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Figure 1. Time series of observed carbon monoxide (CO)- top, black carbon (BC)-middle and particles >3 nm 8 
(CN3)-bottom, for the study period. Taken from Lawson et al., 2015. 9 

 10 

Performance of the numerical meteorological modelling 11 
The TAPM (Hurley, 2008) and CCAM (McGregor and Dix, 2008) meteorological simulations form an 12 
integral component of the analysis presented in our paper. As such, it is helpful to undertake 13 
qualitative and quantitative comparisons of modelled and observed meteorological parameters in 14 
order to assess the relative performance of each model. Although a full assessment of the 15 
performance of TAPM and CCAM were beyond the scope of this project (and not supported by a 16 
comprehensive set of observational data), we are able to assess model performance for hourly wind, 17 
temperature and humidity which were observed at the Cape Grim Base Line monitoring station. The 18 
results of a comparison of these data with the simulations of TAPM and CCAM for the period 13–27 19 
February 2006 are summarised below. 20 

Figure 2 shows the scatter plots of observed and modelled wind, temperature and relative humidity 21 
and suggest that TAPM performs marginally than CCAM for the 10 m wind speed modelling with a 22 
higher coefficient of determination, a better intercept for the least squares regression line of best fit 23 
although a 5% lower slope. CCAM has better performance for the modelling of the screen 24 
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temperature (significantly better slope and intercept), and TAPM performs better for the modelling 25 
of relative humidity (note that this parameter also includes the effect of temperature). 26 

Figure 3 shows the sample probability density functions (pdf) for the observation and model wind 27 
speed, wind direction, temperature and relative humidity time series. Note that the observed pdfs 28 
differ slightly between the TAPM and the CCAM plots because TAPM times are in Australian Eastern 29 
Standard while the CCAM plots are in UTC and the sampling periods are slightly different. In the 30 
following we consider the qualitative similarities and differences between the observed and 31 
modelled pdfs. 32 

Figure 3 (top row) shows that CCAM has better matched the wind speed pdf, with a good 33 
representation of the mode at around 9 ms-1. On the other hand TAPM mode occurs at 7 m s-1. Both 34 
models simulate a mode in the wind direction pdf for the sector centred on 75º south (observed 35 
mode at 90º south. TAPM successfully models two modes in the west–south-west sector while 36 
CCAM simulates a single mode only (at 225º). With respect to the screen temperature Figure 2 (third 37 
row) shows that CCAM has better simulated the width and peak of the observed temperature pdf, 38 
with TAPM under predicting the pdf width and over predicting the peak. 39 

TAPM does a better job of modelling the RH pdf with CCAM under estimating the width of the pdf 40 
and overestimating the magnitude of the mode at 90% RH (Figure 3- bottom). 41 

We complete this section by considering a suite of statistical measures of model performance. Figure 42 
4 shows 10 statistical measures- see Hurley et al. (2005), with more details of the metrics given in 43 
Willmott (1981) and Thorpe (1985) which can be used to give a quantitative comparison of the 44 
TAPM and CCAM 10 m wind speed simulations. Figure 4 (top row) shows that CCAM simulates the 45 
campaign mean wind speed to within -14% (thus a low bias) while TAPM has a low bias of 25%. The 46 
observed standard deviation of the wind speed is modelled to within -14% by TAPM and 3% by 47 
CCAM- see SKILLv in Figure 4 (bottom row). The root mean square error (RMSE) is 2.5 m-1 for TAPM 48 
and 3.7 m s-1 for CCAM. In this regard, a useful measure of skill is the ratio of the RMSE to the 49 
observed standard deviation (SKILLr in Figure 4) with SKILLr < 1 being desirable. It can be seen that 50 
both models have satisfied this criteria and that TAPM has performed better than CCAM with 51 
respect to this metric. Consideration of the RMSE metrics also indicate general good skill from both 52 
models, and with TAPM performing better than CCAM. The Index of Agreement (IOA; unity is ideal) 53 
also provides evidence of good model performance. 54 

Figure 5 shows the same statistical measures for screen temperature and again indicates skill in the 55 
modelling according to the metrics of Willmott (1981) and Thorpe (1985). Again the TAPM 56 
performance is slightly better than CCAM. Similar conclusions can be drawn with respect to the 57 
relative humidity (Figure 6). 58 

In summary, a necessary condition is that the meteorological models are able to demonstrate 59 
reasonable skill in modelling the meteorological conditions within the vicinity of the smoke 60 
trajectories as they couple Cape Grim with the smoke source area on Robbin’s Island. The 61 
information presented above is promising (although not a complete model verification), and does 62 
suggest that the TAPM simulations are slightly better than the CCAM simulations with respect to the 63 
low level wind, temperatures and relative humidity. 64 

  65 
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 67 

Figure 2. Scatter plots of (by row) observed and modelled 10 m wind speed, screen temperature, relative 68 
humidity for (by column). TAPM is shown in the first column and CCAM is shown in the second column. 69 

 70 

 71 

72 
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 73 

Figure 3. Probability density functions of observed and modelled (by row) 10 m wind speed, 10 m wind 74 
direction, screen temperature and screen relative humidity. TAPM results are shown in the first column and 75 
CCAM results in the second column. 76 
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 77 

Figure 4. Statistical measures for quantitative comparison of the TAPM and CCAM 10 m wind speed 78 
simulations. T=TAPM, C=CCAM, O=Observations. Top- Mean-T, Mean-C, Mean-O; mean TAPM, CCAM and 79 
observed 10 m wind speed. Std-T/C standard deviation of the modelled wind (TAPM; CCAM), RMSE- root mean 80 
square error; RMSEs- systematic root mean square error; RMSEu- unsystematic root mean square error. 81 
Bottom- the metrics are CORR correlation coefficient; IOA- index of agreement; SKILLe = RMSEu/STD-O, SKILLv = 82 
Std-model/Std-obs, SKILLr = RMSE/Std-O.  83 



6 
 

 84 

Figure 5. Statistical measures for quantitative comparison of the TAPM and CCAM screen temperature. 85 
T=TAPM, C=CCAM, O=Observations. Top- Mean-T, Mean-C, Mean-O; TAPM, CCAM and observed screen 86 
temperature. Std-T/C standard deviation of the modelled temperature (TAPM; CCAM), RMSE- root mean 87 
square error; RMSEs- systematic root mean square error; RMSEu- unsystematic root mean square error. 88 
Bottom- the metrics are CORR correlation coefficient; IOA- index of agreement; SKILLe = RMSEu/STD-O, SKILLv = 89 
Std-model/Std-obs, SKILLr = RMSE/Std-O. 90 

 91 
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 92 

Figure 6. Statistical measures for quantitative comparison of the TAPM and CCAM screen relative humidity. 93 
T=TAPM, C=CCAM, O=Observations. Top- Mean-T, Mean-C, Mean-O; mean TAPM, CCAM and observed relative 94 
humidity. Std-T/C standard deviation of the modelled relative humidity (TAPM; CCAM), RMSE- root mean 95 
square error; RMSEs- systematic root mean square error; RMSEu- unsystematic root mean square error. 96 
Bottom- the metrics are CORR correlation coefficient; IOA- index of agreement; SKILLe = RMSEu/STD-O, SKILLv = 97 
Std-model/Std-obs, SKILLr = RMSE/Std-O. 98 

 99 

Atmospheric soundings were undertaken at least once per day (000 UTC) for the majority of days in 100 
the period 8-21 February 2006. Sondes were released from the Cape Grim monitoring station and 101 
returned height, pressure, temperature, humidity, wind speed and wind direction data at 10-20 m 102 
intervals between the surface and about 3000 m. We have used the data to calculate potential 103 
temperature and derived the potential temperature gradient using central differences over height 104 
intervals of 30-40 m (to include some smoothing of the raw radiosonde data). The observed 105 
boundary layer heights have been diagnosed by searching for positive gradients in the potential 106 
temperature profile. 107 

Figure 7 shows the modelled (TAPM and CCAM) hourly PBL time series with the spot hourly PBL 108 
observations superimposed on the plot. The figure is helpful because it shows the significantly 109 
hourly variability in the modelled PBL- which because Cape Grim is strongly influenced by maritime 110 
air, does not strongly follow the typical diurnal variation of PBL growth and collapse associated with 111 
sensible heating and long wave radiation cooling over land. Figure 7 suggests that both models have 112 
captured important features in the observed PBL heights, including the period of low boundary layer 113 
height between hours 168 and 264. 114 
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Figure 8 shows a scatter plot of the observed and modelled PBL heights and indicates that 71% of 115 
the TAPM PBL heights lie within a factor of two of the observed and 79% of the CCAM PBL heights 116 
are within a factor of two. This is a good result given the complexity of the observed meteorological 117 
flows at the Cape Grim monitoring station.  118 

 119 

 120 
Figure 7. Hourly time series of the modelled (TAPM and CCAM) PBL heights for the period 8 – 21 February 2006. 121 
Also shown are PBL heights diagnosed from sonde data released periodically at Cape Grim during the study 122 
period. 123 

 124 

 125 
Figure 8. Scatter plot of observed and modelled PBL heights for hours corresponding to sonde releases at Cape 126 
Grim in February 2006. 127 

128 
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 Performance of TAPM-CTM for background O3  129 
The model generally captures background O3 very well. The average modelled mean O3 during 130 
background (non BB) periods was 17.7 ppb versus 16.6 ppb observed, with a coefficient of 131 
determination of 0.4. The scatter plot below (Figure 9) shows that all modelled concentrations are 132 
within a factor of 2 of observations (hourly data). Further, the campaign average diurnal 1 hour O3 133 
(observed vs modelled) (Figure 10) indicates maximum differences of 2 ppb (< 15% of the hourly 134 
mean). 135 

 136 

 137 

Figure 9.  Hourly observed versus modelled O3 concentrations for background (non-BB) periods 138 

 139 

Figure 10. Dirunal observed and modelled (TAPM-CTM) concentration for background (non-BB) periods 140 

141 

R2=0.4 
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Performance of TAPM-CTM and CCAM-CTM for different Emission 142 

Factor Scenarios 143 
 144 
A series of qualitative and quantitative performance measures have been provided for the different 145 
EF scenarios. These measures follow the framework discussed in Dennis et al. (2010), and use the 146 
performance goals described in Boylan and Russell (2006). These measures provide quantitative 147 
evidence that the best overall agreement with the observations for both primary (EC/CO) and 148 
secondary (O3) species is for the TAPM-CTM run with MCE = 0.89. This is discussed further below, 149 
and in the Supplementary material.  150 
 151 
Figure 11 shows the quantile–quantile plots of observed and modelled BC/CO for eight model 152 
scenarios. For clarity we have plotted the concentration pairs corresponding to each decile in the 153 
range 20 to 100%. Note the log scale on both axes. The solid line is 1:1 and the dotted lines delineate 154 
a factor of two agreement between observed and modelled BC/CO.  155 
 156 
The quantile-quantile plots compare the observed and modelled distributions of BC/CO and are 157 
useful for the current morphology where the configuration of a near field source, narrow 158 
meandering plume and single receptor make it very challenging for models to simulate the time-and-159 
space coupled behaviour of the in-plume concentrations during plume strikes at the receptor. 160 
Additionally, because the modelled and observed concentrations of EC and CO from the fire are a 161 
strong function of the plume transport and mixing in addition to the EF, we consider the ratio of BC 162 
and CO because ratios of emitted gases and aerosols will be approximately conserved- provided in-163 
plume chemical or physical transformation of these species is not significant, and provided the 164 
concentration of each species in the entrained background air is well known. 165 
 166 
Figure 11 shows that the BC/CO distributions for each MCE scenario show an approximate linear 167 
relationship between the observed and modelled ratios for the first two thirds of each distribution 168 
(for BC/CO < 1 ng m-3 ppb-1) before the modelled distributions of BC/CO distributions show reduced 169 
sensitivity compared to the observed. The TAPM-CTM simulation with MCE=0.89 has the most 170 
modelled percentile data points within a factor of two of the observations (6 percentile data points, 171 
from 0.3 – 0.8) for BC/CO ratio. The second best agreement with the observations was using CCAM-172 
CTM with MCE = 0.89. Several of the TAPM-CTM and CCAM-CTM model runs overestimated the 173 
EC/CO ratio by a factor of up to 8 for MCE=0.95, while the runs with no fire underestimates the 174 
observed ratios by a factor of two or larger for the majority of the data points. Overall this indicates 175 
that using EF corresponding to an MCE of 0.89 gives the best agreement with the observations for 176 
the majority of the BC/CO ratios. Both TAPM-CTM and CCAM-CTM overestimated the ratio at the 177 
lowest (0.2 percentile) ratio values, and underestimated the ratio at the highest (1) percentile ratio. 178 
 179 
Figure 11 also suggests that the model performance may be limited by the use of a single MCE for a 180 
given model scenario with the best model performance at the highest BC/CO being for the 181 
MCE=0.95 scenarios, and with the lower MCE scenarios performing better at the lower BC/CO ratios.  182 
 183 
Figure 12 and Figure 13 respectively show the mean fractional bias (MFB) and mean fractional error 184 
(MFE) of the modelled EC/CO simulations. Following Boylan and Russell (2006) we define MFB and 185 
MFE as follows. 186 
 187 

𝑀𝑀𝑀𝑀𝐵𝐵 = 100% ×  
2
𝑁𝑁 

 �
(𝑀𝑀𝑖𝑖 −  𝑂𝑂𝑖𝑖)
(𝑀𝑀𝑖𝑖 + 𝑂𝑂𝑖𝑖)

 188 

 189 
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𝑀𝑀𝑀𝑀𝑀𝑀 = 100% ×  
2
𝑁𝑁 

 �
|𝑀𝑀𝑖𝑖 −  𝑂𝑂𝑖𝑖|
(𝑀𝑀𝑖𝑖 + 𝑂𝑂𝑖𝑖)

 190 

 191 
where Mi and Oi are the ith model–observation concentration pair (here coupled in time and space), 192 
and N is the number of data points. Guidance with respect to model performance is given by the 193 
criteria (outer lines) and goal (inner lines) which asymptote from a magnitude of 2.0 for EC/CO < 1.0 194 
ng m-3 ppb-1 to 0.15 and 0.3 (MFB) and 0.35 and 0.5 (MFE) in the limit of large EC/CO (Boylan and 195 
Russell, 2006). 196 
 197 
Figure 12 shows that the TAPM-CTM; MCE= 0.89 scenario has the smallest MFB, followed by CCAM-198 
CTM; MCE= 0.89. Only the no-fire and MCE= 0.89 scenarios fall within the defined goal. Figure 13 199 
shows the MFE and indicates that all of the simulations are challenged by the defined goal, while 200 
only the TAPM-CTM; MCE= 0.89 and the no-smoke scenarios fall within the defined criteria. 201 
 202 

 203 

 204 

Figure 11. Quantile-quantile plots of observed and modelled BC/CO ratios for the TAPM-CTM and CCAM-CTM 205 
simulations. For each scenario, the model-data pairs correspond to the following percentiles- 0.2, 0.3, 0.4, 0.5, 206 
0.6, 0.7, 0.8, 0.9 and 1. Note log scale on both axes. Solid line is 1:1 and dotted lines show performance within a 207 
factor of two. 208 

 209 
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 210 

Figure 12. Mean fractional bias for BC/CO. Dotted and solid lines define the performance criteria and goal. 211 

 212 

Figure 13. Mean fractional error for BC/CO. Dotted and solid lines define the performance criteria and goal. 213 

With respect to O3, we analysed the entire data series (both the BB and background periods) 214 
because urban air (in non BB periods) represents a significant source of O3 at Cape Grim, and the test 215 
of the models is to reproduce O3 from fire as well as from other sources. 216 
 217 
The quantile-quantile plots in Figure 14 and Figure 15 show that the TAPM-CTM; MCE=0.89 scenario 218 
lies close to the 1:1 line for all of the sampled percentiles, and is in best agreement with 219 
observations. On the other hand, the MCE=0.92 and MCE=0.95 runs both for TAPM-CTM and CCAM-220 
CTM predict depletion of O3, an event which is not observed, as discussed in the manuscript. With 221 
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the exception of these anomalous model depletion events, all modelled percentiles fall well within a 222 
factor of two of the observations. 223 
 224 
Figure 16 shows the MFB for O3 and indicates that the lowest MFB was for TAPM-CTM; MCE= 0.92. 225 
All but one scenario was able to simulate the one-hour O3 with a MFB which fell within the range 226 
±0.06. The MFB from all of the simulations fall well within the performance criteria and goal. 227 
 228 
Figure 17 shows the MFE for O3 and indicates that all MFE values are between 0.18- 0.29, again well 229 
with the performance criteria and goals. The MFE for TAPM-CTM; MCE=0.89 was 0.2, falling at the 230 
lower end of the MFE generating by our suite of simulations.  231 
 232 
 233 

 234 

Figure 14. Quantile-quantile plots of observed and modelled O3 for the TAPM-CTM and CCAM-CTM simulations. 235 
For each scenario, the model-data pairs correspond to the following percentiles- 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 236 
0.9 and 1. Note log scale on both axes. Solid line is 1:1 and dotted lines show performance within a factor of 237 
two. 238 

 239 
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 240 

Figure 15. Quantile-quantile plots of observed and modelled O3 for the TAPM-CTM and CCAM-CTM simulations. 241 
The plot is similar to Figure 14 above but with smaller concentration range so detail can be seen.  242 

Figure 16 . Mean fractional bias for O3. The dotted and solid lines define the performance criteria and goal. 243 

 244 
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 245 

Figure 17.  Mean fractional error for O3. The dotted and solid lines define the performance criteria and goal. 246 

In summary, the quantile-quantile plots for EC/CO (fire periods) and O3 (all periods) demonstrate 247 
that, generally, the TAPM-CTM MCE=0.89 scenario is in best agreement with observations. This 248 
scenario also has the lowest MFB and MFE for EC/CO, and small values of MFB and MFE for O3 which 249 
fall well within our performance criteria and goals. Additionally, this scenario did not generate the 250 
anomalous depletion of O3 as modelled by the MCE=0.92 and MCE=0.95 scenarios. 251 
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Performance of TAPM-CTM and CCAM-CTM for BB2 252 

 253 

Figure 18.  Wind direction and EC concentrations for TAPM-CTM and CCAM-CTM at 05:00 on the 24 February 254 
during BB2. 255 

Model output of TAPM-CTM and CCAM-CTM during BB1 as discussed in Section 3.1 of the 256 
manuscript 257 
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