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Abstract 28 
 29 

The recent update on the US National Ambient Air Quality Standards of the ground-level 30 
ozone (O3) can benefit from a better understanding of its source contributions in different US 31 
regions during recent years. In the Hemispheric Transport of Air Pollution experiment Phase 1 32 
(HTAP1), various global models were used to determine the O3 source-receptor relationships 33 
among three continents in the Northern Hemisphere in 2001. In support of the HTAP Phase 2 34 
(HTAP2) experiment that studies more recent years and involves higher-resolution global models 35 
and regional models’ participation, we conduct a number of regional scale Sulfur Transport and 36 
dEposition Model (STEM) air quality base and sensitivity simulations over North America during 37 
May-June 2010. STEM’s top and lateral chemical boundary conditions were downscaled from 38 
three global chemical transport models’ (i.e., GEOS-Chem, RAQMS, and ECMWF C-IFS) base 39 
and sensitivity simulations in which the East Asian (EAS) anthropogenic emissions were reduced 40 
by 20%. The mean differences between STEM surface O3 sensitivities to the emission changes 41 
and its corresponding boundary condition model’s are smaller than those among its boundary 42 
condition models, in terms of the regional/period mean (<10%) and the spatial distributions. An 43 
additional STEM simulation was performed in which the boundary conditions were downscaled 44 
from a RAQMS simulation without EAS anthropogenic emissions. The scalability of O3 45 
sensitivities to the size of the emission perturbation is spatially varying, and the full source 46 
contribution obtained by linearly scaling the North American mean O3 sensitivities to a 20% 47 
reduction in the EAS anthropogenic emissions may be underestimated by at least 10%. 48 

The three boundary condition models’ mean O3 sensitivities are ~8% (May-June 2010)/~11% 49 
(2010 annual) lower than those estimated by multiple global models, and the multi-model 50 
ensemble estimates are higher than the HTAP1 reported 2001 conditions, due to the growing EAS 51 
anthropogenic emissions, the interannual variability in atmospheric circulation (i.e., stronger trans-52 
Pacific transport in spring 2010 following an El Niño event), and the different experiment designs 53 
of HTAP1 and HTAP2. GEOS-Chem sensitivities indicate that the EAS anthropogenic NOx 54 
emissions matter more than the other EAS O3 precursors to the North American O3, qualitatively 55 
consistent with previous adjoint sensitivity calculations.  56 

In addition to the analyses on large spatial/temporal scales relative to the HTAP1, we also 57 
show results on subcontinental- and event-scale that are more relevant to the US air quality 58 
management. Satellite O3 (TES, JPL-IASI, and AIRS) and carbon monoxide (TES and AIRS) 59 
products, along with surface measurements and model calculations, show that during certain 60 
episodes stratospheric O3 intrusions and the transported EAS pollution influenced O3 in the western 61 
and the eastern US differently. Free-running global models underpredicted the transported 62 
background O3 during these episodes, posing difficulties for STEM to accurately simulate the 63 
surface O3 and its source contribution. Although we effectively improved the modeled O3 by 64 
incorporating satellite O3 (OMI and MLS) and evaluated the quality of the HTAP2 emission 65 
inventory with the KNMI OMI nitrogen dioxide, using observations to evaluate and improve O3 66 
source attribution still remains to be further explored.  67 
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1. Introduction 99 
 100 
Tropospheric ozone (O3), a short-lived trace gas with a lifetime ranging from hours in the 101 

boundary layer to weeks in the free troposphere, affects tropospheric chemistry, harms human and 102 
ecosystem health, and induces climate change on local, regional and global scales (Jerrett et al., 103 
2009; Smith et al., 2009; Anenberg et al., 2010; Mauzerall and Wang, 2001; Avnery et al., 2011a, 104 
b; Shindell et al., 2009, 2013; Bowman and Henze, 2012; Stevenson et al., 2006, 2013; Monks et 105 
al., 2015). It has been recognized that the uneven distributions of tropospheric O3 can be attributed 106 
to the stratosphere as well as local, regional and distant emission sources, through complicated 107 
processes that occur on synoptic, meso- and micro-scales (Task Force on Hemispheric Transport 108 
of Air Pollution (HTAP), 2010; National Research Council (NRC), 2009; Maas and Grennfelt, 109 
2016). The mitigation of O3’s climate and health impacts would benefit from efforts to control the 110 
emissions of its precursors from the various emission sources (United Nations Environment 111 
Programme (UNEP) and World Meteorological Organization (WMO), 2011), such as nitrogen 112 
oxides (NOx), carbon monoxide (CO), methane (CH4), and non-methane volatile organic 113 
compounds (NMVOCs).  114 
 115 

Ground-level O3 is one of the six criteria air pollutants regulated by the US Environmental 116 
Protection Agency (EPA), and the US National Ambient Air Quality Standards (NAAQS) has 117 
recently been lowered to 70 ppbv to better protect Americans’ health and the environment. Issues 118 
regarding making accurate estimates of the total O3 as well as the background O3 level (defined as 119 
the concentration that is not affected by recent locally-emitted or produced anthropogenic pollution) 120 
(e.g., McDonald-Buller et al., 2011; Zhang et al., 2011; Fiore et al., 2014; Huang et al., 2015), 121 
have been recently discussed as part of the implementation of the new US O3 standard (US EPA, 122 
2016a, b). This includes assessing the impacts of various components of the background O3, such 123 
as stratospheric O3, local natural sources such as biogenic, lightning and wildfire emissions, as 124 
well as the long-range transport (LRT) of pollution. The impact of the trans-Pacific pollution 125 
transport on US air quality has been evaluated in numerous studies over the past decades (e.g., 126 
Fiore et al., 2009; Reidmiller et al., 2009; Zhang et al., 2008, 2009; Huang et al., 2010, 2013a; Lin 127 
et al., 2012a, 2015, 2016; US EPA, 2016a). It has been found that the increasing trends of pollution 128 
in the upwind continents, especially the populated East Asia (e.g., Zhang et al., 2014; Susaya et 129 
al., 2013; Wang et al., 2012), may partially offset the US air quality improvements in recent 130 
decades due to the regional and local emission controls (e.g., Jacob et al., 1999; Verstraeten et al., 131 
2015; Ambrose et al., 2011; Wigder et al., 2013; Cooper et al., 2010; Parrish et al., 2009, 2012; 132 
Gratz et al., 2014). A better understanding of the processes that determine the O3 pollution levels, 133 
as well as an improved capability of attributing the air pollution to nearby or distant sources is 134 
needed to assist with designing and implementing effective local emission control strategies to 135 
comply with the tighter air quality standards.  136 
 137 

Chemical transport models are often used to reproduce and attribute the observed O3 levels, 138 
including assessing the impacts of the internationally transported O3 on the US air quality. In the 139 
HTAP modeling experiment Phase 1 (HTAP1), various global models with horizontal resolutions 140 
ranging from 1°×1° to 5°×5°, only around half of which are finer than 3°×3°, were used to 141 
determine the O3 source-receptor (SR) relationships among three continents in the Northern 142 
Hemisphere in 2001 (Chapter 4 in HTAP, 2010). The global model based SR relationships in 143 
HTAP1 determined using the emission perturbation approach (i.e., calculating the changes of O3 144 
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at the receptor regions in response to a 20% reduction in the emission inputs in a given source 146 
region) were reported as either monthly 24h mean values or policy-relevant metrics such as the 147 
maximum daily 8h average (MDA8) for the US (e.g., Fiore et al., 2009; Reidmiller et al., 2009). 148 
Large intermodel diversity was found in the simulated total O3 and the intercontinentally 149 
transported pollution for the chosen SR pairs in the northern midlatitudes, indicating the challenges 150 
with model simulations to accurately represent the key atmospheric processes. Multi-model mean 151 
results were the foci of in these studies with the assumption that this approach can reduce the 152 
uncertainty from the single model estimates for monthly or seasonal means. “Ensemble” model 153 
analyses have been suggested by some US stakeholders as one of the methods for helping with the 154 
characterization of the background O3 components (US EPA, 2016b). Although the multi-model 155 
approach can help identify some of the weaknesses of the individual models and may produce 156 
more reliable estimates, it is necessary to well understand the uncertainties inherent in using the 157 
same set of anthropogenic emissions in all these model simulations. Satellite observations over the 158 
regions with limited in-situ measurements such as the East Asia can be particularly helpful for 159 
quantifying such uncertainties.  160 
 161 

The 20% emission perturbation in the HTAP1 modeling experiment was chosen to produce 162 
a sizeable (i.e., larger than numerical noise) and realistic impact, but small enough in the assumed 163 
near-linear atmospheric chemistry regime. The scalability of the modeled O3 sensitivities to the 164 
size of the emission perturbations has been assessed on continental scale (Wu et al., 2009; Fiore et 165 
al., 2009; HTAP, 2010; Wild et al., 2012; Emmons et al., 2012). The receptor O3 responses to the 166 
source-region emission perturbations are found to be fairly linear within ~50% of the perturbations. 167 
However, due to the chemical non-linearity, the full source contribution obtained by linearly 168 
scaling the receptor regional mean O3 sensitivity to the 20% reduction in the source region 169 
emissions may be underestimated, and the scalability depended on seasons and the perturbed 170 
emission species. Huang et al. (2013b) investigated the scalability of the O3 sensitivity between 171 
the southern California-US intermountain west SR pair for May 2010, in which study the southern 172 
California anthropogenic emissions were perturbed by multiple amounts of +50%, -50%, -100%. 173 
They reported that the scalability of the O3 sensitivities changed with the distance from the source 174 
regions. Further analyses on the scalability of these modeled O3 sensitivities during recent years 175 
especially for the East Asia-NAM SR pair, as well as their spatial variability, are still needed. 176 
Furthermore, results generated using the emission perturbation approach need to be compared with 177 
those based on the other methods (e.g., tagged tracers, adjoint sensitivity).  178 

 179 
Previous studies have demonstrated the advantages of high resolution chemical transport 180 

modeling for understanding SR relationships (e.g., Lin et al., 2010 for Europe and the East Asia; 181 
Lin et al., 2012a; Huang et al., 2010, 2013a for Asia and NAM). Using observations (satellite, 182 
sondes, aircraft) along with single model simulations, a few studies have reported that the US O3 183 
sensitivities to extra-regional sources is time- and region-dependent (e.g., Lin et al., 2012a, b; 184 
Langford et al., 2011; Ott et al., 2016), and therefore the necessity of evaluating the extra-regional 185 
source impacts on event scale has been emphasized in these studies as well as in US EPA (2016a, 186 
b). The HTAP Phase 2 (HTAP2) multi-model experiment, initiated in 2012, is designed to advance 187 
the understanding of the impact of intercontinental pollution transport during more recent years 188 
(i.e., 2008-2010) involving a number of global and regional models’ participation (Galmarini et 189 
al., 2017; Koffi et al., 2016). The regional models are anticipated to help connect the analyses over 190 
global and regional scales and enable discussions on small spatial (e.g., subcontinental) and 191 

Deleted: 6192 



 

 
5 

temporal scales (i.e., event based analyses). The use of satellite products for identifying the 193 
transport events as well as for quantitative model evaluation is also encouraged in the work plan. 194 
The HTAP2 modeling experiment was sequentially conducted in two steps. First, similar to the 195 
HTAP1 experiment, a group of global models with different resolutions conducted base and 196 
emission perturbation sensitivity simulations to determine the pollutants’ SR relationships. All 197 
models in their base simulations used the same set of harmonized sector-based global 198 
anthropogenic emissions developed specifically for the HTAP2 modeling experiment (Janssens-199 
Maenhout et al., 2015). Most of these global models recorded only key chemical species from their 200 
base and sensitivity simulations in varied temporal frequencies. Several global models saved the 201 
three-dimensional (3D) chemical fields of more species with a 3- or 6-hour interval, which are 202 
suitable for being used as regional models’ chemical boundary conditions. In the second step, 203 
regional models conducted base and sensitivity simulations to analyze the pollutants’ SR 204 
relationships in greater detail. The regional model simulations used the same set of anthropogenic 205 
emissions as the global models within their simulation domains, and the chemical boundary 206 
conditions in these regional simulations were downscaled from the base and sensitivity simulations 207 
from the selected boundary condition model outputs. For regional simulations over the North 208 
America and Europe, boundary conditions were mostly taken from a single model such as the 209 
ECMWF C-IFS or GEOS-Chem. 210 
 211 

This study aims to address: 1) the differences in O3 sensitivities generated from the HTAP2 212 
and HTAP1 experiments to help address how the LRT impacts on NAM changed through time; 2) 213 
how the refined modeling experiment design in HTAP2 can help advance our understanding of the 214 
LRT impacts on NAM, particularly the involvement of regional models and the inclusion of small 215 
spatial/temporal scale analysis during high O3 episodes that are more relevant to air quality 216 
management;  3) the usefulness of satellite observations for better understanding the sources of 217 
uncertainties in the modeled total O3 (e.g., from the emission and regional models’ boundary 218 
condition inputs) as well as for reducing the uncertainties in some of these model inputs via 219 
chemical data assimilation. We performed a number of regional scale STEM (Sulfur Transport 220 
and dEposition Model) base and sensitivity simulations over the NAM during May-June 2010, 221 
during which period strong trans-Pacific pollution transport were shown to episodically impact the 222 
US (Lin et al., 2012a). Extending the HTAP2 regional simulations’ basic setup, the STEM top and 223 
lateral chemical boundary conditions were downscaled from three global models’ (i.e., the Seoul 224 
National University (SNU) GEOS-Chem, RAQMS, and the ECMWF C-IFS) base and sensitivity 225 
simulations in which the East Asian anthropogenic emissions were reduced. The STEM surface 226 
O3 sensitivities over the NAM region based on different boundary condition models were inter-227 
compared, in terms of the regional averages and the spatial patterns on monthly basis and during 228 
a selected event identified by satellite O3 and CO products. These were also compared with the 229 
sensitivities estimated by their corresponding boundary condition models as well as all HTAP2 230 
participating global models and the results from HTAP1.  231 
 232 
2. Methods  233 
2.1. Anthropogenic emission inputs  234 
 235 

Identical anthropogenic emissions were used in all global and regional chemical transport 236 
models’ base and sensitivity simulations. This monthly-varying harmonized sectoral (i.e., power, 237 
industry, transportation, residential, shipping, aircraft, agriculture) emission inventory was 238 
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provided on a gridded 0.1°×0.1° resolution for the years of 2008 and 2010, by compiling the 260 
officially reported emissions at the national scale (Janssens-Maenhout et al., 2015; 261 
http://edgar.jrc.ec.europa.eu/htap_v2). The temporal profiles for developing the monthly-varying 262 
emissions differ by region and sector. The amount of emissions of key O3 precursors (CO, NOx, 263 
NMVOCs) from both years are summarized in Table S1 for the four major emissions sectors, over 264 
the NAM (US+Canada, based on data from the US EPA and the Environmental Canada, which 265 
shows lower emissions from the previous years as also discussed in Pouliot et al., 2015), MICS-266 
Asia regions (south, southeast, and east Asia, based on country inventory for China and from the 267 
Clean Air Policy Support System and the Regional Emission inventory in ASia 2.1, more 268 
information also in Li et al., 2017), and for over the world. For all of these species, global total 269 
emissions in 2008 and 2010 are similar. The NOx, NMVOC, and CO emissions decreased from 270 
2008 to 2010 over the NAM by 10.7%, 9.4%, and 15.7%, respectively. In 2008, NAM NOx, 271 
NMVOC and CO contributed to 18.0%, 11.7% and 11.9% of the global total, respectively, and in 272 
2010, these contributions became 15.8%, 10.5% and 10.2%. For 2010, the transportation sector 273 
contributed more than the other sectors to NAM anthropogenic NOx and CO emissions; industrial 274 
sector contributed more than the other sectors to NMVOCs emissions. Over East Asian countries, 275 
these emissions are ~2-5 times higher than the US emissions, and the NOx, NMVOC and CO 276 
emissions increased over Asia by 7.3%, 7.2% and 1.0%, with the dominant emission sectors in 277 
2010 of transportation, industry, and residential, respectively. For both years, the emissions over 278 
the MICS-Asia regions contribute to over 40% of the global emissions. For these key O3 precursors, 279 
the East Asian countries contribute to 45% (NMVOCs)-70% (NOx) of the emissions in the MICS-280 
Asia domain in both years, and the south Asian countries contribute to ~22% (NOx)-34% 281 
(NMVOCs) of the MICS-Asia emissions. The uncertainty of the emission estimates differs by 282 
emission sector and species: i.e., the emissions from large-scale combustion sources (e.g., NOx 283 
and CO from power and industry sectors) are less uncertain than those from small-scale and 284 
scattered sources (e.g., CO and NMVOCs from transportation and residential sources). Non-285 
anthropogenic emission inputs used in different models’ simulations may differ, and their impacts 286 
on the modeled total O3 and the SR relationships will be compared in detail in future studies.  287 

 288 
2.2. Region definitions for the SR study and the model base and sensitivity simulations 289 
2.2.1.   Base and 20% emission perturbation simulations from global and regional models 290 

The HTAP2 simulations from eight global models, used in this study, are listed in Table 291 
1a, including the relevant references. Horizontal and vertical resolutions of these models range 292 
from finer than 1° to coarser than 2.5°, and from 20 to 60 layers, respectively. Overall these 293 
resolutions are higher than the HTAP1 participating models’. Figure 1 defines the source regions 294 
used in the HTAP2 SR relationship study and we will focus in this study on assessing the East 295 
Asia (EAS), S Asia (SAS), Europe (EUR), and non-NAM anthropogenic source (interchangeable 296 
in this paper with “(all) foreign”) impacts on the NAM O3 levels in 2010. Specifically, each model 297 
performed a base simulation and a number of sensitivity simulations in which the original HTAP2 298 
anthropogenic emissions for all species and sectors in a defined source region were perturbed by 299 
a certain amount (referring to 20% as in most cases) and these cases are defined in Table 1a-b as 300 
*source region*ALL(*perturbation*), where “ALL” refers to “all species and sectors”, consistent 301 
with HTAP1 and HTAP2’s naming convention. The O3 differences R(O3, *source region*, 302 
*perturbation*) over the NAM were then calculated between each model’s base and sensitivity 303 
simulations: 304 

 305 
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R(O3, EAS, 20%)  =   BASE O3 - EASALL(-20%) O3                                                                                  (1a) 324 
R(O3, SAS, 20%)  =   BASE O3 - SASALL(-20%)  O3                                                                                  (1b) 325 
R(O3, EUR, 20%)  =   BASE O3 - EURALL(-20%)  O3                                                                                  (1c) 326 
R(O3, non-NAM, 20%)  =  NAMALL O3 - GLOALL(-20%) O3                                                                  (1d) 327 
 328 

The monthly-mean R(O3, *source region*, 20%) values were averaged over the NAM 329 
region for the analysis and compared with the findings in the HTAP1 study (e.g., Fiore et al., 2009). 330 
It is worth mentioning that the rectangular source regions defined in HTAP1 were modified in 331 
HTAP2 to align with the geo-political borders. For EAS and SAS, the regions not overlapped by 332 
HTAP1 and HTAP2 are mostly in the less populated/polluted regions such as the northwestern 333 
China, according to the HTAP2 emission maps (http://edgar.jrc.ec.europa.eu/htap_v2/index.php). 334 
HTAP2’s EUR domain excludes certain regions in Russia/Belarussia/Ukraine, Middle East and 335 
North Africa that are included in HTAP1’s EUR domain. The impact of emissions over these 336 
regions on comparing the NAM R(O3, EUR, 20%) values in HTAP1 and HTAP2 will be discussed 337 
in Section 3.2.1. 338 

 339 
A unitless “Response to Extra-Regional Emission Reductions (RERER)” metric 340 

(Galmarini et al., 2017), as defined in eq. (2), was also calculated to measure the importance of 341 
local versus non-local sources to NAM’s O3 levels: 342 
RERER (O3, NAM)=!"#,%"%&'(),*+%!"#,-."/0.,*+%

	= 234355	678956355	67(;3<=	678956355	67	)		                                                      (2) 343 

The denominator and numerator terms of RERER represent the impacts of global and non-NAM 344 
anthropogenic emissions on NAM O3, respectively. The higher the NAM RERER value is, the 345 
stronger impact from non-local sources on NAM is indicated. The RERER value can exceed 1, 346 
when emission reductions led to increasing concentrations (e.g. O3 titration by nitrogen monoxide 347 
(NO)).  348 
 349 

The STEM (version 2K3) regional simulations were then performed on a 60 km×60 km 350 
horizontal resolution (a typical coarse regional model resolution) grid over NAM within the 351 
domain defined in Figure 2a during May-June 2010. The meteorological conditions in spring 2010 352 
were compared with the climatology from the NCEP/NCAR reanalysis data for the 1981-2010 353 
period (Kalnay et al., 1996) in Huang et al. (2013b), concluding that this spring represents a period 354 
of stronger-than-climatological average spring trans-Pacific transport, based on a stronger 355 
meridional gradient in the North Pacific and higher Pacific/North American (PNA) indexes. This 356 
is consistent with the findings by Lin et al. (2014) that the El Niño conditions during the 09/10 357 
winter strengthened the trans-Pacific transport of Asian pollution in spring 2010. The mean near-358 
surface air temperatures in the western US in this spring were lower than the climatology, with 359 
larger anomalies in the mountain states, which may have led to weaker local O3 production and 360 
decomposition of the transported peroxyacyl nitrates (PAN). In contrast, higher-than-normal 361 
temperatures were found in the eastern US that favored anomalously strong local O3 production.  362 
 363 

STEM has been used to interpret the observations collected by satellites and during aircraft 364 
campaigns in the past decade (e.g., Carmichael et al., 2003a, b; Huang et al., 2010, 2013a, b, 2014, 365 
2015). STEM calculates gas-phase chemistry reactions based on the SAPRC 99 gaseous chemical 366 
mechanism (Carter, 2000) with thirty photolysis rates calculated online by the Tropospheric 367 
Ultraviolet-Visible radiation model (Madronich et al., 2002). Most of the key configurations of the 368 
60 km base simulations are the same as those described in Lapina et al. (2014), i.e., meteorological 369 
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fields were pre-calculated by the Advanced Research Weather Research and Forecasting Model 380 
(WRF-ARW, Skamarock et al., 2008) version 3.3.1 forced by the North American Regional 381 
Reanalysis data (Mesinger et al., 2006), using a similar set of the physics configuration to those in 382 
Huang et al. (2013a). Biomass burning emissions are from the Fire INventory from NCAR (FINN) 383 
inventory version 1.0 (Wiedinmyer et al., 2011). Biogenic emissions were calculated by the Model 384 
of Emissions of Gases and Aerosols from Nature (MEGAN) version 2.1 (Guenther et al., 2012), 385 
driven by the WRF meteorology. Lightning NOx emissions are generated following the method in 386 
Allen et al. (2012), with the flash rates determined by the WRF convective precipitation and scaled 387 
to the National Lightning Detection Network flash rates. A major difference of the STEM 388 
simulations in this study from the Lapina (2014) study is that the anthropogenic emissions were 389 
replaced with the monthly-mean HTAP2 inventory with no weekday-weekend variability applied, 390 
rather than the earlier National Emission Inventory (NEI) 2005 in which the weekday-weekend 391 
variability exists. This change can introduce uncertainty for some US regions where weekday-392 
weekend variability of some O3 precursors’ emissions was notable during the studied period (e.g., 393 
weekend NOx emissions in southern California during spring/summer 2010 were 0.6-0.7 of the 394 
weekday emissions as reported by Kim et al. (2016) and Brioude et al. (2013)), but this was done 395 
to ensure consistency with the HTAP2 global model simulations, that also didn’t use daily variable 396 
emissions for any regions in the world. The VOC speciation for the SPRAC 99 chemical 397 
mechanism in the NEI 2005 (ftp://aftp.fsl.noaa.gov/divisions/taq/emissions_data_2005) were 398 
applied to break down the total NMVOC emissions provided in the HTAP2 inventory. The VOC 399 
speciation based on the year of 2005 can be unrealistic for 2005 as well as 2010 as studies have 400 
reported variable temporal changes of different VOC species in some US cities (e.g., Warneke et 401 
al., 2012). The time-varying lateral and top boundary conditions in the STEM base simulations 402 
were downscaled from three global models (i.e., 3 hourly SNU GEOS-Chem, 3 hourly ECMWF 403 
C-IFS, and 6 hourly RAQMS) base simulations. In support of the SR relationship study to quantify 404 
the East Asia anthropogenic impacts on the NAM, three STEM sensitivity simulations were also 405 
conducted in which the STEM boundary conditions were downscaled from the EASALL(-20%) 406 
sensitivity simulations by these three global models (Table 1b). All STEM simulated 3D chemical 407 
fields were saved hourly for the convenience of calculating the US primary O3 standard metric 408 
MDA8 as well as the quantitative comparisons against the satellite Level 2 (L2) O3 products. The 409 
STEM base case surface O3 performance and its O3 sensitivities were also compared with those of 410 
its boundary condition models as well as the multi- global model means. The latitude/longitude 411 
ranges (20-50°N/130-65°W) of NAM for the global and regional model based sensitivity 412 
calculations were selected to mainly account for the coverage of the STEM domain, which are 413 
slightly different from the definition of North America in HTAP1. 414 

 415 
Note that non-anthropogenic emission inputs used in STEM and its boundary condition 416 

models differed, as summarized in Table 1c. Figure S1 shows detailed comparisons between 417 
STEM and GEOS-Chem’s non-anthropogenic (i.e., soil, lightning, biomass burning) NOx 418 
emission inputs, and their impacts on the modeled NAM background O3 were included in Lapina 419 
et al. (2014). Such quantitative comparisons will also be carried out between STEM and its other 420 
boundary condition models in future studies. 421 
 422 
2.2.2.   Additional base and sensitivity simulations from selected models 423 
 424 
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In addition to the base and 20% EAS all-category emission perturbation simulations, the 427 
global RAQMS model conducted a sensitivity simulation in which the East Asian anthropogenic 428 
emissions were zeroed out, which was also used as STEM’s boundary conditions (Table 1b). We 429 
calculate the “SO3” metric (eq. (3)) using the O3 sensitivities in STEM and RAQMS at the receptor 430 
regions in response to both 20% and 100% of emission reductions, to explore the relationships 431 
between the O3 sensitivity and the size of the emission perturbation. A closer-to-one “SO3” value 432 
indicates higher scalability of the sensitivity based on the 20% emission perturbation method for 433 
obtaining the full “contribution” of the East Asian anthropogenic emissions on the NAM O3. 434 

 435 
SO3 = R(O3, EAS, 100%)/R(O3, EAS, 20%)/5                                                                              (3) 436 
Where: R(O3, EAS, 100%) = BASE O3 - EASALL(-100%) O3                                                                                   437 

 438 
The RAQMS model also provided a base simulation that assimilated satellite O3 products 439 

from the Ozone Monitoring Instrument (OMI, Levelt et al., 2006) and Microwave Limb Sounder 440 
(MLS, Livesey et al., 2008) (Pierce et al., 2007), which was used to help better understand the 441 
regional model base run error sources, as well as for demonstrating the use of satellite observations 442 
to help improve the representation of the trans-boundary pollution. 443 
 444 

We also used a number of sensitivity simulations produced by the GEOS-Chem adjoint 445 
model v35f in which the emissions from selected anthropogenic emission sectors (power&industry, 446 
transportation, residential) or individual O3 precursor chemical species (NOx, VOC, CO) over the 447 
East Asia were reduced by 20%. Additional simulations for the 2008-2009 periods by the SNU 448 
GEOS-Chem were also utilized to quantify the East Asia and non-NAM anthropogenic source 449 
impacts in comparison with the 2010 conditions that we mainly focus on in this study.  450 
2.3. In-situ and satellite observations 451 
2.3.1.   In-situ observations 452 

Over the receptor NAM, the hourly O3 observations at the Clean Air Status and Trends 453 
Network (CASTNET, http://epa.gov/castnet/javaweb/index.html) sites were used to evaluate the 454 
global and regional models’ base simulations in four subregions: western US (i.e., the EPA regions 455 
8, 9, 10); southern US (i.e., the EPA regions 4 and 6), the Midwest (i.e., the EPA regions 5 and 7), 456 
and the northeast (i.e., the EPA regions 1-3). The numbers of sites used in global and regional 457 
models’ evaluation in each US subregion are summarized in Tables 2-3. The locations of these 458 
sites and the subregions they belong to are indicated in Figure 2a, overlaid on a model-based terrain 459 
height map. A majority of the CASTNET sites in the western US are located at high elevation (>1 460 
km) remote or rural regions, more susceptible to the trans-boundary pollution (e.g., Jaffe, 2011). 461 
Most of the sites in the other three subregions are located in low elevation regions, mainly affected 462 
by local and regional pollution. The model-based terrain heights fairly well represent the reality 463 
on subregional scale – the differences between the actual and model-based subregional mean 464 
terrain heights at the CASTNET sites are smaller than 0.1 km (Table 3). 465 

 466 
During May-June 2010, intense ozonesonde measurements were made at multiple 467 

California locations (Cooper et al., 2011), in support of the NOAA “California Nexus (CalNex): 468 
Research at the Nexus of Air Quality and Climate Change” field experiment (Ryerson et al., 2013). 469 
They have been used to evaluate the simulated O3 vertical profiles by the HTAP2 participating 470 
models. The detailed evaluation results have been shown by Cooper et al. (2016), and will be 471 
covered by subsequent publications. 472 
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Over HTAP2’s EAS source region, the global models’ O3 performance was evaluated 477 
against the monthly-mean surface in-situ O3 measurements at 11 sites within the Acid Deposition 478 
Monitoring Network in East Asia (EANET, http://www.eanet.asia) that had data throughout the 479 
year of 2010. These include eight Japanese and three Korean sites (Figure 3a), all of which are 480 
located at low elevation regions (2-150 m). The reported monthly mean observations at these sites 481 
were based on weekly or daily sampled data, varying among sites. 482 

 483 
2.3.2.   Satellite products 484 

 485 
In two case studies of high O3 episodes, L2 and L3 O3 and CO retrievals from several 486 

satellite instruments were used to assess the impacts of trans-Pacific pollution transport and 487 
stratospheric O3 intrusions on NAM O3 levels in early May. These include: 1) the early afternoon 488 
O3 and CO profiles version 5 from the Tropospheric Emission Spectrometer (TES) (Beer et al., 489 
2001; Beer, 2006) on the Aura satellite; 2) the mid-morning O3 profiles from the METOP-Infrared 490 
Atmospheric Sounding Interferometer (IASI), which were retrieved using the Jet Propulsion 491 
Laboratory (JPL) TES optimal estimation retrieval algorithm (Bowman et al., 2006) for selected 492 
areas including the western US (Oetjen et al., 2014, 2016); as well as 3) the early afternoon L3 O3 493 
and CO maps (version 6, 1°×1°) from the Aqua Atmospheric Infrared Sounder (AIRS) instrument. 494 
The TES tropospheric O3 retrieval is often sensitive to the mid- to lower free troposphere, and O3 495 
at these altitudes in the Eastern Pacific is known to possibly impact the downwind US surface air 496 
quality at later times (Huang et al., 2010; Parrish et al., 2010). TES O3 is generally positively 497 
biased by <15% relative to high accuracy/precision reference datasets (e.g., Verstraeten et al., 498 
2013). Although IASI is in general less sensitive than TES due to its coarse spectral resolution, the 499 
681–316 hPa partial column-averaged O3 mixing ratios in the JPL product agree well with TES 500 
O3 for the 2008–2011 period with a -3.9 ppbv offset (Oetjen et al., 2016). Note that IASI O3 data 501 
are processed operationally in Europe using a different algorithm. For this work we used O3 502 
profiles from TES and IASI processed using a consistent algorithm at JPL, although the latter set 503 
of data represents only a small subset of the full set of the IASI radiance measurements. The IASI 504 
and TES L2 O3 profiles (screened by the retrieval quality and the C-Curve flags) were used to 505 
evaluate the STEM O3 vertical distributions in the different base simulations, and the satellite 506 
observation operators were applied in these comparisons. Taking TES as an example, its 507 
observation operator hz for O3 is written in (4): 508 

)-))((ln(ATES cTEScz zcFzh +=                                                                                                    (4) 509 

where zc is the natural log form of the TES constraint vector (a priori) in volume mixing ratio. 510 
ATES is the averaging kernel matrix reflecting the sensitivity of retrieval to changes in the true state 511 
(Rodgers, 2000). FTES projects the modeled O3 concentration fields c to the TES grid using spatial 512 
and temporal interpolation. The exponential of hz is then used to compute the mismatches between 513 
the model and TES O3 retrievals as the model evaluation. A small mismatch between model with 514 
the satellite observation operators and the satellite retrievals may indicate either good model 515 
performance or may be the low sensitivity of the retrievals to the true O3 profile. AIRS O3 is 516 
sensitive to the altitudes near the tropopause, with positive biases over the ozonesondes in the 517 
upper troposphere (e.g., Bian et al., 2007); AIRS CO is most sensitive to 300–600 hPa (Warner et 518 
al., 2007) and is frequently used together with the AIRS O3 to distinguish the stratospheric O3 519 
intrusions from long-range transported anthropogenic or biomass burning pollution. We use the 520 
L3 AIRS products in this study to get a broad overview of the areas that are strongly impacted by 521 
the stratospheric O3 intrusions or/and LRT of pollution. 522 
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The bottom-up NOx emissions from the HTAP2 inventory were assessed on a monthly base 525 
by comparing the GEOS-Chem nitrogen dioxide (NO2) columns with the de-striped KNMI (Royal 526 
Netherlands Meteorological Institute) OMI column NO2 product version 2.0 (Boersma et al., 527 
2011a, b). For this model evaluation against the OMI L2 products, the NO2 fields calculated by the 528 
GEOS-Chem adjoint model were saved daily at 13:30 local solar time, roughly coinciding with 529 
the Aura and Aqua overpassing times. Other parameters used in the model column calculations 530 
came from the GEOS-5/GEOS-Chem monthly mean conditions. The OMI data that passed the 531 
tropospheric quality flag at 13-14 local time were selected based on the following screening criteria: 532 
surface albedo<0.3; cloud fraction<0.2; solar zenith angle <75°; and viewing zenith angle <45°. 533 
The averaging kernels (Eskes and Boersma, 2003) and Air Mass Factors (AMFs) in the KNMI 534 
product were used to calculate the modeled tropospheric NO2 vertical columns comparable to the 535 
OMI’s. Details of the method to compare the model-based NO2 columns with the KNMI OMI’s 536 
can be found in Huang et al. (2014). 537 
 538 
3. Results and Discussions 539 
3.1. Evaluation of the HTAP2 bottom-up NOx emissions and the model base simulations  540 
3.1.1.   Evaluation of the bottom-up NOx emissions 541 

 542 
 543 

The comparison of the GEOS-Chem adjoint NO2 columns with the OMI product was used 544 
to help assess the bottom-up HTAP2 NOx emissions. Figure 4 shows that NO2 columns from 545 
GEOS-Chem’s base simulations over the US are overall overestimated. While grid-scale 546 
differences in NO2 columns may not be directly indicative of emissions biases (Qu et al., 2016), 547 
these discrepancies are possibly due to a positive bias in the bottom-up emissions, mainly from the 548 
anthropogenic sources, which have also been pointed out by Anderson et al. (2014) and Travis et 549 
al. (2016). Larger OMI-model disagreement was found over the central/eastern US in June 2010 550 
than in May, likely also due to the uncertainty in GEOS-Chem’s soil or lightning NOx emissions, 551 
which appear to be high over these regions (Figure S1). The NO2 columns in the GEOS-Chem 552 
base simulation were overestimated in many northern China rural areas and underpredicted in a 553 
few urban areas in the East Asia as well as a broad area in the southwestern China. The mismatches 554 
between model and OMI NO2 fell within the ranges of the comparison between the GOME2 NO2 555 
column product and six models’ simulations over China in summer 2008 (Quennehen et al., 2016). 556 
Also, the use of monthly-mean anthropogenic emissions as well as the overall rough treatment of 557 
emission height and temporal profiles can be sources of uncertainty. These global model 558 
evaluation results suggest that the EAS-NAM SR relationships analyzed using this inventory may 559 
overall overestimate the NAM local contribution and underestimate the EAS contribution—Under 560 
different chemical regimes, this statement would also rely on the quality of other O3 precursors’ 561 
emissions in the HTAP2 inventory, and they may be associated with variable uncertainties 562 
depending on the species or emission sector as introduced in Section 2.1. Therefore, careful 563 
assessment of other key O3 precursors’ emissions in the inventory is needed in the future work. It 564 
is important to note that uncertainty in satellite retrievals can prevent us from producing accurate 565 
assessment on emissions (e.g., van Noije et al., 2006), and this comparison does not account for 566 
the biases in the used OMI data, and would be further validated by using other OMI NO2 products 567 
as well as the bias-corrected (if applicable) in-situ NO2 measurements. We also recommend more 568 
global models to save their calculations more frequently, at least near the satellite overpassing 569 

Deleted: p570 
Deleted: model base simulations and 571 
Deleted: global model O3 ensembles and the 572 
Moved down [2]: 573 
The monthly-mean surface O3 from multiple global models’ 574 
free runs was evaluated with the CASTNET observations, at 575 
the stations with 95% of the hourly O3 observation 576 
completeness for the 1 May-30 June 2010 period577 
Formatted: No underline
Formatted: Indent: First line:  0.5"

Formatted: Indent: First line:  0"

Deleted: , and the mean biases and RMSEs for these two 578 
months were summarized in Table 2 by US subregions. The 579 
three boundary condition-model as well as the eight-model 580 
ensembles overall underpredicted O3 in the western US (by 581 
~3-6 ppbv), similar to the HTAP1 model performance over 582 
these regions for May-June 2001.583 
Moved down [3]:  This can be due to the underestimated 584 
trans-boundary pollution (as indicated by the evaluation of 585 
modeled O3 profiles with ozonesondes and satellite O3 586 
products). In addition, the coarser model resolutions are less 587 
capable of resolving the local features that influence the 588 
pollutants’ import processes, chemical transformation, as 589 
well as regional processes such as the cross-state pollution 590 
transport over complex terrains. The global RAQMS base 591 
simulation with satellite assimilation improved the free 592 
tropospheric O3 structure as its comparisons with the 593 
ozonesondes shows, which also enhanced the simulated 594 
monthly-mean surface O3 by up to 595 
Deleted: over 10 ppbv in the western US and some coastal 596 
areas in the southeastern US (Figure S1, left).597 ... [2]
Moved down [4]:  subregions (by 8-12 ppbv), close to 599 
HTAP1 model performance for May-June 2001 over the 600 
similar areas (Fiore et al., 2009) and in the Lapina et al. 601 
Deleted: (2014) study for 2010, in large part due to the 642 ... [3]
Moved down [5]:  Satellite assimilation led to 2-6 ppbv 641 ... [4]

Deleted: Except in the northeastern US, the eight-model 640 ... [5]
Moved down [6]: in the literature (e.g., Geddes et al., 2016; 618 

Moved down [7]: 2016; Travis et al., 619 

Deleted: 2016), but how serious these issues were in the 639 ... [6]
Formatted: Underline

Deleted: 3624 
Deleted: , and larger disagreement was found over the 638 ... [7]
Deleted: overall there does appear to be 627 
Deleted: consistent with the findings of628 
Deleted: It is likely that other O3 precursors’ co-emitted with 637 ... [8]
Deleted: This632 
Deleted: precursors633 
Deleted: emission 634 
Deleted: so635 
Deleted: also needed. Note636 



 

 
12 

times, for a more comprehensive assessment of the emission inventory and a better understanding 643 
of the model biases.  644 
3.1.2.   Evaluation of the global model O3 performance in NAM and EAS 645 

 646 
The monthly-mean surface O3 from multiple global models’ free runs was evaluated with 647 

the CASTNET observations, at the stations with 95% of the hourly O3 observation completeness 648 
for the 1 May-30 June 2010 period. The mean biases and RMSEs for these two months were 649 
summarized in Table 2a by US subregions. The three boundary condition-model as well as the 650 
eight-model ensembles overall underpredicted O3 in the western US (by ~3-6 ppbv), similar to the 651 
HTAP1 model performance over these regions for May-June 2001 presented in Fiore et al. (2009). 652 
This can be due to the underestimated trans-boundary pollution (as indicated by the evaluation of 653 
modeled O3 profiles with ozonesondes and satellite O3 products). In addition, the coarser model 654 
resolutions are less capable of resolving the local features that influence the pollutants’ import 655 
processes, chemical transformation, as well as regional processes such as the cross-state pollution 656 
transport over complex terrains. The global RAQMS base simulation with satellite assimilation 657 
improved the free tropospheric O3 structure as its comparisons with the ozonesondes shows, which 658 
also enhanced the simulated monthly-mean surface O3 by up to >10 ppbv in the western US and 659 
some coastal areas in the southeastern US (Figure S2, left). The global models overall significantly 660 
overestimated O3 in the other three subregions (by 8-12 ppbv), close to HTAP1 model performance 661 
for May-June 2001 over the similar areas (Fiore et al., 2009) and in the Lapina et al. (2014) study 662 
for 2010, in large part due to the uncertainties in the bottom-up emissions as discussed in Section 663 
3.1.1. Satellite assimilation led to 2-6 ppbv higher RAQMS surface O3 in the 664 
central/southern/eastern US than in its free simulation, which are associated with higher positive 665 
biases.  666 

 667 
The surface O3 performance by individual global models varies significantly, e.g., with the 668 

RMSEs at all CASTNET sites ranging from ~9 ppbv to >15 ppbv (Table 2b). As reported in the 669 
literature (e.g., Geddes et al., 2016; Travis et al., 2016), the representation of land use/land cover, 670 
boundary layer mixing and chemistry can be sources of uncertainty for certain global model (i.e., 671 
GEOS-Chem), but how serious these issues were in the other models need to be investigated 672 
further. Some other possible reasons include the variation of these models’ non-anthropogenic 673 
emission inputs and chemical mechanisms (Table 1c). Future work should emphasize on 674 
evaluating and comparing all models on process level to better understand their performance. 675 
Except in the northeastern US, the eight-model ensembles show better agreement with the 676 
CASTNET O3 observations than the three boundary condition-model ensemble. Overall the three-677 
model ensemble only outperforms one model but the eight-model ensemble outperforms seven 678 
individuals. This reflects that averaging the results from a larger number of models in this case 679 
more effectively cancelled out the positive or negative biases from the individual models.  680 

 681 
The monthly-mean surface O3 from multiple global models’ free runs was also evaluated 682 

with the EANET observations. Among the three boundary condition models, GEOS-Chem 683 
produced higher O3 than the other two throughout the year, and C-IFS O3 is the lowest from April 684 
to December. The three-model and eight-model ensembles are lower than the surface O3 685 
observations by <10 ppbv during high O3 seasons (winter/spring), but show substantial (>10 ppbv) 686 
positive biases during low O3 seasons especially in July and August (Figure 3b), similar to the 687 
HTAP1 model performance over Japan in 2001 (Fiore et al., 2009). During May-June 2010, 688 
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generally the models performed better at the Japanese sites than at the Korean sites (Table 2c), 690 
with significant positive biases occurring at low O3 regions (e.g., in central Japan) and negative 691 
biases found at high O3 regions, mainly owing to the uncertainty in the local and upwind emissions. 692 
The different approaches to generate the monthly-mean modeled and the observed O3 data may 693 
have also contributed to these model-observation discrepancies. Overall O3 performance by 694 
individual models varies less significantly than at the CASTNET sites, with RMSEs ranging from 695 
8.6 ppbv to ~13 ppbv (Table 2b). The three-model ensemble outperforms two individual models, 696 
and the eight-model ensemble outperforms six individual models. Unlike at the CASTNET sites, 697 
the three-model ensemble agrees better with the observations than the eight-model ensemble 698 
(Table 2c).  699 
 700 
3.1.3.   Evaluation of the STEM regional base simulations w/ three sets of boundary conditions  701 

 702 
The three STEM base simulations using different boundary conditions were evaluated with 703 

the hourly O3 observations at the CASTNET sites in the four US subregions. The evaluation 704 
included the 8 May-30 June 2010 period to exclude the results during the one-week spin-up period. 705 
The time series plots of observed and modeled O3 at the western US CASTNET sites show that 706 
STEM was capable of capturing several high O3 periods, and it produced larger biases during the 707 
nighttime (Figure 2c), as a result of the poorer WRF performance. Figure 2c and the evaluation 708 
statistics in Table 3a-b indicate that STEM/C-IFS O3 concentrations are associated with the highest 709 
positive bias and RMSE, while the STEM/GEOS-Chem and STEM/RAQMS predictions were 710 
positively and negatively biased by less than 2 ppbv, respectively, with similar RMSEs and 711 
correlations with the observations. The quality of the three STEM simulation mean is closest to 712 
the STEM/GEOS-Chem run, with the mean bias/RMSE of ~1.6/4.9 ppbv, much better than the 713 
three-boundary model ensemble (-5.7/10.4 ppbv). However, this good performance can be a net 714 
effect of incorrect partitioning between the trans-boundary and local source contributions, with the 715 
former being underestimated and offsetting the overestimation of the latter. Switching the STEM 716 
chemical boundary conditions to the assimilated RAQMS base simulation led to increases in the 717 
simulated surface O3 concentrations by >9 ppbv in the western US (Figure S2, right), associated 718 
with higher positive biases (due to several factors discussed in the next paragraph). Regional-scale 719 
assimilation could further reduce uncertainties introduced from regional meteorological and 720 
emission inputs to obtain better modeled total O3 and the partitioning of trans-boundary versus US 721 
contributions (e.g., Huang et al., 2015).  722 

  723 
The three STEM base simulations all significantly overpredicted O3 over the rest of the US 724 

in part due to the overall overestimated NOx emissions, with the STEM/RAQMS associated with 725 
the lowest RMSEs and mean biases, but STEM/C-IFS correlated best with the observations (Table 726 
3b). These positive biases are higher than the global model ensembles’, which can partially result 727 
from the possible unrealistic VOC speciation of the emission inventory and the SAPRC 99 728 
chemical mechanism: Although SAPRC mechanisms have been used in air quality modeling for 729 
regulatory applications in some US states such as California, they usually produced higher O3 than 730 
other mechanisms such as the CB04 and the CB05 (which were used by some HTAP2 global 731 
models, see Table 1c) over the US, and the comparisons between SAPRC 99 and SAPRC 2007 732 
are still in progress (e.g., Luecken et al., 2008; Zhang et al., 2012; Cai et al., 2011). It is important 733 
to timely update the chemical mechanisms in the chemistry models, and we also suggest to timely 734 
upgrade the VOC speciation in the bottom-up emission inventories in the US to benefit the air 735 
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quality modeling. Additionally, the uncertainty from non-anthropogenic emissions, such as the 748 
biogenic VOC emissions from WRF/MEGAN which is known to often have positive biases, can 749 
be another cause: As Hogrefe et al. (2011) presented, the MEGAN emissions resulted in a higher 750 
O3 response to hypothetical anthropogenic NOx emission reductions compared with another set of 751 
biogenic emission input. Huang et al. (2017) showed that MEGAN’s positive biases are in part 752 
due to the positively-biased temperature and radiation in WRF, and reducing ~2°C in WRF’s 753 
temperature biases using a different land initialization approach led to ~20% decreases in 754 
MEGAN’s isoprene emission estimates in September 2013 over some southeastern US regions. 755 
These temperature and radiation biases, can also be important sources of uncertainty in the 756 
modeled O3 production. Quantifying the impacts of overestimated biogenic emissions and the 757 
biased weather fields that contributed to the biases in emissions on the modeled O3 is still an 758 
ongoing work. Some existing studies also reported O3 and NO2 biases from other regional models 759 
in the eastern US, due to the chemical mechanism and biases in NOx and biogenic VOC emissions 760 
(e.g., Canty et al., 2015). We anticipate that the results from the Air Quality Model Evaluation 761 
International Initiative (AQMEII) experiment (e.g., Schere et al., 2012; Solazzo et al., 2012; 762 
Galmarini et al., 2015, 2017), which involves more regional model simulations over the US with 763 
the similar set of boundary conditions but different chemical mechanisms and non-anthropogenic 764 
emission inputs, can help better understand the causes of errors in the simulated total O3.  765 

 766 
3.2. The NAM surface O3 sensitivity to extra-regional anthropogenic pollutants  767 
3.2.1.   Global model ensembles 768 
 769 

The impact of all foreign (i.e. non-NAM) anthropogenic sources on NAM surface O3 was 770 
first explored, including the spatial distributions of the RERER metric (eq. (2)) based on various 771 
global models’ simulations (Figure 5), and the domain wide mean sensitivities R (O3, non-NAM, 772 
20%) (eq. (1d)) (Figure 6). Across the NAM, the strongest impacts were found in spring time 773 
(March-April-May, larger than 1.5 ppbv in average over the domain) and the weakest impacts are 774 
shown during the summertime (June-July-August, 1.0-1.3 ppbv), consistent with the existing 775 
knowledge on the seasonal variability of the non-local pollution impacts on NAM for other years 776 
(e.g., Fiore et al., 2009; Reidmiller et al., 2009). All global models indicate strong non-NAM 777 
anthropogenic source impacts on the western US mainly due to the impact of its high elevation, 778 
and also near the US-Mexico border areas, especially southern Texas, due to their vicinity to the 779 
Mexican emission sources. Over the western states, stronger non-local impacts were reflected from 780 
the results based on higher-horizontal resolution global models (e.g., the >0.6 RERER values from 781 
the half degree EMEP model, corresponding to its higher R(O3, non-NAM, 20%) values than the 782 
other models’), similar to the findings in previous modeling studies (Lin et al., 2010, 2012a). 783 
Although on a coarse horizontal resolution of 2.8°, OsloCTM3 suggests stronger extra-regional 784 
source influences on the northwestern US and the US-Canada border regions than the other models. 785 
Its largest number of vertical layers among all global models might be a cause. Larger-than-1 786 
RERER values are often seen near the urban areas and large point sources due to the titration, 787 
especially evident from the higher resolution model results. The R(O3, EAS, 20%) values are larger 788 
than 1/3 of the R(O3, non-NAM, 20%) (0.2-0.5 ppbv from April to June), more than 3-4 times 789 
higher than R(O3, EUR, 20%) and R(O3, SAS, 20%). Note that all eight models contributed to the 790 
R(O3, EAS, 20%) calculations, but one or two models did not provide all necessary sensitivity runs 791 
to compute the RERER, R(O3, non-NAM, 20%), R(O3, EUR, 20%), or R(O3, SAS, 20%). 792 
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Comparing to the HTAP1 modeling results, the magnitudes of R(O3, EUR, 20%) from this 803 
study are smaller by a factor of 2-3; In contrast, the R(O3, non-NAM, 20%) and R(O3, EAS, 20%) 804 
values are >50% higher than the HTAP1 modeling results. The different HTAP1 and HTAP2 805 
results are possibly due to the following three reasons: 1) the substantial improvement in the 806 
European air quality over the past decades that is shown in Crippa et al. (2016) and Pouliot et al. 807 
(2015), which contrasts with the growing anthropogenic emissions from the East Asia and other 808 
developing countries during 2001-2010; 2) the changes in the HTAP2 experiment setup from 809 
HTAP1. This includes the differences in the participating models, and the different region 810 
definitions, e.g., EUR by HTAP1’s definition includes regions in Russia/Belarussia/Ukraine, 811 
Middle East and North Africa that are excluded from the HTAP2’s EUR domain. For EAS and 812 
SAS, however, the regions not overlapped by HTAP1 and HTAP2 are mostly in the less 813 
populated/polluted regions; 3) the stronger-than-normal transport in 2010 than in 2000-2001, as 814 
first introduced in Section 2.2.1. Interannual variability of R(O3, EAS, 20%) and R(O3, non-NAM, 815 
20%) is also found between 2010 and 2008-2009, based on the SNU GEOS-Chem calculations 816 
(Figure S3). Foreign anthropogenic pollution impact on NAM was stronger in 2010 than in 2008-817 
2009, especially in April-May. This can be in part due to the higher O3 precursors’ emissions in 818 
2010 from extra-regions including the East Asia (Table S1), as well as the spring 2010 819 
meteorological conditions that favored the trans-Pacific pollution transport.  820 

 821 
These monthly- and regional-mean R(O3, EAS, 20%) values suggest that despite dilution 822 

along the great transport distance, the EAS anthropogenic sources still had distinguishable impact 823 
on the NAM surface O3. Similar to the findings from the HTAP1 studies, the large intermodel 824 
variability (as indicated in Table 4) in the estimates of intercontinental SR relationships indicates 825 
the uncertainties of these models in representing the key atmospheric processes which needs more 826 
investigations in the future. Figure 6b compares the R(O3, EAS, 20%) estimated by individual 827 
boundary condition models, their ensemble mean sensitivities, and the eight-global model mean. 828 
The averaged R(O3, EAS, 20%) from the boundary condition model results are smaller than the 829 
eight-global model mean, and except for July-October 2010, GEOS-Chem gives higher R(O3, EAS, 830 
20%) than RAQMS and C-IFS, consistent with its highest O3 prediction in the EAS source region 831 
(Figure 3b). Overall, R(O3, EAS, 20%) and its intermodel differences are much smaller than the 832 
biases of the modeled total O3 in NAM. Other factors can contribute more significantly to the 833 
biases in the modeled total O3, such as the stratospheric O3 intrusion and the local O3 formation, 834 
and assessing the impacts from these factors would be also helpful for understanding the 835 
uncertainties in the modeled O3. 836 

 837 
The O3 sensitivities in response to the perturbations of individual species or sector 838 

emissions in East Asia, estimated by the GEOS-Chem adjoint model, were also analyzed (Figure 839 
S3). These sensitivities show similar seasonal variability to R(O3, EAS, 20%), with the values 840 
~twice as high in the spring than in summer, also consistent with the results on previous years 841 
based on the 20% emission perturbation approach (e.g., Fiore et al., 2009; Brown-Steiner and Hess, 842 
2011; Emmons et al., 2012). However, this seasonal variability is weaker than the results based on 843 
the tagged tracer approach for earlier years: Using the CAM-Chem model, Brown-Steiner and 844 
Hess (2011) reported that during the springtime, Asian O3 created from the anthropogenic/biofuel 845 
NOx emissions affected NAM O3 ~three times as strongly as in summer. This is because the 846 
nonlinear O3 chemistry, which is stronger outside of summer, caused larger O3 responses to a 100% 847 
reduction of NOx emissions than 5 times of the O3 responses to a 20% reduction of NOx emissions. 848 
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The EAS anthropogenic NOx emissions more strongly impacted the NAM surface O3 than the 897 
other major O3 precursors, similar to the findings in Fiore et al. (2009) and Reidmiller et al. (2009) 898 
using the perturbation approach, as well as the conclusions in Lapina et al. (2014) based on the 899 
adjoint sensitivity analyses. Emissions from the power&industrial sectors are higher in East Asia 900 
than the other sectors (Table S1), resulting in its stronger influences on the NAM surface O3. As 901 
the observed NO2 columns started to drop since 2010 due to the effective denitration devices 902 
implemented at the Chinese power and industrial plants (e.g., Liu et al., 2016), depending on the 903 
changes in the VOC emissions, it is anticipated to see different R(O3, EAS, 20%) values for the 904 
years after 2010. Therefore, continued studies to assess the East Asian anthropogenic pollution 905 
impacts on NAM during more recent years is needed. As emissions from various source sectors 906 
can differ by their emitted altitudes and temporal (from diurnal to seasonal) profiles, efforts should 907 
also be placed to have the models timely update the heights and temporal profiles of the emissions 908 
from those various sectors. 909 

 910 
3.2.2.   Regional model sensitivities and their connections with the boundary condition models’ 911 

 912 
The monthly-mean STEM surface R(O3, EAS, 20%) sensitivities based on different 913 

boundary condition models were inter-compared, and also compared with the R(O3, EAS, 20%) 914 
estimated by their boundary condition models as well as the global model ensemble mean (Figure 915 
7). For both May and June 2010, the domain-wide mean R(O3, EAS, 20%) values from 916 
STEM/RAQMS were higher than the estimates from RAQMS by 0.03 ppbv; the STEM/GEOS-917 
Chem R(O3, EAS, 20%) values are lower than those of GEOS-Chem by 0.01-0.06 ppbv, and the 918 
STEM/C-IFS R(O3, EAS, 20%) is 0.02 ppbv higher than C-IFS’s in June but slightly (<<0.01 ppbv) 919 
lower in May. These differences are overall smaller than the inter-global model differences, and 920 
can be due to various factors including the uncertainties in boundary condition chemical species 921 
mapping, and the different meteorological/terrain fields/chemistry in the global and regional model 922 
pairs. The STEM R(O3, EAS, 20%) ensemble mean values, however, are less than 0.02 ppbv 923 
different from its boundary condition model’s ensemble mean for both months. The STEM R(O3, 924 
EAS, 20%) ensemble mean value in June is also close to the eight-global model ensemble mean, 925 
but is ~0.05 ppbv lower than the eight-model mean in May. Choosing other/more global model 926 
outputs as STEM’s boundary conditions may lead to different STEM ensemble mean R(O3, EAS, 927 
20%) estimates. We also found that the period mean R(O3, EAS, 20%) of ~0.2 ppbv sampled only 928 
at the CASTNET sites (Table 3a) are smaller than those averaged in all model grids. This indicates 929 
that currently the sparsely distributed surface network (especially over the western US that is more 930 
strongly affected by the extra-regional sources than the other US regions) may miss many LRT 931 
episodes that impact the NAM. The planned geostationary satellites with ~2-5 km footprint sizes 932 
and hourly sampling frequency (Hilsenrath and Chance, 2013) will help better capture the high O3 933 
and LRT episodes in these regions.  934 

 935 
The spatial patterns of the monthly-mean STEM surface R(O3, EAS, 20%) sensitivities 936 

based on the three boundary condition models are notably different, but overall resemble what’s 937 
estimated by the corresponding boundary condition model, and the STEM sensitivities show more 938 
local details in certain high elevation regions in the US west (Figure 8 shows the June 2010 939 
conditions as an example). These different sensitivities were investigated further, by examining 940 
the R(O3, EAS, 20%) values near the source regions (i.e., East Asia) as well as near the receptor 941 
regions (Figure 9). More East Asian anthropogenic O3 seems to be transported at the upper 942 
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troposphere in RAQMS than in the other two models. GEOS-Chem and RAQMS R(O3, EAS, 20%) 952 
sensitivities are similar over the EAS as well as the 500-900 hPa near the receptor in the eastern 953 
Pacific (at ~135°W), the altitudes US surface O3 are most strongly sensitive to during the 954 
summertime as concluded from previous studies (e.g., Huang et al., 2010, 2013a; Parrish et al., 955 
2010). Despite the close NAM domain-wide mean values from the STEM/GEOS-Chem and 956 
STEM/RAQMS, the spatial patterns of R(O3, EAS, 20%) over NAM differ in these two cases, 957 
with the latter case showing sharper gradients especially in the western US, partially due to the 958 
impact of its higher horizontal resolution. The R(O3, EAS, 20%) values from STEM/C-IFS are 959 
lower than from the other two cases both near the sources and at (near) NAM. The STEM surface 960 
(also near surface, not shown in figures) R(O3, EAS, 20%) does not spatially correlate well with 961 
the column R(O3, EAS, 20%), the latter of which contributed more to the base case O3 columns, 962 
indicating that a good portion of the transported East Asian pollution did not descend to the lower 963 
altitudes to impact the boundary layer/ground level air quality. An additional regional simulation 964 
was performed in which the STEM boundary conditions were downscaled from a RAQMS 965 
simulation without the East Asian anthropogenic emissions. The non-linear emission perturbation-966 
O3 response relationships, as the larger-than-1 So3 metric (eq. (3)) indicate, are seen across the 967 
domain, for both the surface and column O3 (Figure 8). So3 for column O3, ranging from 1.15-1.25 968 
in most regions, are overall ~0.05 higher than So3 for the surface O3. Therefore, the full source 969 
contribution obtained by linearly scaling the receptor regional mean O3 sensitivity to the 20% 970 
reduction in the source region emissions may be underestimated by at least ~10%. 971 

 972 
3.2.3.   Regional model MDA8 sensitivities on all days and during the O3 exceedances 973 

The temporal variability of the STEM R(O3, EAS, 20%) ensemble sensitivities were also 974 
studied. For most US subregions, 3-6 LRT episodes (defined as when the sensitivities are above 975 
the period mean) were identified during May-June. Throughout this period, the hourly R(O3, EAS, 976 
20%) and the observed O3 at the surface CASTNET sites are weakly correlated (Table 3a), but 977 
they display similar diurnal cycles (e.g., Figures 2c and 2d for the western US sites), possibly 978 
because the deeper boundary layer depth during the daytime enhanced entrainment down-mixing 979 
of the extra-regional pollutants to the surface. The identified diurnal variability of the R(O3, EAS, 980 
20%) can cause differences in the calculated MDA8 and all-hour mean R(O3, EAS, 20%) values. 981 
Figure S4 shows that the mean R(MDA8, EAS, 20%) values, usually at daytimes, are higher than 982 
the all-hour averaged R(O3, EAS, 20%) in most STEM model grids during both months. Therefore, 983 
it is important for more HTAP2 participating models to save their outputs hourly in order to 984 
conveniently compute the policy-relevant metrics for the O3 sensitivities. Also, the hourly 985 
sampling frequency of the planned geostationary satellites is anticipated to be more helpful for 986 
evaluating the impacts of the LRT episodes. 987 

 988 
The STEM R(MDA8, EAS, 20%) in all model grids within the four US subregions were 989 

averaged on all days during May-June 2010 and only on the days when the simulated total MDA8 990 
O3 is over 70 ppbv (Figure 10). These sensitivities also show appreciable spatial variability: from 991 
0.35-0.58 ppbv in the western US (also with the largest standard deviations, not shown), which is 992 
slightly higher than the HTAP1 results reported by Reidmiller et al. (2009) for Spring 2001, to 993 
~0.1-0.25 ppbv in the rest three subregions, which is close to the Reidmiller et al. (2009) results.  994 

 995 
Comparing the solid bar plots in Figures 10-11, we found that on all days in the three non-996 

western subregions, R(MDA8, EAS, 20%) values sampled at CASTNET sites are slightly smaller 997 
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than those computed for all model grids, while in the non-western states the opposite differences 1014 
are seen. This again suggests that expanding observation network would help better capture the 1015 
high O3 and LRT episodes. 1016 

 1017 
Figure 10 suggests smaller R(MDA8, EAS, 20%) values during the high O3 days in all 1018 

subregions. However, STEM’s total O3 concentrations at CASTNET sites during the O3 1019 
exceedances were substantially overpredicted in non-western US regions while significantly 1020 
underpredicted in the western US (see mean biases above the bar plots in Figure 11). Therefore, 1021 
the R(MDA8, EAS, 20%) values shown in Figure 10 during O3 exceedances can actually represent 1022 
the sensitivities during the non-exceedances in non-western US regions, and may not represent the 1023 
sensitivities during all O3 exceedances in the western US. Figures 11-12 show that if calculated 1024 
only at the CASTNET sites during the exceedances, in non-western US regions, R(MDA8, EAS, 1025 
20%) is 0.02-0.07 ppbv smaller during the high O3 total days. This is qualitatively consistent with 1026 
the findings in Reidmiller et al. (2009), and is possibly because that the LRT impacts were stronger 1027 
on some days with good dispersion conditions when the NAAQS was not exceeded, but weaker 1028 
on some high O3 days under stagnant conditions. In contrast, western US R(MDA8, EAS, 20%) at 1029 
CASTNET sites was ~0.05 ppbv higher on high O3 days than for all days, and this differences are 1030 
larger in rural/remote areas where local influences are less dominant. As a result, the 1031 
medium/strong positive correlations are found between modeled LRT of pollution and the total O3 1032 
in these regions (Table 3a; Lin et al., 2012a).  1033 

 1034 
3.3. Case studies of spring (9 May) and summer (10 June) LRT events mixed with stratospheric 1035 
O3 intrusions 1036 
 1037 

Lin et al. (2012a, b) and Neuman et al. (2012) showed that the trans-Pacific pollution 1038 
transport intensely impacted the western US during 8-10 May, 2010, intermingled with a 1039 
stratospheric intrusion that contributed to at least 1/3 of the total O3 in some high elevation regions. 1040 
This episode is indeed indicated by the O3 and CO products from AIRS and TES at ~500 hPa over 1041 
the Eastern Pacific (Figure 13), and the observed TES and IASI O3 profiles over the western US 1042 
indicated elevated O3 levels (>80 ppbv) at 700-900 hPa. Huang et al. (2013b) found that the 1043 
meteorological conditions during this period (i.e., a strong jet at ~700 hPa with wind speed >20 1044 
m/s shifted southwesterly when passing the southern California and continued to travel towards 1045 
the mountain states), along with the orographic lifting, efficiently exported the southern California 1046 
anthropogenic pollution, which was chemically coupled with the extra-regional pollution and 1047 
significantly enhanced the O3 levels in the US intermountain west.  1048 

 1049 
We selected this episode to compare the STEM surface total O3 concentrations as well as 1050 

the R(O3, EAS, 20%) sensitivities based on the different HTAP2 boundary condition models. 1051 
Figure 14 evaluates the simulated O3 profiles in the western US from several STEM base 1052 
simulations against the TES and IASI O3 retrievals, and Figures 15a-d indicate the performance of 1053 
the daily surface total MDA8 O3 from these simulations. We found that the underestimated free 1054 
tropospheric O3 from the STEM simulations that used any single free-running chemical boundary 1055 
conditions contributed to the underestimated STEM surface O3 in the high elevation mountain 1056 
states: e.g., by 9-14 ppbv at three CASTNET sites (Grand Canyon National Park (NP), AZ; 1057 
Canyonlands NP, UT; and Rocky Mountain NP, CO) where O3 exceedances were observed. The 1058 
unsatisfactory performance by free-running global models during high O3 events would pose 1059 
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difficulties for regional models (regardless of their resolutions and other configurations, 1068 
parameterization) to accurately estimate the SR relationships using boundary conditions 1069 
downscaled from these model runs. The STEM base simulation using the RAQMS assimilated 1070 
fields as the boundary conditions, agrees most with the observed O3 at the CASTNET sites, as well 1071 
as the TES and IASI O3 profiles in the western states. Similar to the conclusions drawn in Huang 1072 
et al. (2010, 2015) for summer 2008, we again demonstrated the robustness of satellite chemical 1073 
data assimilation for improving the boundary condition models’ O3 performance. As the 1074 
enhancement of O3 due to the assimilation is much larger than the O3 sensitivities to the EAS 1075 
anthropogenic emissions, the assimilation mainly improved the contributions from other sources, 1076 
such as the stratospheric O3. 1077 

 1078 
The quality of the model boundary conditions only indicates how well the total “transported 1079 

background” component is represented, and can not be directly connected with the accuracy of the 1080 
model estimated R(O3, EAS, 20%) sensitivities, which also show notable intermodel differences: 1081 
The estimated R(MDA8, EAS, 20%) in the different STEM cases range from <1.0 ppbv to ~1.3 1082 
ppbv, at least 40% higher than the May-June period mean in Figures 10-11. The mean R(MDA8, 1083 
EAS, 20%) at three high O3 CASTNET sites range from 0.73 (STEM/GEOS-Chem) to 0.98 ppbv 1084 
(STEM/C-IFS), with the mean SO3 of ~1.14 at these sites based on the STEM/RAQMS runs due 1085 
to the nonlinear emission perturbation-O3 response relationships (Figure 15e-h). The R(MDA8, 1086 
EAS, 100%) from the STEM/RAQMS case is as high as >7 ppbv over the high terrain regions. 1087 
These are of smaller magnitudes than the estimates in Lin et al. (2012a), possibly due to the 1088 
differences in the used models and the bottom-up emission inputs.  1089 

 1090 
A stratospheric O3 intrusion also affected the NE US on the same day, as revealed by the 1091 

satellite free tropospheric O3 and CO observations (Figure 13). This intrusion was mixed with LRT 1092 
East Asian pollution (Figure 15 and Figure S5). However, this intrusion did not enhance the NE 1093 
boundary layer/surface O3 concentrations, which were actually anomalously low (MDA8<40 ppbv) 1094 
as indicated by the model base simulations and the CASTNET observations (Figure 15a-d). 1095 
Similar characteristics during summertime stratospheric O3 intrusion events around this region 1096 
have been discussed by Ott et al. (2016). The East Asian pollution less intensely (<50%) affected 1097 
the surface O3 levels in these regions than in the US west, due to the greater transport distances, 1098 
stronger local emission influence on chemical production/loss, as well as the impact of the overall 1099 
flat terrain in the US east.  1100 

 1101 
A summertime LRT event on 9-10 June is analyzed to contrast with the 9 May case study. 1102 

Lin et al. (2012b) showed that >80 ppbv of ozonesonde data in northern California at 2-6 km 1103 
measured the stratospheric O3 remnants during this episode, and the transported stratospheric O3 1104 
contributed to as much as ~50% of the total O3 in southern California based on their model 1105 
calculations. We show that on 10 June over 100 ppbv of O3, as well as <90 ppbv CO, was observed 1106 
by satellites at ~500 hPa above Nevada and northern California (Figure 16), which again was 1107 
substantially underestimated by all free-running models (Figure 17), resulting in the 1108 
underpredicted total O3 at two CASTNET sites in southern California (Converse Station and 1109 
Joshua Tree NP) that experienced O3 exceedances on this day (Figure 18a-c). The negative biases 1110 
in the “transported background” O3 and surface MDA8 O3 were successfully reduced by 1111 
incorporating satellite data (Figures 17 and 18d).  1112 
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Figures 18e-h show that LRT of EAS anthropogenic pollution also strongly affected 1122 
southern California and Nevada. Notable intermodel differences are again found in the estimated 1123 
R(MDA8, EAS, 20%), but they are overall lower than on 9 May (<1.0 ppbv). The mean R(MDA8, 1124 
EAS, 20%) at the two high O3 CASTNET sites range from 0.54 (STEM/C-IFS) to 0.86 ppbv 1125 
(STEM/RAQMS), with the mean SO3 of ~1.13 at these sites based on the STEM/RAQMS runs 1126 
(Figure 18e-h). The R(MDA8, EAS, 100%) from the STEM/RAQMS case is as high as >6 ppbv 1127 
over southern California and Nevada. Compared to the spring event, R(MDA8, EAS, 20%) in the 1128 
eastern US are discernable only over a limited region, due to weaker transport and stronger local 1129 
chemical production/loss.  1130 
 1131 
4. Conclusions and suggestions on future directions 1132 
 1133 

In support of the HTAP Phase 2 experiment that involved high-resolution global models 1134 
and regional models’ participation to advance the understanding of the pollutants’ SR relationships 1135 
in the Northern Hemisphere, we conducted a number of regional scale STEM base and forward 1136 
sensitivity simulations over NAM during May-June 2010. STEM’s top and lateral chemical 1137 
boundary conditions were downscaled from three global models’ (i.e., GEOS-Chem, RAQMS, 1138 
and ECMWF C-IFS) base and sensitivity simulations (in which the East Asian anthropogenic 1139 
emissions were reduced by 20%). Despite dilution along the great transport distance, the East 1140 
Asian anthropogenic sources still had distinguishable impact on the NAM surface O3, with the 1141 
period-mean NAM O3 sensitivities to a 20% reduction of the East Asian anthropogenic emissions 1142 
(i.e., R(O3, EAS, 20%)) ranging from ~0.24 ppbv (STEM/C-IFS) to ~0.34 ppbv (STEM/RAQMS). 1143 
The spatial patterns of the STEM surface O3 sensitivities over NAM overall resembled those from 1144 
its corresponding boundary condition model, with regional/period mean R(O3, EAS, 20%) differed 1145 
slightly (<10%) from its corresponding boundary condition model’s, which are smaller than those 1146 
among its boundary condition models. The boundary condition models’ two-month mean R(O3, 1147 
EAS, 20%) was ~8% lower than the mean sensitivity estimated by multiple global models. 1148 
Therefore, choosing other global model outputs as STEM’s boundary conditions may lead to 1149 
different STEM O3 sensitivities. The biases and RMSEs in the simulated total O3, which differed 1150 
significantly among models, can partially be due to the uncertainty in the bottom-up NOx emission 1151 
inputs according to the model comparison with the OMI NO2 columns, and future work on 1152 
attributing the intermodel differences on process level is particularly important for better 1153 
understanding the sources of uncertainties in the modeled total O3 and its source contribution.  1154 

 1155 
The HTAP2 multi-model ensemble mean R(O3, EAS, 20%) values in 2010 were higher 1156 

than the HTAP1 reported 2001 conditions, due to the impacts of the growing East Asian 1157 
anthropogenic emissions, the interannual variability in atmospheric circulation (i.e., stronger trans-1158 
Pacific transport in spring 2010 following an El Niño event), and the different experiment designs 1159 
of HTAP1 and HTAP2. The GEOS-Chem O3 sensitivities in 2010 were also higher than the 2008-1160 
2009 conditions due to the increasing Asian emissions and the spring 2010 meteorological 1161 
conditions that favored the trans-Pacific pollution transport. The GEOS-Chem sensitivity 1162 
calculations indicate that the East Asian anthropogenic NOx emissions mattered more than the 1163 
other East Asian O3 precursors to the NAM O3, qualitatively consistent with previous adjoint 1164 
sensitivity calculations. Continued research is needed on temporal changes of emissions for 1165 
different species and sectors in NAM and foreign countries as well as their impacts on the SR 1166 
relationships. As emissions from various source sectors can differ by emitted altitudes and 1167 
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temporal profiles, efforts should also be placed to have the models timely update the height and 1209 
temporal profiles of the emissions from various sectors. 1210 

 1211 
An additional STEM simulation was performed in which the boundary conditions were 1212 

downscaled from a RAQMS simulation without East Asian anthropogenic emissions (i.e., a 100% 1213 
emission reduction), to assess the scalability of the mean O3 sensitivities to the size of the emission 1214 
perturbation. The scalability was found to be spatially varying, ranging from 1.15-1.25 for column 1215 
O3 in most US regions, which were overall ~0.05 higher than the surface O3’s. Therefore, the full 1216 
source contribution obtained by linearly scaling the NAM regional mean O3 sensitivity to the 20% 1217 
reduction in the East Asian emissions may be underestimated by at least 10%. The underestimation 1218 
in other seasons of the HTAP2 study period may be higher and will need to be quantified in future 1219 
work. Also, motivated by Lapina et al. (2014), additional calculations will be conducted in future 1220 
to explore the scalability of different O3 metrics in these cases. For future source attribution 1221 
analysis, in general it is recommended to directly choose the suitable size of the emission 1222 
perturbation based on the specific questions to address, and to avoid linearly scaling O3 1223 
sensitivities that are based on other amounts of the perturbations.  1224 

 1225 
The STEM O3 sensitivities to the East Asian anthropogenic emissions (based on three 1226 

boundary condition models separately and averagely) were strong during 3-6 episodes in May-1227 
June 2010, following similar diurnal cycles as the total O3. Stronger-than-normal East Asian 1228 
anthropogenic pollution impacts were estimated during O3 exceedances in the western US, 1229 
especially over the high terrain rural/remote areas; in contrast, non-local pollution impacts were 1230 
less strong during O3 exceedances in other US regions. We emphasized the importance of saving 1231 
model results hourly for continently calculate policy-relevant metrics, as well as the usefulness of 1232 
hourly sampling frequency of the planned geostationary satellites for better evaluating the impacts 1233 
of the LRT events. 1234 

 1235 
Based on model calculations, satellite O3 (TES, JPL-IASI, and AIRS), CO (TES and AIRS) 1236 

and surface O3 observations on 9 May 2010, we showed the different influences from stratospheric 1237 
O3 intrusions along with the transported East Asian pollution on O3 in the western and the eastern 1238 
US. This event was further compared with a summer event of 10 June 2010. During both events, 1239 
the unsatisfactory performance of free-running global models would pose difficulties for regional 1240 
models (regardless of their resolutions and other configurations, parameterization) to accurately 1241 
simulate the surface O3 and its source contribution using boundary conditions downscaled from 1242 
these model runs. Incorporating satellite (OMI and MLS) O3 data effectively improved the 1243 
modeled O3. As chemical data assimilation techniques keep developing (Bocquet et al., 2015), 1244 
several HTAP2 participating global models have already been able to assimilate single- or multi- 1245 
constitute satellite atmospheric composition data (e.g., Miyazaki et al., 2012; Parrington et al., 1246 
2008, 2009; Huang et al., 2015; Inness et al., 2015; Flemming et al., 2017). Comparing the 1247 
performance of the assimilated fields from different models, and making the global model 1248 
assimilated chemical fields in the suitable format for being used as boundary conditions would be 1249 
very beneficial for future regional modeling, as well as for better interpreting the pollutants’ 1250 
distributions especially during the exceptional events. Meanwhile, efforts should also be devoted 1251 
to advancing and applying higher-resolution regional scale modeling and chemical data 1252 
assimilation. Furthermore, although satellite observations have been applied for improving the 1253 
estimated US background O3 (e.g., Huang et al., 2015), using satellite (and/or other types of) 1254 
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observations to improve SR relationship studies also needs to be explored. Some of the possible 1268 
methods include: 1) The combination of data assimilation and the tagging approach; 2) Introducing 1269 
observation-constrained emission estimates in the emission perturbation analyses. 1270 
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1853 
Figure 1. Definitions of the 16 source regions used in HTAP2 SR relationship study (More details 1854 
in Koffi et al., 2016). The map is plotted based on data on a 0.1°×0.1° resolution grid. We focus 1855 
in this study on the impact of anthropogenic pollution from selected non-North American source 1856 
regions (i.e., EAS, SAS, and EUR), whose names are underlined and in italic. 1857 
 1858 

1859 
Figure 2. (a) The 60 km STEM NAM domain, colored by the model topography. The CASTNET 1860 
sites used in the STEM base O3 evaluation are marked as triangles in different colors that identify 1861 
the subregions they belong to (red: western US; grey: southern US; purple: Midwest; blue: 1862 
northeastern US). (b) Evaluation of the STEM modeled (averaged from the three base simulations 1863 
using the GEOS-Chem, ECMWF C-IFS, and RAQMS base runs as the chemical boundary 1864 
conditions) hourly O3 at the western US (i.e., EPA regions 8, 9, and 10) CASTNET sites. 1865 
Observations, modeled base O3 and the modeled R(O3, EAS, 20%) are in grey, orange, and purple 1866 
lines, respectively. The horizontal dashed lines indicate the period mean values. The R(O3, EAS, 1867 
20%) values from STEM calculations using three different chemical boundary conditions are 1868 
shown separately in thin lines (blue: GEOS-Chem; red: RAQMS; green: C-IFS). The period-mean 1869 
diurnal variability of the STEM modeled (c) base and (d) R(O3, EAS, 20%) at the western US 1870 
CASTNET sites. The STEM calculations using three different chemical boundary conditions are 1871 
shown separately as well as averagely. Light grey-shaded areas indicate the local standard 1872 
nighttime (from 6/7 pm to 7/8 am). 1873 
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 1882 
Figure 3. (a) May-June 2010 period mean surface O3 observations in ppbv at eight Japanese (filled 1883 
circles) and three Korean (filled triangles) EANET sites. (b) Observed and modeled monthly-mean 1884 
surface O3 in 2010 at all eleven EANET sites. The “Multi-model” and “Three-model” in the legend 1885 
indicate the mean values of all eight global models and only of the three boundary condition 1886 
models, respectively. 1887 
 1888 

1889 
Figure 4. Evaluation of the GEOS-Chem adjoint base NO2 product (recorded at near the satellite 1890 
overpassing time) with the OMI NO2 columns. The differences between OMI and GEOS-Chem 1891 
(OMI-modeled) tropospheric NO2 columns (×1015 molec./cm2) are shown for (a) May and (b) June 1892 
2010. Details of the comparison are included in Section 2.3.2. 1893 
 1894 
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 1895 
Figure 5. The RERER maps in May (left) and June (right) 2010 over the continental US, calculated 1896 
based on the monthly mean O3 from multiple global models’ base and emission sensitivity 1897 
simulations. The RERER metric (unitless) was defined in eq. (2) in the text. Values larger than 1 1898 
and smaller than 0 are shown in purple and grey, respectively. The US (including continental US 1899 
as well as Hawaii which is not shown in the plots) mean values are indicated for each panel at the 1900 
lower right corner. All models show declining RERER values from May to June, and the 7-model 1901 
mean RERER values for May and June 2010 are ~0.5 and ~0.4, respectively. 1902 
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1906 
Figure 6. (a) North American (130-65°W; 20-50°N) mean O3 sensitivity to 20% anthropogenic 1907 
emission reductions in various non-North American regions, averaged from multiple (six-eight, 1908 
see details in text) global models. (b) North American surface R(O3, EAS, 20%) values, as 1909 
estimated by single (the three STEM boundary condition models) or multi- global model means. 1910 
The “Multi-model” and “Three-model” in the legend indicate the mean sensitivities of all eight 1911 
global models and only of the three boundary condition models, respectively. 1912 
 1913 

 1914 
Figure 7. Monthly-mean North American (130-65°W; 20-50°N) surface R(O3, EAS, 20%) values 1915 
from multiple global and regional model simulations for May (left) and June (right) 2010. STEM 1916 
model mean values were calculated from its hourly output from 8 May and on. The “Multi-model” 1917 
and “Three-model” in the legend indicate the mean sensitivities of all eight global models and only 1918 
of the three boundary condition models, respectively. 1919 
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1922 
Figure 8. The monthly-mean R(O3, EAS, 20%) in June 2010 for: (a-d) surface O3 (ppbv) from the 1923 
three boundary condition models, (e-h) STEM surface O3 (ppbv), and (i-l) STEM column O3 1924 
(×1016 molecules/cm2). R(O3, EAS, 20%) values from the simulations associated with GEOS-1925 
Chem, ECMWF C-IFS, and RAQMS are shown in (a;e;i), (b;f;j) and (c;g;k), respectively. (d;h;l) 1926 
show 1/5 of the R(O3, EAS, 100%) from the simulations related to RAQMS. STEM/RAQMS-1927 
based “Scalability” SO3 (eq. (3)) values over the NAM are shown for (m) surface and (n) column 1928 
O3. 1929 

 1930 
Figure 9. The monthly-mean R(O3, EAS, 20%) in ppbv in June 2010 from the three boundary 1931 
condition models at the source and near the receptor regions: (a-c) surface O3 in the East Asia; and 1932 
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(d) Ox (GEOS-Chem) or (e-f) O3 (ECMWF C-IFS and RAQMS) along the cross section of 135°W 1945 
(near the west boundary of the STEM model domain as defined in Figure 2a).  1946 

 1947 
Figure 10. STEM R(MDA8, EAS, 20%) for May-June 2010 in four US subregions (defined in the 1948 
inset panel, also consistent with the definitions in Figures 2/S4 and Tables 2-3), averaged on all 1949 
days (bars with solid fill) and only on the days when the simulated total MDA8 O3 concentrations 1950 
were over 70 ppbv (bars with grid pattern fill). The results from the STEM runs using GEOS-1951 
Chem, ECMWF C-IFS and RAQMS boundary conditions are shown separately.  1952 
 1953 

 1954 
Figure 11. STEM R(MDA8, EAS, 20%) for May-June 2010 at the CASTNET sites in four US 1955 
subregions (same definition as in Figure 10 inset), averaged on all days (bars with solid fill) and 1956 
only on the days when the observed MDA8 O3 concentrations were over 70 ppbv (bars with grid 1957 
pattern fill). The results from the STEM runs using GEOS-Chem, ECMWF C-IFS and RAQMS 1958 
boundary conditions are shown separately. Biases for the corresponding model base runs are 1959 
shown above the bar plots. Inset shows at various CASTNET sites the number of days when the 1960 
observed MDA8 O3 concentrations were over 70 ppbv. 1961 

Deleted: 2b1962 
Formatted: Font:Bold

Deleted: 91963 
Deleted: of 1964 
Deleted: S31965 

Formatted: Font:Bold



 

 
40 

 1966 
Figure 12. STEM R(MDA8, EAS, 20%) in ppbv for May-June 2010 at the CASTNET sites on (a-1967 
c) all days and (d-f) the days when the observed MDA8 O3 concentrations were over 70 ppbv. The 1968 
results from the STEM runs using (a;d) GEOS-Chem, (b;e) ECMWF C-IFS and (c;f) RAQMS 1969 
boundary conditions are shown separately. 1970 
 1971 

1972 
Figure 13. Case study of 9 May 2010: (a-b) Ozone (ppbv) and (c-d) CO (ppbv) at ~500 hPa from 1973 
the L2 (a;c) TES retrievals (circles) and (b;d) L3 AIRS products at early afternoon local time. The 1974 
L2 IASI O3 (ppbv) at ~500 hPa retrieved using the TES algorithm (details in Section 2.3.2) at the 1975 
mid- morning local times is shown on panel (b) as triangles. The O3 profiles within the purple box 1976 
in panel (a) were used in the model evaluation shown in Figure 14. 1977 
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 1981 
Figure 14. Case study of 9 May 2010: The comparisons between (a) IASI and (b) TES O3 in the 1982 
western US with the simulated O3 in the STEM runs using the GEOS-Chem (green), C-IFS (blue), 1983 
RAQMS (purple), and assimilated RAQMS (red) boundary conditions. The O3 profiles within the 1984 
purple box in Figure 10a were used in the evaluation. Observation operators were applied in the 1985 
comparisons (details in Section 2.3.2). Solid and open dots are TES/IASI data at the TES retrieval 1986 
reporting levels and at the variable surface pressure levels, respectively. Solid lines are median O3 1987 
profiles from the satellite observations and the different STEM simulations, calculated only on the 1988 
TES retrieval reporting levels. 1989 
 1990 

1991 
Figure 15. Case study of 9 May 2010: (a-d) Surface MDA8 total O3 and (e-h) surface R(MDA8, 1992 
EAS, 20%) from the STEM simulations using the (a;e) GEOS-Chem, (b;f) ECMWF C-IFS, and 1993 
(c;g) RAQMS free run as the boundary conditions. (d) Surface MDA8 total O3 in a STEM base 1994 
simulation using the RAQMS assimilation run as the boundary conditions. CASTNET 1995 
observations are overlaid in filled circles in panels (a-d). (h) 1/5 of the surface R(MDA8, EAS, 1996 
100%) from STEM/RAQMS simulations. The conditions at ~400-500 hPa are shown in Figure S5. 1997 
Purple numbers at the lower right corners of (a-d) and (e-h) are mean model biases and mean 1998 
R(MDA8, EAS, 20%) values in ppbv at the three mountain sites (Grand Canyon NP, AZ; 1999 
Canyonlands NP, UT; and Rocky Mountain NP, CO) where O3 exceedances were observed on this 2000 
day. The locations of these sites are shown in panel (e-h) as open circles. 2001 
 2002 
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 2007 
Figure 16. Same as Figure 13, but for a case study of 10 June 2010. 2008 
 2009 

 2010 
Figure 17. Same as Figure 14, but for a case study of 10 June 2010. 2011 
 2012 

 2013 
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Figure 18. Same as Figure 15, but for a case study of 10 June 2010. The CASTNET sites with O3 2014 
exceedances on this day are Converse Station and Joshua Tree NP in southern California. 2015 
Table 1a. HTAP2 base and sensitivity simulations by various global models. The STEM boundary 2016 
condition models are highlighted in bold. 2017 

Global model, Resolution: 
lon×lat×vertical layer, 

(References) 
BASE EASALL 

(-20%) 
EASALL 
(-100%) 

GLOALL 
(-20%) 

NAMALL 
(-20%) 

EURALL 
(-20%) 

SASALL 
(-20%) 

CAM-Chem, 2.5°×1.9°×56 
(Tilmes et al., 2016) � �  � � � � 

CHASER T42, 
~2.8°×2.8°×32  

(Sudo et al., 2002) 
� �  � � � � 

EMEP rv48, 0.5°×0.5°×20 
(Simpson et al., 2012) � �  � � � � 
SNU GEOS-Chem  

v9-01-03, 2°×2.5°×47  
(Park et al., 2004; 

http://iek8wikis.iek.fz-
juelich.de/HTAPWiki/WP
2.3?action=AttachFile&do
=view&target=_README

_GEOS-Chem.pdf) 

� �  � �     

CU-Boulder GEOS-Chem 
adjoint v35f, 2°×2.5°×47 

(Henze et al., 2007) 
� �  � � � � 

RAQMS, 1°×1°×35,  
free running  

(Pierce et al., 2007, 2009) 
� � �         

RAQMS, 1°×1°×35, with 
satellite assimilation 

(Pierce et al., 2007, 2009) 
�� � �     

OsloCTM3 v2, 
~2.8°×2.8°×60 

(Søvde et al., 2012) 
� �  � � � � 

ECMWF C-IFS, 
~0.7°×0.7°×54/1.125°×1.1

25°×54, as the STEM 
chemical boundary 

conditions  
(Flemming et al., 2015) 

� �  � � � � 

Acronyms:  2018 
CAM-Chem: Community Atmosphere Model with Chemistry 2019 
C-IFS: Composition-Integrated Forecasting System 2020 
ECMWF: European Center for Medium range Weather Forecasting 2021 
EMEP: European Monitoring and Evaluation Programme 2022 
GEOS-Chem: Goddard Earth Observing System with Chemistry 2023 
RAQMS: Realtime Air Quality Modeling System 2024 
SNU: Seoul National University 2025 
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Table 1b. STEM regional simulations for HTAP2 2095 

Boundary condition model,  
Resolution: lon×lat×vertical layer BASE EASALL 

(-20%) 
EASALL 
(-100%) 

SNU GEOS-Chem v9-01-03, 2°×2.5°×47 � �  
RAQMS, 1°×1°×35, free running � � � 
RAQMS, 1°×1°×35, with satellite 

assimilation �� � �

ECMWF C-IFS, 1.125°×1.125°×54 � �  
 2096 
Table 1c. STEM and its boundary condition models’ key inputs and chemical mechanisms, with 2097 
references. More details on the models can be found in Table 1a and the text. 2098 

Model Meteorology Biogenic 
VOCs; NOx 

Lightning Biomass 
Burning 

Chemical 
Mechanism 

GEOS-
Chem GEOS-5 

MEGAN v2.1 
(Guenther et 
al., 2012); 

Wang et al., 
2009 

based on GEOS-5 
deep convective 
cloud top heights 

and climatological 
observations 

(Murray et al., 
2012) 

GFED v3.0 
(van der 

Werf et al., 
2010) 

GEOS-Chem 
standard 
NOx-Ox-

hydrocarbon-aerosol 
(http://acmg.seas.har
vard.edu/geos/doc/ar

chive/man.v9-01-
03/appendix_1.html) 

RAQMS Online (Pierce et al., 2007) 
CB-IV  

(Gery et al., 1989) 
with adjustments 

ECMWF 
C-IFS IFS 

MEGAN-
MACC, 

(Sindelarova 
et al., 2014); 

POET 
database for 

2000 (Granier 
et al., 2005) 

based on IFS 
convective 

precipitation 
(Meijer et al., 

2001) 

GFAS v1.0 
(Kaiser et 
al., 2012) 

CB05 (Yarwood et 
al., 2005) 

STEM WRF-ARW 
v3.3.1 

WRF-
MEGAN v2.1 

based on scaled 
WRF convective 

precipitation 

FINN v1.0 
(Wiedinmye

r et al., 
2011) 

SAPRC99 (Carter, 
2000) 

Acronyms:  2099 
CB: Carbon Bond 2100 
FINN: Fire INventory from NCAR 2101 
GFAS: Global Fire Assimilation System 2102 
GFED: Global Fire Emissions Database 2103 
IFS: Integrated Forecasting System 2104 
MACC: Monitoring Atmospheric Composition and Climate 2105 
MEGAN: Model of Emissions of Gases and Aerosols from Nature 2106 
POET: Precursors of Ozone and their Effects in the Troposphere 2107 
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WRF-ARW: Advanced Research Weather Research and Forecasting Model 2118 
Table 2a. Evaluation of the period mean (1 May-30 June, 2010) multi- global model free 2119 
simulations against the CASTNET observations, only at the sites where 95% of the hourly O3 2120 
observations are available. Evaluation of the individual models is summarized in Table 2b. 2121 
Subregion US EPA 

regions 
contained 

Number 
of sites 

Mean bias (ppbv) RMSE (ppbv) 
3 BCa 
models 

8 global 
models 

3 BC 
models 

8 global 
models 

Western US 8, 9, 10 19 -5.68 -2.52 10.37 7.05 
Southern US 4, 6 18 11.61 10.24 13.62 11.96 
Midwest 5, 7 13 8.03 7.66 9.16 8.67 
Northeast 1, 2, 3 17 9.55 10.63 10.28 11.24 
All 1-10 67 5.49 6.22 11.11 9.96 

aBC: Boundary Conditions 2122 
 2123 
Table 2b. Evaluation of the period mean (May-June 2010) global model free simulations against 2124 
the EANET and CASTNET observations. The STEM boundary condition models are highlighted 2125 
in bold. 2126 
Network Number 

of sites 
RMSE (ppbv) 

CAM-
Chem 

EMEP CHASER SNU 
GEOS-
Chem 

GEOS-
Chem 
adjoint 

RAQMS OsloCTM3 
v2 

C-IFS 

CASTNET 67 13.30 11.61 15.43 15.55 13.48 9.32 11.05 11.00 
EANET 11 10.38 9.96 11.39 9.18 11.04 8.60 12.97 10.86 

 2127 
Table 2c. Evaluation of the period mean (May-June 2010) multi- global model free simulations 2128 
against the EANET observations in Japan and Korea. Evaluation of the individual models is 2129 
summarized in Table 2b. 2130 
Country Number of sites Mean bias (ppbv) RMSE (ppbv) 

3 BCa 
models 

8 global 
models 

3 BC 
models 

8 global 
models 

Japan 8 0.36 1.01 8.77 9.25 
Korea 3 1.14 3.98 8.37 10.51 
All 11 0.57 1.82 8.66 9.61 

aBC: Boundary Conditions 2131 
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Table 3a. Evaluation of the hourly STEM simulated total O3 (averaged from the three base 2133 
simulations that used the different free-running boundary conditions) against the CASTNET 2134 
surface observations for 8 May-30 June, 2010. The subregional mean R(O3, EAS, 100%) and its 2135 
correlation coefficient with the observed O3 are also shown.  2136 

Subregion US EPA 
regions 
contained 

Numb
er of 
sites 

Mean 
elevation 
(km): 
actual/m
odel 

Mean 
bias 
(ppbv) 

RMSE 
(ppbv) 

Correlation 
(model 
base; obs) 

Correlation 
(obs; 
modeled 
EAS) 

Mean EAS 
sensitivity 
(ppbv) 

Western 
US 

8, 9, 10 22 1.75/ 
1.71 

1.60 4.86 0.76 0.34 0.48 

Southern 
US 

4, 6 22 0.38/ 
0.31 

20.33 22.13 0.58 0.27 0.15 

Midwest 5, 7 16 0.29/ 
0.28 

15.64 17.97 0.70 0.15 0.17 

Northeast 1, 2, 3 20 0.36/ 
0.26 

20.94 24.16 0.47 0.17 0.21 

All 1-10 80 0.73/ 
0.68 

16.17 18.30 0.66 0.13 0.20 

 2137 
Table 3b. Evaluation of the hourly STEM simulated total O3 (separately for three base simulations 2138 
that used the different free-running boundary conditions) against the CASTNET surface 2139 
observations for 8 May-30 June, 2010.  2140 
Subregion US EPA 

regions 
contained 

Number 
of sites 

Mean bias (ppbv)/RMSE (ppbv)/Correlation (model base; obs) 
SNU GEOS-Chem C-IFS RAQMS 

Western US 8, 9, 10 22 1.68/4.83/0.77 4.16/6.63/0.70 -1.03/4.81/0.76 
Southern US 4, 6 22 21.18/22.94/0.57 20.34/22.07/0.60 19.48/21.45/0.56 
Midwest 5, 7 16 15.77/18.17/0.70 16.41/18.46/0.72 14.73/17.35/0.69 
Northeast 1, 2, 3 20 21.25/24.36/0.47 21.86/24.80/0.48 19.71/23.40/0.45 
All 1-10 80 16.57/18.62/0.66 16.89/18.84/0.67 15.03/17.52/0.64 

 2141 
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Table 4. The ranges and standard deviations (ppbv, separated by “;”) of R(O3, source region, 20%) 2144 
by 6-8 global models (defined in eq. (1a-d)), summarized by months in 2010. The monthly multi-2145 
model mean values are shown in Figures 5-6. 2146 

Month/ 
Source 
region 

All Foreign/ 
Non-NAM 

(ppbv) 
EUR (ppbv) EAS (ppbv) SAS (ppbv) 

Jan 0.38-1.69; 0.41 0.002-0.12; 0.05 0.02-0.72; 0.24 0.001-0.11; 0.04 
Feb 0.92-2.07; 0.37 0.02-0.15; 0.05 0.16-0.91; 0.28 0.02-0.12; 0.04 
Mar 1.30-2.37; 0.38 0.07-0.21; 0.06 0.24-1.03; 0.30 0.03-0.12; 0.03 
Apr 1.42-2.46; 0.33 0.09-0.23; 0.05 0.33-1.07; 0.28 0.04-0.12; 0.03 
May 1.24-1.91; 0.21 0.06-0.17; 0.04 0.24-0.75; 0.19 0.05-0.11; 0.02 
Jun 1.03-1.41; 0.13 0.03-0.07; 0.02 0.14-0.39; 0.09 0.04-0.07; 0.01 
Jul 0.86-1.18; 0.13 0.02-0.04; 0.01 0.08-0.22; 0.06 0.01-0.04; 0.01 
Aug 0.80-1.19; 0.13 0.01-0.04; 0.01 0.07-0.20; 0.05 0.02-0.04; 0.01 
Sep 0.85-1.18; 0.13 0.03-0.05; 0.01 0.10-0.25; 0.06 0.02-0.06; 0.01 
Oct 0.96-1.31; 0.14 0.04-0.10; 0.02 0.17-0.42; 0.09 0.03-0.08; 0.02 
Nov 0.90-1.48; 0.19 0.05-0.15; 0.04 0.17-0.54; 0.14 0.04-0.10; 0.02 
Dec 0.73-1.67; 0.29 0.03-0.18; 0.05 0.14-0.66; 0.19 0.04-0.12; 0.03 

 2147 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 




