1 Supplementary information

2

3 Identification of Criegee intermediates as potential

4 oxidants in the troposphere

Anna Novelli^{1,2}, Korbinian Hens¹, Cheryl Tatum Ernest^{1,3}, Monica Martinez¹, Anke C.
Nölscher^{1,4}, Vinayak Sinha⁵, Pauli Paasonen⁶, Tuukka Petäjä⁶, Mikko Sipilä⁶, Thomas Elste⁷,
Christian Plass-Dülmer⁷, Gavin J. Phillips^{1,8}, Dagmar Kubistin^{1,7,9}, Jonathan Williams¹, Luc
Vereecken^{1,2}, Jos Lelieveld¹ and Hartwig Harder¹

9

[1] {Atmospheric Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz,Germany}

- 12 [2] Now at: {Institute of Energy and Climate Research, IEK-8: Troposphere,
- 13 Forschungszentrum Jülich GmbH, 52428 Jülich, Germany}

14 [3] Now at: {Department of Neurology University Medical Center of the Johannes Gutenberg

15 University Mainz, 55131 Mainz}

16 [4] Now at: {Division of Geological and Planetary Sciences, California Institute of

- 17 Technology, Pasadena, USA}
- 18 [5] {Department of Earth and Environmental Sciences, Indian Institute of Science Education
- and Research Mohali, Sector 81 S.A.S. Nagar, Manauli PO, Mohali 140 306, Punjab, India}

20 [6] {Department of Physics., P.O. Box 64. 00014 University of Helsinki, Finland}

- 21 [7] {German Weather Service, Meteorological Observatory Hohenpeissenberg (MOHp),
- 22 Albin-Schwaiger-Weg 10, 83282 Hohenpeissenberg, Germany}
- 23 [8]{Department of Natural Sciences, University of Chester, Thornton Science Park, Chester,
- 24 CH2 4NU, UK}
- 25 [9] {University of Wollongong, Wollongong, Australia}

2 Table SI-1. Average concentrations with 1σ standard deviation of measured unsaturated VOC

3 during the HUMPPA-COPEC 2010 and HOPE 2012 campaigns, together with the rate

4 coefficients of the reaction with ozone (IUPAC recommended values) (Atkinson et al., 2006).

	[molecules cm ⁻³]		Pote coefficient with O
Compound	HUMPPA- COPEC 2010	HOPE 2012	[cm ³ molecule ⁻¹ s ⁻¹]
isoprene	$(1.8 \pm 1.8) \ge 10^9$	$(2.2 \pm 2.2) \ge 10^9$	$1 \ge 10^{-14} \exp(-1995/T)$
α-pinene	$(2.7 \pm 3) \ge 10^9$	$(1.5 \pm 1.5) \ge 10^9$	$8.1 \ge 10^{-16} \exp(-640/T)$
β-pinene	$(1.9 \pm 6.6) \ge 10^8$	$(9 \pm 9) \ge 10^8$	$1.4 \ge 10^{-15} \exp(-1270/\text{T})$
3-carene	$(1.7 \pm 2) \ge 10^9$	$(5.6 \pm 4.7) \ge 10^8$	4.8 x 10 ^{-17, b}
myrcene	$(2.6 \pm 2.7) \ge 10^8$	$(2.2 \pm 1.6) \ge 10^8$	$2.7 \times 10^{-15} \exp(-520/T)$
limonene	n.a.	$(2.9 \pm 2.1) \ge 10^8$	2.8 x 10 ⁻¹⁵ exp(-770/T)
sabinene	n.a.	$(9.2 \pm 9.6) \ge 10^8$	8.2 x 10 ^{-17, b}
γ-terpinene	n.a.	$(1 \pm 1) \ge 10^8$	1.5 x 10 ^{-16, b}
2-methylpropene	n.a.	$(4.2 \pm 2.5) \ge 10^8$	2.7 x 10 ⁻¹⁵ exp(-1630/T)
but-1-ene	n.a.	$(1.4 \pm 4.2) \ge 10^8$	1.2 x 10 ^{-17, a,b}
propene	n.a.	$(4.7 \pm 3.7) \ge 10^8$	5.5 x 10 ⁻¹⁵ exp(-1880/T)
cis-2-butene	n.a.	$(6.1 \pm 3.0) \ge 10^7$	3.2 x 10 ⁻¹⁵ exp(-965/T)
ethene	n.a.	$(7.3 \pm 9.0) \ge 10^9$	9.1 x 10 ⁻¹⁵ exp(-2580/T)

5 a, rate coefficient from Adeniji et al. (1981).

6 b, at 298 K

- 7
- 8

9

10

3	Table SI-2. Average concentrations with 1σ standard deviation of measured trace gas during
4	the HUMPPA-COPEC 2010 and HOPE 2012 campaigns, with the rate coefficients of the
5	reaction with OH (IUPAC recommended values) (Atkinson et al., 2006;Atkinson et al., 2004)

	[molecules cm ⁻³]		
Compound	HUMPPA- COPEC 2010	HOPE 2012	Rate coefficient with OH [cm ³ molecule ⁻¹ s ⁻¹]
isoprene	$(1.8 \pm 1.8) \ge 10^9$	$(2.2 \pm 2.0) \ge 10^9$	2.7 x 10 ⁻¹¹ exp(390/T)
α-pinene	$(2.7 \pm 3) \ge 10^9$	$(1.5 \pm 1.5) \ge 10^9$	$1.2 \ge 10^{-11} \exp(440/T)$
β-pinene	$(1.9 \pm 6.6) \ge 10^8$	$(9 \pm 9) \ge 10^8$	7.4 x $10^{-11, a, b}$
3-carene	$(1.7 \pm 2) \ge 10^9$	$(5.6 \pm 4.7) \ge 10^8$	8.8 x 10 ^{-11, a,b}
myrcene	$(2.6 \pm 2.7) \ge 10^8$	$(2.2 \pm 1.6) \ge 10^8$	$3.3 \times 10^{-10, b, c}$
limonene	n.a.	$(2.9 \pm 2.1) \ge 10^8$	$3 \ge 10^{-11} \exp(515/T),^{d}$
sabinene	n.a.	$(9.2 \pm 9.6) \ge 10^8$	$1.2 \ge 10^{-10, a, b}$
γ-terpinene	n.a.	$(1 \pm 1) \ge 10^8$	1.7 x 10 ^{-10, b}
MACR	$(1.0\pm0.9) \ge 10^{10}$	$(1.4 \pm 0.9) \ge 10^9$	$8 \ge 10^{-12} \exp(380/T)$
ethanol	$(3.6 \pm 2.2) \ge 10^{10}$	$(1.8 \pm 1.1) \ge 10^{10}$	$3.2 \times 10^{-12} \exp(20/T)$
methanol	$(1.0 \pm 1.4) \ge 10^{11}$	$(9.0 \pm 3.4) \ge 10^{10}$	9 x 10 ^{-13, b}
ozone	$(1.1 \pm 0.2) \ge 10^{12}$	$(1.1 \pm 0.3) \ge 10^{12}$	$1.7 \ge 10^{-12} \exp(-940/T)$
SO_2	$(1.4 \pm 1.7) \ge 10^{10}$	$(2.3 \pm 2.2) \ge 10^9$	2 x 10 ^{-12, b}
H_2O_2	$(1.1 \pm 1.0) \ge 10^{10}$	n.a.	1.7 x 10 ^{-12, b}
HO ₂	$(9.0 \pm 9.5) \ge 10^8$	$(1.4 \pm 8.6) \ge 10^8$	4.8 x 10 ⁻¹¹ exp(250/T)
NO	$(6.5 \pm 7.0) \ge 10^8$	$(3.8 \pm 5.0) \ge 10^9$	1.3 x 10 ^{-11, b}
NO_2	$(9.5 \pm 5.0) \ge 10^9$	$(3.8 \pm 2.4) \ge 10^{10}$	1.1 x 10 ^{-11, b}
СО	$(3.0 \pm 1.2) \ge 10^{12}$	$(2.8 \pm 0.4) \ge 10^{12}$	2.1 x 10 ^{-13, b}

HONO	$(3.4 \pm 3.1) \ge 10^9$	n.a.	$6.0 \ge 10^{-12, b}$
propanal	n.a.	$(5.8 \pm 3.0) \ge 10^9$	$4.9 \ge 10^{-12} \exp(405/T)$
acetaldehyde	$(1.8 \pm 1.0) \ge 10^{10}$	$(2.9 \pm 1.4) \ge 10^{10}$	1.5 x 10 ^{-11, b}
formaldehyde	$(1.4 \pm 1.6) \ge 10^{10}$	$(2.1 \pm 0.4) \ge 10^{10}$	8.5 x 10 ^{-12, b}
acetone	$(8.2 \pm 3.8) \ge 10^{10}$	$(6.0 \pm 2.2) \ge 10^{10}$	1.8 x 10 ^{-13, b}
CH ₄	$(4.4 \pm 0.07) \ge 10^{13}$	$(4.3 \pm 0.1) \ge 10^{13}$	6.4 x 10 ^{-15, b}
2-methylpropene	n.a.	$(4.2 \pm 2.5) \ge 10^8$	6.1 x 10 ^{-11, a,b}
but-1-ene	n.a.	$(1.4 \pm 4.2) \ge 10^8$	3.1 x 10 ^{-11, a,b}
propene	n.a.	$(4.7 \pm 3.7) \ge 10^8$	2.9 x 10 ^{-11, b}
cis-2-butene	n.a.	$(6.1 \pm 3.0) \ge 10^7$	6.4 x 10 ^{-11, b}
ethene	n.a.	$(7.3 \pm 9.0) \ge 10^9$	7.8 x 10 ^{-12, b}
p-xylene	n.a.	$(7.2 \pm 5.2) \ge 10^8$	2.0 x 10 ^{-11, a,b}
benzene	$(2.1 \pm 1.9) \ge 10^9$	$(8.0 \pm 4.0) \ge 10^8$	1.2 x 10 ^{-12, a,b}
ethylbenzene	n.a.	$(2.3 \pm 2.1) \ge 10^8$	7.0 x 10 ^{-12, a,b}
Toluene	$(6.1 \pm 3.0) \ge 10^9$	$(1.2 \pm 0.7) \ge 10^9$	5.6 x 10 ^{-12, a,b}
ethane	n.a.	$(1.8 \pm 0.3) \ge 10^{10}$	4.8 x 10 ⁻¹¹ exp(250/T), ^a
propane	n.a.	$(5.6 \pm 3.6) \ge 10^9$	1.1 x 10 ^{-12, a,b}
methylpropane	$(1.8 \pm 2.3) \ge 10^9$	$(1.4 \pm 0.9) \ge 10^9$	2.1 x 10 ^{-12, a,b}
butane	$(1.8 \pm 1.6) \ge 10^9$	$(2.0 \pm 1.2) \ge 10^9$	2.3 x 10 ^{-12, a,b}
2-methylbutane	$(1.6 \pm 1.2) \ge 10^9$	n.a.	3.6 x 10 ^{-12, a,b}
n-pentane	$(1.0 \pm 0.9) \ge 10^9$	$(5.6 \pm 5.0) \ge 10^9$	3.8 x 10 ^{-12, a,b}

1 a, rate coefficient from (Atkinson and Arey, 2003).

2 b, at 298 K.

3 c, rate coefficient from (Hites and Turner, 2009)

4 d, rate coefficient from (Braure et al., 2014)

5

6

- 3 Table SI-3. Average sum of concentrations with 1σ standard deviation of BVOC (isoprene, α -
- 4 pinene, β -pinene, β -carene, myrcene, limonene, sabinene, γ -terpinene) and temperature for the
- 5 entire HOPE 2012 field campaign excluding the period between 26th to 28th of July 2012.

-		Σ[VOC] [molecules cm ⁻³]	Temperature [°C]
-	HOPE 2012 campaign	$(5 \pm 4) \ge 10^9$	16 ± 3
	26^{th} to 28^{th} of July 2012	$(1.3 \pm 0.9) \ge 10^{10}$	22 ± 3
6			

1

2

~

- 2 Figure SI-1. Contributions of measured trace gases to the measured OH reactivity during the
- 3 HUMPPA-COPEC 2010.

5 Figure SI-2. Contributions of measured trace gases to the measured OH reactivity during the

⁶ HOPE 2012.

2 Figure SI-3. Background OH as a function of temperature during the HOPE 2012 campaign.

Figure SI-4. Background OH as a function of the ozone concentration during the HUMPPACOPEC 2010 campaign.

2 Figure SI-5. Background OH signal as a function of ozone concentration during the HOPE

3 2012 campaign.

5 Figure SI-6. Contribution of measured trace gases to the measured OH reactivity during

6 HOPE 2012 between the 1^{st} and 3^{rd} of August 2012.

1 References

- Adeniji, S. A., Kerr, J. A., and Williams, M. R.: Rate constants for ozone–alkene reactions under atmospheric conditions, Int J Chem Kinet, 13, 209-217, 10.1002/kin.550130210, 1981.
- 5 Atkinson, R., and Arey, J.: Atmospheric Degradation of Volatile Organic Compounds, 6 Chemical Reviews, 103, 4605-4638, 10.1021/cr0206420, 2003.
- 7 Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., 8 Jenkin, M. E., Rossi, M. J., and Troe, J.: Evaluated kinetic and photochemical data for
- 9 atmospheric chemistry: Volume I gas phase reactions of Ox, HOx, NOx and SOx species,
- 10 Atmos. Chem. Phys., 4, 1461-1738, 10.5194/acp-4-1461-2004, 2004.
- Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G.,
 Jenkin, M. E., Rossi, M. J., Troe, J., and Subcommittee, I.: Evaluated kinetic and
 photochemical data for atmospheric chemistry: Volume II gas phase reactions of organic
 species, Atmos. Chem. Phys., 6, 3625-4055, 10.5194/acp-6-3625-2006, 2006.
- Braure, T., Bedjanian, Y., Romanias, M. N., Morin, J., Riffault, V., Tomas, A., and
 Coddeville, P.: Experimental Study of the Reactions of Limonene with OH and OD Radicals:
 Kinetics and Products, The Journal of Physical Chemistry A, 118, 9482-9490,
- 18 10.1021/jp507180g, 2014.
- 19 Hites, R. A., and Turner, A. M.: Rate constants for the gas-phase β -myrcene + OH and 20 isoprene + OH reactions as a function of temperature, Int J Chem Kinet, 41, 407-413, 21 10.1002/kin.20413, 2009.
- 22
- 23