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Abstract.1

We theoretically and numerically investigate the problem of assimilating multiwavelength lidar observations of extinction2

and backscattering coefficients of aerosols into a chemical transport model. More specifically, we consider the inverse problem3

of determining the chemical composition of aerosols from these observations. The main questions are how much information4

the observations contain to determine the particles’ chemical composition, and how one can optimise a chemical data assimila-5

tion system to make maximum use of the available information. We first quantify the information content of the measurements6

by computing the singular values of the scaled observation operator. From the singular values we can compute the number of7

signal degrees of freedom, Ns, and the reduction in Shannon entropy, H . As expected, the information content as expressed by8

either Ns or H grows as one increases the number of observational parameters and/or wavelengths. However, the information9

content is strongly sensitive to the observation error. The larger the observation error variance, the lower the growth rate of Ns10

or H with increasing number of observations. The right singular vectors of the scaled observation operator can be employed11

to transform the model variables into a new basis in which the components of the state vector can be partitioned into signal-12

related and noise-related components. We incorporate these results in a chemical data assimilation algorithm by introducing13

weak constraints that restrict the assimilation algorithm to acting on the signal-related model variables only. This ensures that14

the information contained in the measurements is fully exploited, but not over-used. Numerical tests show that the constrained15

data assimilation algorithm provides a solution to the inverse problem that is considerably less noisy than the corresponding16

unconstrained algorithm. This suggests that the restriction of the algorithm to the signal-related model variables suppresses the17

assimilation of noise in the observations.18

1 Introduction19

Atmospheric aerosols have a substantial, yet highly uncertain impact on climate, they can cause respiratory health problems,20

degrade visibility, and even compromise air-traffic safety. The physical and chemical properties of aerosols play a key role in21

understanding these effects. The aerosol properties are determined by a complex interplay of different chemical, microphysi-22
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cal, and meteorological processes. These processes are investigated in environmental modelling by use of chemical transport23

models (CTMs). However, modelling aerosol processes is plagued by substantial biases and errors (McKeen et al., 2007). It is,24

therefore, fundamentally important to evaluate and constrain CTMs by use of measurements.25

Measurements from satellite instruments provide consistent long-term data sets with global coverage. However, it is notori-26

ously difficult to compare measured radiances to modelled aerosol concentrations. An alternative to using radiances is to make27

use of satellite retrieval products. For instance, one of the products of the CALIPSO lidar instrument (Cloud-Aerosol Lidar28

and Infrared Pathfinder Satellite Observations) is a rough classification of the aerosol types (i.e. dust, smoke, clean/polluted29

continental, and clean/polluted marine). This retrieval product is based on lidar depolarisation measurements (Omar et al.,30

2009). For the evaluation of aerosol transport models this provides us with a qualitative check for the chemical composition of31

aerosols. However, this is of limited practical use, since what we really need is quantitative information on the particles’ chem-32

ical composition (which can be size-dependent). The most popular approach in evaluating and constraining aerosol transport33

models is the use of retrieved optical properties, such as aerosol optical depth, or extinction and backscattering coefficients.34

Yet another idea is to provide the particles’ refractive index as a retrieval product (e.g. Müller et al., 1999; Veselovskii et al.,35

2002). However, the use of such retrieval products still leaves us with the challenge of solving an ill-posed inverse problem,36

namely, of determining the particles chemical composition from their retrieved optical or dielectric properties.37

A systematic class of statistical methods for solving this inverse problem is known as data assimilation. Recent studies38

have applied data assimilation to aerosol models with varying degrees of sophistication, ranging from simple dust mod-39

els (Khade et al., 2013) and mass transport models (Zhang et al., 2014) to microphysical aerosol models based on modal40

(Rubin and Collins, 2014) or sectional descriptions (Sandu et al., 2005; Saide et al., 2013) of the aerosol size distribution. The41

assimilation techniques that have been used comprise variational methods, such as 2D (Zhang et al., 2014), 3D (Kahnert,42

2008; Liu et al., 2011), and 4D variational methods (Benedetti et al., 2009), as well as ensemble approaches (Sekiyama et al.,43

2010). Assimilation of satellite products for trace gases is relatively straightforward, since observed and modelled trace gas44

concentrations are almost directly comparable. However, aerosol optical properties observed from satellites are not directly45

comparable to the modelled size distribution and chemical composition of the aerosols. Solving this problem amounts to reg-46

ularising a severely under-constrained inverse problem. Previous aerosol assimilation attempts have been mainly based on47

educated guesses about the information content of the observations. For instance, there have been studies on the assimilation of48

aerosol optical depth (AOD) in which all chemical aerosol components in all size classes and at all model layers were used as49

independent control variables (Liu et al., 2011). This approach largely disregards the problems involved in inverse modelling.50

By contrast, it has been proposed to only allow for the total aerosol mass concentration to be corrected by data assimilation51

of AOD (Benedetti et al., 2009; Wang et al., 2014). This is a more prudent approach based on the plausible assumption that a52

single optical variable only contains enough information to control a single model variable. There have also been intermediate53

approaches in which the total aerosol mass per size bin have been used as control variables (Saide et al., 2013).54

In all such approaches the choice of control variables is based on ad hoc assumptions. Numerical assimilation experiments by55

Kahnert (2009) suggest that observations of several aerosol optical properties at multiple wavelengths may allow us to constrain56

more than just the total mass concentration, but certainly not all aerosol parameters. However, it is still an unsolved mystery how57
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much information a given set of observations actually contains about the size distribution and chemical composition of aerosols,58

and exactly which model variables are related to the observed signals, and which ones are related to noise. Thus a prerequisite59

for assimilating remote sensing observations into aerosol transport models is to thoroughly understand the information content60

of the observations as well as the relation between the model variables and the signal degrees of freedom.61

In numerical weather prediction (NWP) modelling, several studies have discussed the information content of satellite obser-62

vations for meteorological variables. For instance, Joiner and da Silva (1998) applied a singular-value decomposition (SVD)63

approach in order to reduce the effect of prior information in the analysis, so that the retrieval and forecast errors can be as-64

sumed to be uncorrelated. Rabier et al. (2002) considered assimilation of IR sounders, which typically provide a large number65

of different channels. They applied methods of information and retrieval theory in order to decide which channels contain most66

information about the vertical variation of temperature and humidity. Cardinali et al. (2004) employed the influence matrix to67

compute diagnostics of the impact of observations in a global NWP data assimilation system. Johnson et al. (2005a, b) investi-68

gated filtering and interpolation aspects in a 4DVAR assimilation system by use of an SVD approach. They also used Tikhonov69

regularisation theory to optimise the signal-to-noise regularisation parameter in order to maximise the information that can be70

extracted from observations. Xu (2006) compared different metrics, namely, the relative entropy and the Shannon-entropy dif-71

ference, to measure information contents of radar observations assimilated into a coupled atmosphere-ocean model. Bocquet72

(2009) used methods of information theory to address the question how to determine an optimum spatial resolution of the73

discretised space of control variables in geophysical data assimilation.74

Burton et al. (2016) have recently investigated the information content of “3β+2α”lidar measurements, i.e., observations of75

backscattering at three wavelengths and extinction at two wavelengths, where the information content was analysed with regard76

to the refractive index and number distribution of the aerosol particles. Veselovskii et al. (2004, 2005) have performed similar77

analyses of the information content of multiwavelength Raman lidar measurements with regard to the complex refractive index78

and the effective radius of the aerosol particles. As mentioned earlier, the refractive index is a very useful retrieval product of79

remote sensing observations. However, from the point of view of chemical transport modelling, the main quantities of interest80

are the concentrations of the different chemical species of which the aerosol particles are composed. Although the chemical81

composition determines the refractive index, the inversion of this relationship is still under-determined, hence an ill-posed82

problem. In the present paper, we want to investigate the inverse problem that goes all the way from optical properties to the83

chemical composition of particles.84

The two main goals of this paper are (i) to apply a systematic method for analysing the information content of aerosol optical85

properties with regard to the particles’ chemical composition, and (ii) to test an algorithm for making an automatic choice86

of control variables in chemical data assimilation such that all control variables are signal-related, while the noise-related87

variables remain unchanged by the assimilation procedure. The main hypothesis is that by constraining the data assimilation88

algorithm to acting on the signal-related variables only, the output will be less noisy than in an unconstrained assimilation.89

The focus of our study will be on spectral observations of extinction and backscattering coefficients, which can be retrieved90
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from lidar observations.1 We will not restrict this analysis to any fixed choice of wavelengths, such as 3β+2α. Instead, we will91

investigate the information content for varying combinations of the three main wavelengths of the commonly used neodymium-92

doped yttrium aluminium garnet (Nd:YAG) laser. However, it should be mentioned that extinction measurements at the lowest93

harmonic of 1064 nm can be difficult and plagued by high errors; in practice, this will affect the observation error, resulting in94

a low information content of this particular measurement.95

The paper is organised as follows. Section 2 gives a rather concise introduction of the modelling tools and of the numerical96

approach employed to studying the information content of extinction and backscattering observations. Section 3 presents the97

main results of this study, and Sect. 4 offers concluding remarks. To make this paper self-contained, we included an appendix98

that gives a brief introduction to some essential concepts of data assimilation, and a detailed explanation of the methods we99

used for quantifying the information content of aerosol optical observables.100

2 Methods101

This study consists of two parts. In the first part we quantify the information content of extinction and backscattering coeffi-102

cients at multiple wavelengths. In the second part we perform a numerical test to investigate to what extent the concentrations103

of different chemical aerosol components can be constrained by observations of extinction and backscattering coefficients.104

The modelling tools required for this study are (i) a chemical transport model; (ii) an aerosol optics model; and (iii) a data105

assimilation system.106

2.1 Multiple scale Atmospheric Transport and CHemistry modelling system (MATCH)107

We employ the chemical transport model MATCH, which is an off-line Eulerian CTM with flexible model domain. It has been108

previously used from regional to hemispheric scales. Here we use a model version that contains a photochemistry module with109

64 chemical species, among them four secondary inorganic aerosol (SIA), namely, ammonium sulphate, ammonium nitrate,110

other sulphates, and other nitrates. It also contains a module with 16 primary aerosol variables, namely, sea salt, elemental111

carbon (EC), organic carbon (OC), and dust particles, each emitted in four different size bins. Thus, the model contains 20112

different aerosol variables. The size ranges of the four bins are as follows.113

Size bin 1: 10–50 nm114

Size bin 2: 50–500 nm115

Size bin 3: 500–1250 nm116

1In addition to lidar measurements from ground-based and aircraft-carried instruments (e.g. Burton et al., 2015), there are currently two space-borne lidar

instruments in orbit. The CALIOP instrument on-board the CALIPSO satellite has been launched in April 2006; it has three receiver channels, one at 1064

nm, and two channels at 532 nm to measure orthogonally polarised components. The CATS instrument on-board the International Space Station has been

operational since January 2015; It measures backscattering at 355 nm, 532 nm, and 1064 nm, were the latter two have two orthogonal polarisation channels.

It is also capable of performing high spectral resolution measurements at 532 nm. A third instrument is planned to be launched in 2018 (ATLID on-board

EarthCARE).
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Size bin 4: 1250–5000 nm.117

The model reads in emission data, meteorological data, and land use data and computes transport processes, chemical118

transformation, and dry and wet deposition of the various trace gases and aerosols. As output, it provides concentration fields119

of gases and aerosols, the deposition of these chemical species to land and water-covered areas, as well as the temporal120

evolution of these variables.121

We mention that there exists another model version that includes aerosol microphysical processes, such as nucleation, con-122

densational growth, and coagulation. In that model version the aerosol size distribution evolves dynamically. The model has123

20 size bins and seven chemical species (EC, OC, dust, sea salt, particulate sulphate (PSOX), particulate nitrate (PNOX), and124

particulate ammonium (PNHX)), although not all species are encountered in all size bins. The total number of model variables125

currently in that version is 82.126

More complete information about the mass transport model can be found in Andersson et al. (2007). The sea salt module is127

discussed in Foltescu et al. (2005). The aerosol microphysics module is described in Andersson et al. (2015).128

For the sake of simplicity we here use the mass transport model without aerosol microphysical processes (see next sec-129

tion). The model is set up over Europe covering 33◦ in the longitudinal and 42◦ in the latitudinal direction in a rotated lat-130

long grid with 0.4◦×0.4◦ horizontal resolution. In the vertical direction the model domain extends up to 13 hPa, using 40131

terrain-following coordinates. The meteorological input data are taken from the numerical weather prediction model HIRLAM132

(Undén et al., 2002). For the emissions of all aerosol components we used EMEP data for the year 2007, where EC and OC133

emissions were computed from total primary particle emissions based on the data in Kupiainen and Klimont (2004, 2007).134

2.2 Aerosol optics model135

We have two different optics models coupled to MATCH, one to the mass transport module, and another to the aerosol mi-136

crophysics module. The former assumes that all aerosol species are homogeneous spheres, and that each chemical species137

is contained in separate particles. Under these assumptions the optics model is linear, i.e., the optical properties are linear138

functions of the concentrations of the chemical aerosol species. The latter model accounts for the fact that in reality different139

chemical species can be internally mixed, i.e., they can be contained in one and the same particle. That model also accounts140

for the inhomogeneous internal structure of black carbon mixed with other aerosol components, and for the irregular fractal141

aggregate morphology of bare black carbon particles (Kahnert et al., 2012a, 2013). Under these assumptions the optics model142

becomes non-linear, which introduces additional complications in the inverse-modelling problem. This is the main reason why143

we chose to use the simpler mass transport optics model in this study. Much of the theory explained in the appendix relies on144

the assumption that the optics model is either linear, or that it is only mildly non-linear, so that it can be linearised — see Eq.145

(B6).146

Table 1 lists the refractive indices in the mass-transport optics model at the three lidar wavelengths considered in this study.147

More information about the aerosol optics models implemented in MATCH can be found in Andersson and Kahnert (2016).148
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Table 1. Refractive indices at the three harmonics of the Nd:YAG laser assumed in the MATCH mass-transport optics model.

wavelength [µm] 0.355 0.532 1.064

SIA 1.53+5.0e-3 i 1.53+5.6e-3 i 1.52+1.6e-2 i

Dust 1.53+1.7e-2 i 1.53+6.3e-3 i 1.53+4.3e-3 i

NaCl 1.51+2.9e-7 i 1.50+1.0e-8 i 1.47+2.0e-4 i

OC 1.53+5.0e-3 i 1.53+5.6e-3 i 1.52+1.6e-2 i

EC 1.66+7.2e-1 i 1.73+6.0e-1 i 1.82+5.9e-1 i

2.3 Three-dimensional variational data assimilation (3DVAR)149

Data assimilation is a class of statistical methods for combining model results and observations. The algorithm weighs these150

two pieces of information according to their respective error variances and covariances. As output the assimilation returns a151

result in model space of which the error variances are smaller than those of the original model estimate. In our case the model152

variables are the mass mixing ratios of aerosol components in a three-dimensional discretised model domain. These model153

variables are summarised in a vector x. The model provides us with a background (or first guess) estimate xb (with an error154

ǫb). The observations, summarised in a vector y, are related to the model state x by155

y = Ĥ(x)+ ǫo, (1)156

where Ĥ is known as the observation operator, and ǫo denotes the vector of observation errors. The problem is to determine the157

most likely state vector xa given xb and y, and given the background error covariance matrix B= 〈ǫb ·ǫ
T
b 〉, and the observation158

error covariance matrix R= 〈ǫo · ǫ
T
o 〉. Here 〈· · · 〉 denotes the expectation value. In the three-dimensional variational method159

(3DVAR), the maximum-likelihood solution is found by numerically minimising the cost function160

J =
1

2
(x−xb)

T ·B−1 · (x−xb)+
1

2
[Ĥ(x)−y]T ·R−1 · [Ĥ(x)−y]. (2)161

Data assimilation is commonly employed for constraining model results by use of observations. However, one can also162

employ data assimilation as an inverse-modelling tool, i.e. for retrieving a model state from measurements. A summary of the163

theoretical basis of variational data assimilation is given in the appendix.2164

The MATCH model contains a 3DVAR data assimilation module. This model uses a spectral method, i.e., the model state165

vector is Fourier-transformed in the two horizontal coordinates. All error correlations in the horizontal direction are assumed166

to be homogeneous and isotropic. The background error covariance matrix is modelled with a method that follows similar167

principles to the NMC method (Parrish and Derber, 1992). A more complete description of our 3DVAR program can be found168

in Kahnert (2008).169

2Many authors distinguish between data assimilation and data analysis. In data analysis one merely post-processes a model results by incorporating the

information provided by observations. In data assimilation, the data analysis process is part of the time-integration of the CTM. Thus, in each time step the

result of the analysis becomes the new initial state for the next model forecast. Our 3DVAR code can be used in either analysis or assimilation mode. However,

in this study we only perform numerical tests at a fixed point in time. Thus we use the 3DVAR code as a data analysis tool.

6



2.4 Analysis of the information content of aerosol optical parameters170

The questions we ask are these.171

1. Suppose we have an n dimensional model space. Given m observations (e.g., m1 different parameters at m2 different172

wavelengths, so that m1 ·m2 =m), how many independent model variables N ≤ n can we constrain with the observa-173

tions? Obviously, the best we can achieve would be N =min{m,n}; but often we will have N <min{m,n}.174

2. Which are the N model variables (or linear combinations of model variables) that can be constrained by the measure-175

ments?176

Here we only give a summary of the most essential theoretical tools for answering these questions. A more thorough explanation177

of these concepts is given in the appendix.178

First we want to explain what we mean by signal degrees of freedom and noise degrees of freedom, closely following an179

example in Rodgers (2000) (p. 29f). Suppose we have a direct measurement y of a scalar variable x with error ǫo, i.e.180

y = x+ ǫo. (3)181

Suppose further that we have a background estimate xb with background error variance σ2
b , and that the error ǫo has variance182

σ2
o . The prior variance of y is given by σ2

y = σ2
b +σ2

o , assuming that background and observation errors are uncorrelated. One183

can show that the best estimate xa of x will be184

xa =
σ2
by+σ2

oxb

σ2
b +σ2

o

. (4)185

Hence, if σ2
b ≫ σ2

o , then the measurement y will provide information for estimating xa, i.e., the measurement provides a degree186

of freedom for signal. However, if σ2
b ≪ σ2

o , then xa will be close to xb, and y provides little information to estimating xa. The187

measurement mostly contains information on ǫo, i.e., it provides a degree of freedom for noise.188

In a more general case we have to consider a state vector x and a set of measurements y with errors ǫo. The number Ns of189

signal degrees of freedom is a measure for the information content of the set of measurements. It provides us with an estimate190

of the number N of model variables that can be controlled by assimilating measurements.191

The mapping from model space to observation space given in Eq. (1) can be Taylor-expanded to first order according to192

y = Ĥ(xb)+H · δx+ ǫo, (5)193

where Ĥ is the observation operator, H denotes its Jacobian, and δx= x−xb. The background or prior estimate xb is often194

obtained from a model run. The (in general non-square) matrix H is the main quantity we need to investigate in order to195

address the questions formulated at the beginning of this subsection. It is transformed to the so-called observability matrix196

H̃=R−1/2 ·H ·B1/2, where R is the observation error covariance matrix, and B denotes the error covariance matrix of the197

background estimate. Subsequently, one performs a singular-value decomposition (SVD)198

R−1/2 ·H ·B1/2 =VL ·W ·VT
R, (6)199
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where the matrices VL and VR contain the left and right singular vectors, respectively, and W is a matrix that contains the200

singular values along the main diagonal, while all other matrix elements are zero. It turns out that the singular values wi can201

be employed to compute the number of signal degrees of freedom Ns according to202

Ns =

min{n,m}
∑

i=1

w2
i /(1+w2

i ). (7)203

Another useful measure is obtained by expressing our incomplete knowledge of the atmospheric aerosol state by use of the204

Shannon entropy. The use of measurement information reduces the entropy, and this entropy reduction H can be expressed in205

terms of the singular values:206

H =
1

2

min{n,m}
∑

i=1

log2(1+w2
i ). (8)207

Both Ns or H allow us to quantify the information content of a set of measurements. More detailed explanations of these208

concepts are given in the appendix. A comprehensive discussion of information aspects and inverse methods for atmospheric209

sounding can be found in Rodgers (2000).210

By performing the transformation211

δx′ =VT
R ·B−1/2 · δx (9)212

we go from our physical model space to an abstract phase space — see Eq. (C16) in appendix C. In this phase space the213

components of δx′ can be separated into signal-related and noise-related variables. The signal-related components can be214

controlled by the measurements, the noise-related components cannot. We therefore introduce constraints into our 3DVAR215

program such that only the Ns signal-related components of δx′ are allowed to be adjusted in the data-analysis procedure,216

while the noise-related components are not altered. This is accomplished by adding an extra term JG to the cost function in217

Eq. (2), where218

JG =
1

2
δxT ·B−1/2 ·VR ·B−1

G ·VT
R ·B−1/2 · δx, (10)219

and where BG is a diagonal matrix which we assume to have the form220

BG = σGdiag(w1,w2, . . . , . . . ,wK , c, . . . , c). (11)221

Here K =min{n,m}, and the number c is assumed to be much smaller than the smallest singular value. We note that the222

formulation of the constraint term in Eq. (11) is by no means unique. Other possible choices of the matrix BG are discussed223

in appendix D3. However, we performed preliminary tests which indicate that the constrained 3DVAR approach is not very224

sensitive to exactly how one chooses to formulate the matrix BG, as long as it behaves in such a way that the noise-related225

phase-space variables are tightly constrained, while the signal-related variables can be varied relatively freely by the analysis.226

The free parameters σG and c should be tuned in such a way that the constrains are neither too hard nor too soft. In the former227

case, the analysis will stay too close to the background estimate. In the latter case, it will not differ much from the unconstrained228

analysis.229
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2.5 Numerical test of the constrained assimilation algorithm230

We study the performance of the 3DVAR system by performing a numerical test. To this end, we first perform a reference231

run by driving the MATCH model with analysed meteorological data. These reference results are taken as the “true” chemical232

state of the atmosphere. We apply the optics model to the model output to generate synthetic “observations”, i.e., a vertical233

profile at a selected observation point of extinction and backscattering coefficients at three typical lidar wavelengths. Next we234

run the MATCH model again, this time driven with 48 hour-forecast meteorological data. The results are taken as a proxy for235

a background model-estimate that is impaired by uncertainties. Finally, we perform a 3DVAR-analysis of the “observations”236

and the background estimate in an attempt to restore the reference results. In this numerical test we have perfect knowledge of237

the true state, and we assume that our optics model is nearly perfect, thus providing nearly perfect observations (we assumed238

that the observation error standard deviation is 10 % of the measurement value).The only factor that may prevent us from fully239

restoring the reference state is a lack of information in the observed parameters. Thus, comparison of the retrieval and reference240

results gives us an indication of how strongly different model variables can be controlled by the information contained in the241

observations.242

We perform this test (i) with the unconstrained 3DVAR algorithm; and (ii) with the constrained 3DVAR algorithm. We243

compare both runs in order to make a first assessment of the impact of the constraints. In particular, we are interested in the244

prospect of reducing the risk of assimilating noise in such a highly under-constrained inverse problem.245

3 Results246

3.1 Analysis of the information content of aerosol optical parameters247

We consider the set of parameters {kext(λ1), kext(λ2), βsca(λ1), βsca(λ2), βsca(λ3)}, where kext and βsca denote the extinction248

and backscattering coefficients, respectively, and the wavelengths λ1 = 1064 nm, λ2 = 532 nm, and λ3 = 355 nm denote the249

first three Nd:YAG harmonics. Hereafter, we will abbreviate these parameters by kext(λi) = ki, βsca(λj) = βj , i= 1,2, j =250

1,2,3. Out of this five-parameter set we pick different subsets and analyse the singular values of the corresponding observability251

matrices. From those we compute the number of signal degrees of freedom as well as the change in Shannon entropy for each252

subset of measurements. We will focus on those parameter subsets that are technically relevant in practical lidar applications.253

Table 2 shows the number of signal degrees of freedom Ns and the reduction in Shannon entropy H for different values of254

the observation standard deviation σo. For low values of σo, the number of signal degrees of freedom is identical to the number255

of observational parameters. However, as we increase σo we observe a decrease in Ns. For instance, for σo = 100 % the five256

parameters β1+β2+β3+k2+k3 (last row) only provide roughly Ns = 3 signal degrees of freedom. The reduction in Shannon257

entropy H displays an analogous behaviour. For instance, for σo = 1 % we see that H consistently increases as one increases258

the number of observational parameters. This is much less pronounced for σo = 100 %. In that case, H does increase as one259

goes from a single parameter to two parameters (compare the first to the second and fourth rows). However, as one adds more260
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Table 2. Number of signal degrees of freedom Ns and reduction in entropy H as a function of observation standard deviation, taken from

the lowest model layer (closest to the surface). Results are shown for different subsets of k1, k2, β1, β2, β3, where ki and βi represents the

extinction and backscattering coefficient, respectively, at the wavelengths λ1 = 1064 nm, λ2 = 532 nm, and λ3 = 355 nm.

Obs. Std. dev. [% ] 1 5 10 50 100

No. Parameters Ns H Ns H Ns H Ns H Ns H

1. β3 1.00 10.9 1.00 8.58 1.00 7.58 1.00 5.26 1.00 4.26

2. β1+β2 2.00 20.6 2.00 15.99 2.00 13.98 1.97 9.36 1.90 7.42

3. β1+β2+β3 3.00 27.3 3.00 20.3 2.99 17.3 2.72 10.5 2.33 8.00

4. β3+k3 2.00 19.4 2.00 14.8 2.00 12.8 1.92 8.21 1.74 6.37

5. β1+β2+k2 3.00 28.0 3.00 21.0 2.99 18.0 2.77 11.2 2.42 8.63

6. β1+β2+β3+k2+k3 5.00 40.0 4.97 28.4 4.91 23.5 3.89 12.9 2.97 9.49

parameters, the increase in H slows down considerably. For five parameters (last row), H is only about twice as high as for a261

single parameter (first row).262

This illustrates the pivotal importance of the observation error for the amount of information that can be obtained from mea-263

surements. It is important to understand that the observation error ǫo is not the same as the measurement error ǫm. Rather, in our264

case we have ǫo = ǫm+ǫf , where ǫf denotes the forward-model error [see, e.g., Eq. (1) and accompanying text in Rabier et al.265

(2002)]. Any simplifying assumptions in the optics model or incomplete knowledge of the particle size distribution, morphol-266

ogy, chemical composition, or dielectric properties can contribute to ǫf . Such assumptions enter into our relatively simple267

optics model. 3 Note also that in operational applications there may be other terms contributing to ǫo. For instance, if a point268

measurement is taken at a location that does not provide a good representation of the grid-cell average, then one would have to269

add a representativity error ǫr to the observation error.270

The strong impact of the observation errors on the information content of measurements suggests two conclusions.271

1. In order to make the forward-model error ǫf as small as possible, it is essential to develop accurate and realistic aerosol272

optics models. The most accurate measurements may intrinsically contain a wealth of information on aerosol properties.273

But we can only make use of this information to the extent that our observation operator is able to accurately describe274

the relation between the physical and chemical particle characteristics and their optical properties.275

2. It is equally essential to accurately estimate the contribution of the uncertainties in the aerosol optics model, i.e., to276

estimate the forward-model error ǫf . If we underestimate this error, we will rely too much on the measurements than we277

should, thus assimilating noise. If we overestimate this error, we will waste information contained in the observations.278

In practice, one way to estimate ǫf is to compute optical properties while varying the particles’ size, morphology, and279

3A more realistic optics model, such as the one investigated in Andersson and Kahnert (2016) would help to reduce the observation standard deviation. For

future studies, such a model should be linearised and investigated in a similar way.
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dielectric properties within typical ranges. The resulting variation in the optical properties then allows us to estimate ǫf .280

(For a review of aerosol optics modelling see Kahnert et al. (2014, 2016) and references therein).281

In Table 2 we sorted the results for Ns and H by different values of the observation standard deviation. However, it is282

important to realise that the results also depend on the background error standard deviation, or, more precisely, on how large283

the background error standard deviations are compared to the observation error standard deviations. Johnson et al. (2005a)284

made this point very explicit. They discussed an idealised case with diagonal background error covariance matrix B= σ2
b1 and285

observation error covariance matrix R= σ2
o1. They considered the case of direct measurements, i.e., the model variables and286

the observed parameters are the same type of variables. Under such idealised conditions, they showed that one can maximise287

the amount of information that can be obtained from the observations by optimising the regularisation parameter σb/σo (or,288

equivalently, the regularisation parameter σ2
o/σ

2
b ). In our more general case, instead of σb we need to consider the full matrix289

B1/2, instead of σ−1
o we need to consider R−1/2, and in order to compare the two matrices we need to first transform B1/2

290

from model to observation space according to H ·B1/2. So in place of σb/σo we need to consider the more general quantity291

R−1/2 ·H ·B1/2, and we need to diagonalise it by a singular value decomposition according to Eq. (6). Thus the singular292

values wi generalise the parameter σb/σo. The latter applies to the case of direct observations and error covariance matrices293

that are proportional to unit matrices. The former apply to the general case of non-diagonal error covariance matrices and294

indirect observations.295

From this we learn that the singular values wi provide us with a (however abstract) means to quantify how the background296

standard deviations compare to the observation standard deviations. We pick one of the columns in Tab. 2, namely, the one297

for σo = 50 %, and expand it in Tab. 3. We show the singular values wi, as well as their contributions N i
s = w2

i /(1+w2
i ) and298

Hi = 0.5log2(1+w2
i ) to the sums in Eqs. (7) and (8), respectively. The results reveal that the singular values wi can decrease299

quite rapidly from the largest to the smallest value (see, e.g., case No. 6 in the table). However, the corresponding contribution300

N i
s to the number of signal degrees of freedom changes rather smoothly. Even those singular values that are only slightly301

larger than 1 make contributions N i
s that lie close to 1 (see, e.g., i= 4 in case No. 6). However, once wi falls below 1, the302

corresponding contribution N i
s becomes much smaller than 1 (see i= 5 in case No. 6).303

Let us now compare the different subsets of parameters in Tab. 2 and 3. In case No. 1 we observe a single parameter that304

provides a single degree of freedom. In cases No. 2 and 4 we observe two parameters, which nearly doubles Ns. Comparison of305

these two cases shows that it does not make a significant difference whether we observe backscattering coefficients at different306

wavelengths, or both extinction and backscattering coefficients each at a single wavelengths. In either case the measurements307

provide roughly the same amount of information (in terms of Ns or H). The same is true when considering three observational308

parameters (compare cases No. 3 and 5). The 3β+2α case (No. 6) clearly provides the largest amount of information in309

comparison to the other cases. However, as we saw in Tab. 2, observation errors that are large in comparison to the background310

errors can significantly reduce the effective information that can assimilated into a model.311
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Table 3. Signal degrees of freedom Ns and change in entropy H for the lowest model layer (closest to the surface). Also shown are the

singular values wi and their contributions N i
s and Hi to Ns and H , respectively. The results have been obtained by assuming an observation

standard deviation of 50 %.

No. Parameters i wi N i
s Hi Ns H

1. β3 1 38.2 1.00 5.26 1.00 5.26

1 108 1.00 6.76
2. β1, β2

2 6.00 0.97 2.61
1.97 9.36

1 115 1.00 6.84

3. β1, β2, β3 2 6.54 0.98 2.73 2.71 10.5

3 1.68 0.74 0.97

1 83.3 1.00 6.38
4. β3, k3

2 3.43 0.92 1.84
1.92 8.22

1 128 1.00 7.00

5. β1, β2, k2 2 8.71 0.99 3.13 2.77 11.24

3 1.90 0.78 1.10

1 153 1.00 7.26

2 9.52 0.99 3.26

6. β1, β2, β3, k2, k3 3 1.94 0.79 1.13 3.89 12.9

4 1.63 0.73 0.93

5 0.79 0.38 0.35

3.2 Numerical inverse-modelling test312

We integrated the findings of 3.1 into our 3DVAR program by constraining the algorithm to varying only the signal-related313

model variables. To illustrate the method we conduct a numerical test as described in Sect. 2.5. We perform a 3DVAR analysis314

by assimilating “3β+2α” profiles, i.e., synthetic lidar measurements of βsca at the three wavelengths 1064, 532, and 355 nm315

together with kext at the two wavelengths 532 and 355 nm. Thus in our case the number of singular values in each vertical316

layer is K = 5. We assume an idealised situation in which the observation standard deviation is only 10 %. As we see in Table317

2 (case No. 6), the number of signal degrees of freedom is Ns = 4.9 in this case. So we roughly have as many signal degrees318

of freedom as we have measurements.319

Figure 1 shows vertical profiles of selected aerosol components, namely (from top to bottom): organic carbon (OC) in the 3rd320

size bin (OC-3), OC in the 4th size bin (OC-4), elemental carbon (EC) in the 3rd size bin (EC-3), and mineral dust in the 1st size321

bin (DUST-1). The reference and background mixing ratios are shown in black and green, respectively. The 3DVAR analysis322

was first performed without any constraints; the results are shown in the left column by the blue line. Then the 3DVAR analysis323
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Figure 1. Vertical profiles of selected aerosol components in different size bins. From top to bottom: organic carbon in the 3rd size bin (OC-

3), OC in the 4th size bin (OC-4), elemental carbon in the 3rd size bin (EC-3), and dust in the 1st size bin (DUST-1). The reference results

are shown in black, and the background (first guess) estimate is shown in green. The unconstrained 3DVAR analysis results are presented in

the left panels in blue, the constrained 3DVAR analysis results are shown in the right panels in red.

was repeated with the constraints in Eq. (10) and (11); the results are represented in the right column by the red line. Clearly,324

the unconstrained analysis (blue lines in the left panels) yields results that oscillate quite erratically in the vertical direction.325

Also, the unconstrained analysis can yield conspicuously high values at higher altitudes, even though both the reference and326

background values are both close to zero. By contrast, the constrained analysis (red lines in the right panels) yields results that327

better agree with the reference results. The noisiness in the vertical direction is significantly reduced, and the results at higher328

altitudes are generally lower than those obtained with the unconstrained analysis.329

Figure 2 shows analogous results for the mass mixing ratios of different aerosol components, each summed over all size bins.330

The aerosol components are (from top to bottom): elemental carbon (EC), organic carbon (OC), mineral dust (DUST), sea salt331

(NaCl), secondary inorganic aerosols (SIA, i.e., the sum over all sulphate, nitrate, and ammonium species), and PM10 (i.e., the332

sum over all aerosol components). Clearly, the constrained analysis faithfully retrieves both PM10 and SIA. The unconstrained333

analysis performs almost equally well for these two variables. Sea salt and mineral dust are not well retrieved from the mea-334

surements in either the constrained or unconstrained approach. EC and OC are very well retrieved by the constrained analysis.335
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Figure 2. As Fig. 1, but for the total mass mixing ratio (summed over all size bins). The components are (from top to bottom): EC, OC,

mineral dust, sea salt, secondary inorganic aerosols (sum of all sulphate, nitrate, and ammonium species), and PM10 (sum of all aerosol

components).

For these components, the unconstrained analysis has a very small bias compared to the reference results, but it is considerably336

more noisy (i.e., oscillating in the vertical direction) than the constrained analysis. We also see, again, that the mixing ratios337
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Figure 3. Observations (black solid line), and observation-equivalents of the background estimate (green), and of the unconstrained (blue)

and constrained (red) 3DVAR analysis. The optical parameters and wavelengths are indicated above each panel.

at higher altitudes obtained with the unconstrained analysis can be unreasonably high. This is especially pronounced for OC.338

In general, however, the problems we encounter in the unconstrained analysis are less pronounced in Fig. 2 than in Fig. 1. A339

possible explanation is that SIA may be most strongly related to the measurement signal, and SIA is dominating the aerosol340

mass in this case. We will return to this point shortly. Another possible factor is that the noise in the analysis can be damped341

by summing up results over several size bins.342

Figure 3 shows the observations (black) as well as the observation-equivalents of the background estimate (green) and the343

unconstrained (blue) and constrained (red) 3DVAR analysis for all five observations. We learn from this figure that the analysis344

follows the observations faithfully. The reason for this is that we assumed that the observations were highly accurate with an345

error standard deviation of only 10 %. In fact, the difference between the observation-equivalent analysis and the observations346

deviate by even less than 10 %. However, our tests confirmed that an increase in the observation error eventually results in347

analysis results of which the observation-equivalent increasingly deviates from the observations (not shown).348

We have seen that the analysis provides a reasonable, but, as expected, not a perfect answer to the inverse problem. We have349

further seen that at the observation site it relies more on the observations than on the background estimate. Most importantly,350

we have seen that the constraints introduced in the 3DVAR algorithm suppress noise in the analysis, especially in EC and OC.351

However, the previous figures do not provide us with any direct insight of how exactly the constraints accomplish this. To learn352

more about that we need to inspect the analysis in the abstract phase space of the transformed model variables δx′. (Recall that353

we defined this variable in Eq. (9) as δx′ =VT
R ·B−1/2 ·(x−xb)). Figure 4 shows vertical profiles of a selection of the, in total,354

20 variables δx′
i. The background estimate corresponds to δx′

i = 0 and is represented by the green line. The unconstrained355

3DVAR analysis increment is represented by the blue line, the constrained 3DVAR analysis increment is shown by the red356
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Figure 4. Vertical profiles of the transformed model variables δx′, defined in Eq. (9). The figure shows results obtained with the constrained

(red) and unconstrained (blue) 3DVAR analysis.

line. The first five phase space elements in the top row are the signal-related control variables. Generally, the magnitude of the357

constrained increments (red) is larger than that of the unconstrained increments (blue). The noise-related phase space elements,358

five of which are shown in the bottom row, display the opposite behaviour. The constrained increments are close to zero, as359

they should. The unconstrained elements consistently show higher magnitudes than the constrained elements. However, we360

also see that the unconstrained analysis does produce increments that are largest for the two elements δx′
1 and δx′

2, which361

most strongly relate to the measurement signal. Based on our single test case we cannot say if this is a lucky coincidence362

or a consistent property. If the latter, it may indicate that we are using rather reasonable background error statistics, so that363

the analysis increment in observation space is distributed to the different variables in model space in a sensible way. If the364

former, it could be the case that the success of the unconstrained analysis is largely dependent on whether or not those aerosol365

components dominate the total aerosol mass that most strongly relate to the signal degrees of freedom. (In our case the total366

mass is dominated by SIA, which is very well retrieved by the analysis).367

Finally, we want to obtain a better understanding of how the aerosol components x in model space, or their increments δx, are368

linked with the signal-related phase-space elements δx′. To this end we inspect the first five row vectors of the transformation369

matrix VT
R·B

−1/2 in Eq. (9). The magnitude of these elements can be taken as a measure for how much each aerosol component370

of δx in model space contributes to the signal-related elements of δx′, Figure 5 shows | (VT
R ·B−1/2)ij | for i= 1, . . . ,5, and371

for j = 1, . . . ,20, where 5 is the number of signal-related phase-space elements, and 20 is the number of aerosol components372

in model space. Results are shown for model layers 2 (left column) and 22 (right column), which correspond to altitudes of373

about 100 m and 6 km, respectively. The x-axis shows sea salt (NaCl), EC, OC, and dust, each in four size bins, as well as the374

four SIA components, i.e., sulphates (SOX) other than (NH4)2SO4, ammonium sulphate (AS), ammonium nitrate (AN), and375

nitrates (NOX) other than NH4NO3.376

Comparison of the two columns clearly demonstrates that the elements of the transformation matrix can vary considerably377

with vertical layer (or, more generally, with location). This is because the error covariance matrix B varies with location, and378
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Figure 5. The first five rows (from top to bottom) of the matrix V
T
R ·B

−1/2 at the observation site, and for model layers 2 (left) and 22

(right). The y-values are normalised by dividing them by the maximum element. The x-axis indicates the aerosol components in model space

to which the elements of the row vectors correspond, namely, sea salt (NaCl), EC, OC, and dust, each in four size bins, as well as the four

SIA components: sulphates (SOX) other than (NH4)2SO4, ammonium sulphate (AS), ammonium nitrate (AN), and nitrates (NOX) other

than NH4NO3.

the matrix R varies from one observation site to another (in our case, from one altitude to another). Hence the matrix VR is379

also dependent on location — see Eq. (6). Consequently, it is very difficult to draw general conclusions about which aerosol380

components make a dominant contriubution to the signal-related phase-space variables; this can vary with location, and it can381

vary for different data sets.382

However, in our case the SIA components consistently make a strong contriubution to the first signal-related element δx′
1.383

Since SIA is dominating the aerosol mass mixing ratio in this test case, the analysis was able to retrieve PM10. We also see that384

the dust components make only a weak contribution to most of the signal-related elements δx′
i, especially to the first one. This385

is a likely explanation for the difficulties encountered in retrieving the dust mass mixing ratio. Sea salt is more complicated.386

Size bins 3 and 4 do contribute considerably to δx′
1, and also to some of the other four increments, while size bins 1 and 2 do387

not make a significant contribution to most of the five signal-related control variables. In our case the sea salt mass is strongly388

dominated by the second size bin (not shown). This explains the difficulties we encountered in the retrieval of sea salt.389
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4 Summary and conclusions390

We have quantified the information content of multiwavelength lidar measurements with regard to the chemical composition391

of aerosol particles. Different combinations of extinction and backscattering observations at several wavlengths have been392

investigated by determining the singular values of the scaled observation operator, by computing the number of signal degrees393

of freedom Ns, and by calculating the reduction in Shannon entropy H caused by taking measurements. We first quantified394

Ns and H as a function of observation standard deviation σo. The information content of the observations, as expressed by Ns395

and H , decreased as σo was increased. This became the more pronounced the larger the number of simultaneously observed396

parameters was.397

The observation error depends not only on the measurement error, but also on the forward-model error. The latter de-398

pends on the uncertainties in the aerosol-optics model. This highlights the importance of developing accurate aerosol optics399

models and of obtaining an accurate estimate of the observation error, especially of the uncertainty in the aerosol optics400

model. This is a prerequisite for extracting as much information as possible from the measurements, while avoiding to ex-401

tract noise rather than signal. More often than not, computational limitations and lack of knowledge force us to introduce402

simplifying assumptions about the particles’ morphologies. However, we know that aerosol optical properties can be highly403

sensitive to the shape (Mishchenko et al. (1997); Kahnert (2004)), small-scale surface roughness (Kahnert et al., 2012b), inho-404

mogeneity (Mishchenko et al., 2014; Kahnert, 2015), aggregation (Fuller and Mackowski, 2000; Liu and Mishchenko, 2007;405

Kahnert and Devasthale, 2011), irregularity (Muinonen, 2000; Bi et al., 2010), porosity (Vilaplana et al., 2006; Lindqvist et al.,406

2011; Kylling et al., 2014), and combinations thereof (Lindqvist et al., 2009; Kahnert et al., 2013; Lindqvist et al., 2014). We407

need to know how much these sources of uncertainty contribute to the observation standard deviation. One way of estimating408

this is to compare aerosol optical properties computed with simple shape models to either measurements or to computations409

based on more realistic particle shape models — see Kahnert et al. (2014) for a recent review and a more detailed discussion.410

The singular values of the scaled observation operator provide us with an abstract measure to compare the standard de-411

viations of the background (prior) estimate to those of the observations. The reason why this is a rather abstract measure is412

because background and observation errors are, in general, in different spaces and cannot be directly compared. However,413

we constructed a mapping that transforms the state vector in physical (model) space to an abstract phase space in which the414

components of the state vector can be partitioned into signal-related and noise-related components. The singular values indi-415

cate to what extent the signal-related phase-space variables can be constrained by the measurements. We exploited this fact416

by constructing weak constraints in a 3DVAR data assimilation code, which limited the assimilation algorithm to acting on417

the signal-related phase-space variables only (hereafter referred to as the constrained analysis). The idea was to maximise the418

use of information, while avoiding the risk of assimilating noise by over-using the measurements. Thus, our main hypothesis419

was that the constrained analysis will yield less noisy results than the unconstrained analysis. Numerical tests confirmed this420

hypothesis. Notably in the case of elemental carbon (EC) and organic carbon (OC) the unconstrained analysis gave mixing421

ratios that oscillated considerably in the vertical direction. The constrained analysis results were considerably less noisy.422
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When mapped into observation space, the analysis result closely reproduced the measurements. When viewed in the abstract423

phase space, we found that the constrained analysis did, indeed, yield noise-related components that were close to zero, as they424

should. This was not so in the unconstrained analysis. Also, the magnitude of the signal-related phase-space components was425

generally larger in the constrained analysis than in the unconstrained analysis. This confirms that the constraints we introduced426

work as intended.427

In our specific test case secondary inorganic aerosol components were most faithfully retrieved by the inverse modelling428

solution, followed by organic and black carbon. Dust and seasalt mass mixing ratios were more challenging to retrieve. We429

could explain this by inspecting the linear coefficients in the transformation from physical space to the abstract phase space.430

We found that those aerosol components that had the largest weight in the transformation were most faithfully retrieved by the431

analysis. However, these linear coefficients depend on the background error covariances (which can change with location), and432

on the observation error variances. Therefore, it is difficult to draw general conclusions about which aerosol components are433

most easily retrieved by a given set of measurements.434

The results presented here suggest further questions for future studies. We have performed this investigation with a mass435

transport model, thus focusing on the information content of optical measurements with respect to the chemical composition436

of aerosols. When we include aerosol microphysical processes, then the model delivers the aerosols’ size distribution, as well437

as their size-resolved chemical composition. This makes the problem quite different from that we investigated here. First, the438

dimension of the model space is considerably larger for an aerosol microphysics transport model. Constraining such a model439

with limited information from measurements becomes even more challenging than in the case of a mass transport model. On the440

other hand, an aerosol microphysics model delivers information on the particles size distribution and mixing state. Therefore,441

this would require us to make fewer assumptions in the aerosol optics model, which may reduce the observation error. The442

present study could be extended to investigate the information contained in extinction and backscattering measurements for443

simultaneously constraining the chemical composition and the size of aerosol particles.444

Another important issue concerns the choice of the aerosol optics model. In the present study we employed a simple445

homogeneous-sphere model in which all chemical components were assumed to be externally mixed. There is little one can446

put forward in defence of this model other than pure convenience. [Regarding the applicability of simplified model particles447

in atmospheric optics see the review by Kahnert et al. (2014)]. As a result of the external-mixture assumption, the observation448

operator is linear, which is a prerequisite for much of the theoretical foundations of this study — see the appendix for details.449

However, it has been demonstrated that drastically simplifying assumptions, such as the external-mixture approximation, can450

give model results for aerosol optical properties that differ substantially from those obtained with more realistic nonlinear451

optics models (Andersson and Kahnert, 2016). It would therefore be important to extend the present study to include more452

accurate and realistic optics models. A first step could be to analyse the degree of nonlinearity of optics models that account453

for internal mixing of different aerosol species. If they turn out to be only mildly nonlinear, then one can linearise them and454

work with the Jacobian of the nonlinear observation operator. Otherwise the theoretical methods employed in this paper would455

have to be extended in order to accommodate nonlinear observation operators.456
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Appendix A: Inverse problems457

Suppose we have a system described by a set of variables x1, . . . ,xn, summarised in a vector x. Suppose also that we have an458

operator Ĥ : Rn → R
m, x 7→ y = Ĥ(x) that allows us to compute a set of variables y1, . . . ,ym, summarised in a vector y. To459

take a specific example, we may think of x as a vector of mass mixing ratios of chemical aerosol species, y as a set of aerosol460

optical properties, and Ĥ as an aerosol optics model. The operator Ĥ maps from model space into observation space, which461

allows us to compare model output and observations. We consider the following two problems:462

1. Direct problem: Given x and Ĥ , calculate y = Ĥ(x).463

2. Inverse problem: Given y and Ĥ , solve y = Ĥ(x) for x.464

A pair of such problems is inverse to each other; it is, therefore, somewhat arbitrary which problem we choose to call the465

direct problem, and which one we call the inverse problem. However, one of the problems is usually well-posed, while the466

other one is ill-posed. Such is also the case in aerosol optics modelling. It is customary to call the well-posed problem the467

direct problem, and the ill-posed one the inverse problem.468

An equation y = Ĥ(x) is called well-posed if it has the following properties:469

1. Existence: For every y ∈ R
m, there is at least one x ∈ R

n for which y = Ĥ(x).470

2. Uniqueness: For every y ∈ R
m, there is at most one x ∈ R

n for which y = Ĥ(x).471

3. Stability: The solution x depends continuously on y.472

If any of these properties is not fulfilled, then the problem is called ill-posed.473

Appendix B: Three-dimensional variational data assimilation474

Data assimilation is usually employed for constraining models by use of measurements, but it can also be used to solve inverse475

problems. Here we focus on one specific data assimilation method known as three-dimensional variational data assimilation,476

or 3DVAR.477

In a CTM we discretise the geographic domain of interest into a three-dimensional grid. In each grid cell, the aerosol478

particles are characterised by the mass mixing ratio of each chemical component in the aerosol phase, such as sulphate, nitrate,479

ammonium, mineral dust, black carbon, organic carbon, and sea salt. Suppose we summarise all these mass mixing ratios480

from all grid cells into one large vector x ∈ R
n. The model provides us with a first guess of the atmospheric aerosol state,481

known as a background estimate xb.4 Suppose also that we have m observations, which we summarise in a vector y ∈ R
m. We482

further have an observation operator Ĥ : Rn → R
m, x 7→ Ĥ(x) that maps the state vector x from model space to observation483

4In the remote sensing and inverse modelling community, the background estimate is more commonly referred to as the a priori estimate.
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space5. We further denote by xt the true state of the atmosphere, by ǫb = xt−xb the error of the background estimate, and by484

ǫo = Ĥ(xt)−y the observation error.6 The background and observation errors are assumed to be unbiased and uncorrelated485

with each other. Then their joint probability distribution becomes separable, i.e.486

P (ǫb,ǫo) = Pb(ǫb)Po(ǫo). (B1)487

The true state of the atmosphere is, of course, unknown. Therefore, our definition of the errors and their probability distri-488

bution is only of conceptual use, but not of any practical value. However, we can reinterpret the probability distributions by489

replacing ǫb in the argument of Pb with x−xb, and by replacing ǫo in the argument of Po with Ĥ(x)−y. We further assume490

that both the background and the observation errors are normally distributed. Thus we may write491

Pb(x) = (2π |B |)−1/2 exp

(

−
1

2
(x−xb)

T ·B−1 · (x−xb)

)

(B2)492

Po(x) = (2π |R |)−1/2 exp

(

−
1

2
(Ĥ(x)−y)T ·R−1 · (Ĥ(x)−y)

)

. (B3)493

Here B and R denote the covariance matrices of the background and observation errors, respectively, and | · | denotes the494

matrix determinant. In this form, Pb(x) represents the probability that the atmospheric aerosol particles are found in state x,495

given a background estimate xb with error covariance matrix B. Similarly, Po(x) is the probability that the system is found in496

state x, given measurements y with error covariances R.7497

Equations (B1)–(B3) can be summarised in the form498

P (x) =
1

2π(|B | · |R |)1/2
exp(−J(x)) (B4)499

J(x) =
1

2

[

(x−xb)
T ·B−1 · (x−xb)+ (Ĥ(x)−y)T ·R−1 · (Ĥ(x)−y)

]

,500

(B5)501

where J is suggestively called the cost function, since it can be interpreted as a measure for how “costly” it is for a state x to502

simultaneously deviate from the background estimate and the measurements within the permitted error bounds. The deviations503

are weighted with the inverse error covariance matrices. For instance, this means that for measurements with a small error504

variance, a deviation Ĥ(x)−y becomes “more costly”.505

5The optics model Ĥ usually has to invoke assumptions about physical aerosol properties that are relevant for the optical properties, but not provided by

the CTM output, e.g. assumptions about the morphology of the particles. If the CTM is a simple mass-transport model without aerosol microphysics, then it

is also necessary to invoke assumptions about the size distribution of the aerosols.
6We stress, once more, that the observation error must not be confused with the measurement error ǫm. The latter contributes to the former, but the

observation error contains also other sources of error. For instance, if we deal with morphologically complex particles, but our lack of knowledge forces us

to make assumptions and invoke approximations about the particle shapes, then this forward-model error ǫf contributes to the observation error. The same

is the case if we lack information about the particles’ size distribution. In operational applications the representativity error ǫr can also make a substantial

contribution to ǫo.
7The observation errors are often assumed to be uncorrelated (this is not always true). In such case the matrix R is diagonal, where the diagonal elements

are the observation error variances.
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We are interested in the most probable aerosol state of the atmosphere, i.e., in that state xa for which the probability506

distribution attains its maximum. This is obviously the case when the argument of the exponential in Eq. (B4) assumes a507

minimum. Thus we seek to minimise the cost function J . The variational method is based on computing the gradient of the508

cost function, ∇xJ , and to use this in a descent algorithm to iteratively search for the minimum of J .509

In practice it is common to introduce the variable δx= x−xb, and use the first-order Taylor expansion of the observation510

operator,511

Ĥ(x) = Ĥ(xb)+H · δx, (B6)512

where the (m×n)-matrix H denotes the Jacobian of Ĥ at x= xb. If Ĥ is only mildly non-linear, and if the components of δx513

are sufficiently small, then we can substitute this first-order approximation into Eq. (B5), which yields514

J = Jb + Jo (B7)515

Jb(δx) =
1

2
δxT ·B−1 · δx (B8)516

Jo(δx) =
1

2

(

Ĥ(xb)+H · δx−y
)T

·R−1 ·
(

Ĥ(xb)+H · δx−y
)

(B9)517

The components of the vector δx are the control variables that are iteratively varied by the algorithm until the minimum of the518

cost function is found.519

The solution to the equation ∇xJ = 0n is a solution to the inverse problem (where 0n denotes the null vector in n-520

dimensional model space); we input the observations y into the algorithm, and as output we obtain a result in model space that521

is consistent with the measurements (within the given error bounds).8 What if the measurements contain insufficient informa-522

tion about the state x? The algorithm will still provide an answer to the inverse problem, but the missing information will be523

supplemented by the background estimate xb. The weighting of the two pieces of information, xb and y, is controlled by the524

respective error covariance matrices. Thus data assimilation is a statistical approach, which can be expected to give good results525

on average, but not in every single time-step of the model run. This can become highly problematic if we only have very few526

observations, i.e., m≪ n, where n is the dimension of the model space. If we allow all model variables to be freely adjusted527

by the assimilation algorithm in such a severely under-constrained case, then the algorithm may just assimilate noise from528

the measurements rather than signal, resulting in unreasonable solutions to the inverse problem (e.g. Kahnert, 2009). To avoid529

such problems, one needs to systematically analyse the information content of the observations and constrain the assimilation530

algorithm to only operate on the signal degrees of freedom.531

8By solving the equation ∇J |x=xa
= 0n for the analysed state xa it can be shown that the solution to the inverse problem is given by xa = xb +K ·

(y− Ĥ(xb)), where K=B ·HT · (H ·B ·HT +R)−1 is known as the gain matrix. This illustrates that the analysis updates the background estimate xb

by mapping the increment (y− Ĥ(xb)) from observation space to model space by use of the gain matrix. The correlations among the model variables enter

into the gain matrix through the matrix B. In our case the vertical correlations are rather weak in comparison to correlations among different aerosol species.
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Appendix C: Information content of measurements532

Our ultimate goal is to formulate the data assimilation problem in such a way that the information contained in the mea-533

surements is fully exploited, but not over-used. To this end, we first need to know how many independent quantities can be534

determined from a specific set of measurements. We investigate this question by borrowing ideas from retrieval and information535

theory — see Rodgers (2000) for more detailed explanations.536

The main idea is to compare the variances of the model variables to those of the observations. Only those model variables537

whose variance is larger than those of the observations can be constrained by measurements. However, to actually make such538

a comparison poses two problems. The first problem is that one cannot readily compare error covariance matrices. The second539

problem is that model variables and measurements are in different spaces. We first address the second problem.540

When we account for observation errors ǫo, then the basic relation between model variables and observations is, to first order541

y = Ĥ(xb)+H · δx+ ǫo. (C1)542

The error covariance matrices are given by the expectation values B= 〈δx · δxT 〉, and R= 〈ǫo · ǫ
T
o 〉, where the dot denotes a543

dyadic product.9 From Eq. (C1) we see that the covariance matrix of δy = y−Ĥ(xb) is given by 〈δy ·δyT 〉 =H ·B ·HT +R,544

where we assumed that background and observation errors are uncorrelated. This last equation suggests that we can compare545

model and observation errors in the same space by transforming the background error covariance matrix from the space of546

(n×n) matrices to the space of (m×m) matrices viz. H ·B ·HT .547

To address the first problem, we diagonalise the covariance matrices by making the following change of variables548

δx̃ = B−1/2 · δx (C2)549

δỹ = R−1/2 · (y− Ĥ(xb)) (C3)550

H̃ = R−1/2 ·H ·B1/2. (C4)551

Here B1/2 denotes the positive square root10 of the matrix B, and B−1/2 denotes its inverse. The scaled observation operator552

H̃ is sometimes referred to as the observability matrix. In the new basis, the cost function in (B7)–(B9) becomes553

J =
1

2
δx̃T · δx̃+

1

2

(

H̃ · δx̃− δỹ
)T

·
(

H̃ · δx̃− δỹ
)

. (C5)554

The covariance matrices are now unit matrices. This can also be seen by considering the transformed errors, e.g. ǫ̃o =R−1/2·ǫo555

and computing 〈ǫ̃o · ǫ̃
T
o 〉 =R−1/2 · 〈ǫo · ǫ

T
o 〉 ·R

−1/2=1m×m, since 〈ǫo · ǫ
T
o 〉=R. (Here, 1m×m denotes the unit matrix in m-556

dimensional observation space.) Similarly, we find 〈δx̃ · δx̃T 〉= 1n×n. The covariance matrix of the transformed measurement557

vector δỹ is given by 〈δỹ·δỹT 〉= H̃·H̃T+1m×m. The first term is the model error covariance term transformed into observation558

space, while the second term (the unit matrix) is the diagonalised observation error covariance matrix.559

9The expectation value of a discrete variable a that assumes values a1,a2, . . . ,an with corresponding probabilities p1,p2, . . . ,pn is given by 〈a〉=
∑n

i=1
piai.

10A matrix A is called a square root of a matrix B if AT ·A=B. The positive square root of B, which is denoted by B1/2, has the property x
T ·B1/2 ·x≥

0 for all x. If B is itself positive and symmetric, as is the case for covariance matrices, then the positive square root exists and is unique.
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We are still not in a position to make a meaningful comparison of model and observation errors, since the first term, H̃ ·H̃T ,560

is still not diagonal. To make it so we need to perform one more transformation. To this end, we consider the singular value561

decomposition of the matrix H̃,562

H̃=R−1/2 ·H ·B1/2 =VL ·W ·VT
R. (C6)563

Here H̃ is a (m×n)-matrix, the matrix of the left-singular vectors VL is a (m×m)-matrix, the matrix VR containing the right-564

singular vectors is a (n×n)-matrix, and the (m×n)-matrix W consists of two blocks. If m< n, then the left block of W is a565

(m×m)-diagonal matrix containing the m singular values w1, . . . ,wm on the diagonal; the right block is a (m× (n−m))-null566

matrix. Similarly, if m> n, then the upper block of W is a (n×n)-diagonal matrix containing the n singular values on the567

diagonal, while the lower block is a ((m−n)×n)-null matrix.568

We now make another change of variables:569

δx′ = VT
R · δx̃ (C7)570

δy′ = VT
L · δỹ (C8)571

H′ = VT
L · H̃ ·VR. (C9)572

The matrices VL and VR are orthogonal, i.e., VT
L ·VL = 1m×m, and similarly for VR. Thus, substitution of (C7)–(C9) into573

(C5) yields574

J =
1

2
δx′T · δx′ +

1

2
(H′ · δx′ − δy′)

T
· (H′ · δx′ − δy′) . (C10)575

Evidently, the transformation given in (C7)–(C9) preserves the diagonality of the background and observation error covariance576

matrices. What about the covariance matrix 〈δy′ · δy′T 〉 in the new basis? Using ǫ′o= VT
L · ǫ̃o= VT

L ·R−1/2 · ǫo, as well as577

Eqs. (C1), (C2)–(C4), and (C6)–(C9), we obtain 〈δy′ · δy′T 〉= H′ ·H′T +1m×m. The contribution of the background error578

covariances in this coordinate system is H′ ·H′T , which is a diagonal matrix. This becomes clear from Eqs. (C6) and (C9),579

which yields580

H′ ·H′T =W ·WT , (C11)581

which is a (m×m) diagonal matrix. Thus in this coordinate system we can readily compare the diagonal elements of the582

transformed background error covariance matrix H′ ·H′T to the diagonal (unit) elements of the observation error covariance583

matrix 1m×m. Roughly, those singular values wi on the diagonal of W that are larger than unity correspond to model variables584

δx′
i that can be controlled by the measurements. Those singular values smaller than unity correspond to model variables that585

are only related to noise.586

In the above discussion we relied on plausibility arguments. We mention that there are more systematic ways of approaching587

the problem. Here we merely state some key results without going into details. The interested reader is referred to chapter 2 in588

Rodgers (2000). However, in all approaches the main quantities of interest are always the singular values of the observability589

matrix R−1/2 ·H ·B1/2.590
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One can compute the number of signal degrees of freedom Ns from the expectation value of Jb in Eq. (B8). The result can591

be expressed in terms of the singular values wi of the observability matrix:592

Ns =

min{m,n}
∑

i=1

w2
i /(1+w2

i ), (C12)593

where n is the dimension of model space, and m is the dimension of observation space.594

Another approach is based on information theory. Given a system described by a probability distribution function P (x), one595

defines the Shannon entropy596

S(P ) =−

∫

P (x) log2

(

P (x)

P0(x)

)

dx, (C13)597

where P0 is a normalisation factor needed to make the argument of the logarithm dimensionless. A decrease in entropy ex-598

presses an increase in our knowledge of the system. For instance, if we initially describe the system by Pi(x), and, after taking599

measurements, by Pf (x), then the measurement process has changed the entropy by an amount600

H = S(Pi)−S(Pf ). (C14)601

In our case, we assume that all errors are normally distributed. In that case, one can show that602

H =
1

2

min{m,n}
∑

i=1

log2(1+w2
i ). (C15)603

H can be interpreted as a measure for the information content of a set of measurements.604

Our findings so far suggest a general strategy for how to optimise the amount of information that can be extracted from605

measurements. First, we need to compute the singular value decomposition in Eq. (C6), as well as the transformation given in606

(C2) and (C7), which we can summarise as607

δx′ =VT
R ·B−1/2 · δx. (C16)608

Then we want to formulate the minimisation of the cost function in such a way that only those components of δx′ are adjusted609

by the assimilation algorithm that correspond to the largest singular values of the matrix W in (C6). All other elements of610

δx′ should be left alone. In other words, we want to constrain the minimisation of the cost function to the subspace of the611

signal degrees of freedom of the state vector. Thus, in order to implement this idea, we first need to discuss how to incorporate612

constraints into the theory.613

Appendix D: Minimisation of the cost function with constraints614

In the minimisation of the cost function all elements of the control vector δx are independently adjusted until the minimum615

of J is found. This may not be a prudent approach if the information contained in the observations is insufficient to constrain616

all model variables. In such case one should introduce constraints that reduce the number of independent control variables.617
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However, this needs to be done in a clever way; the goal is to neither under-use the measurements (thus wasting available618

information), nor to over-use them (thus assimilating noise).619

For reasons we will explain later we formulate the constraints as weak conditions. However, for didactic reasons as well as620

for the sake of completeness, we will also mention how to formulate constraints as strong conditions.621

D1 Minimisation of the cost function with strong constraints622

Given k constraints in the form gi(δx)=0, i= 1, . . . ,k, the most general way of finding the minimum of J(δx) under the623

constraints gi is the method of Lagrange multipliers. More specifically, one introduces k Lagrange multipliers λ1, . . . ,λk and624

defines the function625

L(δx1, . . . , δxn,λ1, . . . ,λk) = J(δx1, . . . , δxn)+
k

∑

i=1

λigi(δx1, . . . , δxn); (D1)626

then one solves the minimisation problem627

∇L(δx1, . . . , δxn,λ1, . . . ,λk) = 0n+k, (D2)628

where ∇=∇δx1,...,δxn,λ1,...,λk
is now a (n+ k)-dimensional gradient operator, and where 0n+k denotes the null vector in an629

(n+ k)-dimensional space. Note that in this general formulation of the problem the constraints can even be nonlinear. We are630

specifically interested in linear constraints, which can be expressed in the form G·δx= 0k. Then the constrained minimisation631

problem becomes632

L(δx,λ) = J(δx)+λT ·G · δx (D3)633

∇δx,λL(δx,λ) =





∇δxJ(δx)+λT ·G

G · δx



= 0n+k. (D4)634

Compared to the unconstrained minimisation problem, the introduction of k constraints has increased the dimension of the635

problem from n to n+k. Naively, one may have expected that the dimension would, on the contrary, be reduced to n−k. This636

is indeed the case if the constraints are linear, and if the function J is quadratic, as is the case in Eqs. (B7)–(B9). To see this,637

let us first write those equations more concisely in the form638

J =
1

2

(

δxT ·Q1 · δx+QT
2 · δx+ δxT ·Q2 +Q3

)

(D5)639

Q1 = B−1 +HT ·R−1 ·H (D6)640

Q2 = HT ·R−1 · (Ĥ(xb)−y) (D7)641

Q3 = (Ĥ(xb)−y)T ·R−1 · (Ĥ(xb)−y). (D8)642

Note that the covariance matrices and their inverses are symmetric (i.e. RT =R, etc.) The unconstrained minimisation problem643

requires us to solve the equation ∇δxJ =Q1 · δx+Q2 = 0n. Now we want to minimise the cost function subject to the the644

linear constraints645

G · δx= 0k, (D9)646
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where G is a (k×n)-matrix, δx is an n-vector, and 0k is the null-vector in R
k. Let us denote the kernel11 of G by ker(G). Let647

further z1, . . . ,zn−k denote a basis of ker(G). We define the (n× (n− k))-matrix648

Z=
(

z1 · · · zn−k

)

(D10)649

the column vectors of which are just the basis vectors of ker(G). Obviously, G ·Z= 0k×(n−k), where 0k×(n−k) denotes the650

((k× (n− k))-null matrix. If δx is a vector in R
n for which there exists a vector ξ ∈ R

n−k such that Z · ξ = δx, then we651

automatically have G · δx= 0k, i.e., δx satisfies the linear constraints. Thus we can formulate the constrained minimisation652

problem by substitution of δx= Z · ξ into Eq. (D5), which yields653

J =
1

2

(

ξT ·ZT ·Q1 ·Z · ξ+QT
2 ·Z · ξ+ ξT ·ZT ·Q2 +Q3

)

(D11)654

0k = ∇ξJ = ZT ·Q1 ·Z · ξ+ZT ·Q2. (D12)655

Thus we have reduced the (n+k)-dimensional constrained minimisation problem given in Eq. (D4) to a problem consisting of656

the following two steps.657

1. Determine a basis of the null space ker(G); this yields the matrix Z.658

2. Solve the unconstrained (n− k)-dimensional optimisation problem given in Eq. (D12). From the (n− k)-vector ξ that659

minimises the cost function in (D11), we then obtain the solution δx= Z · ξ that minimises the cost function in (D5)660

subject to the constraint (D9).661

D2 Minimisation of the cost function with weak constraints662

In the approach described in the previous section the solution satisfies the constraints exactly. Therefore, this approach is known663

as the minimisation of the cost function with strong constraints. In the weak-constraint approach the constraints only need to664

be satisfied within specified error bounds.665

The formulation of the weak-constraint approach is conceptually quite simple. One incorporates the constraints by adding666

an extra term to the cost function (B7), i.e.667

J = Jb + Jo + JG (D13)668

JG =
1

2
δxT ·GT ·B−1

G ·G · δx, (D14)669

which also gives an extra term in the gradient of the cost function,670

∇δxJG =GT ·B−1
G ·G · δx. (D15)671

We will assume that the matrix BG=diag(σG
1 , . . . ,σ

G
k ) is diagonal, where k is the number of constraints. The “error variances”672

σG
i along the diagonal of BG allow us to fine-tune the influence of each constraint on the solution. If σG

i is small, then the ith673

11The kernel or null space of a matrix is the set of all vectors z such that G ·z = 0. The kernel is a subspace of the full vector space R
n with dim

ker(G)= n− k.
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constraint is relatively strong, and vice versa. Typically, if the σG
i are made too large, then there is a risk that the minimisation674

algorithm ignores the constraints all together. In that case the solution will be very similar to the unconstrained solution. On the675

other hand, if the σG
i are made too small, then JG can make the dominant contribution to J . In that case, there is a risk that the676

minimisation routine largely ignores the observations and returns a solution that lies quite close to the background estimate.677

D3 Constraints designed for making optimum use of the information contained in the observations678

We now want to incorporate the results of Section C into the variational data assimilation method. More specifically, we want679

to formulate weak constraints, Eq. (D14), based on the singular values of the observation operator in Eq. (C6). To this end,680

we make the change of variables given in Eq. (C16). We assume, without loss of generality, that the first ℓ singular values are681

greater than unity. Thus we only want to use the corresponding components δx′
1, . . . , δx

′
ℓ as independent control variables in the682

3DVAR algorithm, while the remaining components remain unchanged, at least approximately, within specified error bounds.683

If we were to formulate this requirement as a strong constraint, as in Eq. (D9), then it would take the form684

δx′ =VT
R ·B−1/2 · δx=





























δx′
1

...

δx′
ℓ

0
...

0





























. (D16)685

Thus the matrix expressing the constraints is given by G=VT
R ·B−1/2, which is a (n×n) matrix.686

The weak constraint approach is, arguably, more suitable in our case. We have, in the preceding text, frequently used the687

terms signal degrees of freedom and noise degrees of freedom. Although it was conceptually useful to make this distinction, it688

is important to stress that there is no sharp boundary between the two. Rather, there is a smooth transition from singular values689

w1 >w2 > · · ·>wℓ ≥ 1 to singular values 1>wℓ+1 >wℓ+2 > · · ·>wK (K =min{n,m}). For this reason we choose to690

formulate the constraints as weak constraints. This allows us to make a smooth transition from free to constrained control691

variables, where the transition from one regime to the other can be controlled by the singular values.692

In order to apply the weak-constraint approach, we need to substitute the constraint-matrix G=VT
R ·B−1/2 into Eq. (D14),693

which yields694

JG =
1

2
δxT ·B−1/2 ·VR ·B−1

G ·VT
R ·B−1/2 · δx, (D17)695

where BG is a (n×n) matrix. We want to set up this matrix in such a way that we obtain a smooth transition from freely696

adaptable control variables δx′
1, . . . δx

′
ℓ to increasingly constrained variables δx′

ℓ+1, . . . δx
′
k, . . . , δx

′
n. One possible choice of697

the matrix BG would be698

BG = σGdiag(w1,w2, . . . ,wℓ, . . . ,wk, c, . . . , c), (D18)699
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where σG is a free scaling factor, and where the last n−k diagonal elements are equal to a constant c≪ wk chosen to be much700

smaller than the smallest singular value wk.701

Clearly, how we set up the matrix BG is not unique. For instance, a more general choice would be702

BG = σGdiag(wp
1 ,w

p
2 , . . . ,w

p
ℓ , . . . ,w

p
k, c, . . . , c), (D19)703

where c≪ wp
k, and where the exponent p would be another parameter that can be employed to tune how steeply the transition704

from unconstrained to constrained control variables takes place. Yet another choice would be705

BG = σG · diag(µ1,µ2, . . . ,µℓ, . . . ,µk, c, . . . , c), (D20)706

µi = w2
i /(1+w2

i ), (D21)707

where c≪ µk. This ansatz is suggested by Eq. (C12), i.e., each of the elements δx′
1, . . . δx

′
k is weighted with its corresponding708

contribution to the number of signal degrees of freedom. We tested all three approaches (the one in Eq. (D19) for p= 2). These709

tests showed that the different approaches often yield analysis results that are quite similar. However, in each approach the710

free parameters σG and c are tuned to different values. If they are not well tuned, then the analysis tends either toward the711

background estimate or toward the unconstrained analysis, as explained earlier in the text following Eq. (D15).712

Appendix E: Practical aspects of the implementation713

We will here discuss some practical aspects that are mainly interesting for model developers.714

One of the main practical problems is the dimension n of the model space. The grid-size is typically on the order Nx ×715

Ny×Nz ∼ 100×100×10, and the number of aerosol components is on the order of Nc ∼10–100. Hence the dimension of the716

model space is n∼ 106–107. In our case, the matrix H̃ in (C6) is a (m×n) matrix. To numerically perform a singular value717

decomposition of such a large matrix would be a formidable task.718

In variational data assimilation we encounter a similar problem in the inversion of the matrix B. In our 3DVAR code this719

problem is alleviated by using a so-called spectral formulation. The idea is to make a Fourier-transformation in the horizontal720

coordinates and to assume that all horizontal error correlations are homogeneous and isotropic. Under these assumptions721

one obtains one background error covariance matrix for each horizontal wavenumber; each of these matrices has dimension722

Nz×Nc ∼ 103–104. This can further be reduced to about 102 by making a reduced eigenvalue diagonalisation. The details are723

explained in Kahnert (2008).724

In our case we are primarily interested in constraining the aerosol components. Therefore, we formulate our weak con-725

straints in a suitable subspace of the physical space. Suppose, for simplicity, that we have reduced all data to the verti-726

cal resolution of our model. Let νl = 1, . . . ,ml label all measurements that lie within model layer l. Suppose further than727

(iα, jα) is the horizontal grid point belonging to observation νl (so that the index α depends on the layer l and the observa-728

tion νl). Consider the reduced background error covariance matrix with elements B
(α,l)
k,k′ =Biαjαlk,iα,jαlk′ , k,k′ = 1, . . . ,Nc,729

and Nc is the number of aerosol components. Consider further the reduced observability matrix with elements H̃
(l)
νl,k

=730
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∑Nc

k′=1R
−1/2
νl,νl

Hm,iα,jαlk′{(B(α,l))1/2}k′,k, where m=m(l,νl) labels the νlth observation in model layer l. Analogous to731

Eq. (C6), we now perform a singular value decomposition in the reduced space732

H̃
(l)
νl,k

=

min{ml,Nc}
∑

s=1

(V
(l)
L )νl,sw

(l)
s (V

(l)
R )k,s. (E1)733

The dimension of this SVD-problem is now considerably reduced. The number of singular values is equal to K =min{Nc,ml}.734

The constraint matrix G=VT
R ·B−1/2 reduces to735

Gs,k =

Nc
∑

k′=1

(V
(l)
R )k′,s{(B

(α,l))−1/2}k′,k. (E2)736

We now invoke the assumption that the constraints computed at the observation site are also valid at neighbouring points, i.e.,737

we apply the constraint matrix given in Eq. (E2) in Eq. (D17) according to738

JG =
1

2

∑

ijlkk′s

δxijlk′Gs,k′(B−1
G )sGs,kδxijlk, (E3)739

where (BG)s denotes the diagnonal elements of the matrix given in (D18).12.740

Another aspect concerns the positive square root of the background error covariance matrix, which appears in essential741

parts of the theory, namely, in Eqs. (C6) and (D16). In theoretical developments it is, arguably, didactically expedient to work742

with the matrix B1/2. But in practice there are numerically more efficient formulations. One such approach is discussed in743

Kahnert (2008) in the context of a spectral formulation of the variational method. The spectral formulation is applied to the full744

B-matrix in order to reduce the dimension of the problem of diagonalising this matrix. This method is our method of choice745

in the formulation of the background and observation terms in the cost function given in Eqs. (B8) and (B9), respectively.746

However, in the formulation of the constraint term given in Eq. (D17) we can substantially reduce the dimension of the matrix747

B by working in the reduced space in which only the covariances B(α,l) among aerosol components are considered. One could748

compute the matrix (B(α,l))−1/2 in Eq. (D17) by diagonalising the matrix B(α,l). However, a numerically much more efficient749

approach is to not work with positive square root, but with the so-called Cholesky decomposition13 of the B-matrix,750

B(α,l) =CT
u ·Cu, (E4)751

where Cu is an upper triangular matrix. Thus the actual algorithm we used for formulating the constrained minimisation of the752

cost function is obtained by replacing in the preceding formulas all incidences of the matrix B1/2 with the matrix CT
u (and,753

similarly, by replacing the inverse matrix B−1/2 by the inverse of the Cholesky factor, C−T
u ).754

12For those readers interested in spectral formulations of 3DVAR we refer to Eqs. (28)–(30) in Kahnert (2008). Expressed by the spectral control vector

χ=U · δx, the weak constraint in the cost function takes the spectral form JG = 1

2
χ

† ·U−† ·GT ·B−1

G ·G ·U−1 ·χ, and its contribution to the gradient

of the cost function becomes ∇χJG =U−† ·GT ·B−1

G ·G ·U−1 ·χ. We see that these expressions involve the computation of the variable δx=U−1 ·χ

in physical space. Thus, even when using a spectral formulation of the 3DVAR method, one can still compute the constraints in physical space and add their

contributions to J and ∇J . The advantage of this is, as explained above, that the SVD of the observability matrix can be computed in the reduced subspace,

which substantially reduces the dimension of the numerical SVD problem.
13The Cholesky decomposition is, essentially, a special case of a LU-decomposition, which applies to symmetric real (or Hermitian complex), positive

definite matrices.
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