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Abstract. We use a statistical model to investigate the effect of 2000-2050 climate change on fine particulate matter (PM2.5) 

air quality across the contiguous United States. By applying observed relationships of PM2.5 and meteorology to the IPCC 

Coupled Model Intercomparision Project Phase 5 (CMIP5) archives, we bypass some of the uncertainties inherent in 

chemistry-climate models. Our approach uses both the relationships between PM2.5 and local meteorology as well as the 10 

synoptic circulation patterns, defined as the Singular Value Decomposition (SVD) pattern of the spatial correlations between 

PM2.5 and meteorological variables in the surrounding region. Using an ensemble of 19 GCMs under the RCP4.5 scenario, 

we project an increase of 0.4-1.4 µg m-3
 

in annual mean PM2.5 in the eastern US and a decrease of 0.3-1.2 µg m-3
 

in the 

Intermountain West by the 2050s, assuming present-day anthropogenic sources of PM2.5.  Mean summertime PM2.5 increases 

as much as 2-3 µg m-3
  

in the eastern United States due to faster oxidation rates and greater mass of organic aerosols from 15 

biogenic emissions. Mean wintertime PM2.5 decreases by 0.3-3 µg m-3
 

over most regions in United States, likely due to the 

volatilization of ammonium nitrate. Our approach provides an efficient method to calculate the climate penalty or benefit on 

air quality across a range of models and scenarios. We find that current atmospheric chemistry models may underestimate or 

even fail to capture the strongly positive sensitivity of monthly mean PM2.5 to temperature in the eastern United States in 

summer, and may underestimate future changes in PM2.5 in a warmer climate. In GEOS-Chem, the underestimate in monthly 20 

mean PM2.5-temperature relationship in the East in summer is likely caused by overly strong negative sensitivity of monthly 

mean low cloud fraction to temperature in the assimilated meteorology (~-0.04 K-1), compared to the weak sensitivity 

implied by satellite observations (±0.01 K-1). The strong negative dependence of low cloud cover on temperature, in turn, 

causes the modeled rates of sulfate aqueous oxidation to diminish too rapidly as temperatures rise, leading to the 

underestimate of sulfate-temperature slopes, especially in the South. Our work underscores the importance of evaluating the 25 

sensitivity of PM2.5 to its key controlling meteorological variables in climate-chemistry models on multiple timescales before 

they are applied to project future air quality. 
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1 Introduction  

Fine particulate matter with an aerodynamic diameter less than 2.5 µm (PM2.5) is an important surface air pollutant of public 

concern, particularly in industrialized regions. Exposure to PM2.5 can result in respiratory and cardiovascular disease, as well 

as premature mortality (e.g., Laden et al., 2006; Pellucchi et al., 2009; Brook et al., 2010). In the United States, recent 

reductions in anthropogenic emissions have decreased PM2.5 concentrations by 20% from 2001 to 2010 (EPA 2011; Hu et al., 5 

2014), and this trend is very likely to continue in the future due to increasingly stringent emission control (Val Martin et al., 

2015). However, a changing climate modifies local meteorological variables, synoptic circulation, and natural emissions, and 

thus brings new challenges to projections of future PM2.5. PM2.5 is comprised of a variety of individual components, 

including sulfate, nitrate, ammonium, organic carbon (OC) and elemental carbon (EC). The response of different PM2.5 

components to meteorology is complex (Tai et al., 2010), and model projections of PM2.5 under the 21st century climate 10 

change have so far shown little consistency (e.g., Racherla and Adams, 2006; Pye et al., 2009; Val Martin et al., 2015; Day 

et al., 2015). In this study, we develop a new statistical model to more robustly quantify the effect of 2000 to 2050 climate 

change on PM2.5 air quality across the contiguous United States. 

 

The response of PM2.5 to local meteorological variables differs by component, region, and time of year.  Analyzing 15 

observations from across the United States, Tai et al. (2010) found that sulfate, OC, and elemental carbon increases with 

temperature everywhere due to faster oxidation rates, as well as the association of warmer temperatures with stagnation, 

reduced ventilation, and greater biogenic and fire emissions. Tai et al. (2010) also determined that the correlation of nitrate 

with temperature is negative in the Southeast but positive in California and the Great Plains due to the competing effects of 

temperature on emissions and condensation. These authors further found that higher relative humidity (RH) increases both 20 

sulfate, by enhancing in-cloud SO2 oxidation, as well as nitrate due to the RH dependence of ammonium nitrate formation.  

Conversely, higher RH decreases OC and EC due to the association of moist air with reduced wildfires and greater influx of 

clean marine air (Tai et al., 2010). The relationship of PM2.5 with clouds and precipitation is complex: as cloud cover 

increases, aqueous-phase oxidation of SO2 increases, but greater precipitation may also scavenge all PM2.5 components 

(Koch et al., 2003; Tai et al., 2010). These varied and sometimes competing effects of meteorology on the different 25 

components of PM2.5 make it challenging to predict PM2.5 variability.  

 

Beside local meteorology, synoptic circulation patterns also play an important role in affecting PM2.5 air quality. For example, 

Thishan Dharshana et al. (2010) found that synoptic weather systems contribute 30% of the PM2.5 daily variability in the 

Midwestern United States. Tai et al. (2012a) found that 20-40% of the observed PM2.5 daily variability can be explained by 30 

cold frontal passages in the eastern United States and maritime inflow in the West. But characterizing the effects of cold 

front passages and other synoptic patterns on surface PM2.5 is challenging. Indices reflective of such patterns – e.g., the polar 

jet (Barnes and Fiore, 2013), cyclone frequency (Mickley et al., 2004; Leibensperger et al., 2008), and the extent of the 
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Bermuda High (Li et al., 2011; Shen et al., 2015) – may reflect only a fraction of the total synoptic activity in some regions, 

and the relationships between these patterns and PM2.5 are not completely understood.  

 

Chemical transport models (CTMs) and chemistry-climate models (CCMs) show no consistent sign of the future PM2.5 

changes under a changing climate (e.g., Liao et al., 2006; Racherla and Adams, 2006; Tagaris et al., 2007; Heald et al., 2008; 5 

Avise et al., 2009; Pye et al., 2009). In general, the number of studies that investigate effects of climate change on PM2.5 

concentrations is smaller that those on surface ozone air quality, as inferred from Jacob and Winner (2009). Reviewing 

earlier studies, Jacob and Winner (2009) and Fiore et al. (2015) concluded that the most of the projected effects of 21st 

century climate changes on PM2.5 concentrations are in the range of ±0.1-1 µg m-3, with changes up to ±2 µg m-3 in certain 

seasons or regions. More recently, Val Martin et al. (2015) found that 2000-2050 climate change may decrease the annual 10 

mean PM2.5 concentrations by 0-1 µg m-3 in the eastern United States under the Representative Concentration pathway (RCP) 

4.5 scenario of climate change. Day et al. (2015) determined that summer mean PM2.5 increases by 21% in the Southeast but 

decreases 9% in the Northeast from 2000 to 2050 under the more greenhouse-gas intensive A2 scenario. In contrast, 

Gonzalez-Abraham et al. (2015) identified a 10-30% increase of summer mean PM2.5 across the eastern United States by the 

2050s.  A key reason for these inconsistencies is the large variation in the projections of future meteorology from climate 15 

models, regardless of scenario. Due to their high computation expense, CTMs typically rely on the meteorological fields 

from a single climate model. But the dependence of PM2.5 on meteorological variables such as temperature is also uncertain, 

especially over longer timescales (e.g., interannual or decadal). To our knowledge, the ability of models to reproduce the 

dependence of PM2.5 on major meteorological variables over such long timescales has not yet been evaluated.  

 20 

An alternative approach to projecting the effect of climate change on PM2.5 air quality involves the use of statistical models, 

in which the observed relationships of PM2.5 and meteorology are applied to future climate projections from an ensemble of 

models. Use of an ensemble provides a mean or median response and uncertainty range and increases confidence in the sign 

and magnitude of the response of a particular variable to climate change. For example, Tai et al. (2012b) first analyzed 1999-

2010 observations using principal component analysis of eight different meteorological variables, and found the interannual 25 

variability of PM2.5 is strongly correlated with the average cyclone period T, defined as the inverse of the median frequency 

of the dominant meteorological mode, in the continuous United States. They then projected 2000 to 2050 changes in PM2.5 

by applying the local PM2.5-to-period sensitivity (i.e., ∆ (PM2.5)/∆T) to the future changes in the average cyclone period T 

derived from an ensemble of climate model simulations following the A1B scenario. Results showed only a weak increase of 

~0.1 µgm-3 in annual mean PM2.5 in the eastern United States, and a likely weak decrease in the Pacific Northwest. However, 30 

Tai et al. (2012b) may have underestimated the change in future PM2.5 because only the influence of synoptic patterns was 

considered and not the impact from local meteorology. More recently, Lecoeur et al. (2014) developed a statistical algorithm 

to estimate future PM2.5 concentrations over Europe based on a weather-type representation. They resampled future daily 

PM2.5 concentrations from a pool of chemistry model simulations, based on the similarity determined by regression-estimated 
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PM2.5 and large-scale circulations. They found seasonal mean PM2.5 changes between -1.6 and +1.1 µgm-3 under RCP4.5 

scenario by 2050s. 

 

In this study, we revisit the conclusions of Tai et al. (2012b). We develop a new method to characterize the synoptic 

circulations using the Singular Value Decomposition (SVD) of the spatial correlations between PM2.5 and meteorological 5 

variables in the surrounding region. The method takes into account the influence of both local meteorology and the synoptic 

circulation patterns to investigate the effect of 2000-2050 climate change PM2.5 air quality across the contiguous United 

States. We also evaluate different CTMs and CCMs in terms of the simulated dependence of seasonal mean PM2.5 on 

temperature over one decade. In Section 2, we introduce the data and models we use. In Section 3, the method used to 

characterize the synoptic circulation patterns is described. We discuss the projected 2000 to 2050 changes in PM2.5 in Section 10 

4. Section 5 evaluates the capability of different dynamic models in simulating the dependence of PM2.5 on key 

meteorological variables. 

2 Data sources and Models 

2.1 PM2.5 and meteorological data 

Surface daily mean PM2.5 concentrations and speciation data from 1999 to 2013 are taken from the U.S. Environmental 15 

Protection Agency Air Quality System (EPA-AQS, http://www.epa.gov/ttn/airs/airsaqs/). We interpolate the site 

measurements onto a 2.5°×2.5° latitude-by-longitude grid, using inverse distance weighting as in Tai et al. (2010). The 

meteorological data used in this study for 1999-2013 consist of temperature, relative humidity, and east-west and north-south 

wind speed from the National Centers for Environmental Prediction (NCEP) Reanalysis 1, mapped onto the 2.5°×2.5° grid 

resolution (Kalnay et al., 1996). For precipitation, we rely on the NOAA Climate Prediction Center (CPC) Unified Gauge-20 

Based Analysis of Daily Precipitation product for 1999-2013 (Xie et al., 2007; Chen et al., 2008). These variables have been 

used previously to predict PM2.5 (e.g., Tai et al., 2010, 2012a, 2012b; Lecœur et al., 2014), and their variability is closely 

linked to that of synoptic patterns (e.g., Shen et al., 2015; Thishan Dharshana et al., 2010). These particular variables have 

also been validated in CMIP5 models (e.g., Sheffield et al., 2012).  

 25 

Satellite-observed cloud fractions for 2004-2012 are from the Clouds and the Earth’s Radiant Energy System (CERES) 

ISCCP-D2like products (CERES Science Team, Hampton, VA, USA: NASA Atmospheric Science Data Center, accessed 

Oct, 2016, at http://doi.org/10.5067/Aqua/CERES/ISCCP-D2LIKE-MERG00_L3.003A). This merged product combines 3-

hourly, daytime cloud properties from Terra and Aqua on the Moderate Resolution Imaging Spectroradiometer (MODIS) 

and from the geostationary satellite (GEO), mapped over the 1°×1° grid resolution (Minnis et al., 1995; 2011). The cloud 30 

optical depths are archived in three wavelength bins (0-3.6, 3.5-23, and 23-380 µm) in both liquid and ice phases. In this 
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study, we focus on clouds in the lower troposphere below 680 hPa, which have the greatest implications for surface PM2.5 air 

quality.  

 

To project the 2000-2050 effect of climate change on PM2.5 air quality, we use five meteorological variables –surface 

temperature, relative humidity, precipitation, and east-west and north-south wind speed – from an ensemble of 19 climate 5 

models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5) and following the RCP 4.5 scenario 

(Taylor et al., 2012). RCP4.5 is an intermediate scenario, in which the radiative forcing reaches 4.5 W m-2 by 2100, 

approximately 650 ppm CO2 concentration, and stabilizes after that (Taylor et al., 2012). The CMIP5 data are archived at a 

horizontal resolution of ~200 km, and the details of these models can be found in Table S1.  

 10 

To remove the effects of long-term trend, we subtract the 5-year moving average from monthly mean values in both PM2.5 

and meteorological data as in Tai et al. (2012b). The choice of five years is arbitrary, but we find this choice produces good 

correlations between surface PM2.5 and meteorological variables over the relatively short 15-year PM2.5 time history of 

observations, thus allowing us to bypass the impact of non-linear emission changes. Throughout this study, we use p < 0.05 

as the threshold for statistical significance.  15 

2.2 Atmospheric chemistry models   

We preform a 9-year simulation of PM2.5 in the GEOS-Chem CTM (v9-02, http://geos-chem.org) with coupled gas-phase 

and aerosol chemistry. The model has a horizontal resolution of 2°×2.5° with 47 pressure levels extending from surface to 

0.01 hPa (~38 in the troposphere), driven by GEOS-5 assimilated meteorological data for 2004 to 2012 from the NASA 

Global Modeling and Assimilation System (GMAO). The aerosol thermodynamical partitioning of nitrate and ammonium 20 

between gas and aerosol phases is calculated by the ISORROPIA II model (Fountoukis and Nenes, 2007). The scheme to 

produce sulfate via aqueous-phase oxidation of SO2 uses liquid water content and cloud fraction from the assimilated 

meteorology (Fisher et al., 2011).  Formation of secondary organic aerosol (SOA) follows Pye et al. (2010), with many 

subsequent updates to the isoprene oxidation mechanism (Paulot et al., 2009a, b; Rollins et al., 2009). Biogenic emissions 

are from the inventory of Guenther et al. (2012).  We follow Hudman et al. (2012) for emissions of nitrogen oxides (NOx) 25 

from soil, and Murray et al. (2012) for lightning NOx. U.S. anthropogenic emissions of PM2.5 precursors are from the EPA 

2005 National Emissions Inventory (NEI05).  We use monthly biomass burning emissions from Global Fire Emission 

Database (GFED, van der Werf et al., 2010). 

   

GEOS-5 assimilates a large array of observations but calculates clouds properties using a prognostic algorithm without 30 

assimilation. The algorithm considers both liquid and ice phases of cloud condensate with two types of cloud types, anvil 

and large-scale clouds (Reinecker et al., 2008). The basic moist processes include a convective scheme using the Relaxed 

Arakawa-Schubert parameterization (Moorthi and Suarez, 1992), a large-scale cloud condensate scheme (Smith, 1990, 
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Rotstayn, 1997), and cloud destruction schemes as described in (Reinecker et al., 2008). Column cloud fraction in the lower 

troposphere is calculated using a random overlap approximation (Stephens et al., 2004). In Section 5, we validate the GEOS-

5 cloud fraction in the lower troposphere against CERES satellite observations. 

  

Finally, we use modeled, 1995-2010 PM2.5 surface concentrations and temperature data from the Atmospheric Chemistry and 5 

Climate Model Intercomparison Project (ACCMIP). For this historical simulation, the ACCMIP models follow the same 

time-varying anthropogenic and biomass burning emissions (Lamarque et al., 2010). Only four ACCMIP models provide 

archived total PM2.5 concentrations: NCAR-CAM3.5, GFDL-AM3, MIROC-CHEM and GISS-E2-R (Table S2). Here we 

use an updated simulation with the GISS-ModelE2 model in its atmosphere-only mode, forced using the ACCMIP emissions 

(Lamarque et al., 2010), observed daily sea-surface temperatures and sea-ice from Reynolds et al. (2007), and with winds 10 

nudged to the Modern-Era Retrospective Analysis for Research and Applications (MERRA) meteorological reanalysis 

(Rienecker et al., 2011). The rate constants for oxidation of SO2 and DMS by OH have been updated to those recommended 

by Burkholder et al. (2015), consistent with GFDL-AM3 and GEOS-Chem. All four ACCMIP models are CCMs. The 

horizontal resolution of these models is ~200 km; more details are described in Lamarque et al. (2013). 

3 Construction of synoptic circulation factors 15 

PM2.5 variability is not only related to local meteorology, but also synoptic circulation. Previous studies have identified many 

synoptic patterns that are important for surface air quality in different regions under certain seasons, such as cyclone 

frequency (Mickley et al., 2004; Leibensberger et al., 2008), the position of the polar jet wind in the Northeast (Barnes and 

Fiore, 2013; Shen et al., 2015), and the extent of the Bermuda High west edge in summer in the Southeast (Li et al., 2011; 

Shen et al., 2015). However, identification and interpretation of the dominant synoptic patterns for each region and each 20 

month would be time consuming and subject to some uncertainty.  Instead, as a first step, we attempt to find a more general 

way to characterize the major synoptic patterns that modulate the PM2.5 variability.  

 

Synoptic circulation plays a vital role in controlling PM2.5 air quality. The correlations of surface PM2.5 with meteorological 

variables in the surrounding regions may in fact be stronger than those in the local regions. For example, Figure 1a shows the 25 

correlations between May-June-July (MJJ) monthly mean PM2.5 concentrations in one 2.5°×2.5° grid box in Georgia in the 

southeast United States with MJJ surface air temperatures in grid boxes across a much larger domain (32.5°×17.5°) over the 

1999-2013 time period. Positive correlations extend across the whole Southeast, suggesting that PM2.5 air quality in Georgia 

is affected by regional climate; the strongest correlations are located in Mississippi, ~500 km west of Georgia. The 

relationship of PM2.5 in the Georgia gridbox with relative humidity also shows a regional signature, with negative 30 

correlations spanning the Southeast to the Gulf of Mexico (Figure 1b). Precipitation can scavenge particles, and we identify 

negative correlations of the Georgia PM2.5 with regional precipitation (Figure 1c).  The relationships of Georgia PM2.5 with 
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east-west wind speed are relatively weak, with negative correlations in the Midwest and Gulf of Mexico (Figure 1d).  

However, the relationships of PM2.5 in the Georgia grid box with the north-south wind speed show a strong bimodal structure, 

with significant negative correlations stretching over the eastern Atlantic and positive correlations in the south central United 

States (Figure 1e), suggesting anti-cyclonic circulation. In contrast the correlation of this variable with PM2.5 within Georgia 

is close to zero, which means the local north-south wind speed does not provide predicative capability for PM2.5 here. Taken 5 

together these results imply that PM2.5 variability is partly controlled by regional-scale synoptic patterns, and consideration 

of only local meteorology will not suffice in predicting PM2.5.  

 

We construct the synoptic circulation factors driving PM2.5 across the eastern United States through the use of SVDs of the 

spatial correlations between PM2.5 in each grid box and meteorological variables in the surrounding region. This SVD 10 

method effectively compresses the information from several meteorological variables in a multi-dimensional matrix into a 

set of scalars that represent the oscillation of the PM2.5-related synoptic patterns. For each grid box, the process proceeds as 

below. First, we calculate the correlations of monthly mean PM2.5 in the grid box with five meteorological variables 

(temperature, relative humidity, precipitation, and north-south and west-east wind speed) within a ~1,000-km radius of the 

grid box on a 2.5°×2.5° horizontal grid. This step yields a 13×9×5 (longitude × latitude × variable) matrix which we call A.    15 

Second, we align the dimension of longitude-latitude into one column, and resize matrix A into a 117×5 two-dimensional 

matrix F. The SVDs of F can be written as 

F = ULVT 

where L is a diagonal matrix with non-negative numbers on the diagonal. Each column of V represents the variable weights 

and each column of U represents the spatial weights of the corresponding SVD mode. For example, Figure 2a-b shows the 20 

spatial and variable weights of the first SVD (SVD1) mode for PM2.5 in the same gridbox in Georgia as in Figure 1, where 

SVD1 explains 32% of the total variance. The spatial weights show a bimodal structure with negative anomalies over the 

eastern Atlantic and positive anomalies over the Great Plains and Midwest (Figure 2a), in a pattern similar to that in Figure 

1e.  The corresponding variable weights in Figure 2b reveal the importance of the north-south wind speed in this mode, 

suggesting that SVD1 is characterized by dynamic, synoptic-scale meteorology. In the second SVD (SVD2) mode, the 25 

spatial weights (Figure 2c) show positive anomalies in the southeast United States, and this corresponds to the positive 

temperature anomalies in Figure 1a as well as negative relative humidity and precipitation anomalies in Figure 1b-c. The 

meteorological composition of the variable weights shows that temperature, relative humidity, and precipitation dominate 

(Figure 2d), suggesting that SVD2 reflects a regional-scale thermal effect. The magnitudes of SVD1 and SVD2 oscillate 

over time, contributing to PM2.5 variability in the Georgia gridbox. We repeat this exercise for each grid box across the 30 

United States. 

 

The magnitude of each PM2.5-related mode in a new meteorological field can be calculated as follows. For each grid box, we 

first construct a matrix M, consisting of the monthly mean values of each meteorological variable across the surrounding 
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region.  We scale the time series of each variable in each grid box to achieve zero mean and unit standard deviation across 

the time frame.  The magnitude of each SVD mode for every month t is then calculated using the inverse process of SVD, 

which can be written as 

Sk=Uk
TMtVk 

where Uk refers to the kth column in the spatial weights matrix U, Vk to the kth column in the variable weights matrix V, and Sk 5 

is a scalar depicting the magnitude of the kth SVD mode of the new meteorological field for that month. This inverse SVD 

transforms a large matrix into a few scalars, and these scalars reflect the variability of synoptic patterns that are closely 

related to PM2.5 air quality.  

 

We first construct a multiple linear regression model to correlate observed monthly mean 1999-2013 PM2.5 concentrations 10 

and five local meteorological variables (surface temperature, relative humidity, precipitation, and east-west wind and north-

south wind) and the two most important synoptic factors in each gridbox, diagnosed using SVD. The model is of the form 

𝑌 = 𝛼!𝑋!

!

!!!

+ 𝛽!𝑆!

!

!!!

+ 𝑏 

where Y is three continuous monthly mean PM2.5 concentrations for 1999-2013 with a total number of 45 values in the time 

series. For example, for July PM2.5, we train the model using June, July and August values for each year over the 15 years. X 

is a scalar consisting of the five local meteorological variables, S represents the two synoptic circulation factors constructed 15 

using SVD, α and β are the corresponding coefficients, and b is the intercept. We test this model in two steps. In the first 

step, we use only the local meteorological variables – i.e., we set all βs to zeros. In the second step, we use both local 

meteorology and synoptic patterns. In order to avoid over-fitting, we use leave-one-out cross-validation to determine the best 

variable combinations for each gridbox. Each time we reserve one observation in the timeseries as the test set and use the 

remaining ones as the training set, and we repeat this process until all observations have been predicted. Throughout this 20 

study, we predict monthly PM2.5 concentrations using this regression model, but projected changes of PM2.5 in the future 

climate will be displayed as seasonal and annual means.  

 

Figure 3a shows the cross-validated skills expressed in the coefficients of determination (R2) between observed and predicted 

1999-2013 monthly mean PM2.5 concentrations using only local meteorology. We find R2 averages 34% across the United 25 

States, with the largest R2 located in the Midwest, Northeast and Northwest. This spatial pattern of R2 is consistent with the 

pattern in Tai et al. (2010), who regressed daily PM2.5 concentrations onto only local meteorological variables. By including 

synoptic circulation factors into the model, the average R2 of the regression model increases over most regions, with an 

average R2 across the United States of 43% and R2 values greater than 50% over a broad region that includes the upper 

Midwest, Ohio, parts of the Northeast, and areas as far south as Tennessee (Figure 3b). This result demonstrates that 30 

inclusion of synoptic circulation factors can significantly improve the regression model. We also find that the cross-validated 
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values of R2, calculated from both local meteorology and patterns of synoptic circulation and averaged across the United 

States, are 35% in spring, 44% in summer, 42% in autumn and 43% in winter (Figure S1). To check the multi-colinearity 

among predictors in this model, we calculate the variance inflation factors (VIFs) for all variables in each gridbox and each 

month. Results in Figure S2 show that about 98.9% of the VIFs are less than 5, well below the threshold of 10 that defines 

significant multi-colinearity (Kutner et al., 2004).  5 

4 Impact of 2000-2050 climate changes on PM2.5 from statistical inference 

To estimate the impacts of climate change on future PM2.5 concentrations from 2000-2019 to 2050-2069, we apply the 

regression model including both local and synoptic meteorology to the CMIP5 meteorological projections. We calculate 

mean surface PM2.5 in both timeframes and then the resulting change. We assume that anthropogenic emissions of PM2.5 

sources remain at mean 1999-2013 levels during the 2050-2059 timeframe. An ensemble of 19 CMIP5 models in the RCP4.5 10 

scenario is used here, and we calculate the PM2.5 change for each model separately. Computing the average PM2.5 change 

across the ensemble improves confidence in our predictions of the climate impact on PM2.5.   

 

Future climate change by 2050s leads to significant warming across North America, but has minimal effects on precipitation 

and circulation patterns across the continent. Figure S3 shows the seasonal changes in temperature, relative humidity, 15 

precipitation and surface wind field for June-July-August (JJA) across the United States, averaged across the CMIP5 

ensemble. Mean temperature increases by 2-2.5 K over much of the North in this timeframe, and 1.5-2 K over the Southeast. 

Relative humidity decreases by up to 0.03 over most regions across the United States, but the models show no consistent 

sign in the future change in precipitation in the summer.  The flux of maritime air into the south United States increases due 

to increased land-ocean thermal contrast. In winter (Figure S4), mean temperature increases by 3 K in the North, while 20 

relative humidity decreases across the intermountain west and the Northeast, similar to the pattern in summer.  Precipitation 

shows a slight increase of 0.1 mm d-1 in the North, and the surface circulation pattern shows little change over the United 

States (Figure S4).  

 

Figure 4a-d shows the response of the seasonal mean PM2.5 concentrations to 2050s climate change across the United States, 25 

shown as the average of all projections from the CMIP5 models. PM2.5 increases by ~2-3 µg/m3 in summer in the eastern 

United States (Figure 4b), likely due to faster oxidation rates and more abundant organic aerosol (OA) in the warmer climate 

of the 2050s (e.g., Tai et al, 2010; Kelly et al, 2012; Gonzalez-Abraham et al., 2015). This can be also inferred from the 

positive sensitivity of sulfate and OA with temperatures from observations, which will be discussed in more details in 

Section 5.  We also find an increase of ~0.8-1.5 µg m-3 in the summer over the Intermountain West, partly driven by 30 

enhanced biomass burning in a warmer climate (e.g., Yue et al., 2013, 2015).   In winter, future PM2.5 decreases by 0.3-3 

µg/m3 across much of the United States (Figure 4d), likely driven by greater volatilization of ammonium nitrate at warmer 
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temperatures (Dawson et al., 2007, 2009). In spring and autumn, PM2.5 increases in the eastern United States by ~0.5 µg/m3. 

Annual mean PM2.5 increases as much as 1.4 µg/m3 in the eastern United States but decreases by up to 1 µg/m3 in the inter-

mountain West (Figure 4e).  

 

To evaluate the uncertainty of projected PM2.5 concentrations, we analyze the range of these projections among the 19 5 

CMIP5 models as well as the interannual timeseries of regional projections from 2000-2069. Even though many models have 

multiple simulations, when we calculate the effects of climate change on PM2.5 concentrations, we only use the simulated 

meteorology from the first ensemble run for each model. In general, these models agree on the sign of the change of PM2.5 

across the East by 2050s, but the magnitude of the change varies among models (Figure S5). To more rigorously characterize 

this uncertainty, we calculate the 90th and 10th percentile changes in PM2.5 concentrations as calculated from the 19 CMIP5 10 

models (Figure S6-S7). In the summertime, the 90th percentile changes of PM2.5 can be greater than 3 µg/m3 across most of 

the eastern United States (Figure S6b), but the 10th percentile changes are only 0.5-1.5 µg/m3 (Figure S7b). These 

discrepancies underscore the importance of using an ensemble of climate models to project future PM2.5 concentrations.  

Such an approach allows us to identify robust results across models, quantify uncertainty, and diagnose model outliers. We 

also examine the 2000-2069 timeseries of projected PM2.5 concentrations as annual, summertime, and wintertime means, 15 

averaged over eight different U.S. (Figure S8-11). The spread in PM2.5 trends is one measure of the uncertainty in our 

projections, arising in part from differences in model sensitivity to changing greenhouse gases and in part from internal 

variability of the climate system (e.g., Deser et al., 2013). Averaging results across the CMIP5 ensemble reveals a robust 

response of PM2.5 to increasing greenhouse gases, at least in some regions, giving us confidence in our approach. 

 20 

We also compare our results to those from recent studies using chemistry-climate models. Among the seven recent studies 

reviewed in Fiore et al (2015), only two of them projected a significant increase of PM2.5 concentrations in summer over the 

eastern United States.  Kelly et al. (2012) estimated an increase of 0.5-1.0 µg m-3 in summertime PM2.5 over much of the East 

from 2000 to 2050, mainly resulting from rapid increases in SOA from biogenic emissions. Gonzalez-Abraham et al. (2015) 

found that the effect of 2000-2050 climate change alone without changes in biogenic emissions can increase PM2.5 25 

concentrations by up to 1.0 µg m-3 in the eastern United States, a combined effect of increasing sulfate and ammonium as 

well as decreasing nitrate. Consideration of the changes in biogenic emissions drives up this increase to 0.5-3 µg m-3.  

 

To diagnose which meteorological variable plays the greatest role in these PM2.5 changes, we perform a series of tests with 

the regression model.  For each test, we keep one variable in the 2050-2069 calculation the same as for the 2000-2019 30 

timeframe and calculate the resulting changes in PM2.5. We find that the changes of PM2.5 almost vanish if we hold surface 

temperatures for 2050-2069 at their 2000-2019 values (Figure S12), suggesting that temperature drives most of the PM2.5 

changes in the future climate.   
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Our study shows much larger regional effects of 2000-2050 climate change on annual mean PM2.5 compared to Tai et al. 

(2012b). An increase of only ~0.1 µg/m3 was predicted by Tai et al. (2012b) in the eastern United States, an order of 

magnitude smaller than what we find.  We trace the reason for this discrepancy to the choice of predictors in the two studies. 

Tai et al. (2012b) identified the dominant meteorological modes driving daily PM2.5 variability in 4°×5° gridcells across the 

United States and calculated the local sensitivity of PM2.5 to synoptic period T for that mode.  Using the simulated changes in 5 

T from a set of climate models, they then projected future PM2.5 in each gridcell.  Tai et al. (2012b) further found a strong 

correlation (r = -0.63) between T and the maximum eddy growth rate, a quantity that reflects the meridional temperature 

gradient. This finding implies that trends in T represent only the changes in the meridional temperature gradient, but do not 

take into account the effects of homogeneous warming across the mid and high latitudes. Partly to remedy this bias, we have 

included both local meteorology and synoptic circulations patterns into our regression model, leading to a much higher 10 

response of PM2.5 to climate change.  

 

One weakness of this study is that when estimating the sensitivity of PM2.5 to meteorological variables, we do not consider 

the impact of changing anthropogenic emissions on this sensitivity. Figure S13 compares the slopes of monthly mean PM2.5 

and its components with temperature for two time periods: 1999-2006 summers with high anthropogenic emissions and 15 

1997-2013 summers with low anthropogenic emissions. Using the monthly data, we find that the changes of sensitivity of 

PM2.5 to temperature vary across different locations and species. As the anthropogenic emissions decrease, the slopes of 

PM2.5 and temperature decrease over the Great Plains and Midwest, but increase slightly in the south Atlantic States. Sulfate 

exhibits decreased sensitivity across the eastern United States, and OA shows no significant pattern of change. Reasons for 

such inconsistencies may be related to the shorter time periods and therefore less robust sensitivity. In this study, we have 20 

thus chosen not to investigate the influence of changing emissions on the sensitivity of PM2.5 to climate change using this 

statistical model. 

5 Evaluation of PM2.5 sensitivity to surface temperature in chemistry models  

A key question is why previous model studies show no consistent sign in the in the change of future PM2.5 relative to the 

present (Jacob and Winner, 2009). Such discrepancies no doubt arise in part because of differences in model projections of 25 

future climate or in model speciation of PM2.5. In this section we investigate whether differences in model representation of 

the sensitivity of PM2.5 to meteorological variability may also contribute to uncertainty in projections of future PM2.5.  As we 

point out above, few or no models have undergone evaluation of their capability in simulating this sensitivity over relatively 

long time scales (e.g., the interannual variability over a decade). Our tests with the regression model show that temperature is 

the most important driver of changing PM2.5 in a changing climate, making it the primary candidate for evaluation in these 30 

models. We focus on summer (JJA) because our predictions point to an increase of PM2.5 by 2050s of 2-3 µg m-3 in the 

eastern United States by the 2050s at that time of year, values much greater than previous predictions.  
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This section consists of two parts. First, we test the capability of four ACCMIP models and GEOS-Chem in capturing the 

observed relationship between JJA monthly mean PM2.5 and temperature. We find no model simulates this relationship well.  

Second, using GEOS-Chem as a testbed, we investigate the reasons of this failure in this particular model.    

 5 

Figure 5 shows the distributions of the slopes of monthly PM2.5 and temperature over the United States in observations and in 

different chemistry models for summer months in the present-day.  All PM2.5 and temperature values have been detrended, as 

described above, so that the slopes reflect only the PM2.5 response to the interannual variability in temperature. For both the 

observations and the model results, the sensitivities of PM2.5 to temperature shown here encapsulate the response of PM2.5 to 

all variables associated with temperature, including cloud cover, relative humidity, and boundary layer height. The 10 

observations display positive slopes over the whole United States, with slopes in the East greater than 1 µg m-3 K-1 (Figure 

5a). The positive slopes driven by faster oxidation rates and increased biogenic emissions, as well as the stagnation 

frequently concurrent with higher temperatures. The models, however, either underestimate the positive slopes or even yield 

negative slopes in some regions, with no consistent spatial patterns in these discrepancies. For example, CAM3.5 shows 

significant positive slopes in Texas, the Midwest, and Northeast (Figure 5b). GFDL-AM3 displays a bimodal structure, with 15 

positive slopes in the Northeast but negative slopes in the South (Figure 5c). The GISS-ModelE2 shows slight positive 

slopes over parts of the East (Figure 5d). The slopes in MIROC-CHEM are nearly flat, indicating little sensitivity of the 

monthly mean PM2.5 concentrations to temperature variability (Figure 5e). GEOS-Chem shows positive slopes over much of 

the eastern United States, but the magnitudes are much less than those observed (Figure 5f). Our results suggest that these 

chemistry models may underestimate the impact of future climate change on U.S. PM2.5 air quality.  20 

 

Using GEOS-Chem, we further explore the sensitivity of monthly mean PM2.5 to temperature in the summertime.  We 

regress the simulated monthly mean concentrations of key PM2.5 components – sulfate, ammonium, organic aerosols (OA) 

and BC – onto temperature over the 2004-2012 summers. In the observations, the positive slopes in sulfate-temperature and 

OA-temperature clearly drive the positive PM2.5-temperature slopes (Figure 6a, 6c and 6e). In GEOS-Chem, the OA-25 

temperature slopes match those in the observations (Figure 6e-f), but the modeled sulfate-temperature slopes exhibit negative 

values in the South (Figure 6d), contrary to observations (Figure 6c). For other PM2.5 species, the slopes with temperature are 

relatively weak, with minimal contributions to the total PM2.5-temperature slopes in both observations and GEOS-Chem 

(Figure 6g-j). The observed ammonium-temperature slopes are weakly positive over the East, but are positive in the 

Northeast and negative in the Southeast in GEOS-Chem, in a spatial pattern similar to that of modeled sulfate-temperature 30 

(Figure 6g-h). The nitrate-temperature slopes are negligible in AQS observations but weakly negative over the East in 

GEOS-Chem (Figure 6i-j). For both ammonium and nitrate, GEOS-Chem underestimates the dependence on temperature, 

indicating that the model likely has difficulty in simulating the competition between increased emission and faster 
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evaporation at higher temperatures. In any event, Figure 6 makes clear that the underestimate of PM2.5-temperature slopes in 

GEOS-Chem is mainly caused by the underestimate in sulfate-temperature slopes.  

 

We next search for the reasons of the underestimate in sulfate-temperature slopes in GEOS-Chem. Three important pathways 

for sulfate oxidation chemistry exist: gas-phase oxidation by OH and aqueous-phase oxidation by either H2O2 or O3 (Jacob 5 

1999). Total sulfate production rate is much greater in the eastern United States due to abundant anthropogenic emissions 

there. The relative importance of these three pathways varies by region: in summer, aqueous-phase oxidation by H2O2 is 

most important in the East, while gas-phase oxidation by OH dominates in the West. We calculate the monthly total sulfate 

production rates (kg month-1 grid-1) in each pathway and then regress them onto the monthly temperature in summer. As 

demonstrated by Figure 7a, as temperature increases, OH oxidation rates in GEOS-Chem vary little. In contrast, modeled 10 

H2O2 oxidation rates decrease rapidly with temperature in the South and increase significantly in the Northeast (Figure 7b), 

displaying a similar spatial pattern as the sulfate-temperature slopes in Figure 6d. Modeled O3 oxidation rates also decrease 

with temperature in the South (Figure 7c), but with slopes much smaller than those of the H2O2 oxidation rates. Given that 

atmospheric SO2, H2O2, and O3 concentrations all increase with temperature in GEOS-Chem (not shown), our results suggest 

that the relationship of cloud fraction and temperature may not be well parameterized in GEOS-5, the earth system model 15 

which provides the meteorology driving GEOS-Chem. In GEOS-5, cloud fraction is not assimilated from observations but is 

calculated online as a prognostic variable (Suarez et al., 2008).  

 

As a check on our hypothesis, we compare the sensitivity of cloud fraction to temperature in GEOS-5 with that in the 

ISCCP-D2like D2 product from CERES satellite observations.  We focus on cloud fraction in the lower troposphere (> 680 20 

hPa), as surface sulfate PM2.5 is likely most responsive to oxidation in this part of the atmosphere Because no reliable 

observations of nighttime cloud fraction exist, we focus on daytime measurements. On average, increased cloud fraction is 

associated with cooler surface air temperatures, but the relationship between cloud fraction and temperature can also have a 

strong seasonal cycle and vary by region (Groisman et al., 2000; Sun et al., 2000). Figure 8 shows the slopes of monthly 

mean cloud fraction (>680 hPa) and surface temperature in summer from 2004 to 2012 over the Southeast in daytime. The 25 

satellite observations yield relatively weak slopes (±0.01 K-1), but GEOS-5 displays strongly negative slopes (~-0.04 K-1). 

This result suggests that cloud fraction in GEOS-5 is too sensitive to temperature, which in turn makes aqueous-phase 

oxidation rates decrease too rapidly as temperature increases in the South and leads to negative sulfate-temperature slopes. 

Similar deficiencies in other models may account for the discrepancies between observed and modeled slopes of monthly 

mean total PM2.5 and temperature in Figure 6.  30 

 

With regard to the ACCMIP results, understanding the failure of these models to capture the observed slopes of monthly 

mean total PM2.5 and temperature is beyond the scope of this paper. Key diagnostics, such as the production rates of sulfate 

through different oxidation pathways, are not available. 
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6 Discussion and Conclusions 

In this study, we use a statistical model to investigate the effect of 2000-2050 climate change on fine particulate matter 

(PM2.5) air quality across the contiguous United States. To our knowledge, this study represents the first time that the 

influences of both local meteorology and synoptic circulations are considered in projecting future changes in PM2.5 air 

quality. We have developed a new method to characterize PM2.5-related circulation patterns, using Singular Value 5 

Decomposition (SVD) of the spatial correlations between PM2.5 and meteorological variables across the surrounding region 

(~1,000 km). Our regression model uses both these synoptic-scale relationships and relationships of PM2.5 with local 

meteorology. Use of SVD increases the explained variability in 1999-2013 monthly PM2.5 across the United States from 

34%, when only local meteorology is considered, to 43%.   

 10 

To estimate the impacts of climate change on future PM2.5 concentrations from 2000-2019 to 2050-2069, we apply our 

regression model to the CMIP5 future meteorological projections from an ensemble of 19 GCMs under the RCP4.5 scenario. 

The average change in PM2.5 across models provides a robust estimate of the climate impact on U.S. PM2.5, and the spread of 

projected changes allows us to determine the statistical significance of the average. Assuming that anthropogenic emissions 

remain at present-day levels, we project an increase of ~0.4-1.4 µg m-3
 

in annual mean PM2.5 in the eastern US and a 15 

decrease of 0.3-1.2 µg m-3
 

in the Intermountain West. Mean summer PM2.5 increases as much as 2-3 µg m-3
  

in the eastern 

United States due to faster oxidation and greater biogenic emissions. Mean winter PM2.5 decreases by 0.3-3 µg m-3
 

over most 

regions in United States probably due to the volatilization of ammonium nitrate.  

 

Previous model simulations show no consistent sign of the future PM2.5 changes under a warmer climate (Jacob and Winner, 20 

2009; Fiore et al., 2015), and the magnitudes of these changes are much smaller than this study. We examine the ability of 

four different atmospheric chemistry models to simulate the observed relationship between PM2.5 and temperature.  Results 

show that these models underestimate or even fail to capture the observed positive relationship between monthly mean PM2.5 

and temperature in the eastern United States in summer, implying they may also underestimate future changes in PM2.5 under 

a warmer climate regime. By comparing with in-situ observations, we find that the discrepancies of monthly mean PM2.5-25 

temperature slopes in GEOS-Chem are mainly caused by the underestimate of sulfate-temperature slopes, which in turn 

appears related to deficiencies in the parameterization of cloud processes in GEOS-5, the earth system model that provides 

assimilated meteorology for GEOS-Chem. The 2004-2012 slopes of monthly mean cloud fraction (> 680 hPa) and surface 

temperature are relatively weak (±0.01 K-1) in satellite observations but strongly negative (~-0.04 K-1) in GEOS-5 over the 

Southeast in daytime. This result suggests that cloud fraction, a prognostic variable in GEOS-5, is too sensitive to 30 

temperature and that the rate of aqueous-phase H2O2 oxidation in GEOS-Chem decreases too rapidly with increasing 

temperature. This hypothesis would explain the negative sulfate-temperature slopes in GEOS-Chem in the South, in contrast 
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to the positive slopes in observations.  Other chemistry models may have similar problems in cloud fraction or other 

variables important to PM2.5 production or loss.  

 

CTMs and CCMs are frequently applied to predict future air quality. Our work underscores the importance of evaluating the 

skill of such models to simulate long-term relationships between PM2.5 and temperature and perhaps other variables.  5 

Without such evaluations, the credibility of future model projections of PM2.5 is not clear.  Drawbacks of this study include 

its assumption of constant anthropogenic emissions and its dependence on a relative short history (~15 years) of PM2.5 

observations. We also do not explicitly consider the role of interannual variability in the climate system and how that might 

influence our results (Deser et al., 2013). Within these limitations, this study provides an up-to-date, observationally-based 

prediction of future PM2.5 with relevance for air quality management.  It also demonstrates the utility of a computationally 10 

efficient model whose projections of the climate penalty on air quality can be readily compared to those from more 

traditional dynamic models. 
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Figure 1. Example of observed correlations of monthly mean PM2.5 in one grid box with surrounding meteorology in the 5 

southeast United States from 1999-2013.  Panels show correlations of May-June-July monthly PM2.5 concentrations from 

EPA-AQS observations in the 2.5°×2.5° grid box centered at 82.5°W, 32.5°N (black circle) with different meteorological 

variables from NCEP Reanalysis1, including (a) surface air temperature, (b) relative humidity, (c) total precipitation, (d) 

east-west wind speed and (e) north-south wind speed. Grid boxes with significant correlation with p < 0.05 level are stippled. 

All data are detrended by subtracting the 5-year moving average from the monthly values. 10 
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Figure 2. (a, c) Spatial and (b, d) variable weights of the (a, b) first and (c, d) second Singular Value Decomposition (SVD) 

modes describing the spatial correlations of May-June-July PM2.5 anomalies in one grid box in the Southeast from 1999-2013 

and five different meteorological variables: temperature (T), relative humidity (RH), precipitation (precip), and east-west and 5 

north-south wind speed (EW-wind and NS-wind). The explained variance by each SVD mode is shown inset. See Section 3 

for more details. 
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Figure 3. Cross-validated coefficients of determination (R2) between observed and predicted 1999-2013 monthly PM2.5 

across the United States, calculated with (a) local meteorological variables and (b) both local meteorology and patterns of 

synoptic circulation.  Spatially averaged coefficients of determination are shown inset. 5 
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Figure 4. Effects of climate change from 2000-2019 to 2050-2069 on (a-d) seasonal and (e) annual mean PM2.5 

concentrations, calculated with observed relationships of PM2.5 and meteorology and with meteorology projected by an 

ensemble of 19 CMIP5 models. The panels show the mean change in surface PM2.5, averaged across the projections. White 5 

areas refer to the regions with no PM2.5 observations or where fewer than 14 models yield the same sign of change.    
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Figure 5. The slopes of detrended, monthly mean PM2.5 versus temperature for summer months (June-July-August) in (a) 

observations and (b-f) different chemistry models. The timeframes shown in the panel are as follows: (a) 2004-2012, (b) 5 

2002-2009, (c) 2001-2010, (d) 1995-2005, (e) 2000-2010 and (f) 2004-2012. Results in panels (b-e) are taken from ACCMIP 

[Lamarque et al., 2010], and use an updated GISS simulation (d) relative to their ACCMIP contributions (See text for more 

details). The dashed contour line in some panels denotes a slope of +1 µg m-3 K-1. White areas indicate either missing data or 

grid boxes where the slope is not significant at the 0.05 level. 
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Figure 6. The slopes of detrended (a-b) monthly mean PM2.5 and (c-j) different PM2.5 components with surface air 

temperature for 2004-2012 summer months. Left column shows slopes from AQS observations, and right column shows 

results from GEOS-Chem. Organic aerosol (OA) in Panel e is inferred from the measured organic carbon (OC) component 

using an OA/OC mass ratio of 1.8 (Canagaratna et al., 2015). Panels a and b are the same as Figures 5a and 5f. White areas 5 

indicate either missing data or grid boxes where the slope is not significant at the 0.05 level.  

 

  

Slopes of JJA PM2.5 and temperature (µg m-3 K-1) 

dP
M
2.
5/
dT

AQS

(a)

GEOS−Chem

(b) −2
−1
0
1
2

dS
O
4/
dT

(c) (d) −1.0
−0.5
0.0
0.5
1.0

dN
H4

/d
T

(g) (h) −1.0
−0.5
0.0
0.5
1.0

dN
O
3/
dT

(i) (j) −1.0
−0.5
0.0
0.5
1.0

dO
A/
dT

(e) (f) −1.0
−0.5
0.0
0.5
1.0



29 
 

 
Figure 7. Slopes of monthly mean sulfate production with surface air temperature for 2004-2012 summer months, as 

calculated by GEOS-Chem. The panels show slopes from three different production pathways: (a) gas-phase oxidation by 

OH and aqueous-phase oxidation by (b) H2O2 and (c) O3. See Section 5 for more details. White areas indicate either missing 

data or grid boxes where the slope is not significant at the 0.05 level. 5 
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Figure 8. Daytime slopes of monthly mean cloud fractions in the lower troposphere (> 680 hPa) versus surface air 

temperature over land for June-July-August from 2004 to 2012 in (a) the merged ISCCP-D2like products from CERES and 

(b) GEOS-5 meteorology. White areas indicate the slope is not significant at the 0.05 level. 5 
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