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Abstract. The impact of stochastic fluctuations in cloud droplet growth is a matter of broad interest, 

since stochastic effects are one of the possible explanations of how cloud droplets cross the size-

gap and form the raindrop embryos that trigger warm rain development in cumulus clouds. Most 

theoretical studies in this topic rely on the use of the kinetic collection equation, or the Gillespie 

stochastic simulation algorithm. However, the kinetic collection equation is a deterministic equation 15 

with no stochastic fluctuations. Moreover, the traditional calculations using the kinetic collection 

equation are not valid when the system undergoes a transition from a continuous distribution to a 

distribution plus a runaway raindrop embryo (known as the sol-gel transition). On the other hand, 

the stochastic simulation algorithm, although intrinsically stochastic, fails to reproduce adequately 

the large end of the droplet size distribution due to the huge number of realizations required. 20 

Therefore, the full stochastic description of cloud droplet growth must be obtained from the solution 

of the master equation for stochastic coalescence. 

mailto:lesterson@yahoo.com


 

 

2 

In this study the master equation is used to calculate the evolution of the droplet size distribution 

after the sol-gel transition. These calculations show that after the formation of the raindrop embryo, 

the expected droplet mass distribution strongly differs from the results obtained with the kinetic 25 

collection equation. Furthermore, the low mass bins and bins from the gel fraction are strongly anti-

correlated in the vicinity of the critical time, this being one of the possible explanations for the 

differences between the kinetic and stochastic approaches after the sol-gel transition. Calculations 

performed within the stochastic framework provide insight into the inability of explicit 

microphysics cloud models to explain the droplet spectral broadening observed in small, warm 30 

clouds. 
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1. Introduction 

Although rain has been observed to form in warm cumulus clouds within about twenty minutes, 35 

calculations that represent condensation and coalescence accurately in such clouds have had 

difficulty producing rainfall in such a short time except via processes involving giant cloud 

condensation nuclei (with diameters larger than 2 μm). One of the possible origins of this 

discrepancy is the stochastic nature of the collision coalescence process that is not well reflected in 

current models that rely almost exclusively in the kinetic collection (or Smoluchowski) equation, 40 

hereafter referred to as KCE (Pruppacher and Klett, 1997): 

i-1

j=1 j=1

N(i,t) 1
= K(i-j,j)N(i-j)N(j)-N(i) K(i,j)N(j)

t 2




                                     (1) 

where N(i,t) is the concentration of droplets in bin i and K(i,j) is the collection kernel for droplets 

in bins i and j.  Additionally, Eq. (1) fails to represent the droplet size distribution at the time when 

raindrop embryos are formed (Alfonso et al., 2008), as there is a transition from a continuous 45 

distribution to a continuous distribution plus a massive raindrop embryo (i.e, the “runaway 

droplet”). At that point, the infinite system exhibits a sol-gel transition (also called gelation and in 

which the “runaway droplet” is labeled “gel”), the KCE breaks down and the total mass of the 

system calculated according to the KCE is no longer conserved.   

One way to avoid this problem is to adopt the stochastic finite volume description of the coalescence 50 

process by using the stochastic simulation algorithm proposed by Gillespie (1975).  The stochastic 

simulation algorithm (hereafter referred as SSA), correctly accounts for fluctuations and 

correlations, and has been used in cloud simulation studies with realistic collection kernels 
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(Valioulis and List, 1984). However, the SSA has difficulties in accurately reproducing the large 

end of the droplet size distribution. This is due to the huge number of realizations required to obtain 55 

a smooth behaviour at the large end of the droplet size distribution (Alfonso, 2015). The alternative 

approach (within the stochastic framework) is to use the master equation: 

1 1

( )
( , )( 1)( 1) (..., 1,..., 1,..., 1,...; )

N N

i j i j i j

i j i

P n
K i j n n P n n n t

t


  


     




2

1

1
( , )( 2)( 1) (..., 2,..., 1,...; )

2

N

i i i i

i

K i i n n P n n t


      

                              
1 1 1

1
( , ) ( ; ) ( , ) ( 1) ( ; )

2

N N N

i j i i

i j i i

K i j n n P n t K i i n n P n t
   

                        (2) 60 

 

The master equation (2) is a gain-loss equation for the probability of each state ( )P n . The sum of 

the first two terms is the gain due to transition from other states, and the sum of the last two terms 

is the loss due to transitions into other states. This formulation was introduced in the pioneer works 

of Marcus (1968) and Bayewitz et al. (1974), and was studied in detailed by Lushnikov (1978, 65 

2004) and Tanaka and Nakazawa (1993).  However, these studies only offer analytical results for a 

limited number of cases (with constant, sum and product kernels), for mono-disperse initial 

conditions. Furthermore, most of these studies are limited to non-gelling conditions and do not 

provide a coherent framework for the general case.  

The exception are the methods developed by Lushnikov (2004) from the analytical solution of the 70 

master equation, and more recently by Matsoukas (2015), the later based on arguments from 

statistical physics. These methods, although also limited to very special cases (product kernel and 

mono-disperse initial conditions), are capable of obtaining solutions in the post-gel regime.  For 
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example, in Lushnikov (1978, 2004), the coalescence process takes place in a system with a finite 

volume that includes a finite number of particles. Within this approach any losses of mass are, by 75 

definition, excluded.  In the infinite system described by the KCE (Eq. 1), the coagulation process 

instantly transfers mass to the gel, while in the finite system the gel coalesces with smaller particles 

decreasing their concentration not instantly by rather in a finite time.  

In order to study the droplet size distribution after the formation of raindrop embryos (sol-gel 

transition), for systems with kernels relevant to cloud physics and arbitrary initial conditions, we 80 

must rely on numerical methods capable of solving the master equation (Eq. 2).  We can address 

this problem through a detailed comparison of the droplet size distributions obtained from the 

stochastic description for a finite system with the master equation (Eq. 2), and the deterministic 

approach for an infinite system by using the KCE (Eq. 1), using the numerical algorithm reported 

in Alfonso (2015). By the time the gel forms, certain differences are to be expected between the 85 

two approaches at the large end of the droplet size distribution.  

This analysis of the sol-gel transition problem in the cloud physics context could provide an 

alternative explanation of the differences between modeled and observed droplet spectra in clouds. 

Several mechanisms have been proposed in the past (entrainment, presence of giant nuclei, 

supersaturation fluctuations, effects of air turbulence in concentration fluctuations and collision 90 

efficiencies, effects of film forming compounds on droplet growth), and a large amount of literature 

exists regarding the variety of mechanisms that  may explain this disparity, but a conclusive answer 

is still absent.  This study does not attempt to dispute any of the mechanisms already proposed, but 

to explore another mechanism that has not yet been widely considered in the mainstream literature. 
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The paper is organized as follow: Section 2 presents an overview of the numerical algorithm 95 

(following Alfonso, 2015). Numerical results (for the product and hydrodynamic kernels, 

respectively) with a detailed analysis of the method for calculating the sol-gel transition time, and 

a comparison with averages calculated with the KCE are presented in Sections 3 and 4. Finally, 

Section 5 presents a discussion of the limits of applicability of the KCE, an example of correlations 

in the critical region and conclusions. 100 

 

2. Overview of previous results: Numerical solution of the master equation. 

The objective of this section is to present a description of the algorithm. A more detailed explanation 

of the method can be found in Alfonso (2015), and only a brief summary is presented here. The 

main idea of the algorithm consists in the numerical calculation of all states for a given initial 105 

configuration with probability
01 02 0( , ,..., ;0) 1NP n n n   , and the subsequent calculation of the 

temporal evolution of each state.  The time evolution can be performed by considering that the only 

allowed transitions are of the form: ( )

1 1n n 
 
if i j   and ( )

2 2n n   if i j , where ( )

1n  ,
1n  and

( )

2n  , 2n  are the state vectors:  

( )

1 1( ,..., 1,..., 1,..., 1,..., )i j i j Nn n n n n n

                                        (3a) 110 

1 1( ,..., ,..., ,..., ,..., )i j i j Nn n n n n n                                                      (3b) 

( )

2 1 2( ,..., 2,..., 1,..., )i i Nn n n n n                                                      (3c) 

2 1 2( ,..., ,..., ,..., )i i Nn n n n n                                                                (3d) 
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For a system consisting of N monomers at t=0, the number of possible configurations increases 

exponentially and can be approximated from the equation (Hall, 1967):  115 

  1/21
( ) exp 2 / 3

4 3
R N N

N
                                                (4) 

For example, R(50)=217590 and R(100)=190 569 232. 

The procedure is illustrated for a system with 5 monomers in the initial state, only for the purpose 

of demonstrating the method.  As the system in this case has only 6 possible states, it is much easier 

to explain the details of the calculations. The 6 possible configurations generated from the initial 120 

state (5,0,0,0,0)  are displayed in Fig. 1.  

In a second step, the probabilities of all generated configurations are updated according to the first 

order finite difference scheme (Alfonso, 2015):  

   0 0

1 1

0

1

2 0

0

, 1

0

1

; ;

( , )( 1)( 1)

(..., 1,..., 1,..., 1,...; )

1
( , )( 2)( 1)

2

(..., 2,..., 1,...; )

( , ) ( ; )

1
( , ) ( 1) ( ;

2

N N

i j

i j i

i j i j

N

i i

i

i i

N

i j

i j

N

i i

i

P n t t P n t

t K i j n n

P n n n t

t K i i n n

P n n t

t K i j n n P n t

t K i i n n P n t

  









  

   

   

   
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                                           (5) 

From Eq. (5) should be clear that the state probabilities  0;P n t t  at t=t0+Δt will increase if the 125 

states from which transitions are allowed, have a non-zero probability at t = t0 (second and third 
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terms in the right-hand size of Eq. (5)), and will decrease due to collisions of particles from the 

same state at t = t0 (fourth term and fifth terms in the right-hand side of Eq. (5)) if 
0( ; )P n t  is 

positive. 

The finite difference equation for (1,0,0,1,0)P  is presented to illustrate the method. From the 130 

generation scheme displayed in Figure 1, note that the only allowed transitions to (1,0,0,1,0)  are 

from the states (1,2,0,0,0)  and (2,0,1,0,0) . Consequently, at t=t0+Δt, 
0(1,0,0,1,0; )P t t  will 

increase if 
0(1,2,0,0,0; )P t  and 

0(2,0,1,0,0; )P t  are positive at t = t0. On the other hand, 

0(1,0,0,1,0; )P t t  will decrease due to collisions from particles within the same state at t = t0 if  

0(1,0,0,1,0; )P t  is positive. Then, 
0(1,0,0,1,0; )P t t  is calculated from the equation: 135 

 

 

(6) 

 

The time evolution of the probability of each state was calculated for the product kernel140 

( , ) i jK i j Cx x  , considering C= 5.49x1010 cm3 g-2 s-1 following Long (1974) and for the initial 

condition (5,0,0,0,0;0) 1P  . Due to the small number of droplets in the initial configuration (only 

5), the simulated volume was set equal to 10-2 cm3, with an initial droplet radius of 17µm. The time 

step was Δt=0.1 sec. For this case, the time evolution of four of the seven configurations is displayed 

in Fig. 2.  145 
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After the calculation for each state is completed, the expected values for each droplet mass can be 

found from the relation (Alfonso, 2015):  

( , ; )m

n

n nP n m t                                                    (7) 

where the discrete probability mass function is calculated from the state probabilities following the 

expression: 150 

 1 2( , ; ) , ,..., ,... ;m N

m

P n m t P n n n n n t

All states with n n

 


                  (8) 

The expected values mn
 
calculated from (Eq. 7) are the magnitudes that must be compared with 

the averages ( ; )N m t  obtained from the KCE (Eq. 1). 

 

3. Results for the multiplicative kernel  155 

3.1 Estimating the time of gel formation  

Lushnikov (2004) demonstrated that right after the sol-gel transition, the particle mass distribution 

splits into two parts: the thermodynamically-populated one whose behavior is described by the 

kinetic collection equation, and a narrow peak with a mass very close to the gel mass. For the infinite 

system described by the kinetic collection equation (Eq. 1) with kernel K(i,j)=Cxixj, the critical time 160 

is calculated when the second moment of the  distribution diverges: 

2 0
2

2 0

( )
( )

1 ( )




M t
M

CM t



                                                              (9) 

leading to the critical time of the sol-gel transition: 

 
1

2 0( )


gelT CM t                                                             (10) 
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After τ =Tgel the second moment becomes undefined, and the total mass of the system starts to 165 

decrease.  

For a finite system, the standard deviation ( ) of the mass of the largest droplet is an important 

quantity in order to calculate the critical time of the gel formation (Botet, 2011). At the critical time 

for the infinite system    must diverge, since it is proportional to the second moment of the 

distribution
2( )M    which diverges at the gelation point. However, for a finite system (with no 170 

critical behavior), the relative standard deviation (standard deviation of mass divided by mean mass) 

of the mass of the largest droplet max( )S   is expected to reach a maximum for a time close to

 
1

2 0( )


gelT CM t .  

This was explored in previous studies (Inaba, 1999; Alfonso et al., 2008, 2010, 2013), where   

was calculated for a finite system from Monte Carlo simulations in order to estimate the sol-gel 175 

transition times for the corresponding deterministic model of an infinite system. We can perform an 

example calculation of   by using the species formulation of the SSA (Laurenzi and Diamond, 

2002), in this case: 

2

max max max

1

1
( ) ( )

rN
i

ir

S S S
N




                                                (11) 

where  Si
max is the value of max max maxS M M  for each realization at a given time, and Nr is the 180 

number of iterations of the SSA,  maxM the size of the largest particle, and maxM  its ensemble 

mean over all the realizations. The time evolution of max( )S  is shown in Figure 3 for a finite 



 

 

11 

system with N=40 droplets of 17 μm in radius   (droplet mass = 2.058×10-8g) in a volume of 1 cm3. 

For the product kernel with C= 5.49x1010 cm3 g-2 s-1, the maximum occurs at T=1065 s, which is 

close to the sol-gel transition time Tgel=1075 s.  185 

 

3.2 Calculation of the post-gel droplet size distribution from the master equation and comparison 

with the deterministic (kinetic) approach  

The evolution of a system with an initial mono-disperse droplet size distribution of N0=40 droplets 

of 17 μm in radius at t0 , in a volume of 1cm3 , and a corresponding liquid water content (LWC) of 190 

0.823 gm-3, was calculated using the master equation (Eq. 2). The initial condition for this case is 

(40,0,...,0;0) 1P   and the time step was set equal to Δt=0.1s. The complete phase space of a 

population with N=40 monomers contains 37338 states, and the master equation must be solved for 

the 37338 states. Then, for each state there is a finite difference equation (5), or an equation similar 

to Eq. (6), but with 40-dimensional state vectors.  195 

A discrete 40 bin grid was defined for our model. The mass for bin 1 is taken to be the mass of a 17 

μm in radius droplet, and the mass of bin n is n times the mass of bin 1. Then, if all these 40 droplets 

in the initial distribution were to coalesce into a single droplet, the final droplet radius would be 

58.14 μm in diameter and would belong to the mass bin 40. 

The results for the droplet mass distribution are displayed in Figure 4 at t=300, 1000, 1800 and 200 

2200s.  Note that the gel is clearly seen in the distributions at 1800 and 2200s but not at 1000s.  
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To proceed further, the previous results are compared against the analytical size distributions from 

the KCE (Eq.1) calculated for the product kernel with mono-disperse initial conditions before 

(t=300s) and after (t=1200s) gel formation (Laurenzi and Diamond, 2002): 

 

1

0

( )
( , ) exp( )

( 1)

iiT
N i t N iT

i i



 
 

      where      2

0 0T CN t                          (12) 205 

In Eq. (12), N0=40 is the initial concentration and v0 is the initial volume of droplets. The index i 

represents the bin size and C= 5.49x1010 cm3 g-2 s-1. 

The comparison of the droplet mass concentration ( ( ) ( , )KCEg m N m t m ) calculated from Eq. 12, 

with expected values ( ( )STOC mg m n m ) calculated from the master equation (Eq. 2) with the same 

initial conditions are displayed in Figure 5 at t=300, 1200s. Note that the KCE fails to capture the 210 

gel formation after the critical time, and the droplet mass concentration calculated using the kinetic 

approach is much lower at the large end of the distribution. This is due to the fact that the total mass 

calculated according to Eq. 12 decreases after the sol-gel transition time.  This decrease can be 

clearly seen in the time evolution of the LWC from the kinetic approach using the relation: 

1

1

( ) ( ) ( , )
i

M t m i N i t




                                                          (13) 215 

where ( )m i  is the mass for bin size i.  After t~1000s (Figure 6) the total mass of the system 

calculated according to the KCE starts to decrease, while the total mass calculated from the 

stochastic approach is conserved at all times. 

 

3.3 Calculation of the gel mass  220 
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Within the master equation approach, the expected value of the mass of the largest droplet M1 is 

approximately given by (Tanaka and Nakazawa, 1994): 

 
1

1 ( )
N

i

i i

M m i n


                                                           (14) 

where 
in  are is the expected number for each droplet size values calculated from Eq. (7), ( )m i  is 

the mass for bin size i, and the bin number i1 is defined from the relation: 225 

1

1
N

i

i i

n


                                                              (15) 

The mass of the gel, 1M , is evaluated for t=1200, 1800 and 2200s from Eqs (14) and (15). 

Within the Monte Carlo stochastic approach (SSA), the expected mass of the gel is the ensemble 

mean (M1-MC) calculated over all realizations (Nr) of the mass of the largest droplet (Alfonso et al., 

2008):   230 

1_ 1

1

1 rN
i

MC

ir

M M
N 

                                                         (16) 

where Nr =1000 for this simulation and Mi
1 is the largest droplet for each realization. The results 

obtained from both the master equation and the SSA are displayed in Table 1, showing a very good 

correspondence between the two approaches. 

After the sol-gel transition the mass of the gel can also be estimated by using the infinite system 235 

approach from the relation (Wetherill, 1990):  

0Gel KCEM M M                                                                            (17) 
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where 
0M the initial is mass of the system, and 

KCEM  is the mass calculated from Eq. (13).  The 

results shown in the third column of Table 1, indicate good agreement away from the sol-gel 

transition time.   240 

 

4. Results for the hydrodynamic collection kernel 

Collisions between droplets under pure gravity conditions are simulated with the hydrodynamic 

kernel, which has the following expression: 

2( , ) ( ) ( ) ( ) ( , )  g i j i j i j i jK x x r r V x V x E r r                                    (18) 245 

The hydrodynamic kernel takes into account the fact that droplets with different masses (xi and xj 

and corresponding radii, ri and rj) have different terminal velocities, which are functions of their 

masses. In Eq. 18, E(ri ,rj) are the collection efficiencies calculated according to Hall (1980).  

 

4.1 Estimating the time of gel formation and the gel mass 250 

For an infinite system modeled by the KCE (Eq. 1) with the hydrodynamic kernel, the second 

moment of the mass distribution (M2) diverges when the raindrop embryo (gel) forms. As there is 

no a simple analytical expression to calculate the critical time (see Eq. 9 for the product kernel) in 

this case, Monte Carlo simulations for the finite system could provide insightful information. 

The sol-gel transition time can be estimated approximately by calculating the time when the time 255 

series of max( )S  in the SSA exhibits a maximum (Alfonso et al., 2010). As in the case of 

multiplicative kernel, the time evolution of max( )S    is calculated for a cloud volume of 1 cm3 with 
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an initial bi-disperse distribution (20 droplets of 17 μm in radius, and 10 droplets of 21.4 μm), and 

the time evolution of 
max( )S  is calculated from 1000 realizations (Nr=1000) of the SSA. Figure 7 

shows that there is a maximum at t=1310s, which is considered a good estimate for the sol-gel 260 

transition time for the infinite system. Thus, the distributions obtained from the stochastic (master 

equation) and the deterministic (kinetic collection equation) approaches must be compared before 

and after 1310s. After the critical time, the gel mass was calculated using Eqs. (14) and (15). The 

results are displayed in Table 2, showing, again, a good agreement between the calculations 

performed with the SSA and the master equation. 265 

Although for the hydrodynamic kernel the critical time was larger than 20 minutes, we must 

emphasize that, in general, for concentrations larger than 30-40 cm-3, smaller critical times must be 

obtained. For example, for kernels proportional to the product of the masses, Malyshkin and 

Goldman (2001) demonstrated that for monodisperse initial distributions the critical time decreases 

as a power of the logarithm of the initial number of particles
critical 0

N log( )1 . For kernels relevant 270 

to cloud physics, we have a similar situation (a decrease in the time of occurrence of the phase 

transition as the number of particles in the initial distribution increases). A more detailed discussion 

of this problem for realistic collection kernels can be found in Alfonso et al. (2010, 2013). 

 

4.2 Calculation of the post-gel droplet size distribution from the master equation and comparison 275 

with the deterministic (kinetic) approach  

The evolution of a system with the initial bi-disperse droplet size distribution described in the 

previous section is calculated here using the master equation (Eq. 2) with the initial condition
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(20,10,...,0;0) 1P  , and a time step Δt=0.1s. The results for the expected droplet mass distribution 

as a function of radius are displayed in Figure 8 at four different times (t = 500, 1500, 1800 and 280 

2500s).  

Before the sol-gel transition, the mass spectrum exponentially decreases with increasing drop radius 

for both the KCE and the master equation. After the sol-gel transition, there are two behaviors in 

the droplet mass distribution of the master equation: i) an exponential decay that resembles the KCE 

description, and ii) a peak in the gel fraction of the distribution, in which the mass is calculated 285 

according to Eqs. (14) and (15). As can be observed in Fig. 9, there are substantial differences 

between the kinetic and the stochastic approaches especially in the large end of the distribution after 

the critical time, with much higher values of the droplet mass concentration for the stochastic case.  

 

5. Discussion and conclusions 290 

In their pioneering studies using the stochastic framework, Marcus (1968) and Bayewitz et al. 

(1974) solved the stochastic master equation (Eq. 2) for a constant collection kernel and a mono-

disperse initial droplet distribution. The later study revealed significant deviations from the KCE 

when there is a small number of droplets in the initial distribution ( 50ToralN  ). In our work, we 

extended the results obtained by these authors by calculating the expected droplet size distributions 295 

for small systems within the stochastic framework, but by using mass dependent and relevant to 

cloud physics collection kernels (e.g multiplicative and hydrodynamic). Our results confirm the 

findings of Bayewitz et al. (1974) that in systems of small populations the results of the kinetic 
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deterministic equations approach may differ substantially from the stochastic means at the large end 

of the droplet size distribution. 300 

The application of the KCE to coagulating systems also requires that the particles be well-mixed 

(Bayewitz et al., 1974; Sampson and Ramkrishna, 1985), implying that every pair of droplets is 

always available for coagulation with each other (Sampson and Ramkrishna, 1985).  

Another important assumption is that the droplet population is sufficiently large so that the existence 

of a droplet with particular properties is not conditionally dependent on the existence or non-305 

existence of any other droplet. In other words, no correlations are assumed in the system, so that

i j i jn n n n . 

The assumption that the system is sufficiently large is linked to the fact that the KCE is a 

deterministic equation that simulates only the mean values and gives an incomplete description of 

the coagulating system if fluctuations about the mean are very large (Ramkrishna and Borwanker, 310 

1973). Since fluctuations are proportional to 1 TotalN , a large number of droplets is needed for 

the fluctuations to be small, and in fact, the larger the number of particles in a system, the smaller 

the fluctuations. This fact underscores the finite system description adopted in this work, as the 

collision-coalescence process is limited to pairs of droplets in close proximity to each other. The 

KCE is not expected to be accurate when the number of droplets or the volume of the system are 315 

small.  

Additionally, the KCE can fail even if the number of droplets is large when a raindrop embryo 

forms. At that critical time, there is a transition from a continuous droplet distribution to a 

continuous distribution plus a raindrop embryo (or runaway droplet). This sol-gel transition is well 
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known in other fields (e.g astronomy), but has not been sufficiently explored in the context of cloud 320 

physics, where the gel would correspond to the raindrop embryo.  This approach is developed in 

this paper through a detailed comparison of expected values calculated from the stochastic 

framework with averages obtained from the KCE for realistic collection kernels, before and after 

the sol-gel transition time. 

The marked differences between these two approaches at the sol-gel transition can be related with 325 

the increase of correlations at the critical point, and that can happen even for a large number of 

particles in the initial distribution (Malyshkin and Goldman, 2001). When the sol-gel transition 

occurs, the occupation numbers in of all low-mass bins are strongly anticorrelated with bins from 

the gel fraction (calculated from Eq. 15). On the other hand, in the vicinity of critical time, the 

fluctuations for the finite system are larger, since the standard deviation of the mass of the largest 330 

droplet, max( )S ,
 
has a maximum. In consequence, the differences between the deterministic and 

stochastic descriptions become larger and divergent. To further analyze this problem, the time 

evolution of the correlation coefficients  

,

cov( , )

( ) ( )

i j

i j

n ni j

i j

n ni j

n n

Var n Var n




 
                                              (19)  

between the random variables 1n and in  from bins within the gel fraction (see Eq. 15) were 335 

calculated. In the simulations, the gel fraction at t=1310s covers the interval bins from 29 to 58 µm, 

and narrows as time increases.  The time evolution of the correlation coefficients for different bin 

pairs 1,20 , 1,25 , 1,30 , 1,35  and 1,40 are displayed in Figure 10, showing in all cases, an increase in 

the magnitude of the correlation coefficients in the vicinity of the sol-gel transition time. Also in 
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Figure 10, correlations are quite large in magnitude and negative most of the time for 1,20 , 1,25  and 340 

1,30  as the mass of the gel increases through coalescence with droplets from low mass bins. 

However, after 2500s, pairs 1-20, 1-25 and 1-30 are positively correlated as the gel fraction narrows 

and droplets from bins as large as 20, 25 and 30 are also depleted by the gel. The correlation 

coefficients for all analyzed pairs have maxima between 1000 and 1500s, in the vicinity of the 

critical time. The random variable 40n  is always anticorrelated with
1n , with values much higher 345 

than the other pairs after 1500s, and increasing in magnitude until the end of the simulation, which 

reflects the fact that the gel actively grows by collecting smaller droplets. Thus, for realistic 

collection kernels, the mean values predicted by the KCE will be not accurate after the sol-gel 

transition. The stochastic approach captures the gel formation and evolution properly, with larger 

values of the expected droplet mass at the large end of the distribution.  350 

In principle, this analysis could be performed by using the SSA, which is an alternative tool for the 

master equation formalism (Eq. 2). However, the number of realizations required to obtain a smooth 

behavior at the large end in order to compare with averages from the KCE, would be extremely 

large.  

It is necessary to emphasize that our method (although it can be computationally expensive) works 355 

for any type of kernels, whereas the analytical techniques developed by Lushnikov (2004), and 

Matsoukas (2015) work only for very special cases.  

The failure of the KCE to capture the gel-formation could provide an explanation of the inability of 

explicit microphysics cloud models to explain the droplet spectral broadening observed in small, 
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warm clouds. Therefore, even for large simulation cells, the use of the KCE is justified only in the 360 

absence of the sol-gel transition.  

For the small volume approach described in this paper, a model that considers the interaction 

between small coalescence volumes through sedimentation or other physical mechanisms for 

realistic collection kernels is needed. For a constant collections kernel, this theory was outlined by 

Merkulovich and Stepanov (1990, 1991) based on a scheme proposed by Nicolis and Prigogine 365 

(1977) for chemical reactions. Within this theory, the whole system is subdivided into spatially 

homogeneous sub-volumes (coalescence cells) that interact through the diffusion process, and the 

coalescence events are permitted only between droplets from the same sub-volume. As a result, we 

obtain a set of master equations for each sub-volume. Although very complex, it could be a starting 

point in order to consider the interactions between small coalescence volumes through different 370 

physical mechanisms. 
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Table 1. Expected gel mass calculated from the SSA, the master equation and the kinetic approach. 435 

Simulations were performed for the product kernel.  

Time 

(seconds) 

Gel mass 

(SSA) 

Gel mass 

(Master 

equation) 

Gel mass 

(KCE) 

1200 2.84×10-7 g 2.76×10-7g 1.75×10-7g 

1800 5.14×10-7 g 5.34×10-7 g 5.59×10-7 g 

2200 6.63×10-7 g 6.35×10-7 g 6.66×10-7 g 
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Table 2. Expected gel mass calculated from the SSA and the master equation. Simulations were 450 

performed for the hydrodynamic kernel. 

Time 

(seconds) 

Gel mass 

(SSA) 

Gel mass 

(Master 

equation) 

         Gel mass 

(KCE) 

1200 sec. 1.71×10-7 g 1.79×10-7g 3.21×10-8g 

1800 sec. 3.34×10-7 g 3.37×10-7 g 3.63×10-7g 

2200 sec. 4.35×10-7 g 4.68×10-7 g 5.14×10-7 g 
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 465 

 

 

 

FIG. 1. State space obtained from the initial condition (5,0,0,0,0;0) 1P   with the constraint

6
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 480 

FIG. 2. Time evolution of the probability for 4 of the 7 states for the initial condition

(5,0,0,0,0;0) 1P  . Simulations were performed with the collection kernel ( , ) i jK i j Cx x  (with C= 

5.49x1010 cm3 g-2 s-1). 
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FIG 3. For the finite system, the relative standard deviation max( )S of the largest droplet mass 

versus time. The initial number of droplets was set equal to N=40 droplets of 17 μm in radius in a 490 

volume of 1 cm3. Simulations were performed with the product kernel ( , ) i jK i j Cx x  (with C= 

5.49x1010 cm3 g-2 s-1), and Nr=2000 realizations of the stochastic algorithm were performed. The 

maximum value of max( )S  is found to be 1065 sec. (dashed vertical line), and is very close to the 

sol gel transition time (continuous vertical line) for the infinite system (1075 sec.) 
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                                      (a)                                                                    (b)  

FIG 4. The droplet mass spectrum at different times (t=300, 1000, 1800 and 2200 sec.). The gel is 

clearly observed at t=1800, 2200 sec. Simulations were performed with the collection kernel 

( , ) i jK i j Cx x  (with C= 5.49x1010 cm3 g-2 s-1). The initial number of droplets was set equal to N=40 500 

droplets of 17 μm in radius in a volume of 1 cm3. 
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  510 

                                      (a)                                                                 (b) 

 

FIG 5. Size distributions obtained from the stochastic master equation (dashed lines) and the KCE 

(solid lines) at: a) t=300s and b) t=1200s. Simulations were performed with the collection kernel 

( , ) i jK i j Cx x  (with C= 5.49x1010 cm3 g-2 s-1). The initial number of droplets was set equal to N=40 515 

droplets of 17 μm in radius in a volume of 1 cm3. For the large end, the stochastic approach show 

larger values of the drop mass concentration after the sol-gel transition. 
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FIG 6. Time evolution of the total liquid water content calculated from the analytical solution of the 

kinetic collection equation for the product kernel. 530 

 

 

 

 

0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 0

T I M E  ( S E C )

0

2 E - 0 0 7

4 E - 0 0 7

6 E - 0 0 7

8 E - 0 0 7

1 E - 0 0 6

L
W

C
 (

g
c

m
-
3

)

K C E

L W C



 

 

32 

 535 

 

 

 

FIG 7. Time evolution of the standard deviation max( )S of the mass of the largest droplet, for a 

finite system modeled with the hydrodynamic collection kernel. The initial distribution was bi-540 

disperse with 20 droplets of 17 μm in radius and 10 droplets of 21.4 μm in a volume of 1 cm3. The 

maximum of max( )S  was found at 1310 s.  
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FIG 8. The droplet mass spectrum at different times (t=500, 1500, 1800 and 2500s) for a finite 545 

system modeled with the hydrodynamic collection kernel. The initial distribution is bi-disperse with 

20 droplets of 17 μm in radius and 10 droplets of 21.4 μm in a volume of 1 cm3.  
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FIG 9. Comparison of the size distributions obtained from the stochastic master equation (dashed 560 

lines) with that to the KCE (solid lines) at t=500 s (in figure (a) and t=2200 s (in figure (b)) for the 

hydrodynamic kernel. The initial distribution was bi-disperse with 20 droplets of 17 μm in radius 

and 10 droplets of 21.4 μm in a volume of 1 cm3.  
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FIG. 10. Time evolution of the correlation coefficients for different bin pairs 1,20 , 1,25 , 1,30 , 1,35  

and 1,40 for a 1cm3 system modeled with the hydrodynamic kernel, and containing initially 20 

droplets of 17 μm and 10 droplets of 21.4 μm. 570 
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