Does stability 

class in the Gaussian plume 

approach play a role?  

 

CH4 emission from landfill to 

temperature is well 

documented and a result of 

methanotrophic bacteria 

becoming more active during 

the summer months. 

P12, L33-34: I am not 

convinced by this conclusion. 

See my general comments.  

 

 Added at P12 L19: 

“We suggest that the 

agreement in emissions 

estimates between the near-

source and middle-distance 

methods indicate that a 

Gaussian plume approach can 

be used to estimate emissions 

up to 7 km from a relatively 

large source.  However, this 

may be an upper estimate of 

the distance that this 

approach is effective as the 

fetch between the source and 

detector was relatively flat 

and a more aerodynamically 

complex landscape may 

reduce the model’s efficacy.” 

 

At P12 L25: 

“Our results suggest that 

larger emission hot-spots can 

be detected within the 

emission landscape generated 



by an inversion model.  

However, we would suggest 

that future sensitivity studies 

should be conducted to 

estimate the size of emission 

hot-spots within a landscape 

where the source is farther 

from a measurement site used 

as input to the inversion 

model.” 
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Abstract. High methane (CH4) mixing ratios (up to 4 ppm) have occurred sporadically at our measurement site in 

Haddenham, Cambridgeshire since July 2012. Isotopic measurements and back trajectories show that the source is 

the Waterbeach Waste management park 7 km SE of Haddenham. To investigate this further, measurements were 

made on June 30th and July 1st 2015 at other locations nearer to the source. Landfill emissions have been estimated 

using three different approaches at different scales; near-source using the WindTrax inversion dispersion model, 

middle-distance using a Gaussian plume model and at the landscape scale using the NAME InTEM inversion. The 

emission estimates derived using the WindTrax and Gaussian plume approaches agree well for the period of intense 

observations. Applying the Gaussian plume approach to all periods of elevated measurements seen at Haddenham 

produces year-round and monthly landfill emission estimates with an estimated annual emission of 11.6 Gg CH4 yr-

1. The monthly emission estimates are highest in winter (2160 kg hr-1 in February) and lowest in summer (620 kg hr-

1 in July). These data identify the effects of environmental conditions on landfill CH4 production and highlight the 

importance of year-round measurement to capture seasonal variability in CH4 emission. We suggest the landscape 

inverse modelling approach described in this paper can be used to identify point-sources within an emission 

landscape. 

1 Introduction 

Atmospheric methane (CH4) gas is both a greenhouse gas and partially responsible for modulating tropospheric 

ozone production and loss. As such, changes in atmospheric CH4 mixing ratios can cause significant shifts in local 

and regional atmospheric chemistry and global climate. Current research suggests the most significant CH4 sources 

are natural wetlands (top-down, 142–208 Tg CH4 yr–1; and bottom-up, 177–284 Tg CH4 yr–1) and agriculture and 

waste emissions (top-down, 180–241 Tg CH4 yr–1; and bottom-up, 187–224 Tg CH4 yr–1), with further contributions 

from fugitive emission due to the use of fossil fuels, natural emissions and biomass burning (IPCC., 2013; Kirschke 

et al., 2013). Anthropogenic sources contribute ~60% of modern-day emissions (Saunois et al. 2016). Included in 

these estimates, decomposition of organic matter at landfills is estimated to comprise between 3% and 19% of global 



anthropogenic emissions (Chen & Prinn, 2006).  Given this large and important uncertainty, the aim of this study is 

to estimate CH4 mass flux from an operational landfill in Cambridgeshire using a variety of methods. 

Approximately 60% of gas emitted from typical landfills is CH4, 40% is carbon dioxide and trace amounts are given 

off as nitrogen, oxygen and water vapour (Hegde et al., 2003).  At the surface, anoxic microbial processes form CH4, 

whereas oxidation forms both carbon dioxide and water.  Deeper below the surface anaerobic processes dictate gas 

formation due to the oxygen-poor environment.  Simple organic acids (e.g. carboxylic acid), carbon dioxide (CO2) 

and hydrogen (H2) are formed from the hydrolysis of organic matter. Methanogenic bacteria then convert carboxylic 

acid (RCOOH) to CH4 which can diffuse through the refuse to be emitted to the atmosphere (Xu et al., 2012).  

Riddick et al. (2016) suggest that instead of heterogeneous emission across the landscape landfill, CH4 is emitted in 

discrete hot-spots which may be caused by variability in the materials that can degrade to form CH4 throughout the 

landfill and the nature of physical transmission pathways to the surface.  Modern landfills in the UK have extensive 

reticulations of gas pipes to extract methane, and fractures or leaks in the pipes create potent point sources of 

methane to escape past the soil oxidation barrier.  

The emitted CH4 can be identified by measuring its δ13C isotopic signature. Typically, biogenic methane has a δ13C 

isotopic signature of between -55 and -70‰ (Dlugokencky et al., 2011). However, landfill methane emissions, 

which comprise the residual gas after the methane flux has passed through the oxidation barrier in the soil cover, 

tend to fall at the isotopically heavier end of this range as oxidative methanotrophy is selective for the lighter 

carbon.  Typically, the δ13C isotopic signature for landfill CH4 in the south east of the UK has been measured at -58 

± 3‰ (Zazzeri et al., 2015). 

Although landfill interiors are well-isolated from day-to-day weather, and even seasonality, emissions from the 

landfill surface can be strongly affected by environmental conditions. Xu et al. (2012) and Riddick et al. (2016) 

observed decreasing landfill CH4 emission as surface atmospheric pressure increased at landfill sites in Lincoln, 

USA and Ipswich, UK, respectively. Emission of landfill CH4 may be suppressed as atmospheric pressure increases; 

conversely, the passage of depressions may pneumatically draw gas out from the landfill.  Landfill CH4 emissions 

decrease with increased ground temperature in dry soil conditions (Scheutz et al., 2004; Riddick et al., 2016). This is 

consistent with the hypothesis that bacterial methanotrophic oxidation of methane in the aerobic cover soil has an 

Arrhenius relationship with temperature, increasing exponentially with ground temperature between 2 and 25 °C 

(Maurice & Lagerkvist, 2004; Scheutz et al., 2004).  

A variety of methods have been used to estimate CH4 emission estimates from landfill sites using on-site and near-

site measurements. These include chamber methods, tracer plume and eddy covariance. Tracer release (TR) methods 

have been used to good effect, where pollutant mixing ratios are estimated using the co-release of a tracer at a 

known rate.  However, this methodology needs the spatial distribution of tracer emissions to be configured so that it 

approximately matches the landfill CH4 emissions (Mønster et al., 2014), presenting logistical challenges when 

operating on active landfill sites. Landfill CH4 emissions have been measured using eddy covariance techniques, 

which use the covariance between vertical wind speed and gas mixing ratio to estimate emissions at a high sampling 

rate (Xu et al., 2012).  However, the assumption of homogeneity by eddy covariance calculations is invalidated by 

the heterogeneous nature of landfill CH4 emissions. Furthermore, these estimates strictly apply to the area and time 



where the measurements are made. Estimates produced in a heterogeneous environment such as a landfill can thus 

be hard to interpret or extrapolate to the whole landfill and to other times of year. 

Riddick et al. (2016) treated a landfill site in Suffolk, UK as a point source and estimated a mean CH4 emission of 

709 µg m-2 s-1 using CH4 concentration data, collected 800 m from the landfill, and meteorological data in an inverse 

dispersion model.  At a farther distance, 2 km, Hensen and Scharff (2001) used a Gaussian plume model to estimate 

emissions of between 66 and 292 µg m-2 s-1 from three landfill sites near Amsterdam in the Netherlands.  To our 

knowledge no research has been conducted on using a Gaussian plume approach at more than 2 km.  Also, we a 

believe that no other study has attempted to use an inversion model to identify emission hotspots within a landscape 

In this study we use methane measurements made at Haddenham, Cambridgeshire in which we record intermittently 

high values of up to 4 ppm when the wind is from the southeast. Methane emissions from the Waterbeach Landfill 

site, 7 km to the SE of our measurement site at Haddenham, are a likely source of these enhancements.  To aid 

identification of this CH4 source, we collected air samples during a south-easterly air flow and measured the relative 

abundance of δ13C isotopes. These are compared with additional measurements made nearer the landfill. Short time 

series of CH4 measurements taken near the landfill are used to estimate emissions using the inverse dispersion model 

WindTrax (www.thunderbeachscientific.com). The emissions are compared with a Gaussian plume estimate made 

using the Haddenham data for the same period.  The Gaussian plume calculations are extended to cover the whole of 

the first two years of measurements at Haddenham in order to investigate how the emissions vary over time. Finally, 

we aim to compare the annual emission estimate found using the Gaussian model with the estimate from the NAME 

InTEM inversion model that uses two years’ CH4 measurement data from a network throughout East Anglia to 

estimate the regional annual emission. 

The measurement and modelling techniques used are described in Sect. 2. The modelling studies performed are 

described in Sect. 3. The results are then presented in Sect. 4. The paper concludes with a short discussion and the 

conclusions of the results and the broader applicability of the approach. 

2 Methods 

This paper presents methane emission estimates from a landfill made by three methods at different scales: near-

source, middle-distance and landscape, a summary of each method is presented in Table 1.  Waterbeach Waste 

Management Park (52.302 N, 0.180 E) is used to deposit unrecyclable waste on an open active area approximately 

700 m by 300 m.  Surrounding the active area is an area of decomposing waste capped with a welded high-density 

polyethylene (HDPE) geo-membrane and covered with at least two meters of top soil.  Landfill gas is extracted from 

this capped area under suction using a network of pipes and wells and is used as fuel for the on-site electricity 

generators.  The various measurement techniques are now described in turn. 

2.1 Isotopic methane measurements 

Whole air samples were collected in 3L Teflon bags at Haddenham Church (Fig. 1). These samples were taken over 

the 11th February 2015 when the wind was from the south/south-east, i.e. from the direction of the landfill. Air 

samples were taken at Haddenham in the early morning in order to capture the elevated mixing ratio of landfill 



emissions within the nocturnal boundary layer. The carbon isotopic ratio, expressed in ‰, was measured in triplicate 

to high precision (±0.05‰) by continuous flow gas chromatography isotope ratio mass spectrometry (CF GC-IRMS) 

(Fisher et al., 2006), at Royal Holloway, University of London (RHUL).   

2.2 Near-Source 

2.2.1 Measurements – Los Gatos UGGA 

The Los Gatos Research Ultra-portable Greenhouse Gas Analyser (UGGA; www.lgrinc.com) is a laser absorption 

spectrometer that measures CH4 and CO2 concentration in air using off-axis integrated cavity output spectroscopy 

(Paul et al., 2001). The UGGA reports CO2 mixing ratio and CH4 mixing ratio every second, with a stated precision 

of < 2 ppb (1σ @ 1 Hz) over an operating range of 0.1 to 100 ppm. Calibration of the UGGA was done before and 

after deployment using low (1.93 ppm), target (2.03 ppm) and high (2.74 ppm) gases calibrated on the WMO scale. 

The UGGA was deployed on a farm road on Mitchell Hill Farm, Cottenham (52.304 N, 0.170 E) where it measured 

the mixing ratio of CH4 downwind of the landfill. The measurement site was 300 m NW of the landfill site. The inlet 

line was attached to a mast 2.5 m above the ground, protected from water incursion using an aluminium funnel and 

filtered using a 2 µm filter.  15-minute averaged background methane concentration was measured background CH4 

mixing ratios were measured using the Los Gatos UGGA downwind of the landfill site before, at 12 pm and after 

each day’s measurements.   

2.2.2 Meteorological Data 

In situ meteorological data were collected using a wireless weather station (Maplin, UK) attached to a mast at 2 m 

from the ground at the measurement site on Mitchell Hill Farm. Meteorological data were sampled and recorded at 

five-minute intervals and include: wind speed (u, m s-1), wind direction (WD, ° to North), air temperature at 2 m (Ta, 

K), relative humidity (RH, %), rain rate (R, mm hr-1) and air pressure (P, Pa).   

Micrometeorological parameters used for subsequent modelling were calculated from data collected at the same 

measurement site on Mitchell Hill Farm. Roughness height (z0, m) and Monin-Obukhov length (L, m) are calculated 

from the wind speeds measured at three heights. The roughness length is calculated as the exponential of the 

intercept, with the natural logarithm of wind measurement heights plotted against wind speeds. The Monin-Obukhov 

length is calculated (Eq. 1) from the density of air (ρ, kg m-3), the specific heat capacity of air at constant pressure 

(cp, J kg-1 K-1), the absolute temperature of air at z = 0 (T0, K), the acceleration due to gravity (g, m s-1), and the 

sensible heat flux (H, W m-2). The sensible heat flux (H, W m-2) is calculated (Eq. 2) from the transfer coefficient for 

heat flux (CH, 1x10-3) (Pan et al., 2003). 

  𝐿 = − $%&'()∗+

,-.
  (1) 

  𝐻 = 𝜌𝑐2𝐶𝐻 𝑇5 − 𝑇6 𝑢 (2) 



2.2.3 Model used – WindTrax Inverse Dispersion Model 

The inversion function of the WindTrax atmospheric dispersion model version 2.0 (Flesch et al., 1995) is used to 

infer the CH4 emissions from the landfill. Methane emissions are calculated using measured CH4 mixing ratios 

downwind, measured background CH4 mixing ratios upwind and the simulated ratio of CH4 mixing ratio 

enhancement to emission (Flesch et al., 2004; 2005).  WindTrax calculates the ratio of CH4 mixing ratio to emission 

by back-calculating the movement of many CH4 particles from the detector to the landfill emission area and 

estimating the vertical velocity as they leave the emission area. Following the method of Laubach et al. (2008) and 

Flesch et al. (2009), CH4 mixing ratios and meteorological data were averaged over 15 minutes to preserve real 

changes to CH4 emission caused by changing environmental or atmospheric factors.  Each 15-minute-averaged 

measurement is used as an input to back-calculate the CH4 emission using 50,000 particle trajectories. 

2.3 Middle-Distance 

2.3.1 Measurements – GC-FID 

Methane mixing ratios were measured every 75 seconds from July 2012 to July 2015 at the Holy Trinity church, 

Haddenham (52.359° N, 0.148° E) since July 2012 (see Fig. 1) using a 200 series Ellutia GC-FID 

(www.ellutia.com). The site elevation is 40 metres above sea level and the inlet is on the tower, 25 m above the 

ground.  The GC-FID takes air to be assayed for CH4 mixing ratio mixed with a carrier gas which passes through a 

column of alumina coated tubing heated in an oven at 90°C. As the gases exit the column they are pyrolyzed by a 

hydrogen/air mixture within the flame ionization detector. Ions formed during the combustion are measured to 

indicate the mixing ratio of the gas species. The Ellutia GC-FID, as used here, has a detection limit of approximately 

1.5 ppb, a range of 1.5 to 3 ppm and measures mixing ratios every 75 s. The instrument is calibrated every 30 

minutes using a gas standard.  The Teflon inlet line is attached to the church roof 30 m above the ground and is 

protected from water incursion using an aluminium funnel and a 2 µm particle filter. 

The data are transmitted data back to the laboratory for processing. Data processing of individual chromatograms is 

done using IGOR Pro (Wavemetrics, USA) to determine peak height. Measurements from all sites are calibrated to 

the WMO (World Meteorological Office) calibration scale (Dlugokencky et al., 2005). Hourly WMO calibrated 

mixing ratios are then calculated using Openair in R. 

2.3.2 Meteorological Data 

Data were taken from UK Met Office’s Numerical Atmospheric Modelling Environment (NAME) model, as 

described later in Sect. 2.4.2. 

2.3.3 Model used – Gaussian Plume 

The Gaussian Plume (GP) model describes the mixing ratio of a gas as a function of distance downwind from a 

point source (Seinfeld and Pandis, 2006). As a gas is emitted, it is entrained in the prevailing ambient air flow and 

disperses in the y and z directions (relative to a mean horizontal flow in the x direction) with time, forming a cone. 



The gas is considered to be well mixed within the volume of the cone, such that the mixing ratio of the gas as a 

function of distance downwind depends on the emission flux at source, the advective wind speed (u, m s-1), and the 

rate of dispersion (governed by boundary layer micrometeorological factors described in Sect. 2.2). The mixing ratio 

of the gas (Χ, µg m-3), at any point x metres downwind of the source, y metres laterally from the centre line of the 

plume, and z metres above ground level can be calculated (Eq. 3) using the source strength (Q, g s-1), the height of 

the source (hs, m) and the air stability.  The standard deviation of the lateral (σy, m) and vertical (σz, m) mixing ratio 

distribution are calculated from the stability class of the air as presented in Supplementary Material Section 1 

(Pasquill, 1974).  The Gaussian plume approach assumes that the vertical eddy diffusivity and wind speed are 

constant and there is total reflection of methane at the surface (e.g. Zannetti, 1990; Hensen and Scharff, 2001; 

Hensen et al., 2009).   

  𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛	 𝑥, 𝑦, 𝑧 = D
EF)GHGI

𝑒
J HK

KLH
K
𝑒J

IMNO K

KLI K + 𝑒J
IQNO K

KLI K  (3) 

2.4 Landscape 

2.4.1 Measurements – East Anglia Network 

Methane mixing rations were measured by a network of four sites throughout East Anglia: Tilney-All-Saints 

Church, Haddenham Church, Weybourne and Tacolneston (Fig. 1).  Ellutia GC-FIDs, as described in Sect 2.3.1, 

were used at Tilney-All-Saints Church, Haddenham Church and Weybourne.  Measurement at Haddenham church is 

described in Sect. 2.3.1, similar systems were arranged at Tilney-All-Saints and Weybourne where inlet were 

positioned at 25 and 15 m from the ground, respectively.  A Picarro CRDS measured the CH4 mixing ratios in air at 

Tacolneston at 50 m and 100 m from the ground. Calibration of the Picarro CRDS was done daily for 10 minutes 

using low (1.93 ppm), target (2.03 ppm) and high (2.74 ppm) CH4 gases calibrated on the World Meteorological 

Organization (WMO) scale.   

2.4.2 Model used - InTEM Inversion Modelling 

The dispersion model used to represent air flow from potential methane sources to the measurement site is the UK 

Met Office’s Numerical Atmospheric Modelling Environment (NAME) model (Jones et al., 2007). This is a 

Lagrangian dispersion model which runs using 3D meteorological fields produced by the UK Met Office’s 

numerical weather prediction model, the Unified Model (UM) (Cullen, 1993). These meteorological fields are 

available on two resolutions: global (three hourly, 25 km) and UK (hourly, 1.5 km). NAME was run using a 

combination of both resolutions with the 1.5 km UK fields nested within the global data. 

NAME produces a modelled representation of the contributing surface influence (defined as the 100 m above 

ground level in NAME) to a particular source location over a defined period of time. This is done by releasing 

chemically-inert particles (10,000 hr-1) from the x, y, z coordinate of a measurement site location. Their movements 

and geolocation are tracked backwards in time every minute for five days. NAME produces a time-integrated 

particle density map for each source (units g s m-3), which shows, on a gridded output, what relative contribution 



each grid square has had over the five day period (Manning et al., 2011). The resolution of this air history map is 

equal to 1.5 x 1.5 km.  

Emissions are inferred in InTEM by using an iterative best fit technique, simulated annealing, which compares the 

hourly-measured observations with derived modelled observations, based on the NAME InTEM method described 

in Manning (2003) and Manning et al. (2011). These modelled, or ‘pseudo’, observations are created by multiplying 

a simulated emissions field (g s-1 m-3) with a representation of the physical atmospheric processes for each 

measurement (Eq. 4).  

 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠	 𝑔	𝑠JU	𝑚JE 	×𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛	 𝑠	𝑚JU 	= 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛	 𝑔	𝑚JY  (4) 

The dilution matrix (units s m-1), which links the simulated emission field (g s m-3) with the observations (g m-2) is 

produced from the hourly NAME air history maps by dividing by the mass released (g) and then multiplying by a 

surface area matrix (m2). This dilution matrix is multiplied by the InTEM generated emissions field (both are 

gridded to the solution grid resolution).  

The two observation time series are quantitatively assessed using a ‘least squares’ cost function, shown in Eq. 5. For 

each time step, the difference between the measured (yi) and the pseudo observations ((kx)i) is weighted by the total 

uncertainty ((𝜎\E)^), where the uncertainty is defined as the total error estimated in measurement observations, 

modelling and baselines (Connors et al., in prep). This allows for any potential bias due to highly uncertain 

observations to be accounted for.  InTEM then iterates for thousands of potential emission fields through the 

simulated annealing technique to find an optimum result with the lowest cost score (Eq. 5). 

 𝐽 𝑋 = 	 (abJ(cd)b)K

(Ge)b
K

f
^gU  (5) 

3. Model runs 

3.1 Instantaneous methane emissions – Summer 2015 case study  

3.1.1 Near-source - Inverse dispersion modelling 

The inversion function of the WindTrax atmospheric dispersion model version 2.0 (Flesch et al., 1995) is used to 

infer the CH4 emissions from the Waterbeach landfill using the mixing ratio data collected at Mitchell Hill Farm on 

the 30th June 2015 and 1st July 2015. Data used as input to WindTrax are: wind speed (u, m s-1), wind direction (WD, 

°), temperature (T, °C), CH4 mixing ratio at 4 m (Χ, µg m-3), background CH4 mixing ratio (Χb, µg m-3), the Monin-

Obukhov Length and the surface roughness. 15-minute-averaged CH4 mixing ratio data are screened for erroneous 

values, and data are removed for any periods where wind did not come from the landfill or for high atmospheric 

stability events, i.e. wind speed, u < 0.15 ms-1.  

An uncertainty analysis is conducted, where potential variant input values are used in re-run WindTrax scenarios to 

calculate the resultant change in calculated CH4 emission. These uncertainties are then combined as the square root 

of the sum of the squares of the individual uncertainties to give an overall uncertainty in emission estimate. The 

main sources of error are the size of the emission area, as it changed daily, wind speed, the roughness length, and 

Monin-Obukhov length. The values used to estimate the uncertainty are from published data. 



3.1.2 Emissions from middle-distance – Gaussian Plume model 

A Gaussian Plume (GP) approach, was used to infer the CH4 emissions from the Waterbeach landfill using the 

mixing ratio data collected at Haddenham Church on the 30th June 2015 and 1st July 2015. Data used as input to the 

GP model are: wind speed, wind direction, temperature, CH4 mixing ratio at 4 m, background CH4 mixing ratio and 

the Pasquill-Gifford atmospheric stability class. The Pasquill-Gifford stability classes are estimated from calculated 

values of the Monin-Obukhov length as measured at Mitchell Hill Farm.  As with the inverse dispersion modelling 

approach, 15-minute-averaged data are used and screened for erroneous values, any periods where the prevailing 

wind did not come from the direction of the landfill or for high atmospheric stability events. 

The main uncertainty using the GP approach is in estimating the Pasquill-Gifford atmospheric stability class. The 

Monin-Obukhov length is used to assign this value and an uncertainty of ± 7 % was used here because L is 

calculated using two anemometers each with 5 % uncertainty. Other sources of uncertainty were in the instruments 

used to measure CH4 mixing ratio and temperature, with uncertainty ranges discussed in Sect. 2. In addition to these 

sources, a potentially important, yet unquantifiable uncertainty could be off-site sources of emission; unlike the 

inverse dispersion approach, the GP used in the configuration assumes the landfill is the only point source emitter 

situated 6 km to the south east of the measurement location and does not take into account other nearby sources, 

such as emissions from the on-site generator or other sources upwind. However, any significant difference between 

the emission estimates calculated using the inversion and the GP approaches may usefully serve to indicate the size 

of emission from the rest of the Waterbeach Waste Management Park and beyond 

3.2 Annual and seasonal emission estimates 

3.2.1 Middle-distance – Gaussian Plume model 

The GP approach is described above. Data used as input to GP model are: wind speed, wind direction, temperature, 

CH4 mixing ratio, background CH4 mixing ratio and the Pasquill atmospheric stability class. Hourly data are used 

and screened for erroneous values, any periods where wind did not come from the landfill or for high atmospheric 

stability events. 

As with the case study in 3.1.1, the main source of error used as input for the GP approach is the size of the 

uncertainty in estimating the Pasquill-Gifford atmospheric stability class. The study also includes the instrument 

precision and wind speed and temperature uncertainties as derived from the NAME model.  Also, we assume the 

landfill is the only point source emitter 6 km to the south east and does not take into account other nearby sources, 

such as emissions from the on-site generator and further upwind.  

3.2.2 Landscape - InTEM Inversion Model 

InTEM was run using data from all four measurement sites (Fig. 1) between 1st June 2013 and 31st May 2014. 

Repeating the inversion method gives slightly different cost scores and emission totals due to the stochastic nature of 

the changes made during the simulated annealing process (Manning et al., 2011). For this study, InTEM was 

repeated 25 times as this resulting in consistent methane emission estimates, standard deviations and cost score.  



Methane emissions are produced on a solution grid of varying spatial resolution. This resolution is determined using 

the NAME air history maps and the National Atmospheric Emissions Inventory (NAEI) for methane. Surface 

regions which have a larger influence on the observation sites and have a large emission in the NAEI produce boxes 

at a higher spatial resolution. The smallest resolution allowed for the emission grid is set equal to the NAME grid 

resolution (1.5 x 1.5 km). The box which contains the Cottenham landfill site is roughly 9 x 4.5 km. 

An estimated methane baseline mixing ratio is calculated to represent the methane mixing ratio that would have 

been measured at a given site in the absence of emissions from within the dispersion domain. A statistical filtering 

technique separated methane mixing ratios at each site into eight-time series using the NAME air history maps by 

wind direction. A rolling 18th percentile spanning one week is then passed through each time series. Sensitivity 

analysis shows this baseline produces emission results with consistently stable emissions with the lowest cost score 

of all baselines tested. 

The uncertainty estimates used within InTEM reflect the variability of the resulting emission estimates. Uncertainty 

is defined as the total of the calibration gas uncertainty range, the GC instrument precision and the standard 

deviation within the hourly observation, plus a default mixing ratio of 5 ppb to represent uncertainty with the 

baseline and dispersion modelling. For a more detailed description of the measurement sites and the InTEM setup 

please refer to Connors et al. (in prep). 

4. Results 

4.1 Isotopic methane measurements 

Several large CH4 plumes were measured by the GC-FID in Haddenham Church on the 11th February 2015 (Fig. 2) 

during a wind event from the south east ranging from background, c. 1900 ppb, to a maximum mixing ratio of 2460 

ppb. Air samples collected in Tedlar bags at the same time at the same location and analysed later for CH4 mixing 

ratio using a Picarro CRDS at RHUL show good agreement in measurement between the GC-FID and Picarro 

CRDS. 

The δ13C isotopic signature of the source contributing to excess methane over background can be calculated using 

the Keeling plot approach (e.g. Zazzeri et al., 2015). This is a plot of 1/ CH4 (ppm) vs measured isotopic signature 

for each sample. The intercept of the correlation line fit where 1/CH4 = O closely approximates the source signature. 

The Keeling plot of the air samples taken at Haddenham Church between 0600 and 1400 hours on 11th February 

2015 estimates the δ13C isotopic signature at -58.3 ‰ (Fig. 3). The typical δ13C isotopic signature value for a landfill 

in the south east of the UK has been estimated to be -58 ± 3 ‰ (Zazzeri et al., 2015), which is very different from 

other possible local source signatures such as fossil fuels or combustion. This strongly suggests that the air measured 

at the church has come from a landfill. Air samples were taken closer to the landfill, 10 m from the active site. 

4.2 Estimating methane emissions – Case study June 2015 

The average CH4 emission for the Waterbeach landfill in July based on near source CH4 measurements used in 

WindTrax is estimated at 565 µg m-2 s-1 (453 kg hr-1). In general, emissions on the 30th June (average = 256 µg m-2 s-



1) are ten times lower than those on the 1st July (average = 2840 µg m-2 s-1), corresponding to less stable conditions 

and lower atmospheric pressure on the 1st (Fig. 4). The maximum emission is estimated at 18700 µg m-2 s-1 at 1215 

UTC on the 1st July. 

A range of scenarios were run in WindTrax to investigate the uncertainty in CH4 emissions caused by the CH4 

measurement, the wind speed measurement, estimating the roughness length and estimating the Monin-Obukhov 

length. Realistic uncertainty in the Monin-Obukhov length and instrument uncertainty for the CH4 measurement 

have little effect on the emission estimate. Uncertainty in estimating the emission area and roughness length have a 

noticeable effect on CH4 emission, resulting in an uncertainty of ± 3 % and ± 4 % on modelled CH4 emissions, 

respectively. WindTrax has the greatest response to the uncertainty in estimating wind speed, resulting in an 

emission uncertainty of ± 19 %. The overall uncertainty in CH4 emission, calculated as the root of the sum of each 

component squared, is estimated at ± 20 % (Table 2). 

The methane emissions calculated using the WindTrax model can be compared with those calculated by a Gaussian 

plume model using the same measurements. As with WindTrax, the emissions on the 30th June (average = 408 µg m-

2 s-1) are lower than those on the 1st July (average = 1270 µg m-2 s-1). However, the difference in emissions is not as 

large (Fig. 5). The maximum emission is estimated at 2590 µg m-2 s-1 at 1215 UTC on the 1st July, which suggests 

that the Gaussian plume approach measures a more mixed emission than the inversion dispersion model.  

A range of scenarios were also configured using the Gaussian plume approach to reflect uncertainty in CH4 

measurement, wind speed measurement, temperature measurement and the Monin-Obukhov length (Table 3). 

Changing the Monin-Obukhov length had no detectable effect on the emission estimate because the change in L is 

not enough to vary the assigned Pasquill-Gifford Stability class use in the emission calculation. Varying the 

temperature and wind speed had little effect on CH4 emission and resulted in an uncertainty of ± 1 % and ± 5 % on 

modelled CH4 emissions, respectively. The uncertainty in estimating CH4 emissions caused by the instrument 

precision is the greatest source of uncertainty and results in an uncertainty of the emission estimate of ± 22 %. The 

overall uncertainty in CH4 emission, calculated as the root of sum of each component squared, is estimated to be ± 

23 %. 

4.3 Annual and seasonal emission estimates 

Methane emissions from the landfill at the Waterbeach Waste Management Park were calculated using 1171 hourly 

averaged CH4 mixing ratio data measured at Haddenham Church between July 2012 and June 2015. The GP model 

can only be used to calculate the emission when the wind is blowing from the SE (i.e. from the landfill).  For this 

particular time series, the wind was only from the SE for 1171 hours.  Meteorological data from the Unified Model 

analyses are used to calculate the Pasquill-Gifford stability class. When applied in the Gaussian Plume model, the 

monthly average CH4 emission for July is estimated at 616 kg hr-1, in reasonable agreement with the estimates of 

453 and 641 kg hr-1 of the WindTrax inverse dispersion and Gaussian Plume models using measured meteorological 

data. Emissions for all months are shown in Table 4.  

In general, CH4 emission rates are higher during the winter months and lower during the summer months (Fig. 6).  

During the winter months (December, January, February) CH4 emission from the landfill is estimated at 1860 kg hr-1 



(441 µg m-2 s-1), whereas in the summer months (June, July, August) the CH4 emission drops to more than half to 

930 kg hr-1 (207 µg m-2 s-1).  Variability in emissions is also larger in winter than in summer. The mean annual 

emission, calculated as the sum of the monthly mean emissions, is estimated at 11.6 Gg yr-1.  

As before scenarios were ran using the GP approach to reflect variability in instrument precision, wind speed, 

temperature and the Pasquill-Gifford stability class (Table 5). Changing the temperature had no effect on the 

emission estimate, and instrument precision was a larger source of uncertainty, ± 9 %.  However, the effect of 

instrument precision was smaller than the uncertainty in the case study possibly because the measured mixing ratios 

are at their lowest during the summer. The calculation of the PGSC and the uncertainty in wind speed were the 

highest source of uncertainty resulting in variability in CH4 emission of ± 24 % and ± 20 %, respectively. The 

overall uncertainty in CH4 emission is estimated to be ± 32 %. 

4.3.2 InTEM Inversion Model Methane Emission Estimates 

The average annual CH4 emission from the landfill calculated using ~24,000 hourly averaged CH4 mixing ratio data 

measured by the East Anglia network (Fig. 1) and NAME modelled met data in the InTEM model is estimated at 

13.7 Gg yr-1 (Table 4). The emission estimate was calculated from the average CH4 emission 19.9 µg m-2 s-1 

calculated for an area of 2.17x107 m2. The standard deviation of the CH4 emission for 25 repeat runs of the InTEM 

model is 1.8 x 10-5 g s-1 m-2 (91 %). 

5. Discussion and Conclusions 

The data presented in this paper gives the first comparison of methane emissions from a working landfill calculated 

using three models at different scales: (a) near-source < 1 km (WindTrax); mid-distance 1-7 km (Gaussian Plume); 

and far field 7 – 70 km (InTEM). Near-source measurements were taken 300 m to the north west of the Waterbeach 

Waste Management Park, Cambridgeshire on the 30th June and 1st of July 2015. Mid-distance measurements were 

taken from Haddenham Church, 7 km north west of the landfill, between July 2012 and July 2015. Far-field 

measurements were taken throughout East Anglia, ranging from 7 km to 100 km from the landfill, between July 

2012 and July 2015. 

After using 13CH4 signatures to confirm that the source of the large CH4 mixing ratios is a nearby landfill, average 

CH4 emissions estimated using near-source measurements are 453 kg hr-1 on 30th June and 1st July 2015 and agree 

within associated uncertainties when compared to the mid-distance emission estimates of 641 kg hr-1. From the 

limited observation period, we also observe greater variability in emissions using the near-source method, in accord 

with the finding of Riddick et al (2016) that suggest that near-source estimates can be affected by the heterogeneous 

nature of the landfill.  We suggest that the agreement in emissions estimates between the near-source and middle-

distance methods indicate that a Gaussian plume approach can be used to estimate emissions up to 7 km from a 

relatively large source.  However, this may be an upper estimate of the distance that this approach is effective as the 

fetch between the source and detector was relatively flat and a more aerodynamically complex landscape may 

reduce the model’s efficacy. 



Using mid-distance measurement throughout the year we estimate the annual CH4 emissions from the site to be 11.6 

Gg yr-1 which is comparable to the CH4 emission estimate as calculated using the InTEM inversion method of 13.7 

Gg yr-1.  Our results suggest that larger emission hot-spots can be detected within the emission landscape generated 

by an inversion model.  However, we would suggest that future sensitivity studies should be conducted to estimate 

the size of emission hot-spots within a landscape where the source is farther from a measurement site used as input 

to the inversion model. 

The CH4 emissions from this landfill site are seasonal with the largest emissions during the winter months (February 

2160 kg hr-1) and the lowest emissions during the summer months (616 kg hr-1). This may be linked to the seasonal 

cycle in environmental conditions as there is an inverse relationship between CH4 emission and temperature. The 

temperature relationship may be explained by the increased activity of methanotrophic bacteria in the top layers of 

landfill as the temperature increases.  

The CH4 emissions from this landfill site are seasonal with the largest emissions during the winter, colder months 

(February: 2160 kg hr-1) and the lowest emissions during the summer, warmer months (616 kg hr-1). This is 

explained by the following mechanism (Börjesson and Svensson, 1997). The temperature within the landfill is 

relatively stable so that the sub-surface production of CH4 is roughly constant. In summer when the surface 

temperature is higher, the activity of methanotrophic bacteria in the top layers of landfill is enhanced, so that the net 

emission into the atmosphere is reduced. Our measurements are the first off-site measurements to demonstrate this 

and so are not susceptible to the sampling uncertainties associated with chamber techniques. 

The CH4 emission estimate made by this study of 11.6 Gg yr-1 from this site is an important contribution to the 

waste component (714 Gg yr-1) of the 2014 total UK CH4 emission inventory (2,157 Gg yr-1; NAEI, 2016). We 

estimate the 11.6 Gg yr-1 emitted is produced from the 400 Gg of total waste processed each year at the site (AMEY, 

2016). The inferred CH4 emission to waste ratio at this site is lower (0.029) than the current UK ratio (0.045), where 

1.0 Tg CH4 yr-1 (EC-JRC/PBL, 2010) is emitted from 22 Tg of solid waste disposed in landfill (UK Gov, 2016). 

This may be the result of differing environmental and management factors, such as differing mass fractions for each 

decomposing waste category (Jung et al., 2010), movement of landfill leachate (Attenborough et al., 2002) and site 

specific weather conditions (Maurice & Lagerkvist, 2004; Scheutz et al., 2004; Xu et al., 2014). Alternatively, CH4 

emissions from new landfills which include a high component of recycling are currently overestimated.  

The output from NAME InTEM inversion model shows that reasonably dense measurement networks can be used to 

identify emission hotspots within an emission landscape. Once potential hotspot emission sources have been 

identified, year-round measurements coupled to a relatively simple Gaussian plume model could be used to estimate 

the annual average and any seasonality in the CH4 emissions. As lower cost sensors become available, a cost-

effective system to monitor point source emissions should become available. 

Acknowledgements 

This project was supported by the UK Natural Environment Research Council (NERC) through the Greenhouse gAs 

Uk and Global Emissions (GAUGE) project on grant number NE/K002570/1. We also thank the Department of 

Environment, Farming and Rural Affairs and the Royal Society for seed funding and NERC for additional support 



through grants NE/G014655/1, NE/J006246/1 and a PhD studentship for Sarah Connors.  Special thanks to the 

owners of Mitchell Hill Farm, Cottenham and to Holy Trinity church, Haddenham for allowing us to site our 

instruments on their land.   

References 

AMEY: Amey, Oxford, UK, http://wasteservices.amey.co.uk/where-we-work/cambridgeshire/.  Accessed October 

2016. 

Anderson, K. Bartlett, S. Frolking, K. Hayhoe, J. Jenkins and W. Sallas: Methane and Nitrous Oxide Emissions 

from Natural Sources, 2010, EPA 430-R-10-001, 2016. 

Attenborough, G.M., Hall, D.H., Gregory, R.G., and McGoochan, L.: Development of a landfill gas risk assessment 

model: GasSim. In Proceed- ings for solid waste association of North America, 25 Annual Landfill Gas Symposium 

(pp. 25–28), Monterey, California, USA (March), 2002. 

Borjesson, G. and Svensson, B. H.: Seasonal and diurnal methane emissions from a landfill and their regulation by 

methane oxidation, Waste Manage. and Res., 15, 33–54, 1997. 

Chen, Y.-H., and Prinn R. G.: Estimation of atmospheric methane emissions between 1996 and 2001 using a three-

dimensional global chemical transport model, J. Geophys. Res., 111, D10307, doi:10.1029/2005JD006058, 2006. 

CCC: Cambridgeshire County Council, www.cambridgeshire.gov.uk/.../FOI_1238_APP1.pdf.  Accessed October 

2016. 

Czepiel, P. M., Mosher, B., Harriss, R. C., Shorter, J. H., McManus, J. B., Kolb, C. E., Allwine, E. and Lamb, B. K.: 

Landfill methane emissions measured by enclosure and atmospheric tracer methods, J. Geophys. Res., 101(D11), 

16711–16719, doi:10.1029/96JD00864, 1996. 

Czepiel, P. W., Shorter, J. H., Mosher, B., Allwine, E., McManus, J. B., Harriss, R. C., Kolb, C. E. and Lamb B. K.: 

The influence of atmospheric pressure on landfill methane emissions, Waste Manage., 23, 593–598, 

doi:10.1016/S0956-053X(03)00103-X, 2003. 

Denmead, O.: Approaches to measuring fluxes of methane and nitrous oxide between landscapes and the 

atmosphere. Plant and Soil, 309, 5-24, 2008. 

Dlugokencky, E. J., R. C. Myers, P. M. Lang, K. A. Masarie, A. M. Crotwell, K. W. Thoning, B. D. Hall, J. W. 

Elkins, and L. P. Steele: Conversion of NOAA atmospheric dry air CH4 mole fractions to a gravimetrically prepared 

standard scale, J. Geophys. Res., 110, D18306, doi:10.1029/2005JD006035, 2005. 

Dlugokencky, E. J, Nisbet, E. G., Fisher, R. and Lowry D.: Global atmospheric methane: budget, changes and 

dangers. Philosophical transactions. Series A, Mathematical, physical, and engineering sciences, 369(1943):205872, 

May 2011. ISSN 1364-503X. doi: 10.1098/rsta.2010.0341. URL http://www. ncbi.nlm.nih.gov/pubmed/21502176, 

2011. 

EC-JRC/PBL: Emission Database for Global Atmospheric Research (EDGAR), release version 4.1. Accessed 

October 2016. European Commission, Joint Research Centre (JRC) / Netherlands Environmental Assessment 

Agency (PBL). 2010. 

Ehhalt, D.: Photooxidation of trace gases in the troposphere, Phys. Chem. Chem. Phys., 1, 5401-5408, 1999. 



Flesch, T.K., Harper, L.A., Powell, J.M., and Wilson, J.D.: Inverse dispersion calculation of ammonia emissions 

from Wisconsin dairy farms. Transactions of the American Society of Agricultural and Biological Engineers. 

52:253-265, 2009. 

Flesch, T. K., Wilson, J. D., Harper, L. A. and Crenna, B. P.: Estimating gas emission from a farm using an inverse-

dispersion technique. Atmospheric Environment, 39, 4863-4874, 2005. 

Flesch, T. K., Wilson, J. D., Harper, L. A., Crenna, B. P. and Sharpe, R. R. : Deducing ground-air emissions from 

observed trace gas mixing ratios: A field trial. Journal of Applied Meteorology, 43, 487-502, 2004. 

Flesch, T. K., Wilson, J. D. and Yee, E.: Backward-time Lagrangian stochastic dispersion models, and their 

application to estimate gaseous emissions. Journal of Applied Meteorology, 34, 1320-1332, 1995. 

Gebert, J., and Groengroeft, A.: Passive landfill gas emission—Influence of atmospheric pressure and implications 

for the operation of methane-oxidizing biofilters, Waste Manage., 26, 245–251, doi:10.1016/j.wasman.2005.01.022, 

2006. 

Giani, L., Bredenkamp, J., and Eden, I. Temporal and spatial variability of the CH4 dynamics of landfill cover soils, 

Journal Plant Nutrition Soil Science, 165, 205–210, doi:10.1002/1522-2624(200204), 2002. 

Goldsmith, C. D., Chanton, J. ,Abichou, T., Swan, N., Green, R. & Hater, G. Methane emissions from 20 landfills 

across the United States using vertical radial plume mapping, Journal of the Air & Waste Management Association, 

62:2, 183-197, DOI: 10.1080/10473289.2011.639480, 2012. 

Google Earth 7.1.5.1557. 2015. Waterbeach Waste Management Park, 52.302 N, 0.180 E, elevation 14 m. 3D 

Buildings data layer, viewed 20 September 2016. <http://www.google.com/earth/index.html>. 

Hegde, U., Chang, T.C. and Yang, S.S.: Methane and carbon dioxide emissions from Shan-Chu-Ku landll site in 

northern Taiwan, Chemosphere 52(8), 127585, 2003. 

IPCC: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment 

Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. 

Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, 

United Kingdom and New York, NY, USA, 1535 pp, doi:10.1017/CBO9781107415324, 2013. 

Jones, A., Thomson, D., Hort, M., and Devenish, B.: The U.K. Met Office’s Next-Generation Atmospheric 

Dispersion Model, NAME III, in: Air Pollution Modeling and Its Application XVII, edited by: Borrego, C. and 

Norman, A.-L., 580–589, Springer US, doi:10.1007/978-0-387-68854-1_62, 2007. 

Jung, Y., Imhoff, P. & Finsterle, S.: Estimation of Landfill Gas Generation Rate and Gas Permeability Field of 

Refuse Using Inverse Modeling. Transp Porous Med, 90: 41. doi:10.1007/s11242-010-9659-8, 2011. 

Kirschke, S., et al.: Three decades of global methane sources and sinks, Nat. Geosci., 6(10), 813–823, 

doi:10.1038/ngeo1955, 2013. 

Laubach, J., Kelliher, F. M., Knight, T. W., Clark, H., Molano, G. and Cavanagh, A.: Methane emissions from beef 

cattle - a comparison of paddock-and animal-scale measurements. Australian Journal of Experimental Agriculture, 

48, 132-137, 2008. 

Manning, A. J.: Estimating European emissions of ozone-depleting and greenhouse gases using observations and a 

modeling back-attribution technique. Journal of Geophysical Research, 108(D14):4405, 2003. 



Manning, A. J., O’Doherty, S., Jones, A. R., Simmonds, P. G., and Derwent, R. G.: Estimating UK methane and 

nitrous oxide emis- sions from 1990 to 2007 using an inversion modeling approach, J. Geophys. Res., 116, D02305, 

doi:10.1029/2010JD014763, 2011. 

Maurice, C. & Lagerkvist, A.: Assessment of the methane oxidation capacity of soil. Waste Management and 

Research, 22, 42–48, 2004. 

Mønster, J.G., Samuelsson, J., Kjeldsen, P., Rella, C.W.  and Scheutz, C.: Quantifying methane emission from 

fugitive sources by combining tracer release and downwind measurements – a sensitivity analysis based on multiple 

field surveys. Waste Management, 34, pp. 1416–1428, 2014. 

NAEI: National Atmospheric Emissions Inventory, Pollutant: Methane.  Accessed October 2016.  

http://naei.defra.gov.uk/overview/pollutants?pollutant_id=3 

Paul, J. B., Lapson L., and Anderson J. G. (2001), Ultrasensitive absorption spectroscopy with a high- finesse 

optical cavity and off-axis alignment, Appl. Opt., 40, 4904 – 4910, doi:10.1364/AO.40.004904. 

Poulsen, T. G., M. Christophersen, P. Moldrup, and P. Kjeldsen: Relating landfill gas emissions to atmospheric 

pressure using numerical modeling and state-space analysis, Waste Management Resources, 21, 356–366, 

doi:10.1177/0734242X0302100408, 2003. 

Prinn, R.G., Weiss, R.F., Fraser, P.J., Simmonds, P.G., Cunnold, D.M., Alyea, F.N., O'Doherty, S., Salameh, P., 

Miller, B.R., Huang, J., Wang, R.H.J., Hartley, D.E., Harth, C., Steele, L.P., Sturrock, G., Midgley, P.M., and 

McCulloch, A.: A History of Chemically and Radiatively Important Gases in Air deduced from 

ALE/GAGE/AGAGE, Journal of Geophysical Research-Atmospheres 105 (D14), 17,751-17,792, 2000. 

Riddick, S. N., Hancock, B. R, Robinson, A. D., Connors, S., Davies, S., Allen, G., Pitt, J. and Harris, N. R. P.: 

Development of a low-maintenance measurement approach to continuously estimate methane emissions: a case 

study.  Submitted for publication, 2016. 

Rigby, R. G., Prinn, P. J. Fraser, P. G. Simmonds, R. L. Langenfelds, J. Huang, D. M. Cunnold, L. P. Steele, P. B. 

Krummel, R. F. Weiss, S. O’Doherty, P. K. Salameh, H. J. Wang, C. M. Harth, J. Mühle, and L. W. Porter.:  

Renewed growth of atmospheric methane, Geophysical Research Letters 35, L22805. doi:10.1029/2008GL036037, 

2008. 

Saunois, M., Bousquet, P., Poulter, B., Peregon, A., Ciais, P., Canadell, J. G., Dlugokencky, E. J., Etiope, G., 

Bastviken, D., Houweling, S., Janssens-Maenhout, G., Tubiello, F. N., Castaldi, S., Jackson, R. B., Alexe, M., 

Arora, V. K., Beerling, D. J., Bergamaschi, P., Blake, D. R., Brailsford, G., Brovkin, V., Bruhwiler, L., Crevoisier, 

C., Crill, P., Curry, C., Frankenberg, C., Gedney, N., Höglund-Isaksson, L., Ishizawa, M., Ito, A., Joos, F., Kim, H.-

S., Kleinen, T., Krummel, P., Lamarque, J.-F., Langenfelds, R., Locatelli, R., Machida, T., Maksyutov, S., 

McDonald, K. C., Marshall, J., Melton, J. R., Morino, I., O'Doherty, S., Parmentier, F.-J. W., Patra, P. K., Peng, C., 

Peng, S., Peters, G. P., Pison, I., Prigent, C., Prinn, R., Ramonet, M., Riley, W. J., Saito, M., Schroeder, R., 

Simpson, I. J., Spahni, R., Steele, P., Takizawa, A., Thornton, B. F., Tian, H., Tohjima, Y., Viovy, N., Voulgarakis, 

A., van Weele, M., van der Werf, G., Weiss, R., Wiedinmyer, C., Wilton, D. J., Wiltshire, A., Worthy, D., Wunch, 

D. B., Xu, X., Yoshida, Y., Zhang, B., Zhang, Z., and Zhu, Q.: The Global Methane Budget: 2000–2012, Earth Syst. 

Sci. Data Discuss., doi:10.5194/essd-2016-25, in review, 2016. 



Scheutz, C., & Kjeldsen, P.:Environmental factors influencing attenuation of methane and hydrochlorofluorocarbons 

in landfill cover soils. Journal of Environmental Quality, 33, 72-79, 2004. 

Themelis N. & Ulloa, P.: Methane generation in landfills, Renewable Energy, 32, 1243-1257, 2007. 

UK Gov: UK Statistics on waste. Accessed October 2016. 

https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/547427/UK_Statistics_on_Waste_stat

istical_notice_25_08_16_update__2_.pdf 

Wilson, J. D. and Sawford, B. L.: Review of Lagrangian Stochastic Models for Trajectories in the Turbulent 

Atmosphere. Boundary-Layer Meteorology, 78, 191-210, 1995. 

Xu, L., Lin, X., Amen, J., Welding, K., McDermitt, D.: Impact of changes in barometric pressure on landfill 

methane emission. Global Biogeochemical Cycles doi: 10.1002/2013GB004571, 2014. 

Young, A.: Volumetric changes in landfill gas flux in response to variations in atmospheric pressure, Waste 

Manage. Res., 8, 379–385, doi:10.1177/0734242X9000800160, 1990. 

Zannetti, P.: Air Pollution Modeling – Theories, Computational Methods, and Available Software. Computational 

Mechanics Publications, Southampton, and Van Nostrand Reinhold, New York. 450pp, 1990. 

Zazzeri, G., Lowry, D., Fisher, R.E., France, J.L., Lanoisellé, M. and Nisbet E.G.: Plume mapping and isotopic 

characterisation of anthropogenic methane sources. Atmospheric Environment, 110:151162, 2015. ISSN 13522310. 

doi: 10.1016/j. atmosenv.2015.03.029. URLhttp://linkinghub.elsevier.com/retrieve/pii/ S1352231015002538, 2015.  



 
Figure 1. Location of the East Anglia Measurement Network (Tilney-All-Saints Church, Haddenham Church, 
Weybourne & Tacolneston), landfill at the Waterbeach Waste Management Park and the measurement site at Mitchells 
Hill farm, Cambridgeshire. The map was taken on 23rd July 2015 (Google Earth, 2015). 

  



 

 
Figure 2 Methane mixing ratios measured by the GC-FID in Haddenham Church on 11th February 2015 are presented in 
grey.  Matching methane mixing ratios collected in Tedlar bags on the 11th February 21015 and analysed on the 20th 
February 2015 using a Picarro CRDS at Royal Holloway University of London are presented as red points. 

  



 
Figure 3 Keeling plot of the air samples taken at Haddenham Church between 0600 and 1400 hours on 11th February 
2015. 

  



 
Figure 4 Measured wind Speed (top), measured temperature (middle-top), measured pressure (middle-bottom) and 
methane emission rate as calculated by the WindTrax atmospheric dispersion model (bottom) from data collected at 
Mitchell Hill Farm, Cottenham from the landfill at the Waterbeach Waste Management Park on the 30th June and 1st 
July 2015.    



 
Figure 5 Methane emission rate as calculated by the Gaussian Plume modelling approach (black crosses) and the 
WindTrax atmospheric dispersion model (red crosses) from data collected at Mitchell Hill Farm, Cottenham from the 
landfill at the Waterbeach Waste Management Park on the 30th June and 1st July 2015.   



 
Figure 7 Box plot of hourly emissions calculated using the Gaussian Plume modelling approach showing the monthly 
variability in methane emissions using data from 2012 to 2014.   

  



Table 1 Summary of methods used to calculate methane emission estimates from a landfill at different scales: near-source, 
middle-distance and landscape.  

Scale Measurement 
location (Fig. 1) 

Measurement method Meteorological 
data 

Model used to 
calculate emission 

Near-source Mitchel’s Farm, 
Cottenham, 
Cambridgeshire 

Los Gatos UGGA  
(Sect. 2.2.1) 

In-situ at Mitchells’ 
Farm 
(Sect. 2.2.2) 

WindTrax Inverse 
Dispersion Model 
(Sect. 2.2.3) 

Middle-distance Haddenham Church, 
Cambridgeshire 

Ellutia 200 Series GC-FID 
(Sect. 2.3.1) 

NAME Model 
Runs (Sect. 2.4.2) 

Gaussian Plume 
(Sect. 2.3.3) 

Landscape East Anglia 
measurement 
Network 

Ellutia 200 Series GC-FID 
(Sect. 2.3.1) 
Picarros CRDS  
(Sect. 2.4.1) 

NAME Model 
Runs (Sect. 2.4.2) 

InTEM Model 
(Sect. 2.4.2) 

  



 

Table 2 Uncertainty analysis conducted on the case study (June 2015) methane emission from the landfill at the 
Waterbeach Waste Management Park as calculated within the WindTrax atmospheric dispersion model. 

Variable Value used Average Emission  

(µg m-2 s-1) 

Uncertainty (%) 

Baseline  565  

Monin-Obukhov Length ± 7% 563 ± 0.3 

Precision Roughness Length ± 7% 588 ± 4 

CH4 Instrument ± 0.01% 567 ± 0.3 

Wind Speed Measurement ± 5% 671 ± 19 

Emission area ± 20% 547 ± 3 

  Total ± 20 

 

  



Table 3 Uncertainty analysis conducted on the case study (June 2015) methane emission from the landfill at the 
Waterbeach Waste Management Park as calculated within the Gaussian Plume modelling approach. 

Variable Value used Average Emission  

(µg m-2 s-1) 

Average 

Emission  

(kg hr-1) 

Uncertainty 

(%) 

Baseline  800 641  

CH4 Instrument Precision ± 0.5% 973 781 22 

Wind Speed Measurement ± 5% 840 674 5 

Monin-Obukhov Length ± 7% 800 641 0 

Temperature Measurement ± 5% 795 638 0.4 

   Total 23 

 

  



Table 4 Methane emission estimates from the landfill at the Waterbeach Waste Management Park as calculated by the 
WindTrax and Gaussian Plume approaches for the case study (June 2015) and the annual estimates for the Gaussian 
Plume and InTEM inversion modelling approach for 2012 – 2104. 

Month Case Study Annual Estimate 

 Inverse dispersion 

(kg hr-1) 

Gaussian Plume  

(kg hr-1) 

Gaussian Plume  

(kg hr-1) 

InTEM 

January   1370  

February   2160  

March   1580  

April   1110  

May   830  

June   1070  

July 453 ± 20% 641 ± 23% 616  

August   1100  

September   1480  

October   1350  

November   1210  

December   2040  

  Total Emission (Gg yr-1) 11.6 ± 32% 13.7 ± 91% 

  



Table 5 Uncertainty analysis conducted on the annual methane emission from the landfill at the Waterbeach Waste 
Management Park as calculated within the Gaussian Plume modelling approach 

Variable Value used Average Emission  

(µg m-2 s-1) 

Average 

Emission  

(kg hr-1) 

Uncertainty 

(%) 

Baseline  1650 1320  

CH4 Instrument Precision ± 0.5% 1790 1440 9 

Wind Speed Measurement ± 20% 1980 1590 20 

PGSC ± 1 SC 1490 1200 24 

Temperature Measurement ± 20% 1640 1320 1 

   Total 32 

 

 


