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Abstract.1

We theoretically and numerically investigate the problem of assimilating lidar observations of extinction and backscattering2

coefficients of aerosols into a chemical transport model. More specifically, we consider the inverse problem of determining3

the chemical composition of aerosols from these observations. The main questions are how much information the observations4

contain to constrain the particles’ chemical composition, and how one can optimise a chemical data assimilation system to make5

maximum use of the available information. We first quantify the information content of the measurements by computing the6

singular values of the observation operator. From the singular values we can compute the number of signal degrees of freedom7

and the reduction in Shannon entropy. For an observation standard deviation of 10 %, it is found that simultaneous measure-8

ments of extinction and backscattering allows us to constrain twice as many model variables as extinction measurements alone.9

The same holds for measurements at two wavelengths compared to measurements at a single wavelength. However, when we10

extend the set of measurements from two to three wavelengths then we observe only a small increase in the number of signal11

degrees of freedom, and a minor change in the Shannon entropy. The information content is strongly sensitive to the observation12

error; both the number of signal degrees of freedom and the reduction in Shannon entropy steeply decrease as the observation13

standard deviation increases in the range between 1 and 100 %. The right singular vectors of the observation operator can14

be employed to transform the model variables into a new basis in which the components of the state vector can be divided15

into signal-related and noise-related components. We incorporate these results in a chemical data assimilation algorithm by16

introducing weak constraints that restrict the assimilation algorithm to acting on the signal-related model variables only. This17

ensures that the information contained in the measurements is fully exploited, but not over-used. Numerical experiments con-18

firm that the constrained data assimilation algorithm solves the inverse problem in a way that automatises the choice of control19

variables, and that restricts the minimisation of the costfunction to the signal-related model variables.20
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1 Introduction21

Atmospheric aerosols have a substantial, yet highly uncertain impact on climate, they can cause respiratory health problems,22

degrade visibility, and even compromise air-traffic safety. The physical and chemical properties of aerosols play a key role in23

understanding these effects. The aerosol properties are determined by a complex interplay of different chemical, microphysi-24

cal, and meteorological processes. These processes are investigated in environmental modelling by use of chemical transport25

models (CTMs). However, modelling aerosol processes is plagued by substantial biases and errors (McKeen et al., 2007). It is,26

therefore, fundamentally important to evaluate and constrain CTMs by use of measurements.27

Measurements from satellite instruments provide consistent long-term data sets with global coverage. However, it is notori-28

ously difficult to compare measured radiances to modelled aerosol concentrations. An alternative to using radiances is to make29

use of satellite retrieval products. For instance, one of the products of the CALIPSO lidar instrument (Cloud-Aerosol Lidar30

and Infrared Pathfinder Satellite Observations) is a rough classification of the aerosol types (i.e. dust, smoke, clean/polluted31

continental, and clean/polluted marine). This retrieval product is based on lidar depolarisation measurements (Omar et al.,32

2009). For the evaluation of aerosol transport models this provides us with a qualitative check for the chemical composition of33

aerosols. However, this is of limited practical use, since what we really need is quantitative information on the particles’ chem-34

ical composition (which can be size-dependent). The most popular approach in evaluating and constraining aerosol transport35

models is the use of retrieved optical properties, such as aerosol optical depth, or extinction and backscattering coefficients.36

Yet another idea is to provide the particles’ refractive index as a retrieval product (e.g. Mishchenko et al. (2007)). However, the37

use of such retrieval products still leaves us with the challenge of solving an ill-posed inverse problem, namely, of determining38

the particles chemical composition from their retrieved optical or dielectric properties.39

A systematic class of statistical methods for solving this inverse problem is known as data assimilation. Recent studies40

have applied data assimilation to aerosol models with varying degrees of sophistication, ranging from simple dust mod-41

els (Khade et al., 2013) and mass transport models (Zhang et al., 2014) to microphysical aerosol models based on modal42

(Rubin and Collins, 2014) or sectional descriptions (Sandu et al., 2005; Saide et al., 2013) of the aerosol size distribution. The43

assimilation techniques that have been used comprise variational methods, such as 2D (Zhang et al., 2014), 3D (Kahnert,44

2008; Liu et al., 2011), and 4D variational methods (Benedetti et al., 2009), as well as ensemble approaches (Sekiyama et al.,45

2010). Assimilation of satellite products for trace gases is relatively straightforward, since observed and modelled trace gas46

concentrations are almost directly comparable. However, aerosol optical properties observed from satellites are not directly47

comparable to the modelled size distribution and chemical composition of the aerosols. Solving this problem amounts to reg-48

ularising a severely under-constrained inverse problem. Previous aerosol assimilation attempts have been mainly based on49

educated guesses about the information content of the observations. For instance, there have been studies on the assimilation50

of aerosol optical depth (AOD) in which all chemical aerosol components in all size classes and at all model layers were used51

as independent control variables (Liu et al., 2011). This is a rather bold approach that largely disregards the problems involved52

in inverse modelling. By contrast, it has been proposed to only allow for the total aerosol mass concentration to be corrected53

by data assimilation of AOD (Benedetti et al., 2009). This is a more prudent approach based on the plausible assumption that a54
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single optical variable only contains enough information to control a single model variable. There have also been intermediate55

approaches in which the total aerosol mass per size bin have been used as control variables (Saide et al., 2013).56

In all such approaches the choice of control variables is based on ad hoc assumptions. Numerical assimilation experiments by57

Kahnert (2009) suggest that observations of several aerosol optical properties at multiple wavelengths may allow us to constrain58

more than just the total mass concentration, but certainly not all aerosol parameters. However, it is still an unsolved mystery how59

much information a given set of observations actually contains about the size distribution and chemical composition of aerosols,60

and exactly which model variables are related to the observed signals, and which ones are related to noise. Thus a prerequisite61

for assimilating remote sensing observations into aerosol transport models is to thoroughly understand the information content62

of the observations as well as the relation between the model variables and the signal degrees of freedom.63

In a recent study, Burton et al. (2016) have investigated the information content of “3β+2α”lidar measurements, i.e., obser-64

vations of backscattering at three wavelengths and extinction at two wavelengths, where the information content was analysed65

with regard to the refractive index and number distribution of the aerosol particles. As mentioned earlier, the refractive index66

is a very useful retrieval product of remote sensing observations. However, from the point of view of chemical transport mod-67

elling, the main quantities of interest are the concentrations of the different chemical species of which the aerosol particles68

are composed. Although the chemical composition determines the refractive index, the inversion of this relationship is still69

under-determined, hence an ill-posed problem. In this paper, we want to investigate the inverse problem that goes all the way70

from optical properties to the chemical composition of particles.71

Thus the two main goals of this paper are (i) to apply a systematic method for analysing the information content of aerosol72

optical properties with regard to the particles’ chemical composition, and (ii) to test an algorithm for making an automatic73

choice of control variables in chemical data assimilation that relate to the signal degrees of freedom, while all other model vari-74

ables remain unchanged by the assimilation procedure. The focus will be on spectral observations of extinction and backscat-75

tering coefficients, which can be retrieved from lidar observations.1 We will not restrict this analysis to any fixed choice of76

wavelengths, such as 3β +2α. Instead, we will investigate the information content for varying combinations of the three main77

Nd:YAG wavelengths. However, it should be mentioned that extinction measurements at the lowest harmonic of 1064 nm can78

be difficult and plagued by high errors; in practice, this will affect the observation error, resulting in a low information content79

of this particular measurement.80

The paper is organised as follows. Section 2 gives a rather concise introduction of the modelling tools and of the numerical81

approach employed to studying the information content of extinction and backscattering observations. Section 3 presents the82

main results of this study, and Sect. 4 offers concluding remarks. To make this paper self-contained, we included an appendix83

that gives a brief introduction to some essential concepts of data assimilation, and a detailed explanation of the methods we84

used for quantifying the information content of aerosol optical observables. It is advisable to read the appendix first before85

1In addition to lidar measurements from ground-based and aircraft-carried instruments, there are currently two space-borne lidar instruments in orbit. The

CALIOP instrument on-board the CALIPSO satellite has been launched in April 2006; it has three receiver channels, one at 1064 nm, and two channels at 532

nm to measure orthogonally polarised components. The CATS instrument on-board the International Space Station has been operational since January 2015;

It measures backscattering at 355 nm, 532 nm, and 1064 nm, were the latter two have two orthogonal polarisation channels. It is also capable of performing

high spectral resolution measurements at 532 nm. A third instrument is planned to be launched in 2018 (ATLID on-board EarthCARE).
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reading the body of the paper. Readers that are not interested in the theory may leave out the appendix at the risk of missing86

some of the discussions in the main body of the paper.87

2 Methods88

This study consists of two parts. In the first part we quantify the information content of extinction and backscattering co-89

efficients at multiple wavelengths. In the second part we perform a numerical experiment to investigate to what extent the90

concentrations of different chemical aerosol components can be constrained by observations of extinction and backscattering91

coefficients. The modelling tools required for this study are (i) a chemical transport model; (ii) an aerosol optics model; and92

(iii) a data assimilation system.93

2.1 Multiple scale Atmospheric Transport and CHemistry modelling system (MATCH)94

We employ the chemical transport model MATCH, which is an off-line Eulerian CTM with flexible model domain. It has been95

previously used from regional to hemispheric scales. Here we use a model version that contains a photochemistry module with96

64 chemical species, among them four secondary inorganic aerosol (SIA), namely, ammonium sulphate, ammonium nitrate,97

other sulphates, and other nitrates. It also contains a module with 16 primary aerosol variables, namely, seasalt, elemental98

carbon (EC), organic carbon (OC), and dust particles, each emitted in four different size bins. Thus, the total number of aerosol99

model variables is 20.100

The model reads in emission data, meteorological data, and land use data and computes transport processes, chemical101

transformation, and dry and wet deposition of the various trace gases and aerosols. As output, it provides concentration fields102

of gases and aerosols, the deposition of these chemical species to land and water-covered areas, as well as the temporal103

evolution of these variables.104

We mention that there exists another model version that includes aerosol microphysical processes, such as nucleation, con-105

densational growth, and coagulation. In that model version the aerosol size distribution evolves dynamically. The model has106

20 size bins and seven chemical species (EC, OC, dust, seasalt, particulate sulphate (PSOX), particulate nitrate (PNOX), and107

particulate ammonium (PNHX)), although not all species are encountered in all size bins. The total number of model variables108

in the present setup is 82.109

More complete information about the mass transport model can be found in Andersson et al. (2007). The seasalt module is110

discussed in Foltescu et al. (2005). The aerosol microphysics module is described in Andersson et al. (2015).111

For the sake of simplicity we here use the mass transport model without aerosol microphysical processes (see next section).112

The model is set up over Europe covering 33◦ in the longitudinal and 42◦ in the latitudinal direction in a rotated lat-long113

grid with 0.4◦×0.4◦ horizontal resolution. In the vertical direction the model domain extends up to 13 hPa, using 40 η-layers114

with variable thickness depending on the underlying topography. The meteorological input data are taken from the numerical115

weather prediction model HIRLAM (Undén et al., 2002). For the emissions we used EMEP data for the year 2007, where EC116
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and OC emissions were computed from total primary particle emissions based on the data in Kupiainen and Klimont (2004,117

2007).118

2.2 Aerosol optics model119

We have two different optics models coupled to MATCH, one to the mass transport module, and another to the aerosol mi-120

crophysics module. The former assumes that all aerosol species are homogeneous spheres, and that each chemical species121

is contained in separate particles. Under these assumptions the optics model is linear, i.e., the optical properties are linear122

functions of the concentrations of the chemical aerosol species. The latter model accounts for the fact that in reality different123

chemical species can be internally mixed, i.e., they can be contained in one and the same particle. That model also accounts124

for the inhomogeneous internal structure of black carbon mixed with other aerosol components, and for the irregular fractal125

aggregate morphology of bare black carbon particles (Kahnert et al., 2012a, 2013). Under these assumptions the optics model126

becomes nonlinear, which introduces additional complications in the inverse-modelling problem. This is the main reason why127

we chose to use the simpler mass transport optics model in this study. Much of the theory explained in the appendix relies128

on the assumption that the optics model is either linear, or that it is only mildly nonlinear, so that it can be linearised — see129

Eq. (B6). More information about the aerosol optics models implemented in MATCH can be found in Andersson and Kahnert130

(2016).131

2.3 3-dimensional variational data assimilation (3DVAR)132

Data assimilation is a class of statistical methods for combining model results and observations. The algorithm weighs these133

two pieces of information according to their respective error variances an covariances. As output the assimilation returns a134

result in model space of which the error variances are smaller than those of the original model estimate. Data assimilation is135

commonly employed for constraining model results by use of observations. However, one can also employ data assimilation136

as an inverse-modelling tool, i.e. for retrieving a model state from measurements. A brief summary of the theoretical basis of137

variational data assimilation is given in the appendix.2138

The MATCH model contains a 3DVAR data assimilation module. This model uses a spectral method, i.e., the model state139

vector is Fourier-transformed in the two horizontal coordinates. All error correlations in the horizontal direction are assumed140

to be homogeneous and isotropic. Error correlations in the vertical direction and among different chemical species are not141

assumed to be separable. The background error covariance matrix of the model a priori is modelled with the NMC method142

(Parrish and Derber, 1992). A more complete description of our 3DVAR program can be found in Kahnert (2008).143

2One should actually distinguish between data assimilation and data analysis. The latter refers to post-processing the model output by statistically weighing

model results and observations. The former refers to a process in which the data analysis is incorporated into the time-integration of the CTM. Our 3DVAR

code can be used in either analysis or assimilation mode. However, in this study we only perform numerical experiments at a fixed point in time. Thus we use

the 3DVAR code as a data analysis tool.
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2.4 Analysis of the information content of aerosol optical parameters144

The questions we ask are these.145

1. Given m observations of, e.g., m1 different parameters at m2 different wavelengths, so that m1 ·m2 = m, how many146

independent model variables ℓ can we constrain to better than observation error? Obviously, the best we can achieve147

would be ℓ = m; but in general, we will have ℓ≤m.148

2. Which are the ℓ model variables (or linear combinations of model variables) that can be constrained by the measure-149

ments?150

It turns out the the answer to these questions are found by performing a singular value decomposition of the Jacobian of the151

observation operator — see Eq. (C6) in the appendix. The right singular vectors can be used to construct a transformation of the152

model state vector — see Eq. (D16) in the appendix. The transformed vector components fall into two categories, namely, the153

signal-related components, which can be constrained by the measurements, and the noise-related components, which cannot154

be constrained by the measurements. From the singular values we can compute the number of signal degrees of freedom, i.e.,155

the number of model variables that can be constrained to better than observation error. We can further compute how much a set156

of measurements reduces the Shannon-entropy of the model state. This is a quantitative measure for the information content of157

the measurements.158

Readers who are unfamiliar with these concepts are urged to read the brief introduction in the appendix. A more complete159

discussion of information aspects and inverse methods for atmospheric sounding can be found in Rodgers (2000).160

2.5 Numerical assimilation experiments161

We use the results of this analysis to modify our 3DVAR program. More specifically, we implement weak constraints into162

the 3DVAR program such that only the signal-related (transformed) model variables are allowed to be adjusted in the data-163

analysis procedure, while the noise-related components are not altered. We study the performance of the 3DVAR system by164

performing a numerical experiment. To this end, we first perform a reference run by driving the MATCH model with analysed165

meteorological data. These reference results are taken as the “true” chemical state of the atmosphere. We apply the optics166

model to the model output to generate synthetic “observations”. Next we run the MATCH model again, this time driven with167

48 hour-forecast meteorological data. The results are taken as a proxy for a background model-estimate that is impaired by168

uncertainties. Finally, we perform a 3DVAR-analysis of the “observations” and the background estimate in an attempt to restore169

the reference results. In this numerical experiment we have perfect knowledge of the true state, and we assume that our optics170

model is nearly perfect, thus providing nearly perfect observations. (We assumed an observation error standard deviation of171

10 %). The only factor that may prevent us from fully restoring the reference state is a lack of information in the observed172

parameters on the chemical composition of the aerosol particles. Thus, comparison of the retrieval and reference results gives173

us an indication of how strongly different model variables can be controlled by the information contained in the observations.174
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3 Results175

3.1 Analysis of the information content of aerosol optical parameters176

To be specific, we consider the set of parameters {kext(λ1), kext(λ2), kext(λ3), βsca(λ1), βsca(λ2), βsca(λ3)}, where kext and177

βsca denote the extinction and backscattering coefficients, respectively, and the wavelengths λ1 = 1064 nm, λ2 = 532 nm, and178

λ3 = 355 nm denote the first three Nd:YAG harmonics. Out of this six-parameter set we pick different subsets and analyse the179

singular values of the corresponding observation operators. From those we compute the number of signal degrees of freedom180

as well as the change in Shannon-entropy for each subset of measurements. The results are listed in Table 1, which shows a181

number of interesting findings:182

1. When we increase the number of wavelengths from one to two, then the number of signal degrees of freedom Ns shows183

a corresponding increase from 1 to around 1.95–2.00. The change in entropy H indicates a similar trend; it increases184

from around 7 for a single wavelength to up to 12 for two wavelengths. (Compare, e.g., cases 1., 2., and 3. to cases 4.,185

5., and 6.) Hence we almost double the information contained in the measurements.186

2. When we increase the number of wavelengths further from two to three, then Ns only increases from around 2.0 to187

around 2.7 (compare cases 4., 5., and 6. to case 7, or case 9. to case 10.) This is also reflected in H; it only increases188

from around 12 to 13. This indicates that in our particular case there is little extra information to be gained by extending189

the number of spectral measurements beyond 2–3 wavelengths.190

3. Supplementing extinction with backscattering measurements results in a significant increase in Ns and H . This can be191

seen by comparing, e.g., cases 5. and 11. By adding βsca observations to kext observations the number of signal degrees192

of freedom increases from 2 to 3.9, so it almost doubles, while H increases from 12 to 18.193

4. Case 12 clearly reveals the limitations of extending the set of observed parameters; Ns is only 4.6, significantly lower194

than the number of observed parameters, m=6.195

5. An inspection of wi shows that the singular values often display quite a dramatic decrease from the largest to the smallest196

value. By contrast, the contribution N i
s to the total number of signal degrees of freedom decreases more gently. This fact197

is interesting in relation to the choice of the covariance matrix of the weak constrains — see Eqs. (D18), (D19) and198

(D21) in the appendix. In view of our findings here, we conclude that (D18) would yield a very sharp transition from199

unconstrained to constrained model variables, Eq. (D19) would give a smooth transition, and Eq. (D21) would give a200

moderately sharp transition.201

We performed a sensitivity study on how the observation error affects the information content in the analysis. It is important202

to understand that the observation error is not the same as the measurement error. The latter contributes to the former, but the203

observation error contains also other sources of error. For instance, if we deal with morphologically complex particles, but204

our lack of knowledge forces us to make assumptions and invoke approximations about the particle shapes, then this source205
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Table 1. Signal degrees of freedom Ns and change in entropy H for the lowest model layer (closest to the surface) and different subsets of

{kext(λ1),kext(λ2),kext(λ3),βsca(λ1),βsca(λ2),βsca(λ3)}, where kext denotes the extinction coefficient, βsca represents the backscatter-

ing coefficient, and the wavelengths λ1 = 1064 nm, λ2 = 532 nm, and λ3 = 355 nm denote the first three Nd:YAG harmonics. Also shown

are the singular values wi and their contributions N i
s and Hi to Ns and H , respectively. The results have been obtained by assuming an

observation standard deviation of 10 %.

No. Parameters Wavelengths i wi N i
s Hi Ns H

1. kext λ3 1 163 1.00 7.35 1.00 7.35

2. kext λ2 1 172 1.00 7.43 1.00 7.43

3. kext λ1 1 194 1.00 7.52 1.00 7.52

1 237 1.00 7.89
4. kext λ2, λ3 2 4.57 0.95 2.23

1.95 10.1

1 253 1.00 7.98
5. kext λ1, λ3 2 15.0 1.00 3.91

2.00 11.9

1 259 1.00 8.02
6. kext λ1, λ2 2 10.9 0.99 3.45

1.99 11.5

1 305 1.00 8.25

7. kext λ1, λ2, λ3 2 15.8 1.00 3.98 2.72 13.2

3 1.64 0.73 0.94

8. βsca λ1 1 226 1.00 7.82 1.00 7.82

1 292 1.00 8.19
9. βsca λ1, λ3 2 17.6 1.00 4.14

2.00 12.3

1 354 1.00 8.47

10. βsca λ1, λ2, λ3 2 18.2 1.00 4.18 2.65 13.4

3 1.36 0.65 0.76

1 386 1.00 8.59

2 32.8 1.00 5.04
11. kext, βsca λ1, λ3 3 4.80 0.96 2.29

3.89 17.9

4 3.66 0.93 1.92

1 467 1.00 8.87

2 37.8 1.00 5.24

3 5.54 0.97 2.49
12. kext, βsca λ1, λ2, λ3 4 4.18 0.95 2.10

4.61 19.4

5 0.95 0.48 0.47

6 0.53 0.22 0.18
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Table 2. Signal degrees of freedom Ns and change in entropy H as a function of observation standard deviation, taken from the first model

layer and case 12 in table 1.

Obs. std. dev. (%) Ns H

1 5.96 37.6

5 5.29 24.3

10 4.61 19.3

50 3.00 10.5

100 2.33 7.8

of error contributes to the observation error. The same is the case if we lack information about the particles’ size distribution.206

Such assumptions also enter into our relatively simple optics model, so our previous assumption of an observation standard207

deviation of 10 % represents, most likely, a highly idealised case. 3208

To get an idea about the significance of the observation error on the amount of information we can extract from measure-209

ments, we consider case 12 in table 1, and we varied the observation standard deviation from 1% to 100%. Table 2 shows how210

the total entropy and signal degrees of freedom vary with the observation standard deviation. The larger the standard deviation,211

the less information can be obtained from the observations. Both the total entropy H and the signal degrees of freedom Ns212

decrease with increasing standard deviation. For a standard deviation of 100 %, we only have two signal degrees of freedom213

contained in the six observed optical parameters. This demonstrates two important things.214

1. It is essential to develop accurate and realistic aerosol optics models. The most accurate measurements may intrinsically215

contain a wealth of information on aerosol properties. But we can only make use of this information to the extent that our216

observation operator is able to accurately describe the relation between the physical and chemical particle characteristics217

and their optical properties.218

2. It is equally essential to accurately estimate the contribution of the uncertainties in the aerosol optics model to the219

observation error. If we underestimate this error, we will rely too much on the measurements than we should, thus220

assimilating noise. If we overestimate this error, we will waste information contained in the observations.221

3.2 Numerical inverse-modelling experiment222

We integrated the findings of 3.1 into our 3DVAR program by constraining the algorithm to varying only the signal-related223

model variables. We employed the weak-constraint approach described in the appendix. More specifically, the constraints are224

formulated by use of the ansatz given in Eq. (D21), where we set the constant c′′ = min{wk,0.1}, and where wk is the smallest225

singular value of the scaled observation operator — see Eq. (C6).226

3A more realistic optics model, such as the one investigated in Andersson and Kahnert (2016) would help to reduce the observation standard deviation. For

future studies, such a model should be linearised and investigated in a similar way.
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Figure 1. Ammonium sulphate mixing ratio over Europe. Left: reference field, centre: background field, right: 3DVAR analysis. The obser-

vation site is indicated by the white circle. Note the nonlinear colour scale!

To illustrate the method we conduct a numerical experiment as described in Sect. 2.5. We perform a 3DVAR analysis of the227

background field by assimilating four different vertical profiles of optical properties, namely, the backscattering coefficient,228

βbak, and the extinction coefficient, kext, each at a wavelength of 355 nm and 1064 nm. Thus in our case the number of229

singular values in each vertical layer is k = 4. We assume an idealised situation in which the observation standard deviation230

is only 10 %. As we see in Table 1 (row 11), the number of singular values larger than unity is ℓ = k = 4, and the number of231

signal degrees of freedom is Ns =3.9. So we have as many signal degrees of freedom as we have measurements.232

As an example, Fig. 1 shows the ammonium sulphate mixing ratio in the lowest model layer (closest to the surface) computed233

for the reference run (left), the background estimate (centre), and the 3DVAR analysis (right)4. Clearly, the background field234

underestimates the reference field in most areas. We picked a location in Central Sweden (60◦N, 15◦E) to compute backscat-235

tering and extinction profiles from the reference results, which were then 3DVAR-analysed in conjunction with the background236

field. The analysis (right) restores the reference mixing ratios at and near the observation site. So, at least for ammonium237

sulphate mixing ratios in the lowest model layer we seem to obtain a satisfying solution to the inverse modelling problem.238

A closer inspection of the analysis performance is given in Fig. 2. Each panel shows vertical profiles of mixing ratios at the239

observation site. We compare the analysis results (red solid line) to both the background estimate (blue dashed line) and the240

reference results (black solid line). The reference results of the secondary inorganic aerosol species (SIA, which is the sum241

of all sulphate, nitrate, and ammonium mixing ratios) are almost completely restored by the 3DVAR analysis at all altitudes.242

For elemental carbon (EC), organic carbon (OC), dust, and, even more so, sodium chloride (NaCl) the analysis overestimates243

the reference results at altitudes between 0–2 km, while above 2 km the reference results are at least partially restored by the244

analysis. When we compare the different scales on the x-axes, we see that SIA makes the dominant contribution to the aerosol245

mixing ratio. Accordingly, the total aerosol mass mixing ratio (PM10) is almost equally well restored by the analysis as the246

SIA mixing ratio.247

4The approach for generating a reference and background model-run has been explained in Sect. 2.5
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Figure 2. Vertical profiles of elemental carbon (EC), organic carbon (OC), dust, secondary inorganic aerosols (SIA), sea salt, and total aerosol

mass mixing ratio (PM10). Each panel shows the reference results (black solid line), background estimate (dashed blue line), and the 3DVAR

analysis (red solid line).

Figure 3 shows the observations (black solid line) as well as the observation-equivalents of the background estimate (blue248

dashed line) and the 3DVAR analysis (red solid line) for all four observations, namely, βbak at 355 nm wavelength (top left),249

βbak at 1064 nm (top right), kext at 355 nm (bottom left), and kext at 1064 nm (bottom right). We learn from this figure that the250

analysis follows the observations faithfully. The reason for this is that we assumed that the observations were highly accurate251

with an error standard deviation of only 10 %.252

We have seen that the analysis provides a reasonable, but, as expected, not a perfect answer to the inverse problem. We253

have further seen that at (and near) the observation site it relies more on the observations than on the background estimate.254

However, the previous figures tell us little about the effect of the constraints we introduced. To learn about that we need to255

inspect the analysis in the abstract space of the transformed model variables δx′ given in Eq. (C16). Figure 4 shows vertical256

profiles of all 20 variables δx′i. The error variance within which each of these variables is allowed to vary in the analysis is257

given by the diagonal elements of the matrix BG in Eq. (D21). The first four of these are the singular values given in Table 1258

(row 11). The remaining 16 variances are set to 0.1. Thus the first element δx′1 has by far the largest freedom to be adjusted259

by the 3DVAR algorithm. The error variance of the second element, δx′2, is smaller by roughly one order of magnitude. The260

error variances of δx′3 and δx′4 are of comparable magnitude, and each one is about one order of magnitude smaller than that261

of δx′2. Finally, the error variances of the remaining 16 elements are about one order of magnitude smaller than that of δx′4.262

Accordingly, the first element, δx′1, is the one that deviates most strongly from zero. The elements δx′2, δx′3, and δx′4 are varied263
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Figure 3. Observations (black solid line), and observation-equivalents of the background estimate (dashed blue line) and of the 3DVAR

analysis (red solid line). The optical parameters and wavelengths are indicated above each panel.

much less in comparison. If we had imposed strong constraints, then the remaining elements would be exactly zero. However,264

our weak-constraint formulation allows even the other elements to deviate from zero within relatively tight limits. But several265

of them are, in fact, very close to zero, notably the elements δx′i for i = 7–9, 11–14, 16, and 19.266

4 Summary and conclusions267

We have quantified the information content of extinction and backscattering measurements with regard to the chemical compo-268

sition of aerosol particles. This has been done by determining the singular values of the observation operator, by computing the269

number of signal degrees of freedom, and by calculating the change in Shannon-entropy caused by taking measurements. We270

first assumed a relatively low observation standard deviation of 10 %. In that case, when adding measurements of βbak to mea-271

surements of kext, the information content nearly doubles. The same is true when we increase the number of wavelengths from272

a single wavelength to two wavelengths. However, when we further increase the number of wavelengths from two to three, then273

the gain in information is rather modest; there appeared to be little use in increasing the number of optical wavelengths beyond274

three. When the full set of six observations (both optical parameters at three wavelengths) is considered, then the number of275

signal degrees of freedom is 4.6. Thus we can constrain, at most, 4–5 model variables with this set of observations.276

These conclusions depend, to be sure, on the assumed observation standard deviation. We therefore performed a sensitiv-277

ity study were we investigated how the observation standard deviation affects the information content. We observed a rather278
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Figure 4. Vertical profiles of the transformed model variables δx′.

dramatic decrease in both the entropy and signal degrees of freedom with increasing observation standard deviation. Note279

that not only the measurement error, but also the uncertainties in the aerosol optics model contribute to the observation er-280

ror. This highlights the importance of developing accurate aerosol optics models and of obtaining an accurate estimate of281

the observation error, especially of the uncertainty in the aerosol optics model. This is a prerequisite for extracting as much282

information as possible from the measurements, while avoiding to extract noise rather than signal. More often than not, com-283

putational limitations and lack of knowledge force us to introduce simplifying assumptions about the particles’ morphologies.284

However, we know that aerosol optical properties can be highly sensitive to the shape (Mishchenko et al. (1997); Kahnert285

(2004)), small-scale surface roughness (Kahnert et al., 2012b), inhomogeneity (Mishchenko et al., 2014; Kahnert, 2015), ag-286
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gregation (Fuller and Mackowski, 2000; Liu and Mishchenko, 2007; Kahnert and Devasthale, 2011), irregularity (Muinonen,287

2000; Bi et al., 2010), porosity (Vilaplana et al., 2006; Lindqvist et al., 2011; Kylling et al., 2014), and combinations thereof288

(Lindqvist et al., 2009; Kahnert et al., 2013; Lindqvist et al., 2014). We need to know how much these sources of uncertainty289

contribute to the observation standard deviation. One way of estimating this is to compare aerosol optical properties computed290

with simple shape models to either measurements or to computations based on more realistic particle shape models — see291

Kahnert et al. (2016) for a recent review and a more detailed discussion.292

We exploited our analysis of the information content and the number of signal degrees of freedom by formulating weak293

constraints in a 3DVAR algorithm. More specifically, we transformed the model variables into a new basis in which the com-294

ponents of the state vector can be divided into signal-related and noise-related components. We then added weak constraints295

to the assimilation algorithm in such a way that only the signal-related transformed model variables are varied by the 3DVAR296

analysis. Numerical experiments showed that the 3DVAR algorithm provided a reasonable solution to the inverse problem;297

when mapped into observation space, the analysis result closely reproduces the measurements. It also appeared that among the298

original model variables, secondary inorganic aerosol components were most faithfully retrieved by the inverse modelling solu-299

tion. Most importantly, it was demonstrated that the 3DVAR analysis follows, indeed, the imposed constraints; the transformed300

model variables are adjusted within certain limits according to how strongly they relate to the signal degrees of freedom.301

The results presented here suggest further questions that should be addressed in future studies. We have performed this302

investigation with a mass transport model, thus focusing on the information content of optical measurements on the chemical303

composition of aerosols. When we include aerosol microphysical processes, then the model delivers the aerosols’ size distribu-304

tion, as well as their size-resolved chemical composition. This makes the problem quite different from the one we investigated305

here. First, the dimension of the model space is considerably larger for an aerosol microphysics transport model. Constraining306

such a model with limited information from measurements becomes even more challenging than in the case of a mass transport307

model. On the other hand, an aerosol microphysics model delivers information on the particles size distribution and mixing308

state. Therefore, this would require us to make fewer assumptions in the aerosol optics model, which may reduce the obser-309

vation error. The present study should be extended to investigate the information contained in extinction and backscattering310

measurements for simultaneously constraining the chemical composition and the size of aerosol particles.311

Another important, and often highly underrated issue concerns the choice of the aerosol optics model. In the present study312

we employed a simple homogeneous-sphere model in which all chemical components were assumed to be externally mixed.313

There is little one can put forward in defence of this model other than pure convenience. In this model the observation operator314

is linear, which is a prerequisite for much of the theoretical foundations of this study — see the appendix for details. However,315

it has been demonstrated that drastically simplifying assumptions, such as the external-mixture approximation, can give model316

results for aerosol optical properties that differ substantially from those obtained with more realistic nonlinear optics models317

(Andersson and Kahnert, 2016). It would therefore be important to extend the present study to include more accurate and318

realistic optics models. A first step could be to analyse the degree of nonlinearity of optics models that account for internal319

mixing of different aerosol species. If they turn out to be only mildly nonlinear, then one can linearise them and work with320
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the Jacobian of the nonlinear observation operator. Otherwise the theoretical methods employed in this paper would have to be321

extended in order to accommodate nonlinear observation operators.322

Appendix A: Inverse problems323

Suppose we have a system described by a set of variables x1, . . . ,xn, summarised in a vector x. Suppose also that we have an324

operator Ĥ : Rn → Rm, x 7→ y = Ĥ(x) that allows us to compute a set of variables y1, . . . ,ym, summarised in a vector y. To325

take a specific example, we may think of x as a vector of mixing ratios of chemical aerosol species, y as a set of aerosol optical326

properties, and Ĥ as an aerosol optics model. We consider the following two problems:327

1. Direct problem: Given x and Ĥ , calculate y = Ĥ(x).328

2. Inverse problem: Given y and Ĥ , solve y = Ĥ(x) for x.329

A pair of such problems is inverse to each other; it is, therefore, somewhat arbitrary which problem we choose to call the330

direct problem, and which one we call the inverse problem. However, one of the problems is usually well-posed, while the331

other one is ill-posed. Such is also the case in aerosol optics modelling. It is customary to call the well-posed problem the332

direct problem, and the ill-posed one the inverse problem.333

An equation y = Ĥ(x) is called well-posed if it has the following properties:334

1. Existence: For every y ∈ Rm, there is at least one x ∈ Rn for which y = Ĥ(x).335

2. Uniqueness: For every y ∈ Rm, there is at most one x ∈ Rn for which y = Ĥ(x).336

3. Stability: The solution x depends continuously on y.337

If any of these properties is not fulfilled, then the problem is called ill-posed.338

Appendix B: 3-dimensional variational data assimilation339

Data assimilation is usually employed for constraining models by use of measurements, but it can also be used to solve inverse340

problems. Here we focus on one specific data assimilation method known as 3-dimensional variational data assimilation, or341

3DVAR.342

In a CTM we discretise the geographic domain of interest into a 3-dimensional grid. In each grid cell, the aerosol particles343

are characterised by the mass concentrations of each chemical component in the aerosol phase, such as sulphate, nitrate,344

ammonium, mineral dust, black carbon, organic carbon, and sea salt. Suppose we summarise all these mass concentrations345

from all grid cells into one large vector x ∈ Rn. The model provides us with a first guess of the atmospheric aerosol state,346

known as a background estimate5 xb. Suppose also that we have m observations, which we summarise in a vector y ∈ Rm. We347

5In the remote sensing and inverse modelling community, the background estimate is more commonly referred to as the a priori estimate.
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further have an observation operator Ĥ : Rn → Rm, x 7→ Ĥ(x) that maps the state vector x from model space to observation348

space6. We further denote by xt the true state of the atmosphere, by ǫb = xt−xb the error of the background estimate, and by349

ǫo = Ĥ(xt)−y the observation error.7 If the background errors are not correlated with the observation errors, then their joint350

probability distribution becomes separable, i.e.351

P (ǫb,ǫo) = Pb(ǫb)Po(ǫo). (B1)352

The true state of the atmosphere is, of course, unknown. Therefore, our definition of the errors and their probability distri-353

bution is only of conceptual use, but not of any practical value. However, we can reinterpret the probability distributions by354

replacing ǫb in the argument of Pb with x−xb, and by replacing ǫo in the argument of Po with Ĥ(x)−y. We further assume355

that both the background and the observation errors are normally distributed. Thus we may write356

Pb(x) = (2π |B |)−1/2 exp
(
−1

2
(x−xb)T ·B−1 · (x−xb)

)
(B2)357

Po(x) = (2π |R |)−1/2 exp
(
−1

2
(Ĥ(x)−y)T ·R−1 · (Ĥ(x)−y)

)
. (B3)358

Here B and R denote the covariance matrices of the background and observation errors, respectively, and | · | denotes the359

matrix determinant. In this form, Pb(x) represents the probability that the atmospheric aerosol particles are found in state x,360

given a background estimate xb with error covariance matrix B. Similarly, Po(x) is the probability that the system is found in361

state x, given measurements y with error covariances R.8362

Equations (B1)–(B3) can be summarised in the form363

P (x) =
1

2π(|B | · |R |)−1/2
exp(−J(x)) (B4)364

J(x) =
1
2

[
(x−xb)T ·B−1 · (x−xb) + (Ĥ(x)−y)T ·R−1 · (Ĥ(x)−y)

]
,365

(B5)366

where J is suggestively called the costfunction, since it can be interpreted as a measure for how “costly” it is for a state x to367

simultaneously deviate from the background estimate and the measurements within the permitted error bounds. The deviations368

are weighted with the inverse error covariance matrices. For instance, this means that for measurements with a small error369

variance, a deviation Ĥ(x)−y becomes “more costly”.370

We are interested in the most probable aerosol state of the atmosphere, i.e., in that state xa for which the probability371

distribution attains its maximum. This is obviously the case when the argument of the exponential in Eq. (B4) assumes a372

6The optics model Ĥ usually has to invoke assumptions about physical aerosol properties that are relevant for the optical properties, but not provided by

the CTM output, e.g. assumptions about the morphology of the particles. If the CTM is a simple mass-transport model without aerosol microphysics, then it

is also necessary to invoke assumptions about the size distribution of the aerosols.
7The observation error must not be confused with the measurement error. The latter contributes to the former, but the observation error contains also

other sources of error. For instance, if we deal with morphologically complex particles, but our lack of knowledge forces us to make assumptions and invoke

approximations about the particle shapes, then this source of error contributes to the observation error. The same is the case if we lack information about the

particles’ size distribution.
8The observation errors are often uncorrelated. In such case the matrix R is diagonal, where the diagonal elements are the observation error variances.
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minimum. Thus we seek to minimise the costfunction J . The variational method is based on computing the gradient of the373

costfunction, ∇J , and to use this in a descent algorithm to iteratively search for the minimum of J .374

In practice it is common to introduce the variable δx = x−xb, and use the first-order Taylor expansion of the observation375

operator,376

Ĥ(x) = Ĥ(xb) +H · δx, (B6)377

where the (m×n)-matrix H denotes the Jacobian of Ĥ at x = xb. If Ĥ is only mildly non-linear, and if the components of δx378

are sufficiently small, then we can substitute this first-order approximation into Eq. (B5), which yields379

J = Jb + Jo (B7)380

Jb(δx) =
1
2
δxT ·B−1 · δx (B8)381

Jo(δx) =
1
2

(
Ĥ(xb) +H · δx−y

)T

·R−1 ·
(
Ĥ(xb) +H · δx−y

)
(B9)382

The components of the vector δx are the control variables that are iteratively varied by the algorithm until the minimum of the383

costfunction is found.384

The solution to the equation∇J = 0 is a solution to the inverse problem; we input the observations y into the algorithm, and385

as output we obtain a result in model space that is consistent with the measurements (within the given error bounds). What if386

the measurements contain insufficient information about the state x? The algorithm will still provide an answer to the inverse387

problem, but the missing information will be supplemented by the background estimate xb. The weighting of the two pieces of388

information, xb and y, is controlled by the respective error covariance matrices. Thus data assimilation is a statistical approach,389

which can be expected to give good results on average, but not in every single time-step of the model run. This can become390

highly problematic if we only have very few observations, i.e., m≪ n. If we allow all model variables to be freely adjusted by391

the assimilation algorithm in such a severely under-constrained case, then the algorithm may just assimilate noise rather than392

signal, resulting in unreasonable solutions to the inverse problem (e.g. Kahnert (2009)). To avoid such problems, one needs to393

systematically analyse the information content of the observations and constrain the assimilation algorithm to only operate on394

the signal degrees of freedom.395

Appendix C: Information content of measurements396

Our ultimate goal is to formulate the data assimilation problem in such a way that the information contained in the mea-397

surements is fully exploited, but not over-used. To this end, we first need to know how many independent quantities can be398

determined from a specific set of measurements. We investigate this question by borrowing ideas from retrieval and information399

theory — see Rodgers (2000) for more detailed explanations.400

The main idea is to compare the variances of the model variables to those of the observations. Only those model variables401

whose variance is larger than those of the observations can be constrained by measurements. However, to actually make such402
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a comparison is rather tricky. The first problem is that one cannot readily compare error covariance matrices. The second403

problem is that model variables and measurements are in different spaces. We first address the second problem.404

When we account for observation errors ǫo, then the basic relation between model variables and observations is, to first order405

y = Ĥ(xb) +H · δx + ǫo. (C1)406

The error covariance matrices are given by the expectation values B = 〈δx · δxT 〉, and R = 〈ǫo · ǫT
o 〉, where the dot denotes a407

dyadic product. The covariance matrix of δy = y− Ĥ(xb) is given by 〈δy · δyT 〉 =H ·B ·HT +R, where we assumed that408

background and observation errors are uncorrelated. This last equation suggests that we can compare model and observation409

errors in the same space by transforming the background error covariance matrix from the space of (n×n) matrices to the410

space of (m×m) matrices viz. H ·B ·HT .411

To address the first problem, we diagonalise the covariance matrices by making the following change of variables412

δx̃ = B−1/2 · δx (C2)413

δỹ = R−1/2 · (y− Ĥ(xb)) (C3)414

H̃ = R−1/2 ·H ·B1/2. (C4)415

Here B1/2 denotes the positive square root9 of the matrix B, and B−1/2 denotes its inverse. In the new basis, the costfunction416

in (B7)–(B9) becomes417

J =
1
2
δx̃T · δx̃ +

1
2

(
H̃ · δx̃− δỹ

)T

·
(
H̃ · δx̃− δỹ

)
. (C5)418

The covariance matrices are now unit matrices. This can also be seen by considering the transformed errors, e.g. ǫ̃o = R−1/2·ǫo419

and computing 〈ǫ̃o·ǫ̃T
o 〉 =R−1/2·〈ǫo·ǫT

o 〉·R−1/2=1, since 〈ǫo·ǫT
o 〉= R. Similarly, we find 〈δx̃·δx̃T 〉=1. The covariance matrix420

of the transformed measurement vector δỹ is given by 〈δỹ ·δỹT 〉= H̃·H̃T +1. The first term is the model error covariance term421

transformed into observation space, while the second term (the unit matrix) is the diagonalised observation error covariance422

matrix.423

We are still not in a position to make a meaningful comparison of model and observation errors, since the first term, H̃ ·H̃T ,424

is still not diagonal. To make it so we need to perform one more transformation. To this end, we consider the singular value425

decomposition of the matrix H̃,426

H̃ = R−1/2 ·H ·B1/2 = VL ·W ·VT
R. (C6)427

Here H̃ is a (m×n)-matrix, the matrix of the left-singular vectors VL is a (m×m)-matrix, the matrix VR containing the428

right-singular vectors is a (n×n)-matrix, and the (m×n)-matrix W consists of two blocks. If m < n, then the left block of W429

is a (m×m)-diagonal matrix containing the m singular values w1, . . . ,wm on the diagonal; the right block is a (m× (n−m))-430

nullmatrix. Similarly, if m > n, then the upper block of W is a (n×n)-diagonal matrix containing the n singular values on the431

diagonal, while the lower block is a ((m−n)×n)-nullmatrix.432

9A matrix A is called a square root of a matrix B if A·A = B. The positive square root of B, which is denoted by B1/2, has the property x
T ·B1/2 ·x≥ 0

for all x. If B is itself positive and symmetric, as is the case for covariance matrices, then the positive square root exists and is unique.
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We now make another change of variables:433

δx′ = VT
R · δx̃ (C7)434

δy′ = VT
L · δỹ (C8)435

H′ = VT
L · H̃ ·VR. (C9)436

The matrices VL and VR are orthogonal, i.e., VT
L ·VL = 1, and similarly for VR. Thus, substitution of (C7)–(C9) into (C5)437

yields438

J =
1
2
δx′T · δx′ +

1
2

(H′ · δx′− δy′)T · (H′ · δx′− δy′) . (C10)439

Evidently, the transformation given in (C7)–(C9) preserves the diagonality of the background and observation error covariance440

matrices. What about the covariance matrix 〈δy′ · δy′T 〉 in the new basis? Using ǫ′o= VT
L · ǫ̃o= VT

L ·R−1/2 ·ǫo, as well as Eqs.441

(C1), (C2)–(C4), and (C7)–(C9), we obtain 〈δy′ · δy′T 〉= H′ ·H′T +1. The contribution of the background error covariances442

in this coordinate system is H′ ·H′T , which is a diagonal matrix. This becomes clear from Eqs. (C6) and (C9), which yields443

H′ ·H′T = W ·WT , (C11)444

which is a (m×m) diagonal matrix. Thus in this coordinate system we can readily compare the diagonal elements of the445

transformed background error covariance matrix H′ ·H′T to the diagonal (unit) elements of the observation error covariance446

matrix 1. Roughly, those singular values wi on the diagonal of W that are larger than unity correspond to model variables δx′i447

that can be controlled by the measurements. Those singular values smaller than unity correspond to model variables that are448

only related to noise.449

In the above discussion we relied on plausibility arguments. We mention that there are more systematic ways of approaching450

the problem. Here we merely state some key results without going into details. The interested reader is referred to Rodgers451

(2000). However, in all approaches the main quantities of interest are always the singular values of the matrix R−1/2 ·H ·B1/2.452

One can compute the number of signal degrees of freedom Ns from the expectation value of Jb in Eq. (B8). The result can453

be expressed in terms of the singular values wi of the transformed observation operator in Eq. (C6):454

Ns =
∑

i

w2
i /(1+ w2

i ). (C12)455

Another approach is based on information theory. Given a system described by a probability distribution function P (x), one456

defines the Shannon-entropy457

S(P ) =−
∫

P (x) ln
(

P (x)
P0(x)

)
dx, (C13)458

where P0 is a normalisation factor needed to make the argument of the logarithm dimensionless. A decrease in entropy ex-459

presses an increase in our knowledge of the system. For instance, if we initially describe the system by Pi(x), and, after taking460

measurements, by Pf (x), then the measurement process has changed the entropy by an amount461

H = S(Pi)−S(Pf ). (C14)462
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In our case, we assume that all errors are normally distributed. In that case, one can show that463

H =
1
2

∑

i

ln(1+ w2
i ). (C15)464

H can be interpreted as a measure for the information content of a set of measurements.465

Our findings so far suggest a general strategy for how to optimise the amount of information that we can extract from466

measurements. First, we need to compute the singular value decomposition in Eq. (C6), as well as the transformation given in467

(C2) and (C7), which we can summarise as468

δx′ = VT
R ·B−1/2 · δx. (C16)469

Then we want to formulate the minimisation of the costfunction in such a way that only those components of δx′ are adjusted470

by the assimilation algorithm that correspond to the largest singular values of the matrix W in (C6). All other elements of471

δx′ should be left alone. In other words, we want to constrain the minimisation of the costfunction to the subspace of the472

signal degrees of freedom of the state vector. Thus, in order to implement this idea, we first need to discuss how to incorporate473

constraints into the theory.474

Appendix D: Minimisation of the costfunction with constraints475

In the minimisation of the costfunction all elements of the control vector δx are independently adjusted until the minimum476

of J is found. This may not be a prudent approach if the information contained in the observations is insufficient to constrain477

all model variables. In such case one should introduce constraints that reduce the number of independent control variables.478

However, this needs to be done in a clever way; the goal is to neither under-use the measurements (thus wasting available479

information), nor to over-use them (thus assimilating noise).480

For reasons we will explain later we formulate the constraints as weak conditions. However, for didactic reasons as well as481

for the sake of completeness, we will also mention how to formulate constraints as strong conditions.482

D1 Minimisation of the costfunction with strong constraints483

Given k constraints in the form gi(δx)=0, i = 1, . . . ,k, the most general way of finding the minimum of J(δx) under the484

constraints gi is the method of Lagrange multipliers. More specifically, one introduces k Lagrange multipliers λ1, . . . ,λk and485

defines the function486

L(δx1, . . . , δxn,λ1, . . . ,λk) = J(δx1, . . . , δxn) +
k∑

i=1

λigi(δx1, . . . , δxn); (D1)487

then one solves the minimisation problem488

∇L(δx1, . . . , δxn,λ1, . . . ,λk) = 0, (D2)489
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where ∇=∇δx1,...,δxn,λ1,...,λk
is now a (n+ k)-dimensional gradient operator. Note that in this general formulation of the490

problem the constraints can even be nonlinear. We are specifically interested in linear constraints, which can be expressed in491

the form G · δx = 0. Then the constrained minimisation problem becomes492

L(δx,λ) = J(δx) + λT ·G · δx (D3)493

∇δx,λL(δx,λ) =


 ∇δxJ(δx) + λT ·G

G · δx


 = 0. (D4)494

Compared to the unconstrained minimisation problem, the introduction of k constraints has increased the dimension of the495

problem from n to n+k. Naively, one may have expected that the dimension would, on the contrary, be reduced to n−k. This496

is indeed the case if the constraints are linear, and if the function J is quadratic, as is the case in Eqs. (B7)–(B9). To see this,497

let us first write those equations more concisely in the form498

J =
1
2

(
δxT ·Q1 · δx +QT

2 · δx + δxT ·Q2 +Q3

)
(D5)499

Q1 = B−1 +HT ·R−1 ·H (D6)500

Q2 = HT ·R−1 · (Ĥ(xb)−y) (D7)501

Q3 = (Ĥ(xb)−y)T ·R−1 · (Ĥ(xb)−y). (D8)502

(Note that the covariance matrices and their inverses are symmetric, i.e., RT = R, etc.) The unconstrained minimisation503

problem requires us to solve the equation ∇J = Q1 · δx +Q2 = 0. Now we want to minimise the costfunction subject to the504

the linear constraints505

G · δx = 0, (D9)506

where G is a (k×n)-matrix, δx is an n-vector, and 0 is the null-vector in Rk. Let us denote the kernel10 of G by ker(G). Let507

further z1, . . . ,zn−k denote a basis of ker(G). We define the (n× (n− k))-matrix508

Z =
(

z1 · · · zn−k

)
(D10)509

the column vectors of which are just the basis vectors of ker(G). Obviously, G ·Z = 0, where 0 denotes the ((k× (n− k))-510

nullmatrix. If δx is a vector in Rn for which there exists a vector ξ ∈ Rn−k such that Z · ξ = δx, then we automatically have511

G·δx = 0, i.e., δx satisfies the linear constraints. Thus we can formulate the constrained minimisation problem by substitution512

of δx = Z · ξ into Eq. (D5), which yields513

J =
1
2

(
ξT ·ZT ·Q1 ·Z · ξ +QT

2 ·Z · ξ + ξT ·ZT ·Q2 +Q3

)
(D11)514

0 = ∇J = ZT ·Q1 ·Z · ξ +ZT ·Q2. (D12)515

Thus we have reduced the (n+k)-dimensional constrained minimisation problem given in Eq. (D4) to a problem consisting of516

the following two steps.517

10The kernel or nullspace of a matrix is the set of all vectors z such that G · z = 0. The kernel is a subspace of the full vector space Rn with dim

ker(G)= n− k.
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1. Determine a basis of the nullspace ker(G); this yields the matrix Z.518

2. Solve the unconstrained (n− k)-dimensional optimisation problem given in Eq. (D12). From the (n− k)-vector ξ that519

minimises the costfunction in (D11), we then obtain the solution δx = Z · ξ that minimises the costfunction in (D5)520

subject to the constraint (D9).521

D2 Minimisation of the costfunction with weak constraints522

In the approach described in the previous section the solution satisfies the constraints exactly. Therefore, this approach is known523

as the minimisation of the costfunction with strong constraints. In the weak-constraint approach the constraints only need to524

be satisfied within specified error bounds.525

The formulation of the weak-constraint approach is conceptually quite simple. One incorporates the constraints by adding526

an extra term to the costfunction (B7), i.e.527

J = Jb + Jo + JG (D13)528

JG =
1
2
δxT ·GT ·B−1

G ·G · δx, (D14)529

which also gives an extra term in the gradient of the costfunction,530

∇JG = GT ·B−1
G ·G · δx. (D15)531

We will assume that the matrix BG=diag(σG
1 , . . . ,σG

k ) is diagonal, where k is the number of constraints. The “error variances”532

σG
i along the diagonal of BG allow us to fine-tune the influence of each constraint on the solution. If σG

i is small, then the ith533

constraint is relatively strong, and vice versa. The choice of these variances is a matter of experimenting and tuning. Typically,534

if the σG
i are made too large, then there is a risk that the minimisation algorithm ignores the constraints all together. In that case535

the solution will be very similar to the unconstrained solution. On the other hand, if the σG
i are made too small, then JG can536

make the dominant contribution to J . In that case, there is a risk that the minimisation routine largely ignores the observations537

and returns a solution that lies quite close to the background estimate.538

D3 Constraints designed for making optimum use of the information contained in the observations539

We now want to incorporate the results of Section C into the variational data assimilation method. More specifically, we want540

to formulate weak constraints, Eq. (D14), based on the singular values of the observation operator in Eq. (C6). To this end,541

we make the change of variables given in Eq. (C16). We assume, without loss of generality, that the first ℓ singular values are542

greater than unity. Thus we only want to use the corresponding components δx′1, . . . , δx
′
ℓ as independent control variables in the543

3DVAR algorithm, while the remaining components remain unchanged, at least approximately within specified error bounds.544
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If we were to formulate this requirement as a strong constraint, as in Eq. (D9), then it would take the form545

δx′ = VT
R ·B−1/2 · δx =




δx′1
...

δx′ℓ

0
...

0




. (D16)546

Thus the matrix expressing the constraints is given by G = VT
R ·B−1/2, which is a (n×n) matrix.547

The weak constraint approach is, arguably, more suitable in our case. We have, in the preceding text, frequently used the548

terms signal degrees of freedom and noise degrees of freedom. Although it was conceptually useful to make this distinction,549

it is important to stress that there is no sharp boundary between the two. Rather, there is a smooth transition from singular550

values w1 > w2 > · · ·> wℓ ≥ 1 to singular values 1 > wℓ+1 > wℓ+2 > · · ·> wk (k = min{n,m}). For this reason we choose551

to formulate the constraints as weak constraints. This allows us to make a smooth transition from free to constrained control552

variables, where the transition from one regime to the other can be controlled by the singular values.553

In order to apply the weak-constraint approach, we need to substitute the constraint-matrix G = VT
R ·B−1/2 into Eq. (D14),554

which yields555

JG =
1
2
δxT ·B−1/2 ·VR ·B−1

G ·VT
R ·B−1/2 · δx, (D17)556

where BG is a (n×n) matrix. We want to set up this matrix in such a way that we obtain a smooth transition from freely557

adaptable control variables δx′1, . . . δx
′
ℓ to increasingly constrained variables δx′ℓ+1, . . . δx

′
k, . . . , δxn. One possible choice of558

the matrix BG, which is suggested by Eq. (C11), would be559

BG = σG diag(w2
1,w

2
2, . . . ,w

2
ℓ , . . . ,w2

k, c, . . . , c), (D18)560

where σG is a free scaling factor, and where the last n− k diagonal elements are equal to a constant c chosen to be much561

smaller than w2
k. Another possible choice would be562

BG = σG · diag(λ1,λ2, . . . ,λℓ, . . . ,λk, c′, . . . , c′), (D19)563

λi = w2
i /(1+ w2

i ), (D20)564

where c′ ≪ λk. This ansatz is suggested by Eq. (C12), i.e., each of the elements δx′1, . . . δx
′
k is weighted with its corresponding565

contribution to the number of signal degrees of freedom. It turns out that Eq. (D18) gives a relatively sharp transition from566

unconstrained to constrained model variables, while Eq. (D19) gives a very gentle transition. Another ansatz that lies in between567

these two extremes would be568

BG = σG diag(w1,w2, . . . ,wℓ, . . . ,wk, c′′, . . . , c′′), (D21)569
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where c′′ ≪ wk.570

Despite the mathematical foundation of this approach we are left with some room for experimentation in the formulation of571

the matrix BG. It is a matter of experience to test different approaches and select the one that proves to be most suited.572

Appendix E: Practical aspects of the implementation573

One of the main practical problems is the dimension n of the model space. The grid-size is typically on the order Nx×Ny ×574

Nz ∼ 100× 100× 10, and the number of aerosol components is on the order of Nc ∼10–100. Hence the dimension of the575

model space is n∼ 106–107. In our case, the matrix H̃ in (C6) is a (m×n) matrix. To numerically perform a singular value576

decomposition of such a large matrix would be a formidable task.577

In variational data assimilation we encounter a similar problem in the inversion of the matrix B. In our 3DVAR code this578

problem is alleviated by using a so-called spectral formulation. The idea is to make a Fourier-transformation in the horizontal579

coordinates and to assume that all horizontal error correlations are homogeneous and isotropic. Under these assumptions580

one obtains one background error covariance matrix for each horizontal wavenumber; each of these matrices has dimension581

Nz×Nc ∼ 103–104. This can further be reduced to about 102 by making a reduced eigenvalue diagonalisation. The details are582

explained in Kahnert (2008).583

In our case we are primarily interested in constraining the chemical components. Therefore, the best solution for us is584

to simply restrict ourselves to the chemical subspace. To this end, we select a grid-point11 (i, j, l) and consider the reduced585

background error covariance matrix B0 with components B0
k;k′ = Bi,j,l,k;i,j,l,k′ , where k,k′ = 1, . . . ,Nc Similarly, we consider586

reduced matrices R0, H0, and H̃0 = (R0)−1/2 ·H0 ·B0, and we numerically compute the singular value decomposition of587

the latter. From this we obtain, for each level l, a constraint matrix (V0
R)T · (B0)−1/2 analogous to the one in Eq. (D16), but588

reduced to the chemical subspace. We then simply apply these chemical constraints throughout the horizontal domain (again,589

assuming horizontal homogeneity).590

Another aspect concerns the positive square root of the background error covariance matrix, which appears in essential parts591

of the theory, namely, in Eqs. (C6) and (D16). In theoretical developments it is, arguably, didactically expedient to work with592

the matrix B1/2. But in practice there are numerically more efficient formulations. One such approach is discussed in Kahnert593

(2008) in the context of a spectral formulation of the variational method. In our present problem we employ the Cholesky594

decomposition12 of the B-matrix,595

B = CT
u ·Cu, (E1)596

where Cu is an upper triangular matrix. Thus the actual algorithm we used for formulating the constrained minimisation of597

the costfunction is obtained by replacing in the preceding formulas all incidences of the matrix B1/2 with the matrix CT
u (and,598

similarly, by replacing the inverse matrix B−1/2 by the inverse of the Cholesky factor, C−T
u ).599

11Since the error correlations are assumed to be homogeneous in space any point in the horizontal direction will do.
12The Cholesky decomposition is, essentially, a special case of a LU-decomposition, which applies to symmetric real (or Hermitian complex), positive

definite matrices.
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