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Abstract 15 

 

Monsoonal rainfall is the primary source of surface water in India. Using 12 years of in-situ 

and satellite observations, we examined association of aerosol loading with cloud fraction, 

cloud top pressure, cloud top temperature, and daily surface rainfall over Indian summer 

monsoon region (ISMR). Our results showed positive correlations between aerosol loading 20 

and cloud properties as well as rainfall. A decrease in outgoing longwave radiation and 

increase in reflected shortwave radiation at the top of the atmosphere with an increase in 

aerosol loading further indicates a possible seminal role of aerosols in deepening of cloud 

systems. Significant perturbation in liquid- and ice-phase microphysics was also evident over 

ISMR. For the polluted cases, delay in the onset of collision-coalescence processes and 25 

enhancement in the condensation efficiency, allows for more condensate mass to be lifted up 

to the mixed-colder phases. This results in the higher mass concentration of bigger sized ice-

phase hydrometeors and, therefore, implies that the delayed rain processes eventually lead to 

more surface rainfall. Numerical simulation of a typical rainfall event case over ISMR using 

spectral bin microphysical scheme coupled with Weather Research Forecasting (WRF-SBM) 30 

model was also performed. Simulated microphysics also illustrated that the initial suppression 

of warm rain coupled with increase in updraft velocity under high aerosol loading leads to 

enhanced super-cooled liquid droplets above freezing level and ice-phase hydrometeors, 

resulting in increased accumulated surface rainfall. Thus, both observational and numerical 

analysis suggest that high aerosol loading may induce cloud invigoration and thereby 35 

increasing surface rainfall over the ISMR. While the meteorological variability influences the 

strength of the observed positive association, our results suggest that the persistent aerosol-

associated deepening of cloud systems and intensification of surface rain amounts was 

applicable to all the meteorological sub-regimes over the ISMR. Hence, we believe that these 

results provide a step forward in our ability to address aerosol-cloud-rainfall associations 40 

based on satellite observations over ISMR 
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Introduction 

Aerosol-cloud-rainfall interactions and their feedbacks pose one of the largest 

uncertainties in understanding and estimating anthropogenic contribution of aerosols to 

climate forcing [Forster et al., 2007; Lohmann and Feichter, 2005]. A fraction of aerosol 

particles gets activated as cloud condensation nuclei (CCN) to form the fundamental requisite 5 

for cloud droplet formation. Thus, perturbations in regional aerosol loading not only 

influence the radiation balance directly but also indirectly via perturbing the cloud properties 

and thereby the hydrological cycle[Ramanathan et al., 2001]. 

Increase in aerosol loading near cloud base decreases the cloud droplet size and 

increases the cloud droplet number concentration[Fitzgerald and Spyers-Duran, 1973; 10 

Squires, 1958; Squires and Twomey, 2013; Twomey, 1974; 1977; Warner and Twomey, 1967] 

These microphysical changes initiate many feedbacks. The narrowing of the droplet size 

distribution was suggested to delay the onset of droplet collision-coalescence processes and 

thereby enhancing the cloud lifetime[Albrecht, 1989] and the delay of raindrop 

formation[Khain, 2009; Rosenfeld, 1999; 2000]. However, recent studies show that aerosol-15 

induced initial stage suppression of raindrop formation provides the feedback mechanism for 

a change in microphysical-dynamical coupling within convective clouds, and results in the 

formation of deeper and wider invigorating clouds[Andreae et al., 2004; Koren et al., 2005]. 

For convective clouds with warm base, the activation and water supply all start in the warm 

part near the cloud base. The enhancement in droplet condensation releases more latent heat 20 

and, therefore, enhances updraft [Dagan et al., 2015; Pinsky et al., 2013; Seiki and Nakajima, 

2014]. At the same time, smaller droplets will have smaller effective terminal velocity  (i.e. 

better mobility) and, therefore, will be lifted higher in the atmosphere by the enhanced 

updrafts[Heiblum et al., 2016; Ilan et al., 2015]. Stronger updrafts and smaller effective 

terminal velocity result in more liquid mass being pushed up to the mixed and cold phases. 25 
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Smaller sized droplets will freeze higher in the atmosphere [Rosenfeld and Woodley, 2000] 

releasing the freezing latent heat in relatively colder environment, boosting the updrafts and 

further invigorating the cloud system [O. Altaratz et al., 2014; Andreae et al., 2004; Khain et 

al., 2008; Koren et al., 2005]. Hence, aerosol abundance can eventually cause intensification 

of precipitation rate due to cloud invigorating effect under convective conditions[Koren et al., 5 

2014; Koren et al., 2012; Li et al., 2011].In contrast, under low cloud fraction condition, the 

presence of high concentration of absorbing aerosols induces aerosol semi-direct effect 

causing cloud inhibition[Ackerman et al., 2000; Koren et al., 2004; Rosenfeld, 1999] and 

thereby reduction in surface rainfall. Thus, the aerosol-cloud associations observed over any 

given region is the net outcome of these competing aerosol effects on clouds[Koren et al., 10 

2008; Rosenfeld et al., 2008]. Our present understanding of the sign as well as the magnitude 

of change in accumulated surface rainfall due to aerosols is inadequate. Besides, aerosol-

cloud-rainfall associations are highly sensitive to variation in thermodynamical and 

environmental conditions, cloud properties, and aerosol types [Khain et al., 2008; Lee, 2011; 

Tao et al., 2012], further complicating these interactions. Moreover, clouds and precipitation 15 

can also interact with aerosols through wet scavenging process [Grandey et al., 2013; 

Grandey et al., 2014; Yang et al., 2016]. Global model simulations illustrated thatwet 

scavenging can cause a strong negative cloud fraction-AOD correlation over the tropics 

[Grandey et al., 2013]. Wet scavenging effect can also generate similar negative rain rate-

AOD association in the tropical and mid-latitude oceans [Grandey et al., 2014].  20 

Indian summer monsoon is the lifeline for regional ecosystems and water resources, and 

plays a crucial role in India's agriculture and economy[Webster et al., 1998]. Indian summer 

monsoon from June through September (JJAS) fulfils about 75% of the annual rainfall over 

central-north India. Variation in daily rainfall during summer monsoon rainfall is directly 

linked to India's Kharif food grain production[Preethi and Revadekar, 2013]. A rapid 25 
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increase in population and industrialization over the last two decades has also resulted in high 

anthropogenic aerosol loading over Northern India, particularly in the Gangetic basin[Dey 

and Di Girolamo, 2011]. Consequently, the net impact of such large continental aerosol 

loading on cloud properties and daily surface rainfall in India is an important question that 

requires utmost attention. Recent studies based on aerosol direct effect have shown different 5 

plausible pathways of aerosol impact on rainfall. Lau and Kim (2006)[Lau and Kim, 2006] 

have shown that aerosol-induced atmospheric heating over Himalayan slopes and Tibetan 

plateau during monsoon onset period, intensifies the northward shift of Indian summer 

monsoon, causing reduction in rainfall over ISMR. On the other hand, high aerosol loading 

also induces solar dimming (absorbing) effect at surface [Ramanathan and Carmichael, 10 

2008; Ramanathan et al., 2001], which can alter the land-ocean thermal gradient and weaken 

the meridional circulation, resulting in drying trend in seasonal rainfall during Indian summer 

monsoon [Bollasina et al., 2011; Ganguly et al., 2012].Presence of higher concentrations of 

absorbing aerosols over North India is shown to induce a stronger north–south temperature 

difference which fosters enhancement in moisture convergence from ocean and transition of a 15 

break spell of ISM into an active spell of ISM [Manoj et al., 2011]. Further, this aerosol 

radiative effect causes increase in the moist static energy, invigoration of convection and 

eventually more rainfall over India during the following active phase[Hazra et al., 2013; 

Manoj et al., 2011]. These studies provide valuable insight on different pathways of aerosol's 

radiative impact on the monsoon dynamics and seasonal rainfall over India. However, the 20 

microphysical aspect of aerosol’s impact on the sign and the magnitude of the monsoonal 

rainfall over the Indian summer monsoon region (ISMR)is largely unknown [Rosenfeld et al., 

2014]. Nevertheless, a few recent studies have indicated existence of strong aerosol 

microphysical effect on cloud systems over ISMR [Konwar et al., 2012; Manoj et al., 2012; 

Prabha et al., 2012; Sarangi et al., 2015; Sengupta et al., 2013].Conversely, summer 25 
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monsoon plays an important role in determining variation in aerosol loading over India by 

brining clean marine air and wet scavenging, which are as important as emission in 

determining aerosol concentration [Li et al., 2016]. It has also been shown that aerosols over 

the Indian Ocean interplay with seasonal changes over ISMR[Corrigan et al., 2006].  

Here, we have used 12 years (JJAS) of gridded datasets of surface rainfall, aerosol 5 

and cloud properties to examine aerosol-related changes in cloud macro-, micro- and 

radiative properties, and thereby on daily surface rainfall over ISMR. Aerosol associated 

changes in onset of warm rain, microphysical profiles and cloud radiative forcing isanalysed 

using observation and idealized simulations to investigate significance of aerosol 

microphysical effect over ISMR. The role of meteorology and aerosol humidification effect 10 

due to cloud contamination in retrieved aerosol optical depth (AOD)is also estimated to 

ensure the causality of the observed associations. This comprehensive effort to understand 

aerosol-cloud-rainfall interactions over India will likely illustrate the significance of aerosol's 

impact on monsoonal rainfall via microphysical pathway under continental conditions. 

 15 

2. Data and methodology 
 

2.1. Aerosol, cloud, rainfall, and radiation datasets 
 

Table 1. Summary of daily dataset used in our analysis. LT refers to local time. 20 

Data source Parameters Temporal resolution (LT) Time Period 

IMD
*
 Accumulated rainfall 08:30 am – 08:30 am 2002-2013 

MODIS 

Aqua L3 (c5.1) 
AOD, CF, CTT and CTP  1:30 pm  2002-2013 

CLOUDSAT
*
 

2B (V8) 

Mass concentration and 

effective radius of liquid- 

and ice-phase 

microphysical profiles 

1:30 pm  2007-2011 

TRMM
*
 

3B42 (V7) 
Precipitation rate 12:00 pm  2002-2013 

NOAA-NCEP 

GDAS  
Meteorological fields 11:30 am  2002-2013 

CERES L3  

(Edition 3A) 

TOA fluxes: SW (0-5  

µm) and LW (5-100 µm) 
11:30 am – 2:30 pm  2002-2013 
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WMO Station 

Radiosondes  

Temperature, Relative 

humidity, dew point 
5:30 am and 5:30 pm  2002-2013 

*
Retrieved 0.25 deg. dataset re-gridded linearly to 1.0 deg. spatial resolution. 

 

Table 1 summarizes in-situ and satellite observations used in this study . For 

correlation analysis between aerosol-cloud macrophysics, we used retrievals of AOD, cloud 

fraction (CF), cloud top pressure (CTP) and cloud top temperature (CTT) from Moderate 5 

Resolution Imaging Spectro-radiometer (MODIS) onboard Aqua spacecraft [Platnick et al., 

2003; Remer et al., 2005]. MODIS AOD has been validated extensively over land [Remer et 

al., 2005; Tripathi et al., 2005].  

A new high resolution (0.25
o
 × 0.25

o
 gridded) daily rainfall (RF) dataset prepared by 

India Meteorological Department (IMD) [Pai et al., 2013] was used to represent accumulated 10 

surface rainfall. Quality assured measurements of RF from in-situ rain gauge stations (~6955)  

across the country were interpolated using an inverse distance weighted interpolation scheme 

[Shepard, 1968], to create this gridded product. The daily surface rainfall from previous day 

(08:30 am, local time) till 08:30 am (local time) present day has been recorded as daily 

rainfall at all rain gauge stations maintained by IMD for 110 years (1901-2013). This product 15 

has been extensively validated against previous IMD rainfall products as well as the Asian 

Precipitation - Highly-Resolved Observational Data Integration Towards Evaluation 

(APHRODITE) rainfall dataset [Pai et al., 2013]. IMD daily rainfall gridded datasets have 

been widely used by several investigators to study the rainfall climatology and its inter-

seasonal and intra-seasonal variability over Indian summer monsoon region [Goswami et al., 20 

2006; Krishnamurthy and Shukla, 2007; 2008; Pai et al., 2014; Rajeevan et al., 2008]. The 

precipitation rate (PR) at 12 PM local time was also obtained from the Tropical Rainfall 

Measuring Mission (TRMM) [Huffman et al., 2010]. RF as well as PR datasets were linearly 

re-gridded to the 1
o
×1

o
grid for consistency in our correlation analysis. 
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For the correlation analysis between any two variables, only those spatio-temporal 

grids were considered where collocated measurements of both variables were available.The 

collocated variables RF, PR, CF, CTP and CTT were then sorted as a function of AOD and 

averaged to create total 50 scatter points. AODs > 1.0 (~ 5%)were omitted to reduce 

possibility of inclusion of cloud contaminated data in our analysis. Shallow clouds with CTP 5 

> 850 hPa (about 7 %) were also not considered in this analysis. Previous studies have also 

reported aerosol microphysical effect using such correlation analysis based on satellite 

datasets[Chakraborty et al., 2016; Feingold et al., 2001; Kaufman et al., 2002; Koren et al., 

2010a; Koren et al., 2014; Koren et al., 2004; Koren et al., 2012; Myhre et al., 

2007].Importantly, the availability of the ground based in-situ daily rainfall dataset enables us 10 

to further investigate the aerosol-cloud-rainfall association over ISMR spanning from 17° N 

to 27° N in latitude and 75° E to 88° E in longitude (bounded by black box in Figure 1). Here, 

we have excluded regions with mountainous terrain (Himalayan terrains to the north) and 

desert/barren land use regions (Thar Desert and nearby arid regions). This was done to avoid 

inclusion of extreme orographic precipitation as well as retrieval error in the satellite products 15 

(e.g. lower sensitivity over brighter land surfaces for MODIS aerosol products). ISMR has 

previously been extensively studied by several investigators [Bollasina et al., 2011; Goswami 

et al., 2006; Sengupta et al., 2013] as the rainfall variability over this region is highly 

correlated with that of the entire India rainfall during June to September[Gadgil, 

2003].Generally, aerosol loading over ISMR is very high (climatologically mean AOD of 20 

0.56, Figure 1A), particularly over densely populated Gangetic basin. At the same time, 

ISMR has a high cloud cover (CF of 0.72, Figure 1B) and receives widespread rainfall (RF of 

9.4 mm, Figure 1C) during monsoon. This implies rapid build up of aerosol concentration 

over this region after every rainfall event mainly due to high emission rate and geography-

induced accumulation of anthropogenic aerosols. Thus, collocation of heavy pollution and 25 
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abundant moisture over ISMR makes it an ideal region to investigate aerosol-cloud-rainfall 

associations [Shrestha and Barros, 2010]. 

 

 

Figure 1.Climatological mean of A) aerosol optical depth, B)cloud fraction and C) daily 5 

rainfall for June through September 2002-2013. The black square box indicates the Indian 

summer monsoon region (ISMR) focussed in our analysis. Panel A illustrate the boundaries 

of regions I and II, used for sub analysis (see the text).  

 

2.2. Analysis of aerosol impact on cloud radiative forcing  10 

Clouds increase Earth's albedo and cool the atmosphere by reflecting solar radiation 

to space as well as warm the atmosphere by absorbing Earth's outgoing longwave radiation 

[Trenberth et al., 2009]. Thus, aerosol microphysical effect in convective clouds will 

manifest itself in association between cloud radiative forcing and aerosol [Feingold et al., 

2016; Koren et al., 2010b]. Here, the Clouds and the Earth’s Radiant Energy System 15 

(CERES) [Wielicki et al., 1996] retrieved outgoing shortwave (SW) and longwave (LW) 

radiation at top-of-the-atmosphere (TOA) was also used to illustrate the aerosol-induced 

changes to cloud radiative forcing. The CERES fluxes were sorted and averaged as a function 

of AOD (similar to correlation analysis detailed in Section 2.1) for two different scenarios, 

i.e. all sky and clear sky. While aerosol radiative forcing during clear sky scenario includes 20 

only aerosol direct effect, radiative forcing due to aerosol indirect effect can be estimated 

from the net difference between all sky and clear sky scenario. 

 



9 

 

2.3.Analysis of aerosol impact on liquid- and ice-phase cloud microphysics  

 MODIS observations of cloud top liquid effective radius (Re)as a function of cloud 

top pressure for convective cloud fields can be assumed as a composite Re-altitude profile 

obtained from tracking the space-time evolution of individual clouds [Lensky and Rosenfeld, 

2006]. Insensitivity of Re to spatial variations at any particular altitude is also reported during 5 

CAIPEEX campaign over ISMR [Prabha et al., 2011]. CTP and Re was segregated into 

groups of low (AOD<33 percentiles) and high (AOD>67 percentiles) aerosol loading regime 

using collocated AOD values. Re as a function of CTP was compared between low and high 

aerosol regimes. The aerosol associated differences in growth of cloud droplets with height 

from these CTP- Re profiles were used to infer aerosol-induced differences in warm cloud 10 

microphysical processes and the initiation of rain over ISMR [Rosenfeld et al., 2014 and 

references therein]. 

 CloudSat-retrieved profiles  of  liquid- phase and ice-phase water content as well as 

ice-phase effective radius (Re, ICE) available at 75 meters vertical resolution within ISMR 

[Austin et al., 2009; Stephens et al., 2002] were also segregated intolow (AOD<33 15 

percentiles) and high (AOD>67 percentiles) aerosol loading conditions. The mean 

microphysical variables along with their variability(profiles indicating 25
th 

and 75
th

 

percentile) for low and high aerosol bins were plotted against altitude to visualize the net 

increase or decrease in liquid-phase water content, ice-phase water content and size of ice-

phase hydrometeors at different altitudes with increase in aerosol loading. The (two sample) 20 

Student's t-test was used for statistical hypothesis testing about mean of the groups in each 

subplot.  

 

2.4. Modeling aerosol-cloud-rainfall associations: A case study of a heavy rainfall event 

over ISMR 25 
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 The WRF model is a regional numerical weather prediction system principally 

developed by the National Centre for Atmospheric Research (NCAR) in collaboration with 

several research institutions in U.S. The Advanced Research WRF (ARW) version 3.6 along 

with a newly coupled fast version of spectral bin microphysics (WRF-SBM) is used to 

perform three idealized supercell simulations of a typical heavy rainfall event over ISMR. 5 

The spectral bin microphysics scheme is specially designed to study aerosol effect on cloud 

microphysics, dynamics, and precipitation based on solving kinetic equations system for size 

distribution functions described using 33 doubling mass bins [Khain and Lynn, 2009; Khain 

et al., 2004; Lynn and Khain, 2007]. In fast SBM four size distributions are solved,  one each 

for CCN, water drops, low density ice particles and high density ice particles. All ice crystals 10 

(sizes<150m) and snow (sizes<150 m) are calculated in the low density ice particle size 

distribution. Graupel and hail are grouped to the high-density ice, represented with one size 

distribution without separation. The empirical dependence N = No* S
k
 is used to calculated the 

initial (at time, t = 0) CCN size distribution [see Khain et al., 2000 for details]; 

where,  No and k are parameters which varies with aerosol number concentration and 15 

chemical composition, respectively and  N is the concentration of nucleated droplets at 

supersaturation, S, (in %) with respect to water. At each time step the critical aerosol 

activation diameter of cloud droplets is calculated from the value of S (using Kohler theory). 

It explicitly calculates  nucleation of droplets and ice crystals, droplet freezing, condensation, 

coalescence growth, deposition growth, evaporation, sublimation,  riming, melting and 20 

breakup of the categorized hydrometeor particles. Details about the parameterizations used 

for these processes can be found in previous studies [Khain and Lynn, 2009; Khain et al., 

2004; Lynn and Khain, 2007]. 
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Figure 2.Skew-T - log-P diagram illustrating the initial conditions of dew point temperature 

(red hashed line) and atmospheric temperature (red solid line) used in all the three WRF-

SBM idealized simulations. Blue, yellow, green, black and purple lines indicate lines of 

constant temperature (isotherm), potential temperature and equivalent potential temperature, 5 

pressure (isobar), and saturation mixing ratio, respectively.  

 

 We found that the mean relative humidity in lower troposphere remains high over 

ISMR during moderate and heavy rainfall events (RF>6 mm) using GDAS data (Figure not 

shown). Our simulations were initiated with morning Radiosonde measurements (on 23
rd

  10 

August 2009) from Patna station of Indian Meteorological Department (Figure 2). A 

mesoscale convective system was prevalent over Patna during 22-25 August 2009. The 

moisture mixing ratio was high in lower troposphere during this event (Figure 2) which is 

typical of moderate to heavy rainfall event over ISMR. This particular period was selected 

because measurements of CCN spectrum near cloud base were also available from CAIPEEX 15 

campaign over the region [Prabha et al., 2012]. We performed three simulations with same 

initial thermodynamic conditions but different initial No to represent low (No = 4500 

particles/cm
3
), medium (No = 9000 particles/cm

3
) and heavy (No = 15500particles/cm

3
) 

aerosol loading conditions, hereafter referred to as Ex1, Ex2 and Ex3, respectively. The 
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simulations were performed for 160 minutes at a resolution of 1 km over a domain of 300 km 

x 300 km. The number of vertical sigma levels was 41 and the top height was about 20 km. 

Rayleigh damping was used to damp the fluctuations reaching the upper troposphere in the 

idealized simulation[Khain et al., 2005]. An exponentially decreasing (both horizontally and 

vertically) temperature pulse of 3°C was used to trigger the storm[Khain and Lynn, 2009; 5 

Khain et al., 2004; Lynn and Khain, 2007]. A comparison of droplet size distribution, 

microphysical profiles, vertical velocity, column accumulated water content of various cloud 

species and surface rainfall from these simulations illustrate the process level linkage 

between aerosol increase and surface rainfall. The simulation output of mass size 

distributions of water droplets, low density ice particles and high density ice particles were 10 

recorded every 15 minutes of model time. Assuming that all the hydrometeors were spherical 

shaped, we calculated the number-size distribution from the mass-size distribution by using 

the bulk radius-density functions specified in SBM for each hydrometeor (shown in Figure 1 

of [Iguchi et al., 2012]). The bulk effective radius (Re) of each size distribution was 

calculated as shown in Equation 1 below;  15 

Re =
 𝑟𝑖

3𝑁𝑖
33
𝑖=3

 𝑟𝑖
2𝑁𝑖

33
𝑖=3

                       (1) 

Where,  ri is a half of the maximum diameter and Ni is the particle number concentrations of 

i
th

 bin. For calculating Re of cloud droplets the bins with diameter <50 𝑚 was considered. 

We used 1
st
 -17

th
 bins and17

th
-33

th
 bins of low density ice hydrometeors size distribution, 

separately, to calculate Re, ice and Re, snow respectively. Re, graupel was calculated using size 

distribution of high density ice particles.  20 

 

2.5. Analysis of possible caveats in correlation analysis 

It is well documented that the aerosol-cloud correlation analysis using satellite data 

can be affected by one or more of the following factors: (1) positive correlation of variability 
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in aerosol and cloud-rainfall fields with meteorological variations, which are the true 

modifiers of cloud and rainfall properties [Chakraborty et al., 2016; Kourtidis et al., 2015; 

Ten Hoeve et al., 2011] and (2) cloud contamination of retrieved AOD values due to aerosol 

humidification effect [Boucher and Quaas, 2013; Gryspeerdt et al., 2014]. (3) Inaccurate 

representation of wet scavenging effect in satellite retrieved AOD dataset [Grandey et al., 5 

2013; Grandey et al., 2014; Yang et al., 2016].Therefore, we have critically investigated the 

plausible role of these factors in our analyses as presented below.  

 

2.5.1.Influence of meteorological variability 

 Here, we obtained various meteorological fields from the NOAA-NCEP Global Data 10 

Assimilation System (GDAS) dataset [Parrish and Derber, 1992] as an approximation for the 

meteorological conditions at the same time and location of the satellite observations. Since 

the NOAA-NCEP GDAS assimilated product does not contain direct information on the 

aerosol microphysical effects, it is a suitable tool to investigate if the meteorological 

variations favoured aerosol accumulation under wet/cloudy conditions[Koren et al., 2010a]. 15 

GDAS variables at 1
o 
spatial resolution and 21 vertical model levels (1000 hPa - 100 hPa) 

over ISMR from the 12:00 LT run were used. First, correlation of different GDAS 

meteorological variables with cloud fraction, daily rainfall and AOD, separately, using all 

grid points within ISMR at each model vertical level was performed. Based on the correlation 

analysis,the likely meteorological variables (with correlation coefficient > 0.25) which can 20 

affect cloud and rainfall properties in ISMR were identified. Next, we made narrow regimes 

of these key meteorological variables to constrain the variability in these meteorological 

factors and repeated the correlation analysis of AOD-cloud-rainfall gradients. This approach 

can be assumed to be similar to simulating the effect of increasing aerosol loading on cloud-

rainfall system for similar meteorology 25 
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2.5.2.Cloud contamination of aerosol retrievals 

Aerosol-cloud-rainfall studies based on satellite data are, in part, biased by aerosol 

humidification effect due to uncertainties in retrieved AOD from near cloud pixels. For 

instance, an increase in surface area of aerosol due to water uptake may cause elevated AOD 

levels measured in the vicinity of clouds [Boucher and Quaas, 2013]. The humidification 5 

effect on the AOD depends on the variability range of ambient RH [O Altaratz et al., 2013].  

Here, we used radiosonde measurements (JJAS, 2002 to 2013) from World Metrological 

Organization stations [Durre et al., 2006], within ISMR (Table 2)to identify profiles that had 

potential of cloud formation. Specifically, the selected profiles had unstable layer below 

lifting condensation level (LCL). However, the profiles suggesting low level clouds (mean 10 

RH below LCL>98%) were removed. A major portion of aerosols contributing to columnar 

AOD are usually present below 3 km altitude over ISMR during monsoon/cloudy conditions. 

Thus, we focused this analysis for RH below 3 km altitude. Also, the changes in mean RH 

values associated with the change in cloud vertical extent was calculated based on O Altaratz 

et al., (2013). The height above the level of free convection where the theoretical temperature 15 

of a buoyantly rising moist parcel (following wet adiabatic lapse rate) becomes equal to the 

temperature of the environment is referred to as equilibrium level. The height of atmospheric 

layer between LCL and the equilibrium level is referred to as the cloudy layer height (CLH). 

Also, in case of the presence of inversion layer, the top of the CLH is determined as the base 

of the lowest inversion layer located above the LCL. Based on median CLH, the selected 20 

profiles at each station were divided into two subsets of equal number of samples 

representing shallower and deeper clouds. The bias in mean RH between shallower and 

deeper clouds for each station was calculated to illustrate the influence of cloud height on the 

RH variability.  
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Bar-Or et al. [2012] have parameterized RH in cloudy atmosphere as a function of the 

distance from the nearest cloud edges. Given the hygroscopic parameter, k, this 

parameterization can be used to simulate hygroscopic properties and model the humidified 

aerosol optical depth. Bhattu and Tripathi [2014] have reported that k of ambient aerosol over 

Kanpur (in Gangetic basin ) during monsoon is 0.14±0.06.  Accordingly, we have considered 5 

minimum (maximum) k over ISMR as 0.1 (0.2), and have used the parameterization to 

estimate the change in AOD due to the observed variation in RH field. First, the range in RH 

variation was scaled as distance from the nearest cloud (using Figure 3 of Bar-Or et al. 2012) 

and then the change in AOD was estimated (using Figure 6 of Bar-Or et al. 2012) for each 

subset.  10 

2.5.3. Effect of under-representation of wet scavenging effect on retrieved AOD values 

 Aerosols present below cloudy pixels are not visible to satellite. To circumvent this 

limitation in investigating aerosol-cloud-rainfall association, it can be reasonable to assum 

that the mean aerosol distribution below the non-raining cloudy pixels is similar in magnitude 

to the aerosol distribution of the non-cloudy pixels within a 1
o
 x 1

o
 grid box. Nevertheless, 15 

aerosols below cloudy pixels, where rainfall occurs, are subject to depletion due to wet 

scavenging effect. Thus, wet scavenging effect might not be accurately represented in the 

MODIS retrieved AOD dataset used in our study. Modelling studies suggest that this artifact 

in the satellite retrieved AOD values can significantly affect the magnitude as well as the sign 

of the aerosol-cloud-rainfall associations [Grandey et al., 2013; Grandey et al., 2014; Yang et 20 

al., 2016]. At the same time, Gryspeerdt et al., (2015)  [Gryspeerdt et al., 2015] have recently 

illustrated that the aerosol in neighbouring cloud-free regions may be more representative for 

aerosol-cloud interaction studies than the below-cloud aerosol using a high resolution 

regional model, justifying the methodology used in their study. The main limitation in 

investigating the impact of probable inaccuracy in representing  wet scavenging effect on our 25 



16 

 

analysis is lack of collocated measurements of aerosol-cloud-rainfall at temporal resolution of 

rainfall events from space-borne measurements. Hence, we used collocated hourly 

measurements of aerosol and rainfall over Indian Institute of Technology, Kanpur (IITK) as a 

representative case study dataset to investigate the possible effect of wet scavenging on 

aerosol-rainfall associations within ISMR. 5 

 AErosol RObotic NETwork (AERONET), is a global network of ground based 

remote sensing stations that provides quality-controlled measurements of aerosol optical 

depth with high accuracy [Dubovik and King, 2000; Holben et al., 1998]. Hourly averages of 

AOD (550 nm) used in this analysis were obtained from the quality ensured Level-2 product 

of AERONET site deployed in the IITK campus. Rainfall events were identified from 10 

collocated rain gauge measurements near AERONET station within IITK campus between 

April-October; 2006-2015. We have also included the months of April, May and October to 

increase the number of sample points. Rainfall amount of all the rainfall events were sorted as 

a function of collocated AERONET-AOD values (mean of AERONET-AOD measurements 

within ± 4 hour of the start/end of the rainfall) into 5 equal bins of 20 percentiles each. As 15 

AERONET-AOD measurements were available only between sunrise and sunset, we have 

used AOD values of late evening measurements as representative of aerosol loading during 

the first rainfall event (if any) at night-time. However, in case of more than one rainfall 

events at night, only the first rainfall event is considered in this analysis. Nearly half of the 

AOD-rainfall samples used here included AOD measurements within 4 hours after the end of 20 

any rainfall event, and therefore, this includes a wet scavenging effect of rainfall on AOD 

measurements. To reproduce another specific scenario, only the rainfall-AOD samples when 

AOD measurement was available before start of rainfall events were collected and sorted as a 

function of AOD into 5 equal bins of 20 percentiles each. This restricted sampling does not 

include the wet scavenging effect as only the AOD-values before the start of rainfall in each 25 
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rainfall event were used. The average of rainfall amount for each bin was plotted against 

mean AOD values under both scenarios to illustrate the difference in aerosol-rainfall 

association due to exclusion of wet scavenging effect within ISMR.  

  

3. Results and Discussion 5 

3.1.Cloud, rainfall and radiation associations with aerosol loading 

Figure 3A shows the relationship between AOD and IMD RF. RF increased from 5.9 

mm to 7.1 mm as AOD increased from 0.25 to 0.75. A similar relationship was also observed 

in case of TRMM PR in Figure 3B. Precipitation rate increased from 0.31 mm/hr to 0.38 

mm/hr for the same amount of increase in AOD (0.25 to 0.75). Concurrent analysis of aerosol 10 

and cloud properties showed aerosol-induced modifications in cloud macrophysics. Widening 

of clouds was observed as cloud fraction increased from 0.78 to 0.92 with increase in AOD 

from 0.25 to 0.75 (Figure 3C). A monotonic decrease in CTP and CTT (Figures 3D and 3E), 

nearly by 200 hPa and 22
o
 K, respectively, for the same increment in AOD, further indicate 

vertical deepening of the cloud with increasing aerosol loading. Aerosol-cloud studies have 15 

reported reduction in cloudiness under high AOD for regions with high absorbing aerosol 

loading[Koren et al., 2004; Small et al., 2011]. Widespread cloud coverage over ISMR (CF 

of ~0.75 for AOD ~0.3 in Figure 3) induces substantial reduction in the incoming solar 

radiation [Padma Kumari and Goswami, 2010], which may result in reduced interaction 

between absorbing aerosols and shortwave radiation. This explains that, despite the high 20 

emission rate of absorbing aerosols over ISMR [Bond et al., 2004], the aerosol-induced cloud 

inhibition effect seemed to have been reduced to a second order process during Indian 

summer monsoon. For a sanity check, we have re-analyzed cloud and rainfall associations 

with aerosol loading by dividing ISMR into two sub-regions (shown in Figure 1A). A similar 

aerosol-cloud-rainfall associations (in both the regions) were observed to that seen in Figure 25 
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3. In addition, the analysis was also repeated by segregating the dataset into low level 

(850hPa>CTP>500 hPa) and high level clouds (CTP<500 hPa) (Figure not shown). Despite 

the considerable differences in mean CTP and CTT found between low- and high-level 

clouds, the general associations was similar in both the regimes (as in Figure 3). Analysis of 

individual months viz; June, July, August and September also illustrated similar positive 5 

associations as seen in Figure 3 indicating negligible intra-seasonality in the observed 

associations.

 

Figure 3. Associations of (A) daily rainfall, (B) precipitation rate, (C) cloud fraction, (D) 

cloud top pressure, and (E) cloud top temperature with AOD. The collocated data points for 10 

these five variables (A-E) were sorted as a function of AOD over ISMR during JJAS 2002-

2013. The total number of collocated data points (50n) are then used to create 50 AOD bins 

of 'n' number of samples (2 percentile) each. Each scatter point is the average of these equal 

'n' numbers of data points mentioned in each respective panels. 

 15 

The observed associations in Figure 3 are in line with the recent aerosol-cloud-rainfall 

association studies under continental conditions[Kourtidis et al., 2015; Myhre et al., 2007; 

Ten Hoeve et al., 2011], CTP[Li et al., 2011; Myhre et al., 2007; Yan et al., 2014] and rainfall 

[Gonçalves et al., 2015; Heiblum et al., 2012]. These studies suggested that aerosol-induced 

changes in cloud dynamics and microphysics are the potential causal mechanism for the 20 

aerosol-cloud-rainfall linear dependence. Over Indian region, previous studies have compared 

MODIS-observed cloud microphysical properties between low and high aerosol loading to 

demonstrate aerosol microphysical effect and its linkage to inter-annual variations in seasonal 

rainfall [Abish and Mohanakumar, 2011; Panicker et al., 2010; Ramachandran and Kedia, 

2013]. Aerosol impacts on cloud microphysics over central India based on ground based 25 
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measurements is also evident[Harikishan et al., 2016; Tripathi et al., 2007]. Aircraft 

measurements during Cloud Aerosol Interaction and Precipitation Enhancement EXperiment 

(CAIPEEX) campaign over ISMR have provided unprecedented evidence of aerosol 

microphysical effect on cloud droplet distribution and warm rainfall suppression over 

ISMR[Konwar et al., 2012; Pandithurai et al., 2012; Prabha et al., 2011]. Recently,Sengupta 5 

et al. [2013]have also discussed the possible aerosol-induced deepening of clouds with 

evolution of Indian monsoon using MODIS retrieved CTP. 

Next, aerosol-related convective invigoration was investigated using CERES retrieved 

outgoing radiative fluxes at the top of the atmosphere. Our analyzes showed that for every 

unit increase in AOD, reflected SW radiation increased by ~68 W/m
2
, whereas LW decreased 10 

by ~26 W/m
2 
at the top of the atmosphere for all sky scenario (Figure 4A). Taller clouds 

exhibit colder cloud tops as they are in a thermodynamic balance with the environment, 

therefore, the observed decrease in LW with increase in AOD further provides evidence of 

aerosol-induced cloud invigoration over ISMR [Koren et al., 2014; Koren et al., 2010b]. 

Increased cloudiness was also evidenced as the cloud albedo increased, thereby reflecting 15 

back more SW radiation at the top of the atmosphere. A large number of small ice crystals 

formed in the upper troposphere due to cloud invigoration eventually get aligned as larger 

and longer-lived anvils detrained from cloud tops[Fan et al., 2013]. Such  anvil expansion 

effect of aerosol [Rosenfeld et al., 2014] may also contribute to the aerosol-associated 

increase in  SW radiative forcing. Quantitatively, the net cooling per unit increase in AOD 20 

(Figure 4B) under clear sky scenario was ~13 W/m
2
,whereas the net cooling for same change 

in AOD under cloudy condition was twice more than that under clear sky scenario i.e. ~30 

W/m
2
. 
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Figure 4.Association of CERES retrieved incoming shortwave (SW) and outgoing longwave 

(LW) radiation with AOD for (A) all-sky and (B) clear-sky scenario over ISMR during JJAS 

2002-2013. The collocated data points for both SW and LW as a function of AOD were first 

sorted. The total number of collocated data points (50n) are then used to create 50 AOD 5 

bins of 'n' number of samples (2 percentile) each. Each scatter point is the average of these 

equal 'n' numbers of data points mentioned in each respective panels. 

 

3.2Aerosol-induced cloud invigoration 

3.2.1,Effect of aerosol-related changes in  microphysical processes 10 

 Many studies have shown that the onset of warm rain and collision-coalescence 

process are dependent on the CCN concentration [Freud et al., 2011 and references therein]. 

MODIS retrieved droplet effective radius as a function of CTP grouped under low and high 

aerosol loading cases can be used to investigate the aerosol-induced differences in warm rain 

processes like diffusion and coalescence processes[Rosenfeld et al., 2014]. In Figure 5, we 15 

present cloud microphysical changes for low and high aerosol loading using MODIS and 

CLOUDSAT datasets. 

 Figure 5A illustrates that Re of liquid droplets near cloud base was smaller (6 µm) in 

clouds developed under higher AOD conditions which is in agreement with aerosol first 

indirect effect [Twomey, 1974]. In addition, the vertical growth of  Re under polluted 20 

conditions increased at a gradual rate (~3 µm/100 hPa) for Re<14 µm compared to the 

vertical gradient of increase in Re (~10 µm/100 hPa) in relatively clean clouds (low aerosol 



21 

 

loading). Also note that the altitude difference between cloud base and onset of warm rain 

was smaller under low AOD cases (~50 hPa) compared to that at high AOD cases (~250 

hPa). Concurrently, the mean Re for high AOD cases was very small (~10 µm) near the 

freezing level compared to low AOD indicating increase in droplets of smaller size at higher 

levels with increase in aerosol loading (Figure 5A). Thus, significant increase and sustenance 5 

of smaller supercooled liquid drops was found above freezing level under polluted 

conditions. Aircraft measurement of clouds developed under dirty conditions during 

CAIPEEX campaign over ISMR have also documented that Re remained below 14 µm up to 

500 hPa altitude and formation of rain drops mainly initiated as supercooled raindrops at ~ 

400 hPa [Konwar et al., 2012; Prabha et al., 2011].  10 

From CLOUDSAT analyses, mean ice-phase effective radius (Re ,ICE ) for high 

aerosol loading was found to be 8-10% greater (significant at >95% confidence interval) 

throughout the cloud layer compared to that for low aerosol loading  at the same altitude 

(Figure 5B), indicative of the  formation of bigger sized ice-phase hydrometeors under high 

aerosol loading. Figure 5C shows the difference (high aerosol - low aerosol) in mean liquid- 15 

phase and ice-phase water content. Significant enhancements in ice-phase water content was 

clearly evident  under high aerosol loading (Figure 5C). The increase in mass concentration 

of ice-phase hydrometeors was ~50 mg/m
3
 at altitudes 8-13 km. Similar increase in number 

concentration of ice hydrometeors was also observed from CLOUDSAT observations (figure 

not shown).  20 
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Figure 5.Observed differences in cloud microphysical propertiesfor low and high aerosol 

loadings cases. A) MODIS observed mean profiles of liquid-phase effective radius (Re), B) 

CLOUDSAT observed mean profiles of ice-phase effective radius (Re, ICE) under low (blue) 5 

and high (red) aerosol loading conditions. The dotted lines represent 25
th

 and 75
th

 percentiles, 

respectively. C) Difference (high AOD - low AOD) in mean profiles of liquid-phase (black) 

and ice-phase (pink) water content as observed from CLOUDSAT. 

 

3.2.2.Modelling aerosol microphysical effect for a typical rainfall event during ISM 10 

In order to further investigate the process level insights to our observational 

findings, we conducted model simulations using WRF-SBM for a typical mesoscale 

convective system over ISMR. Three idealized supercell simulations (Ex1, Ex2 and Ex3 as 

explained above) were performed with the observed CCN spectra being lowest for Ex1 and 

highest for Ex3.  15 



23 

 

Figure 6.A)Time evolution of column integrated domain averaged cloud water content  

(CWC; black), rain water content (RWC; blue), summation of ice water content, graupel 

water content  and snow water content (IWC+GWC+SWC; green), vertical velocity (red) and 

accumulated surface rainfall (pink) for simulation Ex1. B) Same as Panel A, but for simulated 5 

differences between Ex2 and Ex1. C) Same as Panel A, but for simulated differences between 

Ex3 and Ex1. 
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Figure 6A shows the time evolution of domain averaged mean columnar cloud 

water content (CWC), rain water content (RWC), summation of ice phase hydrometeors i.e. 

snow, graupel and ice water content (SWC+GWC+IWC), vertical velocity (W), and 

accumulated rainfall for low CCN (aerosol) condition. It can be seen that convection was 

strong after 50 minutes (consistent updrafts > 0.2 m/s), with corresponding enhancements 5 

in CWC, RWC and hydrometeors till the end of simulation. The domain-averaged 

accumulated rainfall was found to be ~0.8 mm/grid at the end of simulation. The simulated 

differences between high CCN and low CCN conditions (Figures 6B and 6C)clearly show 

significant intensification in the microphysical and dynamic variables with increase in CCN 

concentration. The magnitude of W, CWC, RWC and ice-phase water content increased in 10 

both simulations (Ex2 and Ex3), as compared to simulation Ex1. The simultaneous increase 

in accumulated rainfall was also evident with increase in CCN concentrations, mainly 

during the last half of the simulations. The estimated AOD for prescribed CCN scenarios in 

Ex1, Ex2 and Ex3 at 0.4 % supersaturation are 0.42, 0.62 and 0.91, respectively (using 

empirical formula given by Andreae et al., [2009]). The observed increase in accumulated 15 

rainfall was found to be 0.68 mm and 0.28mm for an increase in AOD of 0.5 (Ex3-Ex1) and 

0.3 (Ex2-Ex1), respectively, suggesting a nearly linear relationship in CCN-cloud-rainfall 

association as observed in Figure 2. Nevertheless, a closer look at Figures 6B and 6C reveal 

a temporal delay in initial formation of RWC, ice-phase hydrometeors and surface rainfall 

with increase in CCN concentrations. This can be understood from the negative values of 20 

differences in RWC, total water content of ice-phase hydrometeors and rainfall between 40-

100 minutes of simulation. However, the increase in rainfall amount with increase in CCN 

concentration in later stage of simulation was manifold compared to the initial suppression 

of warm rainfall eventually leading to the enhancement of accumulated rainfall throughout 

the storm domain(Figure not shown). 25 
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Figure 7: A) mean droplet  Re versus CTP for low (Ex1; blue), medium (Ex2; black) and high 

(Ex3; red) CCN scenario. B) Droplet size distribution spectra of Ex1 (blue), Ex2 (black) and 

Ex3 (red) simulations at 700 hPa (dashed lines) and 300 hPa (solid lines). The corresponding 5 

effective radius values are mentioned in the legends in square brackets. Fractional 

contribution is calculated by dividing the mass concentration of each bin with the total mass 

concentration.  

 

Figure 7A illustrates the simulated time and domain averaged profiles of droplet 10 

effective radius for Ex1 and Ex3. It can be seen that droplet Rein Ex3 simulation was lower 

compared to that of Ex1 throughout the cloud column and the differences increased with 

altitudes, indicative of the slower growth of cloud droplets for high CCN condition (Ex3) as 

compared to low CCN (Ex1), in line with our observation from MODIS analyzes. For 

instance, the difference in droplet at 700 hPa and 300 hPa was ~3 µm and ~8 µm, 15 

respectively (Figure 7B). The simulated spectral width of the droplet size distributions for 

Ex3 and Ex1 also showed a significant shift of the droplet spectral toward lower Re with 
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increase in CCN. It can be seen that increase in CCN concentration also leads to narrowing of 

droplet spectral at same altitude.  

The aerosol-induced increase (Ex3-Ex1) in time and domain averaged CWC, 

RWC, IWC, SWC, GWC at different altitudes is shown in Figure 8A. Modelling results 

also show that the maximum increase in CWC (23 mg/m
3
) was above freezing level at 5 

altitude ~7 km, which suggest that the increase in CCN caused increase in supercooled 

liquid droplets. Similar plots of mean W and temperature differences averaged over cloudy 

pixels (Figure 8B) shows considerable increase in temperature and  W at altitudes 

corresponding to increase in CWC (i.e. below 8 km), mainly due to enhanced release of 

latent heat of condensation.  10 

 

Figure 8. A) Simulated difference (Ex3-Ex1) in mean profiles of cloud water content, rain 

water content, ice water content, graupel water content, and snow water content. B) CCN 

induced difference (Ex3-Ex1) in simulated mean profiles of vertical velocity (black) and 

temperature (red) for cloudy pixels. 15 

 

For ice-phase hydrometeors, the majority of the increase was observed in SWC, 

with a peak above ~12 km altitude. A maxima in the CCN-induced increase in vertical 

velocity and temperature was also found to be above~12 km (Figure 8). These results 

indicate that CCN-induced increase in latent heat of freezing occurred mainly above 12 km, 20 
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in turn strengthening the updraft velocity of cloud parcels and hydrometeor formation. 

Further, snow Re profiles for simulations Ex1 and Ex3 illustrated that the effective mean 

radius of snow significantly increased with an increase in CCN concentration between 8 

and15 km altitude (Figure 9A). The simulated particle size distribution of snow further 

explained this behaviour as the mass of particles in bigger sized bins increased in the 5 

simulation Ex3 compared to Ex1 (Figure 9B). Similar changes in graupel concentration and 

particle size distribution for high density ice particles was also found (figure not shown). 

It has to be noted that the CCN-induced differences in cloud microphysics and 

rainfall from this idealized case study simulation should not be directly compared with the 

decadal scale observational analysis. Moreover, these results are subject to various 10 

assumptions and uncertainties within physical parameterizations of the microphysics 

module used. However, the qualitative similarities in results between the observed aerosol-

cloud-rainfall associations and this idealized case study simulation provide confidence in 

our observational finding that aerosol loading can potentially alter the warm phase and cloud 

phase microphysics over ISMR. These perturbations are consistent with processes typically 15 

associated with aerosol-induced cloud invigoration [O. Altaratz et al., 2014; Tao et al., 2012]. 

 

Figure 9.A) Simulated mean snow(dashed) and graupel (open square symbol connected by 

solid line) Re for low (Ex1, blue) and high (Ex3, red)CCN scenario. B) Simulated size 

distribution spectra of low density ice particles for Ex1(blue) and Ex3 (red) at 550 hPa (solid 20 

lines) and 200 hPa (dashed lines). Fractional contribution is calculated by dividing the mass 

concentration of each bin with the total mass concentration. 



28 

 

 The following chain of processes may explain our observational and/or numerical 

findings. The growth of cloud droplets near the cloud base is dominated by condensation. 

However, the growth of droplets near the onset of warm rain (Re approaches to ~14 µm)is 

dominated by coalescence [Rosenfeld et al., 2012; Rosenfeld et al., 2014]. The observed 

differences in vertical gradient of droplet growth suggest less efficient collision-coalescence 5 

process and prolonged condensation process, leading to delayed raindrop formation 

[Rosenfeld, 1999; 2000; Squires, 1958; Warner and Twomey, 1967]. Such prolonged  

condensational growth of droplets implies increased condensed water loading, causing more 

latent heat release and thereby stronger updrafts under higher aerosol loading [Fan et al., 

2009; Khain et al., 2005; Martins et al., 2011; Rosenfeld et al., 2008; van den Heever et al., 10 

2011; Wang, 2005] . Concurrently, smaller droplet Re under polluted conditions results in 

lower effective terminal velocity and higher cloud droplet mobility [Heiblum et al., 2016; 

Ilan et al., 2015].  Under polluted conditions, then, the aerosol-induced stronger updrafts and 

enhanced buoyancy would push these smaller condensates above freezing level[Andreae et 

al., 2004; Rosenfeld and Lensky, 1998] which, in turn, would enhance liquid droplets above 15 

the freezing level. Nevertheless, the smaller droplets are less efficient in freezing causing 

delay in the ice-/mix-phase processes which provide sustenance for super-cooled liquid 

condensates above freezing level [Rosenfeld and Woodley, 2000]. These hydrometeors 

encounter more number of super-cooled liquid droplets while settling from comparatively 

higher altitude under gravity. Thus, increased ice-water accretion process [Ilotoviz et al., 20 

2016], increases ice particle Re under high aerosol loading. Increase in the water mass flux of 

the smaller droplets at higher altitudes, in principle, releases more latent heat of freezing, and 

further invigorates the cloud system [O. Altaratz et al., 2014; Rosenfeld et al., 2008]. Such 

aerosol-induced invigoration also imply the formation of ice-phase hydrometeors at higher 

altitudes by freezing of small droplets[O. Altaratz et al., 2014]. Such aerosol-induced 25 
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invigorating of clouds ultimately result in wider and deeper clouds, with higher mass 

concentration of ice-phase hydrometeors, which eventually fall to the surface (Figures 3 and 

5)[Andreae et al., 2004; Koren et al., 2005; Koren et al., 2012; Rosenfeld et al., 2008]. Thus, 

the observed increase in daily rainfall with increasing aerosol loading over ISMR (Figure 3) 

could stem from the observed differences in warm phase dynamics and microphysics, which, 5 

plausibly leads to cloud invigoration and thereby enhances mass concentration of mixed-

phase hydrometeors. 

 

3.3.1 Decoupling the role of meteorology 

 Observational and modelled evidences of microphysical impact of aerosol over ISMR 10 

suggest causality in the observed relationship between aerosol-cloud and rainfall 

properties(Figure 3). Here, we examined the plausible role of meteorology in our analyzes. 

Figure 10 shows correlation coefficients of RF, CF and AOD with GDAS meteorological 

variables. The meteorological conditions favourable for deeper clouds and heavy rainfall 

were found to be associated with reduction in AOD (Figure 10). As expected, a positive 15 

correlation of CF and RF was observed with relative humidity. However, increase in RH was 

negatively correlated with aerosol loading, suggesting that cloudy/wet conditions were 

associated with the reduction in aerosol loading. While CF and RF was found to be 

negatively correlated with geopotential height (mainly below 500 hPa), AOD was linearly 

correlated. This suggests that the formation of low pressure zone / presence of high RH at 20 

lower atmosphere was favourable for cloud development and rain, but not for aerosol 

accumulation. These features are consistent with that of heavy rainfall periods of ISM, where, 

the presence of low pressure zone over ISMR (commonly known as monsoon depressions) is 

associated for advection of more moisture at lower altitudes, more cloud condensation and 

occurrence of more rainfall. A recent modelling study has also shown that the propagation of 25 
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low pressure system from Bay of Bengal towards Indian landmass, which, brings moisture 

and heavy rainfall to the region during monsoon, is also associated with a decrease in aerosol 

concentration over the region [Sarangi et al., 2015]. The decrease might be a combined effect 

of ingestion by clouds, wet scavenging and dilution effect of relatively clean moist air masses 

from the Ocean. Positive correlation of wind speed with CF and RF at altitude above 400 hPa 5 

was also associated with reduced AOD (Figure 10). The high wind speed above 350 hPa 

(Figure 10) appears to provide a shearing effect on the cloud development process. Based on 

the correlation analysis horizontal wind shear (between 500 hPa and 200 hPa), relative 

humidity and geopotential height (below 500 hPa) were identified as three key 

meteorological variables (magnitude of correlation coefficient >0.25) affecting cloud and 10 

rainfall properties in ISMR. 

 

Figure 10.Correlation coefficients of accumulated daily rainfall, AOD and cloud fraction 

with six GDAS meteorological variables over ISMR. Different color shades along the x-axis 

indicate corresponding meteorological variable and each color shade has 21 divisions which 15 

represents corresponding 21 model pressure levels from 100 hPa to1000 hPa (left to right). 

Correlation analysis was performed at each model pressure level with all collocated samples 

between two variables (e.g. temperature and RF for x-axis values of 1-21 in case of red color 

line) over ISMR region for JJAS 2002-2013. 

 20 

 

 Next, the datasets were segregated into low and high regimes of wind shear, 

calculated between 200 hPa and 400 hPa, as well as for geopotential height and relative 
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humidity at 800 hPa pressure level (Figure 11). The low versus high regimes illustrated that 

steeper positive gradients in AOD-cloud-RF associations was observed for high relative 

humidity and low geo-potential height conditions, but, the magnitude of positive gradient 

between RF (and PR)-AOD reduced under high wind shear cases. Spreading of the cloud due 

to high wind shear results in hydrometeors falling through relatively drier atmosphere making 5 

smaller droplets (in polluted condition) are more susceptible to evaporation [Fan et al., 

2009], thereby, the reduction in PR and RF. Thus, an orthogonal meteorological impact 

[Koren et al., 2010a; Koren et al., 2014] was evident on gradients of AOD-cloud-rainfall 

associations over ISMR, where, the y-intercept indicates the meteorology effect and the slope 

of correlation represents aerosol effect. We have also considered the combined effect of all 10 

the three key meteorological variables by dividing the datasets into 8 regimes (alternate 

combination of higher and lower bins of RH, WS and GPH). Our analysis illustrated (Figure 

not shown) similar results as seen in Figure 11; positive aerosol-cloud-rainfall association 

was evident in all the 8 sub-regimes along with distinct orthogonal effect of ambient 

meteorological conditions. 15 

Ground based remote sensing, satellite observations, aircraft measurements and 

modelling studies have documented that aerosols are mainly located within the boundary 

layer during monsoon period over ISMR [Mishra and Shibata, 2012; Misra et al., 2012; 

Sarangi et al., 2015]. But, some recent studies have reported that transport of near surface 

aerosols to the free troposphere by mesoscale convection results in upper-level accumulation 20 

during summer monsoon, termed as Asian tropopause aerosol layer [Chakraborty et al., 

2015; Vernier et al., 2015]. Therefore, another possible pathway through which 

meteorological co-variability can influence our correlation analysis over ISMR is due to the 

positive association between magnitude of Asian tropopause aerosol layer and AOD. 

However, the tropopause aerosol layer pathway results in insignificant enhancements of AOD 25 
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during JJAS by ~0.01- 0.02 over south Asia compared to the observed climatological mean 

AOD (~0.6) [Vernier et al., 2015; Yu et al., 2015]. Thus, contributions of Asian tropopause 

aerosol layer to the observed positive gradients (Figure 3) can be assumed to be negligible.  
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Figure 11. Associations of accumulated daily rainfall, precipitation rate, cloud fraction, cloud 

top pressure and cloud top temperature with AOD. (A) Data slicing by the wind shear for the 

lower regime (0-33%, Top) and the higher regime (67-100%, Bottom). (B) Same as A), 

except data slicing by the relative humidity (C) Same as A), except data slicing by the geo-5 

potential height. The methodology of creation of the scatter points were similar to that used 

for Figure 3. Each scatter point is the average of these equal 'n' numbers of data points 

mentioned in each respective panels. 
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3.3.2 Examining the influence of cloud contamination effect 

 Here, we used radiosonde observations from eight stations in ISMR (Table 2) to 

illustrate humidification effect on satellite retrieved AOD. The total number of cloudy 

profiles varied from 270 (Ranchi) to 1065 (Kolkata). The mean and standard deviation in RH 5 

for these selected profiles were calculated (for each station data) in two layers of 1.5 km and 

3 km, from surface. The bias in mean RH between shallower and deeper clouds for each 

station is also presented in Table 2. The range of variation in mean RH for each layer has 

been presented in Table 3. We found that with increase in mean RH, the natural variance in 

RH decreased for both the layers within ISMR. The mean and standard deviation of RH in 10 

1.5 km (3 km) layer was found to be 84.3±13.2% (84.7±13.5%) under cloudy conditions 

within ISMR. At the same time, the bias in mean RH (associated with vertical change in 

cloud layer height) in 1.5 km  and 3.0 km layer was found to be 2.7 % and 2.5 %, 

respectively. It can be seen that the bias was negligible compared to the natural variation 

present in RH during cloudy conditions in ISMR. Using the parameterization developed in 15 

Bar-Or et al., (2012), the maximum change in AOD was estimated to be about 0.1 due to  the 

humidification effect (Table 3). Thus, the uncertainties in our data analyzes due to aerosol 

humidification effect seems to be minimal. Note that the difference in clean and polluted 

conditions in this study (AOD of about 1.0) was nearly an order of magnitude higher than the 

estimated maximum change in AOD (~0.1) due to the humidification effect. Therefore, the 20 

observed positive associations between AOD and cloud/rainfall properties do not appear to be 

significantly affected by aerosol growth due to humidification during cloudy conditions. In 

fact, the observed negative relationship between AOD and increase in RH over ISMR (Figure 

11) appears to dominate the otherwise expected higher hygroscopic growth of aerosols and 

supports the above argument. 25 
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Table 2.World Meteorological Organisation (WMO) index number of radiosonde stations 

(WMO#), station latitude (Lat.), longitude Lon.), elevation above mean sea level (Elev.), 

number of radisonde profiles (N), number of cloudy profiles (Ncloudy), Mean RH and bias in 

RH for 1.5 km layer (RH1.5 and RH1.5,bias, respectively.) and 3.0 km layer (RH3.0 and 5 

RH3.0,bias, respectively) and median of cloud layer height (CLH) for each of the 8 radiosonde 

stations used in humidification analysis.  ―±” indicates standard deviation. 

 

Station Vizag Kolkata Bhubaneswar Patna Lucknow Nagpur Bhopal Ranchi 

WMO # 43150 42809 42971 42492 42369 42867 42667 42701 

Lat. (
o
N) 17.43 22.39 20.15 25.36 26.45 21.06 23.17 23.19 

Lon. (
o
E) 83.14 88.27 85.50 85.06 80.53 79.03 77.21 85.19 

Elev. (m) 3 6 46 60 128 310 523 652 

N (#) 2007 2291 2306 1432 1751 1916 1725 1616 

Ncloudy (#) 770 1065 823 709 837 898 555 270 

RH1.5 83±12 88±11 89±11 88±11 83±15 82±16 83±16 89±12 

RH1.5,bias 1.96 0.95 1.5 0.6 6.1 3.8 6.4 1.4 

RH3.0 82±12 86±14 88±12 87±13 84±15 84±15 84±16 87±14 

RH3.0,bias 0.5 1.5 0.8 1.4 5.1 3.8 6.4 0.3 

CLH (m) 13810 14539 14455 14413 13430 9658 6343 9219 

 

Table 3: Estimating change in AOD [ΔAOD ] due to variation in RH. The hygroscopicity 10 

parameter, k used in the estimation was taken as 0 .1 and 0.2 to illustrate minimum and 

maximum change due to change in aerosol properties. 

 

 Layer 1.5 km Layer 3 km 

Range of mean RH  72 - 97 71 - 98 

RH scaled as distance from nearest cloud 0.02-0.13 0.02-0.12 

Maximum  Δ (AOD) for k = 0.1 (0.2) ~0.05 (0.1) ~0.05 (0.1) 

 

3.3.3 Investigating the effect of wet scavenging on aerosol-rainfall associations 15 

 Contrary to the positive aerosol-cloud-rainfall associations shown by many satellite 

data studies across the globe, recent studies have illustrated a negative aerosol-rainfall 

association mainly over tropical ocean region based on reanalysis dataset and global model 

simulations. This difference in sign of the association in modelling studies is mainly 

attributed to inclusion of wet scavenging effect in models and probable lack of the same in 20 

satellite samples [Grandey et al., 2013; Grandey et al., 2014; Yang et al., 2016]. However, 

global modelling studies have their own inherent limitations and uncertainties in addressing 

aerosol-cloud-rainfall associations. Due to computational constraints, the global model 
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simulations use grids with coarse spatial resolution (~ 200 km) and falls short of explicitly 

resolving the fine-scale cloud processes. Moreover, the convection parameterizations used to 

simulate cloud formation generally do not parameterize the aerosol indirect effect on clouds 

and thus on rainfall. On the contrary,  the observed relations using satellite datasets are at fine 

scale and inclusive of the aerosol indirect effect. As a representative analysis, collocated 5 

AOD-rainfall measurements at hourly temporal resolution over IITK was used to illustrate 

the association between aerosol-rainfall with and without wet scavenging effect. Positive 

association was found between rainfall amount and mean AOD values measured before the 

starting of rain events over IITK (NWS_IITK; red line in Figure 12). Similar association was 

also found when all the available collocated AOD-rain amount samples over IITK were 10 

correlated (Cyan color line in Figure 12), but the gradient was reduced by almost 50 % 

compared to that of NWS_IITK. Thus, positive association between aerosol-rainfall was 

evident even with the inclusion of wet scavenging effect in the sampling. Grandey et al., 2013 

[Grandey et al., 2013] have also shown similar amount of contribution of wet scavenging 

effect on the positive aerosol-cloud association. Correlation of MODIS-AOD with RF (black 15 

line in Figure 12) and PR (blue line in Figure 12) values over the IITK grid also illustrated 

positive association between aerosol and rainfall similar to the observed associations in 

Figure 3. High anthropogenic aerosol emission rate at surface [Bond et al., 2004] and the 

rapid aerosol build-up within a few hours after the individual rainfall event over ISMR [Jai 

Devi et al., 2011] might contribute towards reducing the impact of wet scavenging effect on 20 

the aerosol-cloud-rainfall analysis over ISMR. This argument is also supported by a pattern 

seen in model results that negative aerosol-cloud-rainfall associations were usually prominent 

over ocean regions and positive aerosol-cloud-rainfall associations were found over 

continental conditions in global simulations [Grandey et al., 2013; Grandey et al., 2014; 

Gryspeerdt et al., 2015; Yang et al., 2016]. Unlike continental conditions, lack of high 25 



37 

 

emission rates at the ocean surface might also contribute to the dominant effect of wet 

scavenging on aerosol-cloud-rainfall association. In addition, the cloudy pixels where rainfall 

actually occurs under continental conditions are usually a small fraction of the total area 

within a 1
o
 x 1

o
 box, and therefore, the reduction in mean AOD value of the 1

o
 x 1

o
 box due 

to wet scavenging might not be a dominant phenomena affecting the aerosol-cloud-rainfall 5 

gradients in Figure 3. IITK-AERONET data analysis offers confidence to the observed 

position association for aerosol-cloud-rainfall, and that was not misrepresentation due to 

possible uncertainties involved for wet scavenging effect in using satellite retrieved AOD 

values. It indeed also showed that a more accurate representation of wet scavenging effect is 

essential to reduce uncertainty about the magnitude of the positive aerosol-rainfall gradient 10 

observed over ISMR. 

 

 

Figure 12: Associations of rainfall with collocated AERONET-AOD measurements (within ± 

4 hours of the start/end of rainfall event) over IITK. The Cyan colorline illustrate the scenario 15 

with inclusion of wet scavenging effect (IITK) and the red color line illustrate the scenario 

with no wet scavenging effect (NWS_IITK). The association between daily rainfall and 

precipitation rate with MODIS-AOD over IITK grid is also shown  in black and blue color 

lines, respectively. In each case, all the rainfall-AOD samples were sorted as a function of 

corresponding AOD values into 5 bins of 20 percentiles each. Each scatter point is the 20 

average of each bin and haven number of data points. 
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4. Summary 

 In this study, long-term satellite and in-situ observational datasets were systematically 

analysed to get new insights in aerosol-cloud-rainfall associations over ISMR. An important 

finding is that the MODIS retrieved cloud properties (CF, CTP, CTT), IMD in-situ surface 

accumulated rainfall as well as TRMM retrieved precipitation rate illustrated a positive 5 

association with increasing aerosol loading. Additional selective analysis over smaller spatial 

region within ISMR and by separating the dataset into relatively shallower and deeper clouds 

also illustrated similar aerosol-cloud-rainfall associations, plausibly highlighting the 

robustness of these associations. A decrease in outgoing long wave radiation and increase in 

outgoing short wave radiation at the top of the atmosphere, with increase in aerosol loading 10 

further suggested deepening of cloud systems over ISMR. 

 Further, MODIS and CloudSat observed microphysical differences between low and 

high aerosol loading were investigated to gain process level understanding of the observed 

associations. Comparison of mean profiles of CTP-Re illustrated that increase in aerosol 

loading is associated with slower growth of Re with altitude, indicating reduction of 15 

coalescence efficiency and delay in initiation of warm rain. CloudSat retrieved profiles  

showed that the liquid water content increased under high aerosol loading, mainly the 

supercooled liquid droplets above the freezing level. Simultaneously, the observed mass 

concentration and effective radius of ice-phase hydrometeors increased manifold under high 

aerosol loading. We also performed three idealized supercell simulation of a typical heavy 20 

rainfall event over ISMR by varying initial CCN concentrations. Modelling results were 

found to be in-line with our observational findings, showing that CCN-induced initial 

suppression of warm phase processes along with increase in updraft velocity lead to 

movement of more water mass across freezing level resulting in enhancement of ice-phase 
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hydrometeor concentration and eventually in intensification of surface rainfall under high 

CCN loading.  

We understand the limitation that influences of meteorological condition are ideally 

difficult to separate from that of aerosol on cloud-rainfall system. However, we have 

systematically shown that the positive aerosol-cloud-rainfall associations were present even 5 

in narrow regimes of key cloud forming meteorological variables like RH, geopotential 

height and wind shear. Further, the ambiguity involved in humidification effect on retrieved 

AOD can also affect the positive gradients between aerosol and cloud-rainfall properties. 

Besides,  AOD also suffers from substantial uncertainty in being representative of CCN 

concentration near cloud base [Andreae, 2009]and in inclusion of wet scavenging effect in 10 

the AOD samples. These caveats may result in an overestimation of the observed positive 

gradients in aerosol-cloud-rainfall associations. Our analysis therefore cannot quantify the 

magnitude of gradients with confidence. However, this study certainly suggests a significant 

role of aerosol on rainfall properties via cloud invigoration over ISMR. As a future scope, 

more observational studies at cloud formation and rain event time scales are warranted to 15 

accurately quantify the magnitude of aerosol-cloud-rainfall association over ISMR. 

Moreover, consideration of aerosol microphysical effects is essential for accurate prediction 

of monsoonal rainfall over this region of climatic importance.  
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