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Dear Matthias,1

we were very happy to receive comments from reviewers who seemed to have many different backgrounds, ranging from2

data assimilation to lidar instrumentation and remote sensing. It was our hope and intention to write this manuscript in such3

a way that it would be interesting to a broad readership, which has not been quite easy. But the discussion showed that it is4

not impossible, and we received many good suggestions to better accomodate the expectations of each of these communities.5

Although most of the reviewer comments were rather straight forward to answer and implement, the sum of them (5 reviews6

plus one extra comment) amounted to quite substantial changes in the structure and content of the manuscript. We changed7

all figures, added two new ones, and removed one of the old figures. This also resulted in some changes in the abstract and8

conclusion section. Below we answer the comments by the reviewers and describe our changes in the manuscript. A manuscript9

version with the tracked changes is appended at the end of this document. Since this looks a bit messy, we also submitted (in10

an extra file) a clean version of the revised manuscript without any markings of the changes we did.11

Below the reviewer comments are marked in blue, our response is marked in black.12

1 Reviewer 113

The ACPD paper by Kahnert and Andersson deals with the assimilation of lidar observations into a chemical transport model.14

They investigate how much information about the chemical composition can be extracted from backscatter and extinction15

measurements and how this information is best assimilated into a chemical transport model.16

Overall the paper is very well written and should be published as it is an interesting and important contribution to aerosol17

research. I only have a few minor comments which the authors may consider for their final paper. I have to say that my18

experience lies more on the lidar and aerosol optics side than on the information theory / mathematical side, thus I was not19

really able to review all theory details described in the appendix.20

We very much appreciate receiving comments from the lidar and aerosol optics community. The parts that deal with theoretical21

developments and chemical data assimilation have been very well covered by reviewers 2 and 4. We thank the reviewer for his22

supportive review and helpful comments!23
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Comments:24

25

1. It may be beneficial to say a few words about the refractive index and the size bins of the individual species of MATCH.26

I suggest to add a table with the refractive index of these species at the lidar wavelengths.27

We added a new table to Sect. 2 providing the refractive indices, and we added an itemised list of the size bins and the28

corresponding size ranges.29

2. Line 105-109: The description of the MATCH aerosol microphysics module could be shortened as it is not used in this30

paper.31

It is difficult to shorten these 5 lines. We could only remove them. Then again, we would like the reader to understand32

that there do exist more realistic optics models, but they are not so straight forward to test, owing to their nonlinearity.33

Thus the present study is meant as a first step in a larger project, which we will, hopefully, be able to follow up with an34

investigation of information content based on a more sophisticated description of aerosol optics.35

3. Line 118: What about the emissions of the other species? Are they also from EMEP?36

Yes. But EMEP does not deliver gridded emission for black carbon and elemental carbon, only for total primary particu-37

late matter. The sentence in question was meant to explain how we converted these into gridded emission data for black38

carbon and elemental carbon. We reformulated this to make it clear that the emissions of all aerosol species are taken39

from EMEP.40

4. Line 134: "an" -> "and"41

Yes.42

5. Line 147 "we constrain to better than observation error": It is not clear to me what this means.43

This formulation was also criticised by another reviewer. We reformulated this part as follows: “Suppose we have an44

n dimensional model space. Given m observations (e.g., m1 different parameters at m2 different wavelengths, so that45

m1 ·m2 =m), how many independent model variables N ≤ n can we constrain with the observations?”46

6. Line 151: Remove "the".47

OK. However, we reformulated this entire section to accommodate the comments by reviewer 2.48

7. Line 177: "To be specific" could be removed.49

Agreed.50

8. Line 177: Do the results (Ns and H) presented in this section depend on the order of the parameters? If yes, are the51

changes significant?52

We do not quite understand this question, especially not what the reviewer means by “order”. Is the reviewer inquiring53

about the ordering and grouping, or about the magnitude? In the latter case, the answer is no, because Ns and H54
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are computed from the scaled Jacobian of the observation operator, which does not depend on the magnitude of the55

parameters. In the former case, the results do depend on which parameters are being measured, but, of course, not on the56

ordering.57

9. Line 185: "around 7.4 for a single wavelength to around 10-12 for two wavelengths" would be more precise.58

OK. This text has changed significantly in the revised version, owing to comments by reviewer 2, who asked us to59

consider different and technically more realistic combinations of observables in table 1.60

10. Line 203: I was not aware about the difference between "observation error" and "measurement error". Is this generally61

accepted terminology? Maybe you can add a reference here so that the reader not familiar with this terminology can see62

that is used also elsewhere or was introduced by someone (maybe Rodgers?).63

We added the formal definition for the observation error as ǫo = ǫf +ǫm and a reference to Rabier et al. (2002). They use64

the same terminology as we do, and they also denote the forward model error by ǫf . However, they use the symbol ǫo65

for the measurement error, which is potentially confusing. We find it less confusing to denote the measurement error by66

ǫm, and to reserve the symbol ǫo for the observation error. We also mentioned that there can be other contributions to the67

observation error, such as representativity error. These concepts are well understood both in the data assimilation and in68

the satellite remote sensing/retrieval community, but not necessarily among instrument developers, who tend to identify69

ǫo with ǫm, while forgetting about ǫf . This can be a serious mistake in cases where ǫf ≫ ǫm, as is the case, e.g., in lidar70

depolarisation measurements. We find this point sufficiently significant to repeat it, in rephrased form, in appendix B.71

11. Fig. 1: The difference between the middle and the right sub-plot is hardly visible. Perhaps you find a better way to72

visualize it.73

We removed this figure. The regional model is merely used to generate a test case, but we do not address questions of74

regional modelling or horizontal information spreading in 3DVAR. Therefore this figure conveys no useful information75

for this study.76

12. Line 229 (and at other places): You use βsca and βbak for the backscatter coefficient. Please use only a single symbol77

throughout the paper.78

Yes, we corrected this and consistently use βsca.79

13. Line 241 "the secondary inorganic aerosol (SIA) species are almost completely restored by the 3DVAR": Is it under-80

standable why exactly SIA is restored? Because of the refractive index? Or does it have something to do with the order81

(index number) of the species in the model?82

This question has also been brought up by other reviewers. We added a new figure to Sect. 3 in which we show the linear83

coefficients in the transformation of the control variables in Eq. (C16) — see the new Fig. 5. Based on this extra figure84

we added a discussion of the question which aerosol components in model space make the dominant contribution to the85

signal-related variables in the transformed space. This facilitates the interpretation of the analysis results.86
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14. Line 274 "there appeared ...": This was not really shown in the paper, so you might remove this sentence or write it in a87

different way.88

OK, we removed this sentence.89

15. Fig. 3: In this figure the difference between "observations" and "analysis" is much smaller than 10 % (the assumed "ob-90

servation error"). As this is somewhat unexpected (but understandable as an optimization is applied) you may add a brief91

discussion about the effect a "measurement error" (noise) would have. Because of the assumed linearity this probably is92

not very difficult to explain.93

OK, we added the following text. “In fact, the difference between the observation-equivalent analysis and the observa-94

tions deviate by even less than 10 %. However, our tests confirmed that an increase in the observation error eventually95

results in analysis results of which the observation-equivalent increasingly deviates from the observations (not shown).”96

16. Fig. 4: Could it be of interest to see which aerosol species (size bins) the individual variables represent? What would be97

the effect of changing the order of the species?98

We added an extra figure (new Fig. 1) that shows a selection of aerosol species in specific size bins. In response to99

reviewer 2 and 4, we even show a comparison with an unconstrained analysis. This makes it clearer that the constrained100

analysis reduces the noisiness of the analysis, since it is being constrained to assimilating signal rather than measurement101

noise.102

We do not understand the last question about changing the “order of the species”.103

17. Line 277: "to be sure" could be removed.104

Agreed, but we re-wrote the whole sentence.105

18. Line 314: I think some aerosol species exist for which assuming externally mixed spheres is not that wrong.106

It is unclear what kind of species the reviewer refers to. Certainly not dust or black carbon (BC). Sea salt is either mixed107

with water, or else it is nonspherical. Organic carbon (OC) and secondary inorganic aerosols (SIA) are rarely found108

in pure form. They are often mixed with each other, with water, NaCl, and even BC and dust. Even nucleation-mode109

particles are often the result of at least binary nucleation involving more than one species. In our more realistic aerosol110

microphysics model there is not a single size bin in which liquid-phase (i.e., spherical) aerosols consist of a single111

compound. We therefore prefer to keep the text in its present form.112

2 Reviewer 2113

2.1 General comments114

1. This paper details an interesting way to assess the information content in lidar measurements of aerosol backscatter and115

extinction with respect to model assimilation. It also demonstrates how this knowledge may be used to optimize the116

incorporation of lidar measurements in the model. This is a very interesting and relevant topic. Assimilation of lidar117
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data into models is a field that is still developing rapidly, with a few different groups using very different techniques;118

therefore, well designed research into how best to use lidar data is very valuable. It is also potentially informative to119

the lidar community, since work must begin soon to design the next satellite lidar instruments if the lidar record is120

to continue. The choice of which measurements and which wavelengths to include has a large bearing on cost and121

technological difficulty, so having quantitative information about which measurements are most useful for improving122

models is critical. To that end, I would like to suggest some additional cases for Table 1, please see the specific comments123

below.124

We thank the reviewer for the considerably thorough and supportive review, which very much helped us to improve125

various aspects of the manuscript. Our detailed response to the review comments follows.126

2. The paper is well written with very nice clarity. However, the overall organization is somewhat difficult. The current127

organization consists of a very streamlined and easy-to-read main text with five very technically dense appendices. While128

the main text is pleasantly easy to read on the first pass, there is too much information missing. While it’s appropriate to129

include extra, more detailed information in appendices, the main text still needs to be able to stand on its own, and in my130

opinion, it doesn’t quite. I would suggest that the main equations and brief explanations should also be included in the131

main text, including all the equations that a reader would need to apply to calculate the kinds of results presented in this132

work. The appendices also include a lot of pedagogical development; this is the kind of information that I think rightly133

belongs in the appendix for readers who want more details. Since the appendices are 5 different topics, I also suggest134

that each appendix should be exist as a separate entity, with all variables defined, so that a reader can read Appendix D to135

learn about the application of constraints or Appendix E for the “practical aspects” without a close reading of Appendix136

A,B, and C, to find the definitions of the variables.137

The organisation of the paper is indeed a delicate issue that was also brought up by other reviewers. Our main goal is138

to make this paper accessible to a broad community, including lidar instrument developers, remote sensing groups, and139

data assimilation researchers. For this reason, we prefer to include most of the theoretical developments in the appendix.140

However, we agree that this creates a significant problem by removing essential information from the main body of the141

paper. In the revised paper we followed the reviewer’s suggestion and re-state the most essential theoretical results from142

the appendix in the main text. These changes were done mainly in Sect. 2. This makes the paper more readable and143

self-contained, while avoiding the risk of making it too technical, which could narrow down the readership of this work.144

3. The results and conclusions are also a little too abbreviated. Some key aspects are missing, like how was the specific145

weighting chosen and how do we know this is the best weighting? Also, as pointed out by another reviewer, the assess-146

ment (section 3.2) is really more of a demonstration. That is, although the theoretical development is compelling, the147

application/assessment section isn’t sufficient to convince readers that this is a better way to assimilate lidar data than148

another way. This paper clearly reflects a lot of research on the part of the authors and I think the missing information149

probably exists but was left out in the effort to streamline the manuscript. I think adding this additional information150

should be fairly straightforward and would improve the usefulness of this research for the modeling and lidar communi-151

5



ties without adding too much complication to the nice flow of the paper.152

This is also an important point, which was brought up by several reviewers. We performed additional computations using153

the unconstrained assimilation algorithm and compared the constrained to the unconstrained analysis. The hypothesis154

is that the constrained analysis is less noisy, because the unconstrained analysis is at risk of assimilating noise. The155

results of this comparison, which are shown in the new Figs. 1, 2, and 4, are consistent with the hypothesis. Also, we156

eliminated all instances of “numerical experiment” and replace it by a more appropriate term, e.g., “numerical test”,157

“demonstration”, or “illustration”. Further, we added more explanations to Sect. 2.4 about the construction of the covari-158

ance matrix in the constraint term. Finally, we amended the conclusion section and the abstract to incorporate the results159

of the comparison of the unconstrained and the constrained analysis algorithm.160

2.2 Specific comments161

1. Lines 151-158: Here is an example where I think some important things are missing from the main text which only162

appear in the appendices. These eight short lines are the methodology section for the key calculations that are the novel163

part of your research and are critically important for a reader to understand. I suggest that a way to decide what should164

also be included here would be to target the subset of equations that a reader would need to apply to calculate results like165

yours, but without their derivations. Also include enough supporting explanation to describe what the equations say and166

how to use them.167

We agree, and we made changes following the more detailed suggestions given in the following comments.168

2. L152-153: Specifically here, Eq C6 and C16 should be included in the text, since they are required to understand the169

meaning of the sentence. Later, at L159-160 where readers are directed to the appendix for more background information,170

I think that’s fine.171

OK, we revised the text and included the equations (with explanations) for the observation operator, the observability172

matrix, and the singular-value decomposition thereof. The changes pertain to Sect. 2.173

3. L155-157: The equations for signal degrees of freedom and Shannon information content should also be included in the174

text.175

OK, this has been added with accompanying text to Sect. 2.176

4. L165: “a numerical experiment”. In fact, it’s more of a demonstration than an experiment. It’s useful as a demonstration177

of the results of the technique, but there’s nothing in the demonstration that addresses a hypotheses. Sharing more of178

the background work would make the paper more compelling. For example, as another reviewer suggested, comparing179

to a control experiment would be necessary for convincing readers that this technique is useful. For another example, a180

pair of runs with different weightings in the assimilation would help answer the question of why the weighting that was181

ultimately chosen was the best one.182

We replaced “numerical experiment” everywhere in the paper, as mentioned previously. Next, we showed a control183

run with the unconstrained assimilation system (new Figs. 1, 2, and 4). The hypothesis is that the constrained analysis184
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should be less noisy than the unconstrained analysis. We revised the Figures and show both the unconstrained and the185

constrained analysis. Also, we added an extra figure (new Fig. 1) to show both analysis results for different aerosol186

species in different size bins, as these are even more sensitive than size-integrated total mass mixing ratios. Finally, the187

case we picked in the original manuscript was not particularly challenging, since the background state was fairly close to188

the reference state. In the revised paper, we picked a more challenging case in order to make the differences between both189

analysis runs as clear as possible. As for the different weightings, our tests, so far, indicate that the different approaches190

result in rather similar analysis results. So, the constrained analysis is not as strongly dependent on the weighting as one191

may expect. We clarified this point in a discussion added at the end of Sect. 2.4.192

5. L177: Depolarization is not included in the studied parameters, yet lidar studies have shown that depolarization mea-193

surements contain some information about aerosol composition (for example, Omar et al. 2009 as referenced in the194

introduction, but there are many others). Do the authors have any comment on depolarization and why it isn’t included195

in this study?196

There are two major problems. The obvious practical problem is that the forward model would need to be based on197

nonspherical particles (as spherical particles do not depolarise). However, our simpler optics model is entirely based on198

spherical particles, while our newer optics model only accounts for the nonsphericity of bare black carbon, but not for199

that of mineral dust or dry sea salt. Thus our capabilities of modelling depolarisation are presently limited. The second200

problem is that the observation error for depolarisation may be very high, even though the measurement error is very201

low. This is because the forward-model error is likely to be quite high, since even slight variations in particle geometry202

(e.g. Kahnert et al. (2012)) or inhomogeneity (e.g. Kahnert (2015)) can result in large variations in the depolarisation203

ratio. If the forward-model error is, indeed, high, then the prospects of using depolarisation for constraining CTM model204

results are likely to be low. However, this question is open and will be investigated in future studies. But in order to do205

so, one would first need to obtain estimates of the forward-model error (e.g, by computing depolarisation ratios while206

varying particle morphology).207

6. Table 1 and related discussion: From a lidar standpoint, some combinations of channels are more technologically afford-208

able than others, so the discussion of which channels add significant information content is very interesting. However,209

the utility for the lidar community would be maximized if the combinations were ordered such that they roughly increase210

in technological difficulty. Also, some combinations don’t really make sense from a technological standpoint. There is no211

lidar that measures extinction but not backscatter at the same channel (although modelers may use only the extinction).212

On the other hand, backscatter (actually attenuated backscatter) without a direct measurement of extinction is common.213

Also, since CALIPSO, CATS, EarthCARE and the 3β+2α combination of airborne HSRL2 are mentioned in the in-214

troduction and motivation sections, it would be useful if the combinations relevant to those instruments were included.215

CALIPSO = CATS =β(λ1)+β(λ2). EarthCARE = β(λ3)+k(λ3). HSRL2 =β(λ1)+β(λ2)+β(λ3)+k(λ2)+k(λ3).216

I would suggest these combinations of backscatter and extinction would be most interesting and useful to the lidar com-217

munity: β(λ3)218
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β(λ1)+β(λ2)219

β(λ1)+β(λ2)+β(λ3)220

β(λ3)+ k(λ3)221

β(λ1)+β(λ2)+ k(λ2)222

β(λ1)+β(λ2)+β(λ3)+ k(λ2)+ k(λ3)223

For these experiments, it appears that the observation error was always assumed to be the same in every channel. I think224

it’s a reasonable assumption, to first approximation, that the measurement error would be similar in every channel, but225

as pointed out at L78-79, some lidar retrievals include additional non-random errors that can be much larger. This could226

and should affect the choice of channels to assimilate. For example, the Raman, HSRL, and transmittance techniques are227

fairly direct measures of extinction, but techniques that require an inferred lidar ratio to convert backscatter to extinction228

have relatively little additional measurement information content in the extinction.229

We welcome the reviewer’s suggestion to take technical realisations of lidar systems into account, and we revised Tables230

1 and 2 (i.e., Tables 2 and 3 in the revised manuscript) according to the reviewer’s specific suggestions. We also added231

a comment on the observation errors of lidar measurements, specifically on the fact that the observation errors may be232

different for different channels/parameters.233

7. L 197-201. Here also the discussion of incorporating soft constraints and the specifics of the three weighting schemes234

should be in the main text of the paper and not just the appendix, since it is discussed here in the results section. This235

section is not understandable without the equations from the appendix and most of section D3.236

We removed this discussion here. Instead, we briefly discussed the construction of the constraint covariance matrix in237

Sect. 2.4.238

8. L 203-204. Discussion of observation error vs. measurement error. This is interesting and useful, but could be clarified239

as to whether the forward model error (due to poor assumptions) is considered part of the observation error or is another240

separate source of error. If it is part of the observation error, how are the forward model errors represented and how are241

they transformed into the space of the measurement vector?242

We extended the text to clarify that the observation error is given by ǫo = ǫm+ǫf , where ǫf denotes the forward-model243

error. We also added a citation to the paper by Rabier et al. (2002) with a hint to their Eq. (1), which explains this244

terminology. A way to determine the forward-model errors theoretically is to perform light-scattering calculations while245

varying various parameters, such as particle morphology, refractive index, and size distribution within typical uncertainty246

ranges. This can provide us with an estimate of ǫf . To the best of our knowledge, it would be very difficult to determine247

ǫf with experimental methods.248

We are not sure if we understand the last question. ǫf enters into the definition of the observation error covariance matrix,249

i.e. R= 〈ǫo · ǫ
T
o 〉, which is a matrix in the space of the measurement vector. No further transformation is necessary.250

9. L 207 While there may be retrieval errors in the lidar backscatter and extinction due to assumptions, assumptions on251

particle shape and size distribution are not among the assumptions used in lidar retrievals. These examples belong only252
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to the optics model (forward model). So, perhaps delete “also”. Poor assumptions in the optics model or in lidar retrievals253

would presumably lead to bias errors, whereas measurement errors would more typically be random. Does this make a254

difference in the analysis?255

OK, we deleted “also”. We would generally not be sure if assumptions in the optics model necessarily (mainly) lead256

to biases. For instance, model errors may be dependent on size and morphology of the actual particles. The errors257

would, correspondingly, fluctuate over time as the aerosol size and composition changes over time. The amplitude of this258

fluctuation may well be larger than any possible biases. However, in case that the forward-model does introduce a large259

bias, this would, indeed, be a problem, since analysis algorithms are typically based on the assumption that the errors are260

unbiased.261

10. L 219. I strongly agree that estimating the uncertainties in the optics model is very important. Some discussion here262

seems warranted about how that can be done. Later I see that this is discussed in the summary (L281 – 292) but I think263

it would be better if it comes up first here in the discussion section.264

Agreed. We added an explanation here, but we also mentioned it again in the conclusion section.265

11. L 256 and caption to Fig 4. In both places, it would be kind to remind readers that the delta notation in δx′ means this is266

the difference between the value and the background value.267

It is not so simple. δx in physical space is the difference between the value and the background, while δx′ is obtained268

from δx by applying the transformation δx′ =V
T
R ·B−1/2 · δx. We repeated this definition in the text with a reference269

to the definition (which is now found both in the main text and the appendix), and we added a reference to the defining270

equation both at this point in the text and in the caption to the figure. But we think it would be a bit overdone to repeat271

the equation in the figure caption.272

12. L 259-263. The choice of D21 with its sharp drop-off in weighting appears to mean that only one transformed variable273

is allowed to change in a meaningful way, although the measurement scenario chosen has nearly the maximum amount274

of information content available, close to DOF=4. Why was D21 chosen instead of D18, which would allow the mea-275

surements to play a bigger role? The only discussion of this choice is the rather vague comment in the Appendix “it is276

a matter of experience to test different approaches and select the one that proves to be most suited”. How and why was277

this approach determined to be the most suited?278

We have done some additional tests and found, in fact, that the analysis is less sensitive to the choice of weighting than279

we expected. We explain this in the revised paper in Sect. 2.4. Also, we did the following changes to Fig. 4. First, we280

show δx′ for both the constrained and the unconstrained analysis. Thus the whole discussion of the figure shifts from a281

mere description of the behaviour of the constrained analysis to a comparative discussion. This makes it much clearer282

what kind of effects the weak constraints have on the analysis increments. Second, following a suggestion by reviewer283

4, we show not all 20 panels, but only a subset of panels sufficient to illustrate the different behaviour of signal- and284

noise-related (phase-space) model variables. Third, as mentioned earlier, we picked a more challenging case in which the285
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reference and background results differ more strongly than in the case we originally picked. So this figure has changed286

considerably, and the accompanying discussion has become a lot more informative.287

13. Comparison of Figure 3 and Figure 2, if I understand right, underscores the fact that there is a significant null space,288

not controlled by the measurements, since essentially the same measurements in Fig 3 correspond to both the black and289

red lines in Fig 2. What is not clear to me is what happens in a standard assimilation to the variables that are not well290

controlled by the measurements? Do they remain close to the background values, or do they vary wildly and arbitrarily?291

If the former, then the exercise of determining the singular values wouldn’t help the assimilation very much (but would292

still be useful in terms of building knowledge about what we can and can’t actually measure). On the other hand, if293

a standard assimilation arbitrarily varies state variables in the null space, then this is a very important motivation for294

this technique (and maybe that motivation could be emphasized a little bit more in the introduction and conclusions).295

Not being very familiar with the field of model assimilation, I guess but don’t actually know that there must be other296

“regularization” techniques in use to prevent an assimilation from arbitrarily varying parameters that are mostly in the297

null space of the observations, although I imagine existing techniques may be more ad hoc than the method presented298

here. Can you comment on other methods and demonstrate how this method performs better than other methods?299

The reviewer’s comment about the null space and the behaviour of the unconstrained (standard) assimilation raises an300

important issue. As mentioned earlier, we have now run an additional unconstrained assimilation, and we show a com-301

parison of both methods. Figure 2 has been replaced by two figures. The new Fig. 2, similarly to the old figure 2, shows302

the total mass concentration of different aerosol species, but now for both the constrained and the unconstrained analysis.303

The new Fig. 1 shows a similar comparison of a selection of aerosol species in specific size bins. This comparison illus-304

trates that the unconstrained analysis yields more erratically varying vertical profiles (i.e., results that vary more wildly305

in the null-space).306

As for ad hoc methods, we did review previously reported approaches in the introduction, such as the one by Benedetti et al.307

(2009) (L 53-54) based on constraining the total aerosol mass mixing ratio, and the one by Saide et al. (2013) (L 55-56)308

based on constraining the mass mixing ratio per size bin. One obvious disadvantage is that these approaches are quite309

inflexible. The number of constraints is fixed in these methods, so one cannot easily adapt the number of constraints to310

the number of independent measurements to be assimilated, as we can in our approach. (In fact, our method automatises311

this process.) Also, the available information may not be optimally exploited by these methods (L 57-59). We have not312

tested such methods, so we cannot comment on their performance. However, we also believe that the burden of proof for313

such a demonstration does not lie with us. We are employing a mathematically well-founded approach based on infor-314

mation theory. If other groups choose to not follow us, but continue to use ad hoc methods (which, admittedly, may be315

quite attractive owing to their simplicity), then it is up to them to demonstrate that such ad hoc methods yield sufficiently316

accurate results while exploiting the available measurement information. Owing to the ad hoc nature of these methods,317

such a demonstration would have to be repeated for any new set of measurements to be assimilated. Our method can318

serve as a reference for such tests.319
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14. L 298-299. “It also appeared”. This result is disappointingly empirical for such a well-founded theoretical study. This320

observation that SIC was most faithfully retrieved was made in a single case– would you expect this result to be general321

for all cases, and why? Answering the question is complicated since the singular variables are defined only in the322

transformed space and therefore the information about what variables are or are not constrained by the measurements is323

only in this transformed space, not the state space. Yet this statement highlights that it’s desirable to have information324

about which chemical species and size bins are constrained by the measurements. Is there any way to provide information325

about this quantitatively? For example, since each state variable is a linear combination of the transformed variables,326

would showing the linear coefficients in a table make it more obvious which state variables are most closely related327

to the most significant transformed variables? Perhaps there is a way to use the coefficients to calculate a “fractional328

significance” that would indicate that x% of the variability in a given state parameter is orthogonal with significant329

transformed variables while (1-x)% is orthogonal with insignificant variables?330

This is a very good suggestion. We added an extra figure (new Fig. 5) with accompanying discussion and show the331

magnitude of the linear coefficients for the signal-related control variables. However, the coefficients depend on the B-332

and R-matrices, which vary spatially. So, we cannot draw very general conclusions from a single test case. But we do333

think that this discussion helps the reader to understand why the analysis behaves the way it does in our specific case.334

2.3 Minor comments335

1. L37: Muller et al. 1999 and Veselovskii et al. 2002 and related papers (there are many) would be more relevant refer-336

ences here since they detail retrievals of refractive index, etc., from lidar. (Mishchenko et al. 2007 is an introduction to337

the Glory satellite and was about retrievals from a polarimeter.)338

Müller, D., U. Wandinger, and A. Ansmann (1999), Microphysical particle parameters from extinction and backscatter339

lidar data by inversion with regularization: theory, Appl Optics, 38(12), 2346-2357, doi: 10.1364/AO.38.002346.340

Veselovskii, I., A. Kolgotin, V. Griaznov, D. Müller, U. Wandinger, and D. N. White- man (2002), Inversion with regu-341

larization for the retrieval of tropospheric aerosol parameters from multiwavelength lidar sounding, Appl Optics, 41(18),342

3685-3699, doi: 10.1364/AO.41.003685.343

Agreed. The references have been replaced.344

2. L99: I infer that the ratios in the different size bins are fixed, or else there would be much more than 20 total variables.345

Is there a way to concisely clarify this in the sentence?346

We are not sure what the reviewer means by the “ratios in the different size bins”. The concentration ratios are certainly347

not fixed; they can change from one grid cell to the next. The size ranges are fixed. The latter point should now be clear,348

since we explicitly list the size rages in Sect. 2.1 of the revised manuscript.349

3. L109: maybe replace “in the present setup” with “currently in that version”. “The present setup” seems to refer to “the350

setup used in the present study” but that is misleading, since the present study uses the 20-variable version of the model.351

Agreed.352
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4. L134: “an” should be “and”353

Yes.354

5. L142: “Error correlations ::: are not assumed to be separable”. I’m not sure what this means. What is (or is not) separable355

from what?356

Vertical and horizontal correlations are often assumed to be separable. We do not make such assumptions, because357

vertical correlations are often stronger on larger horizontal length scales. In our spectral model (where the horizontal358

correlations are Fourier-transformed) this means that vertical correlations are larger for smaller horizontal wavenumbers.359

Since this is not so essential in the context of this study (and potentially confusing), we removed this text in L 142.360

6. L153: “see Eq. D16”. Should this be C16?361

Yes. However, following earlier suggestions by the reviewer, this text has been revised and supplied with the main362

equations from the appendix. So the text in its present form has been replaced.363

7. L162-164: Should this sentence perhaps be part of section 2.4, as part of the description of the new technique? The rest of364

this paragraph (L164-174) is more about the demonstration of the new technique and so seems like a somewhat distinct365

topic.366

Agreed, we have moved this text.367

8. Figure 1: The caption says “note the nonlinear colour scale” Actually, the scale is hardly visible. Please expand the axis368

labels so they are a similar text size to the caption text.369

Actually, we think that this figure is not particularly relevant in the context of our study, since we do not consider aspects370

of regional modelling or horizontal information spreading in the analysis. It merely shows one out of many model371

variables in a single model layer, which does not convey much useful information. Also, since we consider a single372

profile, the analysis impacts the mass mixing ratio only at and around the observation site, which is difficult to see in a373

regional plot. We therefore removed this figure in the revised manuscript.374

9. Figure 2: The axis labels’ and inset box labels’ font size should also be increased here.375

OK, we increased the font size in all figures wherever it was necessary and possible.376

10. L 391. The variable n is not defined. Possibly this is the only case, but I would also request that variables be re-defined377

frequently when used in key equations. If a reader is directed from another part of the paper to Equation D18 or C12, for378

example, then it would be nice if all the information relevant to understanding that equation is given immediately after379

that equation, rather than having to scroll through 8 or 10 pages to relocate the definitions of key variables.380

Agreed, we have added the definition of n. Also, the problem with directing the reader to equations in the appendix is381

now significantly alleviated in the revised versions, since we re-stated the key equations in the main body of the paper382

(see our response to an earlier comment).383
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11. L563. The symbol lambda is used for wavelength elsewhere in the text. You might consider using a different symbol384

here.385

OK, we have replace it by mu.386

3 Reviewer 3387

The line-number references of the reviewer seem to be offset relative to those given in the online pdf of our manuscript. But388

we think that we figured out each point in the text the reviewer referred to.389

1. It is well known, that the problem of inversion of standard 3β+2α lidar measurements to the particle microphysics is390

undetermined and to constrain it, numerous techniques were considered. The authors suggest an interesting approach391

to assimilation of lidar measurements into chemical transport model. It looks like a promising concept to extract the392

information about particle parameters from lidar measurements. Paper is very well written and should be published.393

We thank the reviewer for his positive evaluation of our manuscript and for his helpful comments.394

2. The structure may be questionable, because a half of material is put in appendices. These appendices are clearly written395

and are definitely useful for unprepared reader. I personally, had no problems with material structure.396

We agree that the structure was not optimal for all types of readers. We found that the compromise suggested by reviewer397

2 adequately addresses these concerns. We refer to our detailed response to reviewer 2, which explains the changes we398

implemented in the revisions.399

3. Additional references to the previous studies of lidar data inversion would be desirable , and other Referees have already400

suggested several.401

Agreed. We added a paragraph in the introduction with a brief discussion of other studies, also from numerical weather402

prediction data assimilation.403

4. Stability of retrieval strongly depends on aerosol type. It is more challenging for aerosols with dominant coarse mode404

and for particles with strong absorption. The authors consider only one example (not the most challenging) in their405

simulation, so it is not very clear how the approach will work for other aerosol types. But this may be a subject of406

separate study.407

Yes. Although it is not the subject of this paper to comprehensively test all sorts of mixed aerosol populations, we do408

agree that the case we picked was a little bit too easy. This is mostly because the background and reference cases were409

very close to each other. In such a case one does not see very clear differences between a constrained and unconstrained410

analysis. In the revised paper we have picked a more challenging case, and we now show our test results for both411

the constrained and the unconstrained 3DVAR algorithm. This helps to better illustrate what practical significance the412

constraints can have.413
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4 Reviewer 4414

Summary415

The authors consider the case of assimilation of remote-sensing data (specifically aerosol extinction and backscattering coeffi-416

cients) applied to aerosols fields within a chemical transport model. They describe how an additional term can be added to the417

3D-var cost-function so that the assimilation adjusts only those components (in a transformed space) for which the observations418

provide information. The additional term relies on the singular value decomposition of the scaled observation operator. In this419

way, the assimilation automates the choice of control variables in an otherwise highly under-constrained inverse problem.420

Verdict421

The paper is very well written and is surprisingly clear, given the subject matter. The manuscript introduces a potentially very422

powerful concept for variable selection into the field of aerosol data assimilation. The authors have probed the idea in a minimal423

test case, which assists in understanding the effects. I found that the shortcomings of the paper were relatively minor. I felt there424

was insufficient discussion of the literature of related treatment. I was unsure about whether the organisation of the material425

was optimal (see the “Main comments”). Finally, a counter-experiment without the addition of the new constraint in the 4D-var426

cost function was, in my opinion, lacking. All in all, I believe that the paper should be published, pending the minor revisions427

suggested below.428

We are grateful for this encouraging assessment of our work, as well as for the insightful comments and suggestions. It is429

obvious that the reviewer has devoted considerable time into studying the manuscript and providing constructive criticism on430

various aspects of the content and organisation of the paper. Our detailed response to these comments follows.431

4.1 Main comments432

1. There was little or no discussion of literature on related treatments. I have not the time to read all of these myself,433

however I have included a list at the end of articles that may be relevant, for example those that deal with information434

content of observations in data assimilation or those that refer to the singular value decomposition of the observability435

matrix.436

We have, indeed, only cited studies on aerosol data assimilation. Most of the studies cited by the reviewer are concerned437

with numerical weather prediction (NWP). We have added a paragraph to the introduction to discuss related NWP studies438

and include the citations suggested by the reviewer.439

2. I believe that a small counter-experiment was lacking. In the results presented in section 3.2, I would suggest also440

presenting results for the assimilation experiment which did not include the additional constraint in the 3D-var cost-441

function.442

This is a very valid point that was also brought up by other reviewers. We have included these results and revised the443

figures and discussion accordingly. In particular, we replaced Fig. 2 by two new figures. The new Fig. 2 shows, similarly444

to the old Fig. 2, the total mass concentration of different aerosol species, but now for both the constrained and the445

unconstrained analysis. The new Fig. 1 shows a similar comparison of a selection of aerosol species in specific size bins.446
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This comparison illustrates that the unconstrained analysis yields more erratically varying vertical profiles (i.e., results447

that vary more wildly in the null-space).448

3. I was unsure whether the organisation of the material was optimal - I highlight this as an issue that the editor may wish449

to take up. The introduction concludes by urging the reader to read the Appendix before proceeding onto the rest of the450

methods and results section. Much of the interesting methodology is contained within the Appendix, and we agree that451

it would be difficult to make sense of the main part of the paper without a good understanding of the contents of the452

Appendix. As such, I would suggest incorporating the Appendix into the main body of the text. At one level, this is really453

a matter of taste, and thus I leave it to the editor.454

This is a tricky point. We put some thought into this before writing the paper, and we concluded that the appendix is,455

indeed, most interesting for readers who are mainly interested in data assimilation methodology, and for those who are456

very eager to learn something about it. But other readers, e.g. lidar instrument developers, will most likely be deterred457

from reading the paper if we merge the entire appendix with the main body of the paper. However, the reviewer’s458

criticism is very valid, and it has been brought up by several reviewers. We believe that reviewer 2 has suggested a459

very good compromise, namely, to state and explain the main results (equations) from the appendix in the methodology460

section of the paper, while retaining the derivations and more detailed explanations in the appendix. This alleviates the461

problem that parts of the main text are hard to understand without the information given in the appendix. At the same462

time, we avoid the risk of making the paper inaccessible (or just too boring) for those who do not mainly work with data463

assimilation methodology.464

We therefore followed the suggestions of reviewer 2 in this point. It seems to us that this also adequately addresses the465

main point of criticism brought up by reviewer 4.466

4.2 Minor comments467

1. When describing observation errors, there was no reference to the component from “representativity errors” (i.e. mea-468

surements are made at a point, or over a small area in the case of remote sensing, while model grid-boxes are typically in469

the order of kilometres across in the horizontal dimensions). All of the discussion about observation errors was in terms470

of the measurement error and errors in the observation operator, both of which are relevant. However the representativity471

component is not insignificant in many contexts.472

Agreed. We have added a discussion of the representativity error in the text accompanying table 2, where we made it473

clear that in this numerical test we have neglected this source of error.474

2. Observation standard deviation was reported in percentage, but it was unclear what this was a percentage of. Please475

clarify.476

It is a percentage of the observed backscattering coefficient or extinction coefficient. We changed the text in Sect. 2.5477

from “We assumed an observation error standard deviation of 10 %” to “We assumed that the observation error standard478

deviation is 10 % of the measurement value.”479
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3. I would suggest replacing all instances of the term “costfunction” with “cost function” (or “cost-function”). The latter is480

about 15 times more common (on the web, at least). Similarly, I believe that the compound word “nullmatrix” is used in481

German (capitalised, that is) whereas it is “null matrix” (or “zero matrix”) in English.482

Agreed.483

4. I could not find a definition to the term “signal degrees of freedom”. Please include this somewhere (preferably at first484

usage, or in the Appendix).485

We have added a detailed explanation of the terminology to Sect. 2.4. Following the suggestions of reviewer 2, we have486

also provided key equations of the appendix with explanations in the main text. This also applies to Eq. C12, which is487

now provided in the methodology section. Thus the explanation and definition of the term “signal degrees of freedom”488

now appears much earlier in the revised paper. (Note that in the remote sensing community the number of signal degrees489

of freedom is also known as the “effective rank” of the problem.)490

5. Line 48: Please replace “This is a rather bold approach that largely disregards ...” with “This is approach largely disre-491

gards ...” – please use argument rather than rhetoric to explain what is wrong with the work of others.492

Agreed.493

6. Line 54: The reference to Kahnert (2009) is used to show that several optical properties at multiple wavelengths may494

allow constraining more than just the total mass concentration. Surely other authors have looked into this. If so, please495

summarise other work done. If not, please say so.496

We did cite the study by Burton et al. (2016) (L64), although we did so in the introduction. We now have added two more497

references that analyse the information content of lidar observations, namely, the papers by Veselovskii et al. (2004)498

and Veselovskii et al. (2005). However, these papers analyse the information content with respect to particle size and499

refractive index, not with respect to chemical composition. Therefore, we put these citations into the introduction.500

7. Line 98: “... using 40 eta-layers with variable thickness depending on the under- lying topography” – do you just mean501

that this is a terrain-following coordinate? Or is there something more sophisticated about this?502

OK, we have replaced this with “using 40 terrain-following coordinates”.503

8. Line 125: “The background error covariance matrix of the model a priori is modelled with the NMC method ...” . I504

checked the reference (Kahnert, 2008), in which I believe this is described. If the implementation is the same here as in505

the 2008 article, then I believe that it is best to say that it “follows similar principles to the NMC method” or “is inspired506

by the NMC method”. If it is indeed the NMC method, the authors should clarify the difference to methodology laid out507

in Kahnert (2008).508

OK, we have replaced this with “follows similar principles to the NMC method”.509

9. Line 129: I would suggest replacing “Given m observations of, e.g., m1 different parameters at m2 different wavelengths,510

so that m1 m2=m, how many...” with “Given m observations (e.g., m1 different parameters at m2 different wavelengths,511
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so that m1 m2=m), how many...”512

Agreed.513

10. Line 130: “... we can constrain to better than observation error” – do you mean “model error”? If not, please explain that514

the transformation makes the (rescaled) observation errors and (rescaled) model variables comparable.515

This was a bit confusing. We have reformulated this sentence, and we have addd a more detailed explanation of the516

terminology signal degrees of freedom.517

11. Line 134: Please replace “... a singular value decomposition of the Jacobian of the observation operator ...” with “... a518

singular value decomposition of the Jacobian of the scaled observation operator ...” or something similar. By the way,519

this scaled observation operator appears to have a name: “the observability matrix”520

Yes. Actually, this text has been extended with a lot more explanations, and it now provided the main equations from521

the appendix. We have followed the reviewer’s suggestion and introduced the term observability matrix for the scaled522

Jacobian.523

12. Footnote 2, page 5: I found this distinction a bit cryptic. Please consider rephrasing.524

There seem to be two fractions in the community. One that uses data analysis and data assimilation almost interchange-525

ably, and another that insist on keeping these two concepts apart. We are mostly guilty of belonging to the first one, but526

we do not want to make a big deal out of mere questions of terminology (which is why we put this into a footnote rather527

than into the main text). However, we did our best and clarified the text as best as we could.528

13. Line 150: I realise that this is something that is clarified later on, but I would suggest saying a few words at this point529

about the synthetic observations; namely, what kind of observations they were and how many observation points there530

were.531

Agreed; we have added this information in the revised manuscript.532

14. Line 154: I would suggest the following change “thus providing nearly perfect observations. (We assumed an observation533

error standard deviation of 10 %) The only ...” becomes “thus providing nearly perfect observations (we assumed an534

observation error standard deviation of 10 %). The only...”. See also my comment about about describing the units for535

the observation error standard deviation.536

Agreed (replacing “observations. (We” by “observations (we”. In addition, in response to an earlier request to be more537

specific what me mean by “10 %” (percent of what?), we have replaced the text in parenthesis with “(we assumed that538

the observation error standard deviation is 10 % of the measurement value)”.539

15. Line 162: What is “Nd:YAG”? Please clarify. I suspect that this is some error with the bibliography manager.540

It is no error. “Nd:YAG” is the standard abbreviation for “neodymium-doped yttrium aluminium garnet” laser, one of541

the most commonly used solid-state lasers in remote sensing. We have now added this information at the first instance,542

which is in the introduction section.543
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16. Line 168: I would suggest the following change: “... two wavelengths. (Compare, e.g., cases 1., 2., and 3. to cases 4., 5.,544

and 6.) Hence ...” becomes “... two wavelengths (compare, e.g., cases 1., 2., and 3. to cases 4., 5., and 6.). Hence ...”545

Agreed. However, reviewer 2 has suggested to replace the cases considered in Table 1 with different cases that are more546

closely associated to combinations of wavelengths and parameters that are technologically feasible and common. Thus547

the text accompanying Table 1 (now Table 2 in the revised manuscript) has changed considerably.548

17. Line 171: a missing full stop after the right parenthesis.549

Agreed.550

18. Table 1, caption: the “Nd:YAG” term appears again.551

See our earlier response.552

19. Line 181: I believe that “weak constrains” should be “weak constraints”.553

Yes.554

20. Line 189: See my comment above about the representativity component to the observation error.555

Agreed, see our earlier response.556

21. Figure 1: I think it would be interesting to see the increment as an additional panel in this figure.557

Figure 1 has been criticised by several reviewers. In fact, this figure is not particularly useful in the context of our558

paper. We are not discussing any aspects of regional modelling or horizontal information spreading in the assimilation559

algorithm. The model merely serves us to provide us with a test case. So, we have removed this figure in the revised560

manuscript (see also our response to reviewer 2).561

22. Figure 1: The text on the scale is a bit too small. I would suggest having one scale, rather than three, and enlarging the562

scale so that the labels can be read.563

See the previous item.564

23. Figure 2: The units appear to be “mixing ratio [ppb-m]”. Do you mean mass mixing ratio? Please clarify.565

Yes. This has been corrected.566

24. Figure 4: Do we need all panels? Why not just show the first three or four, and then a selection of the remaining terms.567

Agreed, we now show 10 instead of 20 panels. Following the comment by reviewer 2, we have run a 3α+2β test case,568

in which case we have 5 signal degrees of freedom. Thus we now show the first 5 signal-related transformed increments,569

and 5 out of the 15 noise-related increments (Fig. 4).570

25. Line 262: I would suggest the following change “ ... dramatic decrease in both the entropy and signal degrees of freedom571

...” becomes “ ... dramatic decrease in both the entropy-change and signal degrees of freedom ...”572

Agreed; however, owing to the changes in Sect. 3 this part of the text in the conclusions has now also changed.573
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26. Line 282: “It also appeared that among the original model variables, secondary inorganic aerosol components were most574

faithfully retrieved by the inverse modelling solution” – why is this? why SIA? Do they have specific optical properties575

to make them more observable by such LIDAR pseudo-observations?576

This question has been brought up by several reviewers. We follow the suggestion of reviewer 2 and add an analysis of577

the linear coefficients that transform the elements in model space to the signal-related control variables. We have added578

a new figure (Fig. 5) and a discussion — see our detailed response to reviewer 2.579

27. Line 293: I would suggest the following change: “The present study should be extended...” becomes “The present study580

could be extended...”581

Agreed.582

28. Line 295: I believe that the expression “highly underrated” is somewhat dramatic and relatively colloquial, and does not583

fit with the tone in the rest of the paper. The authors are encouraged to use argument rather than rhetoric to make their584

point.585

OK, we have replaced the text with “Another important issue concerns the choice of ...”.586

29. Line 297: Regarding the statement “There is little one can put forward in defence of this model other than pure con-587

venience”. Some justification is required (e.g. some references) to demonstrate why this model is untenable. There’s a588

saying (attributed to George Box) “All models are wrong, some models are useful”. Does this model give significantly589

worse results than representations, or is it just inaccurate in its assumptions?590

Worst of all, this model is rather unpredictable, since its accuracy depends on the size, refractive index, and shape of the591

aerosols. Also, it may, in some cases, give reasonable results at one wavelength and for one specific parameter, and fail592

at other wavelength or for other optical parameters.593

There is a large body of work concerned with aerosol optics and the shortcomings of simplified model particles. Some594

of these studies focus on specific types of aerosols, others on specific morphological properties, such as non-sphericity,595

inhomogeneity, surface roughness, or chemical heterogeneity. It is difficult to pick just a few of such studies as repre-596

sentative citations. So, we found that the best solution was to cite a recent review paper on aerosol optics modelling that597

discusses the strengths and shortcomings of various morphological models (Kahnert et al., 2014).598

30. Paragraph beginning at line 307: It may be worth making it clear that y is not observed, but a model equivalent of the599

observations600

We have inserted the following sentence: “The operator Ĥ maps from model space into observation space, which allows601

us to compare model output and observations.”602

31. Lines 324 and 326: I would suggest replacing all instances of “3-dimensional” with “three-dimensional”603

Agreed.604
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32. Paragraph beginning 336: I would suggest mentioning that the assumption of unbiased background and observation605

errors606

Agreed.607

33. Footnote 6, page 15: See my comments above about the representativity component of the observation error.608

OK; see our earlier response.609

34. Footnote 7, page 16: I would suggest the following change: “The observation errors are often uncorrelated” becomes610

“The observation errors are often assumed to be uncorrelated (this is not always true)”611

Agreed.612

35. Paragraph beginning at line 368: Please comment on the role of spatial and inter- species correlations, particularly in613

light of the comment “if we allow all model variables to be freely adjusted” (line 374).614

OK. We have added the following footnote (after “(within the given error bounds).”: By solving the equation ∇J |x=xa
=615

0 for the analysed state xa it can be shown that the solution to the inverse problem is given by xa = xb+K·(y−Ĥ(xb)),616

where K=B ·HT · (H ·B ·HT +R)−1 is known as the gain matrix. This illustrates that the analysis updates the617

background estimate xb by mapping the increment (y− Ĥ(xb)) from observation space to model space by use of the618

gain matrix. The correlations among the model variables enter into the gain matrix through the matrix B. In our case the619

vertical correlations are rather weak in comparison to correlations among different aerosol species.620

36. Line 369: It might be worth noting that δx is not constrained to ensure that all components of x remain positive in the621

analysis.622

There is no such constraint in the minimisation process itself, but we do post-process the results for δx such that negative623

concentrations would be set to zero. In practice, this rarely ever happens.624

37. Line 386: The phrase “rather tricky” strikes me as somewhat colloquial. I would suggest the following change: “However,625

to actually make such a comparison israther tricky” becomes “However, to actually make such a comparison poses two626

problems.”627

Agreed.628

38. Paragraph beginning at line 390: Please introduce the meaning of the angle- bracket notation. I believe that this is629

common in physics, but other disciplines (e.g. statistics) often use different notation for the expectation.630

OK, we have added a formal definition of the expectation value for discrete variables in a footnote.631

39. Footnote 8, page 17: Should A ·A=B be AT ·A=B?632

Yes!633

40. Line 425: Should “(C7)-(C9)” not be “(C6)-(C9)”? As far as I can see, Eq. (C6) is required here.634

Yes.635
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41. Line 434-435: Please state which particular sections/chapters of Rodger (2000) the reader is referred to.636

Agreed.637

42. Equations C12, C15: I would suggest showing the range of the summation to indicate that it is a summation over638

observations (i.e. i ranges from 1 to m)639

This is not generally true. The summation goes from 1 to min{m,n}, where n is the dimension of model space, and m640

is the dimension of observation space. We have added these summation limits to the sums.641

43. Line 479: “Naively, one may have expected that the dimension would, on the contrary, be reduced to n− k” – why? is642

this because the number of unknowns remains the same but the number of equations to be solved has increased by k?643

In physics one usually learns about holomorphic constraints in theoretical mechanics, often by considering a point mass644

moving on a hypersurface. So, this is often the mental picture one invokes when dealing with constrained problems.645

For instance, a point mass in three-dimensional Euclidean space with a single holomorphic (i.e. strong) constraint can646

be pictured as moving on a two-dimensional surface. Thus this constraint reduces the dimension of the manifold on647

which the the point mass can move from three to two. One would therefore naively expect that one is now dealing648

with a two dimensional problem. The reason why this is naive is because a nonlinear constraint will correspond to a649

curved manifold. To characterise this manifold requires additional equations. Only if we have linear constraints, then650

the hypersurface is simply a tilted plane, which, by a suitable rotation-translation, can be brought into coincidence with,651

e.g., the xy plane. In such cases, and only in such cases, can the dimension of the problem actually be reduced, as one652

would naively have expected.653

44. Line 486: I would suggest the following change: “(Note that the covariance matrices and their inverses are symmetric,654

i.e., RT =R, etc.)” becomes “Note that the covariance matrices and their inverses are symmetric (i.e. RT =R, etc.).”655

Agreed.656

45. Appendix: For all unit and zero matrices (and vectors), I would suggest indicating the dimension as a sub-script.657

Agreed. We have changed this throughout the manuscript.658

46. Line 498: I would suggest adding a subscript to clarify with respect to what the differentiation refers (i.e. replace ∇ with659

∇ξ).660

Agreed.661

47. Paragraph beginning line 515: how was this tuning done in practice?662

As it is explained in the text. When the error variance is too large, one can see that the analysis is close to the un-663

constrained one. When it is too small, the analysis lies very close to the background estimate. One varies the variance664

until one obtains an analysis that departs from the background without drifting over to the (often noisy) unconstrained665

analysis.666
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48. Line 549: “It turns out that Eq. (D18) gives a relatively sharp transition from unconstrained to constrained model vari-667

ables, while Eq. (D19) gives a very gentle transition” – this can be seen from the equations. I would suggest replacing668

the sentence with “It can be seen that Eq. (D18) gives a relatively sharp transition from unconstrained to constrained669

model variables, while Eq. (D19) gives a very gentle transition”670

We have replaced the text with “We tested all three approaches . These tests showed that the different approaches of-671

ten yield analysis results that are quite similar. However, in each approach the free parameters σG and c are tuned to672

different values. If they are not well tuned, then the analysis tends either toward the background estimate or toward the673

unconstrained analysis, as explained earlier in the text following Eq. (D15).” Our tests, so far, showed that the differences674

between these approaches are not quite as dramatic as we expected.675

49. Paragraph beginning line 567: I found that this went too fast and skipped a bit too much detail, after what was otherwise676

a very well-written paper that included a fair bit of theory. In particular, can you please explain in further detail the677

reduced matrices. The phrase “we are primarily interested in constraining the chemical components” was surprising,678

since I thought the authors were mainly interested in the aerosol components. What does it mean to “restrict ourselves679

to the chemical subspace”?680

This seems to be a misunderstanding. What we mean by “chemical components” is “chemical components in the aerosol681

phase”. Since our paper is exclusively concerned with aerosols, we thought that there was no risk of misunderstanding.682

Thus, by “chemical subspace” we mean “subspace of aerosol components”. We have revised the text accordingly and683

replaced all instances of “chemical components” by “aerosol components”, and similarly for “chemical subspace”. Also,684

we have revised the text in response to point 51 (see below).685

50. Line 570: Full stop missing after Nc.686

OK.687

51. Paragraph beginning 574: similar to the above comment, I found that this skipped over too much detail. Please add fur-688

ther explanation. The authors state that in their present study, they use a Cholesky decomposition of the B-matrix. Is this689

what was used in Kahnert (2008), or is this described as the “spectral formulation”? If it is different, it may be relevant690

to understand why the Cholesky decomposition was preferable to the author’s previously presented methodology. This691

is mainly to understand the requirements and limitations of the proposed methodology.692

We are using the spectral formulation for the minimisation of the cost function. However, we formulate the weak con-693

straints in a subspace of physical space, as explained above. The Cholesky decomposition is only applied to the reduced694

B-matrix in the formulation of the weak constraints. We do not go into the details of spectral data assimilation, since695

these questions are rather specific to our particular implementation, while the paper is not restricted to spectral methods.696

However, we have rewritten this entire subsection and explained the reduced subspace approach in much more detail.697

We have also added a short footnote on how to incorporate this into the spectral formulation.698

4.3 Minor formatting issues699
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1. References with parentheses inside parentheses: lines 33, 268, 269, 376700

This has been corrected.701

2. Some of the in-line equations appeared to be missing spaces on one or both sides of the equals sign – this only appeared702

in the appendix. See lines: 391, 403, 404, 425, 515. I might just be imagining it. The paper was otherwise very well laid703

out.704

Our latex program seems to insert spaces when using the eqnarray environment, but not when using the equation envi-705

ronment. We trust that the copy editor will take care of this problem.706

4.4 References the authors may wish to consider707

– Qin, X. Measuring information content from observations for data assimilation: relative entropy versus shannon entropy708

difference. Tellus: Series A. 59, 2, 198- 209, 2007.709

– J. Joiner, A. M. da Silva. Efficient methods to assimilate remotely sensed data based on information content. Q. J. R.710

Meteorol, SOC. (1998), 124, pp. 1669- 1694711

– C Cardinali, S Pezzulli, E Andersson. Influence-matrix diagnostic of a data as- similation system. Q. J. R. Meteorol. Soc.712

(2004), 130, pp. 2767-2786. doi: 10.1256/qj.03.205713

– C. Johnson, N. K. Nichols; B. J. Hoskins. Very large inverse problems in atmo- sphere and ocean modelling. Int. J.714

Numer. Meth. Fluids 2005; 47:759-771.715

– M Bocquet, 2009: Toward Optimal Choices of Control Space Representation for Geophysical Data Assimilation. Mon.716

Wea. Rev., 137, 2331-2348, doi: 10.1175/2009MWR2789.1.717

– F Rabier, N Fourrie, D Chafai, P Prunet. Channel selection methods for Infrared Atmospheric Sounding Interferometer718

radiances. Q. J. R. Meteorol. Soc. (2002), 128, pp. 1011-1027719

– C Johnson, B. J. Hoskins, N. K. Nichols. A singular vector perspective of 4D-Var: Filtering and interpolation. Q. J. R.720

Meteorol. Soc. (2005), 131, pp. 1-19 doi: 10.1256/qj.03.231721

Agreed; these have been added to and discussed in the introduction.722

5 Reviewer 5723

Summary724

The inversion of aerosol optical properties into the aerosol chemical composition is a ill posed problem. The authors use in-725

formation theory techniques to estimate the amount of information contained in LIDAR observations. They present different726

methods to make use of it as contains in a 3DVAR algorithm. This is meant to avoid assimilating noise inherent to the observa-727

tions. To evaluate their constrain methods, they create synthetic observations from CTM simulations and assimilate them back728
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into the CTM.729

730

Recommendation731

The paper is well written and should be published. The methodology proposed is novel and can be applied to different obser-732

vations within the variational assimilation framework.733

We thank the reviewer for this positive evaluation of our paper.734

Main comments735

The authors choose to place all equations and their derivations into different appendixes. This hindered slightly the reading of736

sections 2.4, 3.1 and 3.2. However, the overall readability of the manuscript is improved by the focus on the description and737

evaluation of the method in the main text.738

We agree. This point has been brought up by the other reviewers as well. We have followed the recommendations given by739

reviewer 2 and included the key equations with explanations in the main text, while providing the more detailed derivations740

in the appendix. This is a good compromise that keeps the paper accessible to non-theorists, while providing all the necessary741

details in the appendix for the interested readers.742

Minor comments743

Figure 1 is hard to read, specially the colour bar. Otherwise, the previous Referees have a number of valid suggestions for744

improvement, and I have nothing to add.745

We have removed this figure in the revised manuscript. Since the paper is not concerned with those aspects specific to regional746

modelling, this regional plot conveys no useful information in the context of this paper.747

6 Comment by P. Chazette748

May be you can check the papers of Wang at al. in ACP (2013, 2014a and b), where lidar assimilation is tested.749

We thank Patrick Chazette for bringing these three papers, which he co-authored, to our attention. The results reported in750

these articles are very interesting. The paper by Wang, Sartelet, Bocquet, and Chazette (2013) is particularly impressive. It751

investigated assimilation of lidar and ground observations of PM10 and performed an observing system simulation experiment.752

The results demonstrate that a relatively small lidar network can give analyses and forecasts of similar, and in some cases even753

higher accuracy than corresponding results obtained with an extensive network of ground stations, such as AirBase. This clearly754

demonstrates the potential of lidar observations. However, this study is only marginally relevant in the context of our paper,755

because it considers assimilation of lidar measurements for determining PM10, not for determining the concentrations of each756

aerosol component. It does not discuss the question of how to constrain the assimilation algorithm in order not to assimilate757

noise. For this reason, we did not feel compelled to add a citation to this article.758

The paper by Wang, Sartelet, Bocquet, and Chazette (2014) presents a comparison of modelled and measured backscattering759

profiles, where the measurements were taken by a mobile lidar in the vicinity of Paris. The results of this comparison are highly760

encouraging. They also describe their assimilation methodology. If we understand it correctly, they set up the assimilation to761
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correct PM10, and they distribute the analysis increment back to the various aerosol components in each size class according762

to the a priori distribution. In the context of our study, this is the most relevant fact in this paper, since it describes an ad763

hoc method for specifying constraints. Essentially, this approach seems to be based on the same idea as that described in764

Benedetti et al. (2009). However, we found that the explanations in the paper by Wang et al. (2014) were more detailed than in765

the paper by Benedetti et al. (2009). For this reason, we have added a citation to this paper.766

Finally, the paper by Wang, Sartelet, Bocquet, Chazette, et al. (2014) presents a very impressive and comprehensive evalu-767

ation work of the potential of assimilating lidar measurements from the EARLINET network into an aerosol transport model.768

Since it is an application rather than methodology paper, we did not cite it here; but we will be sure to cite it when we have769

come that far and submit a paper on the operational evaluation of our lidar assimilation system.770
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Abstract.1

We theoretically and numerically investigate the problem of assimilating
✿✿✿✿✿✿✿✿✿✿✿✿✿

multiwavelength
✿

lidar observations of extinction2

and backscattering coefficients of aerosols into a chemical transport model. More specifically, we consider the inverse problem3

of determining the chemical composition of aerosols from these observations. The main questions are how much information4

the observations contain to constrain
✿✿✿✿✿✿✿✿

determine the particles’ chemical composition, and how one can optimise a chemical5

data assimilation system to make maximum use of the available information. We first quantify the information content of6

the measurements by computing the singular values of the
✿✿✿✿✿

scaled observation operator. From the singular values we can7

compute the number of signal degrees of freedom
✿

,
✿✿✿

Ns,
✿

and the reduction in Shannon entropy. For an observation standard8

deviation of 10 %, it is found that simultaneous measurements of extinction and backscattering allows us to constrain twice as9

many model variables as extinction measurements alone. The same holds for measurements at two wavelengths compared to10

measurements at a single wavelength. However, when we extend the set of measurements from two to three wavelengths then11

we observe only a small increase in the number of signal degrees of freedom, anda minor change in the Shannon entropy. The12

✿

,
✿✿

H .
✿✿✿

As
✿✿✿✿✿✿✿✿

expected,
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

information
✿✿✿✿✿✿

content
✿✿✿

as
✿✿✿✿✿✿✿✿

expressed
✿✿

by
✿✿✿✿✿✿

either
✿✿✿

Ns
✿✿

or
✿✿

H
✿✿✿✿✿

grows
✿✿✿

as
✿✿✿

one
✿✿✿✿✿✿✿✿

increases
✿✿✿

the
✿✿✿✿✿✿

number
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿

observational13

✿✿✿✿✿✿✿✿✿

parameters
✿✿✿✿✿

and/or
✿✿✿✿✿✿✿✿✿✿✿

wavelengths.
✿✿✿✿✿✿✿✿

However,
✿✿✿

the information content is strongly sensitive to the observation error; both the number14

of signal degrees of freedom and the reduction in Shannon entropy steeply decrease as the observation standard deviation15

increases in the range between 1 and 100 %
✿

.
✿✿✿

The
✿✿✿✿✿

larger
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

observation
✿✿✿✿

error
✿✿✿✿✿✿✿✿

variance,
✿✿

the
✿✿✿✿✿

lower
✿✿✿

the
✿✿✿✿✿✿

growth
✿✿✿✿

rate
✿✿

of
✿✿

Ns
✿✿✿

or
✿✿

H
✿✿✿✿

with16

✿✿✿✿✿✿✿✿

increasing
✿✿✿✿✿✿✿

number
✿✿

of
✿✿✿✿✿✿✿✿✿✿

observations. The right singular vectors of the
✿✿✿✿✿

scaled observation operator can be employed to transform17

the model variables into a new basis in which the components of the state vector can be divided
✿✿✿✿✿✿✿✿✿

partitioned into signal-related18

and noise-related components. We incorporate these results in a chemical data assimilation algorithm by introducing weak19

constraints that restrict the assimilation algorithm to acting on the signal-related model variables only. This ensures that the20

information contained in the measurements is fully exploited, but not over-used. Numerical experiments confirm
✿✿✿✿

tests
✿✿✿✿✿

show21

that the constrained data assimilation algorithm solves
✿✿✿✿✿✿✿

provides
✿

a
✿✿✿✿✿✿✿

solution
✿✿✿

to the inverse problem in a way that automatises22

the choice of control variables, and that restricts the minimisation of the costfunction
✿✿✿

that
✿✿

is
✿✿✿✿✿✿✿✿✿✿✿

considerably
✿✿✿✿

less
✿✿✿✿✿

noisy
✿✿✿✿

than
✿✿✿

the23
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✿✿✿✿✿✿✿✿✿✿✿

corresponding
✿✿✿✿✿✿✿✿✿✿✿✿

unconstrained
✿✿✿✿✿✿✿✿✿

algorithm.
✿✿✿✿

This
✿✿✿✿✿✿✿

suggests
✿✿✿✿

that
✿✿

the
✿✿✿✿✿✿✿✿✿

restriction
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

algorithm
✿

to the signal-related model variables24

✿✿✿✿✿✿✿✿✿

suppresses
✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿

of
✿✿✿✿✿

noise
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

observations.25

1 Introduction26

Atmospheric aerosols have a substantial, yet highly uncertain impact on climate, they can cause respiratory health problems,27

degrade visibility, and even compromise air-traffic safety. The physical and chemical properties of aerosols play a key role in28

understanding these effects. The aerosol properties are determined by a complex interplay of different chemical, microphysi-29

cal, and meteorological processes. These processes are investigated in environmental modelling by use of chemical transport30

models (CTMs). However, modelling aerosol processes is plagued by substantial biases and errors (McKeen et al., 2007). It is,31

therefore, fundamentally important to evaluate and constrain CTMs by use of measurements.32

Measurements from satellite instruments provide consistent long-term data sets with global coverage. However, it is notori-33

ously difficult to compare measured radiances to modelled aerosol concentrations. An alternative to using radiances is to make34

use of satellite retrieval products. For instance, one of the products of the CALIPSO lidar instrument (Cloud-Aerosol Lidar and35

Infrared Pathfinder Satellite Observations) is a rough classification of the aerosol types (i.e. dust, smoke, clean/polluted conti-36

nental, and clean/polluted marine). This retrieval product is based on lidar depolarisation measurements (Omar et al., 2009). For37

the evaluation of aerosol transport models this provides us with a qualitative check for the chemical composition of aerosols.38

However, this is of limited practical use, since what we really need is quantitative information on the particles’ chemical com-39

position (which can be size-dependent). The most popular approach in evaluating and constraining aerosol transport models is40

the use of retrieved optical properties, such as aerosol optical depth, or extinction and backscattering coefficients. Yet another41

idea is to provide the particles’ refractive index as a retrieval product (e. g. ?).
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(e.g. Müller et al., 1999; Veselovskii et al., 2002).42

However, the use of such retrieval products still leaves us with the challenge of solving an ill-posed inverse problem, namely,43

of determining the particles chemical composition from their retrieved optical or dielectric properties.44

A systematic class of statistical methods for solving this inverse problem is known as data assimilation. Recent studies45

have applied data assimilation to aerosol models with varying degrees of sophistication, ranging from simple dust mod-46

els (Khade et al., 2013) and mass transport models (Zhang et al., 2014) to microphysical aerosol models based on modal47

(Rubin and Collins, 2014) or sectional descriptions (Sandu et al., 2005; Saide et al., 2013) of the aerosol size distribution. The48

assimilation techniques that have been used comprise variational methods, such as 2D (Zhang et al., 2014), 3D (Kahnert, 2008;49

Liu et al., 2011), and 4D variational methods (Benedetti et al., 2009), as well as ensemble approaches (Sekiyama et al., 2010).50

Assimilation of satellite products for trace gases is relatively straightforward, since observed and modelled trace gas concentra-51

tions are almost directly comparable. However, aerosol optical properties observed from satellites are not directly comparable52

to the modelled size distribution and chemical composition of the aerosols. Solving this problem amounts to regularising53

a severely under-constrained inverse problem. Previous aerosol assimilation attempts have been mainly based on educated54

guesses about the information content of the observations. For instance, there have been studies on the assimilation of aerosol55

optical depth (AOD) in which all chemical aerosol components in all size classes and at all model layers were used as indepen-56
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dent control variables (Liu et al., 2011). This is a rather bold approach that
✿✿✿✿✿✿✿✿

approach largely disregards the problems involved57

in inverse modelling. By contrast, it has been proposed to only allow for the total aerosol mass concentration to be corrected by58

data assimilation of AOD (Benedetti et al., 2009)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Benedetti et al., 2009; Wang et al., 2014). This is a more prudent approach59

based on the plausible assumption that a single optical variable only contains enough information to control a single model60

variable. There have also been intermediate approaches in which the total aerosol mass per size bin have been used as control61

variables (Saide et al., 2013).62

In all such approaches the choice of control variables is based on ad hoc assumptions. Numerical assimilation experiments by63

Kahnert (2009) suggest that observations of several aerosol optical properties at multiple wavelengths may allow us to constrain64

more than just the total mass concentration, but certainly not all aerosol parameters. However, it is still an unsolved mystery how65

much information a given set of observations actually contains about the size distribution and chemical composition of aerosols,66

and exactly which model variables are related to the observed signals, and which ones are related to noise. Thus a prerequisite67

for assimilating remote sensing observations into aerosol transport models is to thoroughly understand the information content68

of the observations as well as the relation between the model variables and the signal degrees of freedom.69

In a recent study, Burton et al. (2016) have
✿✿✿✿✿✿✿✿

numerical
✿✿✿✿✿✿✿

weather
✿✿✿✿✿✿✿✿

prediction
✿✿✿✿✿✿✿

(NWP)
✿✿✿✿✿✿✿✿✿

modelling,
✿✿✿✿✿✿

several
✿✿✿✿✿✿

studies
✿✿✿✿

have
✿✿✿✿✿✿✿✿✿

discussed70

✿✿

the
✿✿✿✿✿✿✿✿✿✿

information
✿✿✿✿✿✿✿

content
✿✿

of
✿✿✿✿✿✿✿

satellite
✿✿✿✿✿✿✿✿✿✿

observations
✿✿✿

for
✿✿✿✿✿✿✿✿✿✿✿✿✿

meteorological
✿✿✿✿✿✿✿✿

variables.
✿✿✿

For
✿✿✿✿✿✿✿✿

instance,
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Joiner and da Silva (1998) applied71

✿

a
✿✿✿✿✿✿✿✿✿✿✿✿

singular-value
✿✿✿✿✿✿✿✿✿✿✿✿✿

decomposition
✿✿✿✿✿✿

(SVD)
✿✿✿✿✿✿✿✿

approach
✿✿

in
✿✿✿✿✿

order
✿✿

to
✿✿✿✿✿✿

reduce
✿✿✿✿

the
✿✿✿✿✿

effect
✿✿

of
✿✿✿✿✿

prior
✿✿✿✿✿✿✿✿✿✿

information
✿✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿

analysis,
✿✿✿

so
✿✿✿✿

that72

✿✿

the
✿✿✿✿✿✿✿

retrieval
✿✿✿✿

and
✿✿✿✿✿✿✿

forecast
✿✿✿✿✿

errors
✿✿✿

can
✿✿

be
✿✿✿✿✿✿✿✿

assumed
✿✿

to
✿✿

be
✿✿✿✿✿✿✿✿✿✿✿

uncorrelated.
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Rabier et al. (2002) considered
✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿

of
✿✿✿

IR
✿✿✿✿✿✿✿✿

sounders,73

✿✿✿✿✿

which
✿✿✿✿✿✿✿

typically
✿✿✿✿✿✿✿

provide
✿

a
✿✿✿✿✿

large
✿✿✿✿✿✿

number
✿✿

of
✿✿✿✿✿✿✿

different
✿✿✿✿✿✿✿✿

channels.
✿✿✿✿✿

They
✿✿✿✿✿✿

applied
✿✿✿✿✿✿✿

methods
✿✿

of
✿✿✿✿✿✿✿✿✿✿

information
✿✿✿✿

and
✿✿✿✿✿✿✿

retrieval
✿✿✿✿✿

theory
✿✿

in
✿✿✿✿✿

order74

✿✿

to
✿✿✿✿✿

decide
✿✿✿✿✿

which
✿✿✿✿✿✿✿✿

channels
✿✿✿✿✿✿

contain
✿✿✿✿

most
✿✿✿✿✿✿✿✿✿✿

information
✿✿✿✿✿

about
✿✿✿

the
✿✿✿✿✿✿

vertical
✿✿✿✿✿✿✿✿

variation
✿✿

of
✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿

and
✿✿✿✿✿✿✿✿

humidity.
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Cardinali et al. (2004) employed75

✿✿

the
✿✿✿✿✿✿✿✿

influence
✿✿✿✿✿✿

matrix
✿✿

to
✿✿✿✿✿✿✿

compute
✿✿✿✿✿✿✿✿✿

diagnostics
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

impact
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿

observations
✿

in
✿✿

a
✿✿✿✿✿

global
✿✿✿✿✿

NWP
✿✿✿✿

data
✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿✿✿✿✿

system.
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Johnson et al. (2005a, b) in76

✿✿✿✿✿✿

filtering
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿

interpolation
✿✿✿✿✿✿

aspects
✿✿✿

in
✿

a
✿✿✿✿✿✿✿

4DVAR
✿✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿✿✿✿✿

system
✿✿✿

by
✿✿✿

use
✿✿

of
✿✿✿

an
✿✿✿✿✿

SVD
✿✿✿✿✿✿✿✿

approach.
✿✿✿✿✿

They
✿✿✿✿

also
✿✿✿✿

used
✿✿✿✿✿✿✿✿✿

Tikhonov77

✿✿✿✿✿✿✿✿✿✿✿

regularisation
✿✿✿✿✿✿

theory
✿✿

to
✿✿✿✿✿✿✿✿

optimise
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

signal-to-noise
✿✿✿✿✿✿✿✿✿✿✿✿

regularisation
✿✿✿✿✿✿✿✿✿

parameter
✿✿

in
✿✿✿✿✿

order
✿✿

to
✿✿✿✿✿✿✿✿

maximise
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

information
✿✿✿

that
✿✿✿✿

can78

✿✿

be
✿✿✿✿✿✿✿✿

extracted
✿✿✿✿

from
✿✿✿✿✿✿✿✿✿✿✿

observations.
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Xu (2006) compared
✿✿✿✿✿✿✿

different
✿✿✿✿✿✿✿

metrics,
✿✿✿✿✿✿✿

namely,
✿✿✿

the
✿✿✿✿✿✿

relative
✿✿✿✿✿✿✿

entropy
✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Shannon-entropy79

✿✿✿✿✿✿✿✿✿

difference,
✿

to
✿✿✿✿✿✿✿✿

measure
✿✿✿✿✿✿✿✿✿

information
✿✿✿✿✿✿✿

contents
✿✿

of
✿✿✿✿✿

radar
✿✿✿✿✿✿✿✿✿✿

observations
✿✿✿✿✿✿✿✿✿✿

assimilated
✿✿✿

into
✿✿

a
✿✿✿✿✿✿

coupled
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

atmosphere-ocean
✿✿✿✿✿✿

model.
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Bocquet (2009) used80

✿✿✿✿✿✿✿

methods
✿✿

of
✿✿✿✿✿✿✿✿✿✿

information
✿✿✿✿✿

theory
✿✿

to
✿✿✿✿✿✿✿

address
✿✿✿

the
✿✿✿✿✿✿✿

question
✿✿✿✿

how
✿✿

to
✿✿✿✿✿✿✿✿

determine
✿✿✿

an
✿✿✿✿✿✿✿✿

optimum
✿✿✿✿✿

spatial
✿✿✿✿✿✿✿✿✿

resolution
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

discretised
✿✿✿✿✿

space81

✿✿

of
✿✿✿✿✿✿

control
✿✿✿✿✿✿✿✿

variables
✿✿

in
✿✿✿✿✿✿✿✿✿✿

geophysical
✿✿✿

data
✿✿✿✿✿✿✿✿✿✿✿

assimilation.
✿

82

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Burton et al. (2016) have
✿✿✿✿✿✿✿

recently investigated the information content of “3β+2α”lidar measurements, i.e., observations of83

backscattering at three wavelengths and extinction at two wavelengths, where the information content was analysed with regard84

to the refractive index and number distribution of the aerosol particles.
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Veselovskii et al. (2004, 2005) have
✿✿✿✿✿✿✿✿✿

performed
✿✿✿✿✿✿

similar85

✿✿✿✿✿✿✿

analyses
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

information
✿✿✿✿✿✿

content
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

multiwavelength
✿✿✿✿✿✿

Raman
✿✿✿✿

lidar
✿✿✿✿✿✿✿✿✿✿✿✿

measurements
✿✿✿✿

with
✿✿✿✿✿✿

regard
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿

complex
✿✿✿✿✿✿✿✿

refractive
✿✿✿✿✿

index86

✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿

effective
✿✿✿✿✿✿

radius
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

aerosol
✿✿✿✿✿✿✿✿

particles.
✿

As mentioned earlier, the refractive index is a very useful retrieval product of87

remote sensing observations. However, from the point of view of chemical transport modelling, the main quantities of interest88

are the concentrations of the different chemical species of which the aerosol particles are composed. Although the chemical89

composition determines the refractive index, the inversion of this relationship is still under-determined, hence an ill-posed90
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problem. In this
✿✿✿

the
✿✿✿✿✿✿

present
✿

paper, we want to investigate the inverse problem that goes all the way from optical properties to91

the chemical composition of particles.92

Thus the
✿✿✿

The
✿

two main goals of this paper are (i) to apply a systematic method for analysing the information content93

of aerosol optical properties with regard to the particles’ chemical composition, and (ii) to test an algorithm for making an94

automatic choice of control variables in chemical data assimilation that relate to the signal degrees of freedom, while all other95

model
✿✿✿✿

such
✿✿✿✿

that
✿✿

all
✿✿✿✿✿✿

control
✿✿✿✿✿✿✿✿

variables
✿✿✿

are
✿✿✿✿✿✿✿✿✿✿✿✿

signal-related,
✿✿✿✿✿

while
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

noise-related
✿

variables remain unchanged by the assimilation96

procedure. The focus
✿✿✿✿

main
✿✿✿✿✿✿✿✿✿

hypothesis
✿✿

is
✿✿✿✿

that
✿✿

by
✿✿✿✿✿✿✿✿✿✿✿

constraining
✿✿✿

the
✿✿✿✿

data
✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿✿✿✿✿✿✿✿

algorithm
✿✿

to
✿✿✿✿✿

acting
✿✿✿

on
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

signal-related97

✿✿✿✿✿✿✿

variables
✿✿✿✿✿

only,
✿✿✿

the
✿✿✿✿✿

output
✿✿✿✿

will
✿✿✿

be
✿✿✿

less
✿✿✿✿✿

noisy
✿✿✿✿

than
✿✿

in
✿✿✿

an
✿✿✿✿✿✿✿✿✿✿✿

unconstrained
✿✿✿✿✿✿✿✿✿✿✿

assimilation.
✿✿✿✿

The
✿✿✿✿✿

focus
✿✿

of
✿✿✿

our
✿✿✿✿✿

study
✿

will be on spectral98

observations of extinction and backscattering coefficients, which can be retrieved from lidar observations.1 We will not restrict99

this analysis to any fixed choice of wavelengths, such as 3β+2α. Instead, we will investigate the information content for100

varying combinations of the three main
✿✿✿✿✿✿✿✿✿✿

wavelengths
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

commonly
✿✿✿✿

used
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

neodymium-doped
✿✿✿✿✿✿✿

yttrium
✿✿✿✿✿✿✿✿✿

aluminium
✿✿✿✿✿✿

garnet101

✿

(Nd:YAGwavelengths)
✿✿✿✿✿

laser. However, it should be mentioned that extinction measurements at the lowest harmonic of 1064102

nm can be difficult and plagued by high errors; in practice, this will affect the observation error, resulting in a low information103

content of this particular measurement.104

The paper is organised as follows. Section 2 gives a rather concise introduction of the modelling tools and of the numerical105

approach employed to studying the information content of extinction and backscattering observations. Section 3 presents the106

main results of this study, and Sect. 4 offers concluding remarks. To make this paper self-contained, we included an appendix107

that gives a brief introduction to some essential concepts of data assimilation, and a detailed explanation of the methods we108

used for quantifying the information content of aerosol optical observables. It is advisable to read the appendix first before109

reading the body of the paper. Readers that are not interested in the theory may leave out the appendix at the risk of missing110

some of the discussions in the main body of the paper.111

2 Methods112

This study consists of two parts. In the first part we quantify the information content of extinction and backscattering coef-113

ficients at multiple wavelengths. In the second part we perform a numerical experiment
✿✿✿

test
✿

to investigate to what extent the114

concentrations of different chemical aerosol components can be constrained by observations of extinction and backscattering115

coefficients. The modelling tools required for this study are (i) a chemical transport model; (ii) an aerosol optics model; and116

(iii) a data assimilation system.117

1In addition to lidar measurements from ground-based and aircraft-carried instruments
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(e.g. Burton et al., 2015), there are currently two space-borne lidar

instruments in orbit. The CALIOP instrument on-board the CALIPSO satellite has been launched in April 2006; it has three receiver channels, one at 1064

nm, and two channels at 532 nm to measure orthogonally polarised components. The CATS instrument on-board the International Space Station has been

operational since January 2015; It measures backscattering at 355 nm, 532 nm, and 1064 nm, were the latter two have two orthogonal polarisation channels.

It is also capable of performing high spectral resolution measurements at 532 nm. A third instrument is planned to be launched in 2018 (ATLID on-board

EarthCARE).

4



2.1 Multiple scale Atmospheric Transport and CHemistry modelling system (MATCH)118

We employ the chemical transport model MATCH, which is an off-line Eulerian CTM with flexible model domain. It has been119

previously used from regional to hemispheric scales. Here we use a model version that contains a photochemistry module120

with 64 chemical species, among them four secondary inorganic aerosol (SIA), namely, ammonium sulphate, ammonium121

nitrate, other sulphates, and other nitrates. It also contains a module with 16 primary aerosol variables, namely, seasalt
✿✿✿

sea
✿✿✿

salt,122

elemental carbon (EC), organic carbon (OC), and dust particles, each emitted in four different size bins. Thus, the total number123

of aerosol model variables is 20.
✿✿✿✿✿

model
✿✿✿✿✿✿✿

contains
✿✿✿

20
✿✿✿✿✿✿✿

different
✿✿✿✿✿✿✿

aerosol
✿✿✿✿✿✿✿✿

variables.
✿✿✿

The
✿✿✿✿

size
✿✿✿✿✿✿

ranges
✿✿

of
✿✿✿

the
✿✿✿

four
✿✿✿✿

bins
✿✿✿

are
✿✿

as
✿✿✿✿✿✿✿

follows.
✿

124

✿✿✿

Size
✿✿✿

bin
✿✿✿

1:
✿✿✿✿✿

10–50
✿

nm125

✿✿✿

Size
✿✿✿

bin
✿✿✿

2:
✿✿✿✿✿✿

50–500
✿

nm126

✿✿✿

Size
✿✿✿

bin
✿✿✿

3:
✿✿✿✿✿✿✿✿

500–1250
✿

nm127

✿✿✿

Size
✿✿✿

bin
✿✿✿

4:
✿✿✿✿✿✿✿✿✿

1250–5000
✿

nm
✿

.128

The model reads in emission data, meteorological data, and land use data and computes transport processes, chemical129

transformation, and dry and wet deposition of the various trace gases and aerosols. As output, it provides concentration fields130

of gases and aerosols, the deposition of these chemical species to land and water-covered areas, as well as the temporal131

evolution of these variables.132

We mention that there exists another model version that includes aerosol microphysical processes, such as nucleation, con-133

densational growth, and coagulation. In that model version the aerosol size distribution evolves dynamically. The model has 20134

size bins and seven chemical species (EC, OC, dust, seasalt
✿✿✿

sea
✿✿✿

salt, particulate sulphate (PSOX), particulate nitrate (PNOX),135

and particulate ammonium (PNHX)), although not all species are encountered in all size bins. The total number of model136

variables in the present setup
✿✿✿✿✿✿✿

currently
✿✿

in
✿✿✿

that
✿✿✿✿✿✿✿

version is 82.137

More complete information about the mass transport model can be found in Andersson et al. (2007). The seasalt
✿✿

sea
✿✿✿✿

salt138

module is discussed in Foltescu et al. (2005). The aerosol microphysics module is described in Andersson et al. (2015).139

For the sake of simplicity we here use the mass transport model without aerosol microphysical processes (see next section).140

The model is set up over Europe covering 33◦ in the longitudinal and 42◦ in the latitudinal direction in a rotated lat-long grid141

with 0.4◦×0.4◦ horizontal resolution. In the vertical direction the model domain extends up to 13 hPa, using 40 η-layers with142

variable thickness depending on the underlying topography
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

terrain-following
✿✿✿✿✿✿✿✿✿✿

coordinates. The meteorological input data are143

taken from the numerical weather prediction model HIRLAM (Undén et al., 2002). For the emissions
✿✿

of
✿✿

all
✿✿✿✿✿✿✿

aerosol
✿✿✿✿✿✿✿✿✿✿

components144

we used EMEP data for the year 2007, where EC and OC emissions were computed from total primary particle emissions based145

on the data in Kupiainen and Klimont (2004, 2007).146

2.2 Aerosol optics model147

We have two different optics models coupled to MATCH, one to the mass transport module, and another to the aerosol mi-148

crophysics module. The former assumes that all aerosol species are homogeneous spheres, and that each chemical species149
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Table 1.
✿✿✿✿✿✿✿✿

Refractive
✿✿✿✿✿

indices
✿✿

at
✿✿✿

the
✿✿✿✿

three
✿✿✿✿✿✿✿✿

harmonics
✿✿

of
✿✿

the
✿✿✿✿✿✿✿

Nd:YAG
✿✿✿✿

laser
✿✿✿✿✿✿✿

assumed
✿✿

in
✿✿

the
✿✿✿✿✿✿✿

MATCH
✿✿✿✿✿✿✿✿✿✿✿

mass-transport
✿✿✿✿✿

optics
✿✿✿✿✿

model.

✿✿✿✿✿✿✿✿

wavelength
✿

[
✿✿✿

µm]
✿✿✿✿

0.355
✿ ✿✿✿✿

0.532
✿ ✿✿✿✿

1.064
✿

✿✿✿

SIA
✿ ✿✿✿✿✿✿✿✿✿

1.53+5.0e-3
✿

i
✿✿✿✿✿✿✿✿✿

1.53+5.6e-3
✿

i
✿✿✿✿✿✿✿✿✿

1.52+1.6e-2
✿

i

✿✿✿✿

Dust
✿✿✿✿✿✿✿✿✿

1.53+1.7e-2
✿

i
✿✿✿✿✿✿✿✿✿

1.53+6.3e-3
✿

i
✿✿✿✿✿✿✿✿✿

1.53+4.3e-3
✿

i

✿✿✿✿

NaCl
✿✿✿✿✿✿✿✿✿

1.51+2.9e-7
✿

i
✿✿✿✿✿✿✿✿✿

1.50+1.0e-8
✿

i
✿✿✿✿✿✿✿✿✿

1.47+2.0e-4
✿

i

✿✿✿

OC
✿✿✿✿✿✿✿✿✿

1.53+5.0e-3
✿

i
✿✿✿✿✿✿✿✿✿

1.53+5.6e-3
✿

i
✿✿✿✿✿✿✿✿✿

1.52+1.6e-2
✿

i

✿✿✿

EC
✿✿✿✿✿✿✿✿✿

1.66+7.2e-1
✿

i
✿✿✿✿✿✿✿✿✿

1.73+6.0e-1
✿

i
✿✿✿✿✿✿✿✿✿

1.82+5.9e-1
✿

i

is contained in separate particles. Under these assumptions the optics model is linear, i.e., the optical properties are linear150

functions of the concentrations of the chemical aerosol species. The latter model accounts for the fact that in reality different151

chemical species can be internally mixed, i.e., they can be contained in one and the same particle. That model also accounts152

for the inhomogeneous internal structure of black carbon mixed with other aerosol components, and for the irregular fractal153

aggregate morphology of bare black carbon particles (Kahnert et al., 2012a, 2013). Under these assumptions the optics model154

becomes nonlinear
✿✿✿✿✿✿✿✿

non-linear, which introduces additional complications in the inverse-modelling problem. This is the main155

reason why we chose to use the simpler mass transport optics model in this study. Much of the theory explained in the appendix156

relies on the assumption that the optics model is either linear, or that it is only mildly nonlinear
✿✿✿✿✿✿✿✿

non-linear, so that it can be157

linearised — see Eq. (B6).158

✿✿✿✿

Table
✿✿

1
✿✿✿✿

lists
✿✿✿

the
✿✿✿✿✿✿✿✿

refractive
✿✿✿✿✿✿

indices
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

mass-transport
✿✿✿✿✿

optics
✿✿✿✿✿✿

model
✿✿

at
✿✿✿

the
✿✿✿✿

three
✿✿✿✿

lidar
✿✿✿✿✿✿✿✿✿✿✿

wavelengths
✿✿✿✿✿✿✿✿✿

considered
✿✿

in
✿✿✿✿

this
✿✿✿✿✿

study.159

More information about the aerosol optics models implemented in MATCH can be found in Andersson and Kahnert (2016).160

2.3 3-dimensional
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Three-dimensional
✿

variational data assimilation (3DVAR)161

Data assimilation is a class of statistical methods for combining model results and observations. The algorithm weighs these162

two pieces of information according to their respective error variances an
✿✿✿

and covariances. As output the assimilation returns a163

result in model space of which the error variances are smaller than those of the original model estimate.
✿✿

In
✿✿✿

our
✿✿✿✿

case
✿✿✿

the
✿✿✿✿✿✿

model164

✿✿✿✿✿✿✿

variables
✿✿✿

are
✿✿✿

the
✿✿✿✿✿

mass
✿✿✿✿✿✿

mixing
✿✿✿✿✿✿

ratios
✿✿

of
✿✿✿✿✿✿

aerosol
✿✿✿✿✿✿✿✿✿✿✿

components
✿✿

in
✿

a
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

three-dimensional
✿✿✿✿✿✿✿✿✿

discretised
✿✿✿✿✿

model
✿✿✿✿✿✿✿✿

domain.
✿✿✿✿✿

These
✿✿✿✿✿✿

model165

✿✿✿✿✿✿✿

variables
✿✿✿

are
✿✿✿✿✿✿✿✿✿✿

summarised
✿✿✿

in
✿

a
✿✿✿✿✿✿

vector
✿✿

x.
✿✿✿✿

The
✿✿✿✿✿

model
✿✿✿✿✿✿✿✿

provides
✿✿

us
✿✿✿✿

with
✿✿

a
✿✿✿✿✿✿✿✿✿✿

background
✿✿✿

(or
✿✿✿

first
✿✿✿✿✿✿

guess)
✿✿✿✿✿✿✿

estimate
✿✿✿

xb
✿✿✿✿✿

(with
✿✿

an
✿✿✿✿✿

error166

✿✿✿

ǫb).
✿✿✿✿

The
✿✿✿✿✿✿✿✿✿✿✿

observations,
✿✿✿✿✿✿✿✿✿✿

summarised
✿✿

in
✿

a
✿✿✿✿✿✿

vector
✿✿

y,
✿✿✿

are
✿✿✿✿✿✿

related
✿✿

to
✿✿✿

the
✿✿✿✿✿

model
✿✿✿✿✿

state
✿

x
✿✿✿

by167

y = Ĥ(x)+ ǫo,
✿✿✿✿✿✿✿✿✿✿✿✿✿

(1)168

✿✿✿✿✿

where
✿✿

Ĥ
✿✿

is
✿✿✿✿✿✿

known
✿✿

as
✿✿✿

the
✿✿✿✿✿✿✿✿✿

observation
✿✿✿✿✿✿✿✿

operator,
✿✿✿

and
✿✿✿

ǫo
✿✿✿✿✿✿

denotes
✿✿✿

the
✿✿✿✿✿✿

vector
✿✿

of
✿✿✿✿✿✿✿✿✿

observation
✿✿✿✿✿✿

errors.
✿✿✿✿

The
✿✿✿✿✿✿✿

problem
✿

is
✿✿

to
✿✿✿✿✿✿✿✿✿

determine
✿✿✿

the169

✿✿✿✿

most
✿✿✿✿✿

likely
✿✿✿✿

state
✿✿✿✿✿

vector
✿✿✿

xa
✿✿✿✿✿

given
✿✿

xb
✿✿✿

and
✿✿✿

y,
✿✿✿

and
✿✿✿✿✿

given
✿✿

the
✿✿✿✿✿✿✿✿✿✿

background
✿✿✿✿✿

error
✿✿✿✿✿✿✿✿✿

covariance
✿✿✿✿✿

matrix
✿✿✿✿✿✿✿✿✿✿✿✿

B= 〈ǫb · ǫ
T
b 〉,✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

observation170

✿✿✿✿

error
✿✿✿✿✿✿✿✿✿

covariance
✿✿✿✿✿✿

matrix
✿✿✿✿✿✿✿✿✿✿✿✿

R= 〈ǫo · ǫ
T
o 〉.✿✿✿✿

Here
✿✿✿✿✿

〈· · · 〉
✿✿✿✿✿✿✿

denotes
✿✿✿

the
✿✿✿✿✿✿✿✿✿

expectation
✿✿✿✿✿✿

value.
✿✿

In
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

three-dimensional
✿✿✿✿✿✿✿✿✿

variational
✿✿✿✿✿✿✿

method171

✿✿✿✿✿✿✿✿

(3DVAR),
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

maximum-likelihood
✿✿✿✿✿✿✿

solution
✿✿

is
✿✿✿✿✿

found
✿✿✿

by
✿✿✿✿✿✿✿✿✿✿

numerically
✿✿✿✿✿✿✿✿✿✿

minimising
✿✿✿

the
✿✿✿

cost
✿✿✿✿✿✿✿

function
✿

172

J =
1

2
(x−xb)

T ·B−1 · (x−xb)+
1

2
[Ĥ(x)−y]T ·R−1 · [Ĥ(x)−y].

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(2)173

6



Data assimilation is commonly employed for constraining model results by use of observations. However, one can also174

employ data assimilation as an inverse-modelling tool, i.e. for retrieving a model state from measurements. A brief summary175

of the theoretical basis of variational data assimilation is given in the appendix.2176

The MATCH model contains a 3DVAR data assimilation module. This model uses a spectral method, i.e., the model state177

vector is Fourier-transformed in the two horizontal coordinates. All error correlations in the horizontal direction are assumed178

to be homogeneous and isotropic. Error correlations in the vertical direction and among different chemical species are not179

assumed to be separable. The background error covariance matrix of the model a priori is modelled with
✿

a
✿✿✿✿✿✿✿

method
✿✿✿

that
✿✿✿✿✿✿✿

follows180

✿✿✿✿✿✿

similar
✿✿✿✿✿✿✿✿

principles
✿✿

to
✿

the NMC method (Parrish and Derber, 1992). A more complete description of our 3DVAR program can181

be found in Kahnert (2008).182

2.4 Analysis of the information content of aerosol optical parameters183

The questions we ask are these.184

1.
✿✿✿✿✿✿✿

Suppose
✿✿✿

we
✿✿✿✿

have
✿✿

an
✿✿

n
✿✿✿✿✿✿✿✿✿✿

dimensional
✿✿✿✿✿✿

model
✿✿✿✿✿

space.
✿

Given m observations of,
✿

(e.g., m1 different parameters at m2 differ-185

ent wavelengths, so that m1 ·m2 =m
✿

), how many independent model variables ℓ
✿✿✿✿✿✿

N ≤ n can we constrain to better186

than observation error
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

observations? Obviously, the best we can achieve would be ℓ=m; but in general,187

✿✿✿✿✿✿✿✿✿✿✿✿✿✿

N =min{m,n};
✿✿✿

but
✿✿✿✿✿

often we will have ℓ≤m
✿✿✿✿✿✿✿✿✿✿✿✿✿

N <min{m,n}.188

2. Which are the ℓ
✿✿

N model variables (or linear combinations of model variables) that can be constrained by the measure-189

ments?190

It turns out the the answer to these questionsare found by performing a singular value decomposition of the Jacobian of the191

observation operator — see Eq. (C6)in the appendix. The right singular vectors can be used to construct a transformation of the192

model state vector — see
✿✿✿✿

Here
✿✿✿

we
✿✿✿✿

only
✿✿✿✿

give
✿

a
✿✿✿✿✿✿✿✿

summary
✿✿

of
✿✿✿

the
✿✿✿✿✿

most
✿✿✿✿✿✿✿

essential
✿✿✿✿✿✿✿✿✿

theoretical
✿✿✿✿✿

tools
✿✿✿

for
✿✿✿✿✿✿✿✿

answering
✿✿✿✿✿

these
✿✿✿✿✿✿✿✿✿

questions.193

✿

A
✿✿✿✿✿

more
✿✿✿✿✿✿✿✿

thorough
✿✿✿✿✿✿✿✿✿✿

explanation
✿✿

of
✿✿✿✿

these
✿✿✿✿✿✿✿✿

concepts
✿✿

is
✿✿✿✿✿

given
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿

appendix.194

✿✿✿✿

First
✿✿✿

we
✿✿✿✿

want
✿✿

to
✿✿✿✿✿✿✿

explain
✿✿✿✿

what
✿✿✿

we
✿✿✿✿✿

mean
✿✿✿

by
✿✿✿✿✿✿

signal
✿✿✿✿✿✿

degrees
✿✿

of
✿✿✿✿✿✿✿✿

freedom
✿✿✿

and
✿✿✿✿✿

noise
✿✿✿✿✿✿✿

degrees
✿✿

of
✿✿✿✿✿✿✿

freedom
✿

,
✿✿✿✿✿✿

closely
✿✿✿✿✿✿✿✿

following
✿✿✿

an195

✿✿✿✿✿✿✿

example
✿✿

in
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Rodgers (2000) (p.
✿✿✿✿✿

29f).
✿✿✿✿✿✿✿

Suppose
✿✿✿

we
✿✿✿✿

have
✿✿

a
✿✿✿✿✿

direct
✿✿✿✿✿✿✿✿✿✿✿

measurement
✿

y
✿✿

of
✿✿

a
✿✿✿✿✿

scalar
✿✿✿✿✿✿✿

variable
✿✿

x
✿✿✿✿

with
✿✿✿✿

error
✿✿✿

ǫo,
✿✿✿

i.e.196

y = x+ ǫo.
✿✿✿✿✿✿✿✿✿

(3)197

✿✿✿✿✿✿✿

Suppose
✿✿✿✿✿✿

further
✿✿✿

that
✿✿✿

we
✿✿✿✿

have
✿✿

a
✿✿✿✿✿✿✿✿✿✿

background
✿✿✿✿✿✿✿

estimate
✿✿✿

xb
✿✿✿✿

with
✿✿✿✿✿✿✿✿✿✿

background
✿✿✿✿

error
✿✿✿✿✿✿✿

variance
✿✿✿✿

σ2
b ,

✿✿✿

and
✿✿✿✿

that
✿✿✿

the
✿✿✿✿

error
✿✿

ǫo
✿✿✿

has
✿✿✿✿✿✿✿✿

variance198

✿✿✿

σ2
o .

✿✿✿

The
✿✿✿✿✿

prior
✿✿✿✿✿✿✿

variance
✿✿

of
✿✿

y
✿✿

is
✿✿✿✿

given
✿✿✿

by
✿✿✿✿✿✿✿✿✿✿✿✿

σ2
y = σ2

b +σ2
o ,

✿✿✿✿✿✿✿✿

assuming
✿✿✿✿

that
✿✿✿✿✿✿✿✿✿

background
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿✿

observation
✿✿✿✿✿

errors
✿✿✿

are
✿✿✿✿✿✿✿✿✿✿✿

uncorrelated.
✿✿✿✿

One199

2One should actually
✿✿✿✿

Many
✿✿✿✿✿

authors
✿

distinguish between data assimilation and data analysis. The latter refers to post-processing the
✿

In
✿✿✿

data
✿✿✿✿✿✿

analysis
✿✿✿

one

✿✿✿✿

merely
✿✿✿✿✿✿✿✿✿✿

post-processes
✿

a
✿

model output by statistically weighing model results and
✿

by
✿✿✿✿✿✿✿✿✿

incorporating
✿✿✿

the
✿✿✿✿✿✿✿

information
✿✿✿✿✿✿

provided
✿✿

by
✿

observations. The former refers

to a process in which
✿

In
✿✿✿✿

data
✿✿✿✿✿✿✿✿

assimilation,
✿

the data analysis
✿✿✿✿✿

process is incorporated into
✿✿

part
✿✿

of
✿

the time-integration of the CTM.
✿✿✿✿

Thus,
✿✿

in
✿✿✿

each
✿✿✿

time
✿✿✿

step
✿✿✿

the

✿✿✿✿

result
✿

of
✿✿✿

the
✿✿✿✿✿

analysis
✿✿✿✿✿✿

becomes
✿✿

the
✿✿✿

new
✿✿✿✿

initial
✿✿✿✿

state
✿✿

for
✿✿

the
✿✿✿

next
✿✿✿✿✿

model
✿✿✿✿✿✿

forecast. Our 3DVAR code can be used in either analysis or assimilation mode. However,

in this study we only perform numerical experiments
✿✿✿

tests
✿

at a fixed point in time. Thus we use the 3DVAR code as a data analysis tool.

7



✿✿✿

can
✿✿✿✿

show
✿✿✿✿

that
✿✿✿

the
✿✿✿✿

best
✿✿✿✿✿✿✿

estimate
✿✿

xa
✿✿✿

of
✿

x
✿✿✿✿

will
✿✿

be
✿

200

xa =
σ2
by+σ2

oxb

σ2
b +σ2

o

.

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
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✿✿✿✿✿✿

Hence,
✿

if
✿✿✿✿✿✿✿✿

σ2
b ≫ σ2

o ,
✿✿✿✿

then
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

measurement
✿✿

y
✿✿✿

will
✿✿✿✿✿✿✿

provide
✿✿✿✿✿✿✿✿✿✿

information
✿✿

for
✿✿✿✿✿✿✿✿✿

estimating
✿✿✿

xa,
✿✿✿

i.e.,
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

measurement
✿✿✿✿✿✿✿✿

provides
✿

a
✿✿✿✿✿✿

degree202

✿✿

of
✿✿✿✿✿✿✿

freedom
✿✿

for
✿✿✿✿✿✿

signal.
✿✿✿✿✿✿✿✿

However,
✿✿

if
✿✿✿✿✿✿✿✿

σ2
b ≪ σ2

o ,
✿✿✿✿

then
✿✿✿

xa
✿✿✿

will
✿✿

be
✿✿✿✿✿

close
✿✿

to
✿✿✿

xb,
✿✿✿

and
✿✿

y
✿✿✿✿✿✿✿

provides
✿✿✿✿

little
✿✿✿✿✿✿✿✿✿✿

information
✿✿

to
✿✿✿✿✿✿✿✿✿

estimating
✿✿✿

xa.
✿✿✿✿

The203

✿✿✿✿✿✿✿✿✿✿✿

measurement
✿✿✿✿✿✿

mostly
✿✿✿✿✿✿✿

contains
✿✿✿✿✿✿✿✿✿✿

information
✿✿

on
✿✿✿

ǫo,
✿✿✿

i.e.,
✿✿

it
✿✿✿✿✿✿✿

provides
✿✿

a
✿✿✿✿✿✿

degree
✿✿

of
✿✿✿✿✿✿✿

freedom
✿✿

for
✿✿✿✿✿

noise
✿

.204

✿✿

In
✿

a
✿✿✿✿✿

more
✿✿✿✿✿✿

general
✿✿✿✿

case
✿✿✿

we
✿✿✿✿

have
✿✿

to
✿✿✿✿✿✿✿✿

consider
✿

a
✿✿✿✿

state
✿✿✿✿✿✿

vector
✿✿

x
✿✿✿

and
✿

a
✿✿✿

set
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿

measurements
✿✿

y
✿✿✿✿

with
✿✿✿✿✿

errors
✿✿✿

ǫo.
✿✿✿✿

The
✿✿✿✿✿✿✿

number
✿✿✿

Ns
✿✿

of205

✿✿✿✿✿

signal
✿✿✿✿✿✿

degrees
✿✿✿

of
✿✿✿✿✿✿✿

freedom
✿✿

is
✿

a
✿✿✿✿✿✿✿

measure
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

information
✿✿✿✿✿✿

content
✿✿

of
✿✿✿

the
✿✿✿

set
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿✿

measurements.
✿

It
✿✿✿✿✿✿✿✿

provides
✿✿

us
✿✿✿✿

with
✿✿✿

an
✿✿✿✿✿✿✿

estimate206

✿✿

of
✿✿✿

the
✿✿✿✿✿✿

number
✿✿✿

N
✿✿

of
✿✿✿✿✿

model
✿✿✿✿✿✿✿✿

variables
✿✿✿

that
✿✿✿✿

can
✿✿

be
✿✿✿✿✿✿✿✿✿

controlled
✿✿

by
✿✿✿✿✿✿✿✿✿✿

assimilating
✿✿✿✿✿✿✿✿✿✿✿✿✿

measurements.207

✿✿✿

The
✿✿✿✿✿✿✿✿

mapping
✿✿✿✿

from
✿✿✿✿✿

model
✿✿✿✿✿

space
✿✿

to
✿✿✿✿✿✿✿✿✿✿

observation
✿✿✿✿✿

space
✿✿✿✿

given
✿✿

in
✿

Eq. (D16) in the appendix. The transformed vector components208

fall into two categories, namely, the signal-related components, which can be constrained by the measurements,
✿✿

1)
✿✿✿

can
✿✿✿

be209

✿✿✿✿✿✿✿✿✿✿✿✿✿

Taylor-expanded
✿✿

to
✿✿✿✿

first
✿✿✿✿✿

order
✿✿✿✿✿✿✿✿

according
✿✿

to
✿

210

y = Ĥ(xb)+H · δx+ ǫo,
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
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✿✿✿✿✿

where
✿✿

Ĥ
✿✿

is
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

observation
✿✿✿✿✿✿✿✿

operator,
✿✿

H
✿✿✿✿✿✿✿

denotes
✿✿

its
✿✿✿✿✿✿✿✿

Jacobian,
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿

δx= x−xb.
✿✿✿✿

The
✿✿✿✿✿✿✿✿✿✿

background
✿✿

or
✿✿✿✿

prior
✿✿✿✿✿✿✿✿

estimate
✿✿

xb
✿✿

is
✿✿✿✿✿

often212

✿✿✿✿✿✿✿

obtained
✿✿✿✿✿

from
✿

a
✿✿✿✿✿✿

model
✿✿✿✿

run.
✿✿✿✿

The
✿✿✿

(in
✿✿✿✿✿✿

general
✿✿✿✿✿✿✿✿✿✿

non-square)
✿✿✿✿✿✿

matrix
✿✿✿

H
✿✿

is
✿✿✿

the
✿✿✿✿✿

main
✿✿✿✿✿✿✿

quantity
✿✿✿

we
✿✿✿✿✿

need
✿✿

to
✿✿✿✿✿✿✿✿✿

investigate
✿✿

in
✿✿✿✿✿

order
✿✿✿

to213

✿✿✿✿✿✿

address
✿✿✿

the
✿✿✿✿✿✿✿✿

questions
✿✿✿✿✿✿✿✿✿✿

formulated
✿✿

at
✿✿✿

the
✿✿✿✿✿✿✿✿✿

beginning
✿✿

of
✿✿✿✿

this
✿✿✿✿✿✿✿✿✿

subsection.
✿✿

It
✿✿

is
✿✿✿✿✿✿✿✿✿✿

transformed
✿✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿

so-called
✿✿✿✿✿✿✿✿✿✿✿

observability
✿✿✿✿✿✿

matrix214

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

H̃=R−1/2 ·H ·B1/2,
✿✿✿✿✿

where
✿✿

R
✿✿

is
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

observation
✿✿✿✿

error
✿✿✿✿✿✿✿✿✿✿

covariance
✿✿✿✿✿✿

matrix, and
✿✿

B
✿✿✿✿✿✿

denotes
✿✿✿

the
✿✿✿✿✿

error
✿✿✿✿✿✿✿✿✿

covariance
✿✿✿✿✿✿

matrix
✿✿

of
✿✿✿

the215

✿✿✿✿✿✿✿✿✿

background
✿✿✿✿✿✿✿✿

estimate.
✿✿✿✿✿✿✿✿✿✿✿✿

Subsequently,
✿✿✿

one
✿✿✿✿✿✿✿✿

performs
✿

a
✿✿✿✿✿✿✿✿✿✿✿✿

singular-value
✿✿✿✿✿✿✿✿✿✿✿✿

decomposition
✿✿✿✿✿✿

(SVD)
✿

216

R−1/2 ·H ·B1/2 =VL ·W ·VT
R,

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
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✿✿✿✿✿

where
✿✿✿

the
✿✿✿✿✿✿✿

matrices
✿✿✿✿

VL
✿✿✿

and
✿✿✿✿

VR
✿✿✿✿✿✿

contain
✿✿✿✿

the
✿✿✿

left
✿✿✿

and
✿✿✿✿✿

right
✿✿✿✿✿✿✿

singular
✿✿✿✿✿✿✿

vectors,
✿✿✿✿✿✿✿✿✿✿

respectively,
✿✿✿✿

and
✿✿✿

W
✿✿

is
✿

a
✿✿✿✿✿✿

matrix
✿✿✿

that
✿✿✿✿✿✿✿✿

contains
✿✿✿

the218

✿✿✿✿✿✿

singular
✿✿✿✿✿✿

values
✿✿✿✿✿

along
✿✿✿

the
✿✿✿✿

main
✿✿✿✿✿✿✿✿

diagonal,
✿✿✿✿✿

while
✿✿

all
✿✿✿✿✿

other
✿✿✿✿✿

matrix
✿✿✿✿✿✿✿✿

elements
✿✿✿

are
✿✿✿✿

zero.
✿✿

It
✿✿✿✿

turns
✿✿✿

out
✿✿✿✿

that the noise-related components,219

which cannot be constrained by the measurements. From the singular values we can
✿✿

wi
✿✿✿✿

can
✿✿

be
✿✿✿✿✿✿✿✿

employed
✿✿

to compute the number220

of signal degrees of freedom , i.e., the number of model variables that can be constrained to better than observation error. We221

can further compute how much a set of measurements reduces the Shannon-entropy of the model state. This is a quantitative222

measure for
✿✿

Ns
✿✿✿✿✿✿✿✿✿

according
✿✿

to223

Ns =

min{n,m}
∑

i=1

w2
i /(1+w2

i ).

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
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✿✿✿✿✿✿✿

Another
✿✿✿✿✿

useful
✿✿✿✿✿✿✿

measure
✿✿

is
✿✿✿✿✿✿✿

obtained
✿✿✿

by
✿✿✿✿✿✿✿✿✿

expressing
✿✿✿

our
✿✿✿✿✿✿✿✿✿✿

incomplete
✿✿✿✿✿✿✿✿✿

knowledge
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

atmospheric
✿✿✿✿✿✿✿

aerosol
✿✿✿✿

state
✿✿

by
✿✿✿✿

use
✿✿

of
✿✿✿

the225

✿✿✿✿✿✿✿

Shannon
✿✿✿✿✿✿✿

entropy.
✿✿✿✿

The
✿✿✿

use
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿

measurement
✿✿✿✿✿✿✿✿✿✿

information
✿✿✿✿✿✿✿

reduces
✿✿✿

the
✿✿✿✿✿✿✿

entropy,
✿✿✿

and
✿✿✿✿

this
✿✿✿✿✿✿

entropy
✿✿✿✿✿✿✿✿

reduction
✿✿✿

H
✿✿✿

can
✿✿

be
✿✿✿✿✿✿✿✿✿

expressed
✿✿

in226

✿✿✿✿

terms
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿

singular
✿✿✿✿✿✿✿

values:227

H =
1

2

min{n,m}
∑

i=1

log2(1+w2
i ).

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(8)228
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✿✿✿✿

Both
✿✿✿

Ns
✿✿

or
✿✿

H
✿✿✿✿✿

allow
✿✿✿

us
✿✿

to
✿✿✿✿✿✿✿

quantify the information content of the measurements.229

Readers who are unfamiliar with
✿

a
✿✿

set
✿✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿

measurements.
✿✿✿✿✿

More
✿✿✿✿✿✿✿

detailed
✿✿✿✿✿✿✿✿✿✿✿

explanations
✿✿✿

of these concepts are urged to read230

the brief introduction
✿✿✿✿

given
✿

in the appendix. A more complete
✿✿✿✿✿✿✿✿✿✿✿✿

comprehensive
✿

discussion of information aspects and inverse231

methods for atmospheric sounding can be found in Rodgers (2000).232

2.5 Numerical assimilation experiments233

We use the results of this analysis to modify our 3DVAR program. More specifically, we implement weak constraints into
✿✿✿

By234

✿✿✿✿✿✿✿✿✿

performing
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

transformation
✿

235

δx′ =VT
R ·B−1/2 · δx

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(9)236

✿✿

we
✿✿✿

go
✿✿✿✿✿

from
✿✿✿

our
✿✿✿✿✿✿✿

physical
✿✿✿✿✿✿

model
✿✿✿✿✿

space
✿✿✿

to
✿✿

an
✿✿✿✿✿✿✿

abstract
✿✿✿✿✿

phase
✿✿✿✿✿

space
✿✿✿

—
✿✿✿

see
✿✿✿✿

Eq.
✿✿✿✿✿

(C16)
✿✿✿

in
✿✿✿✿✿✿✿✿

appendix
✿✿

C.
✿✿✿

In
✿✿✿

this
✿✿✿✿✿

phase
✿✿✿✿✿✿

space
✿✿✿

the237

✿✿✿✿✿✿✿✿✿✿

components
✿✿

of
✿✿✿✿

δx′
✿✿✿

can
✿✿✿

be
✿✿✿✿✿✿✿✿

separated
✿✿✿✿

into
✿✿✿✿✿✿✿✿✿✿✿✿

signal-related
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿

noise-related
✿✿✿✿✿✿✿✿✿

variables.
✿✿✿✿

The
✿✿✿✿✿✿✿✿✿✿✿

signal-related
✿✿✿✿✿✿✿✿✿✿✿

components
✿✿✿

can
✿✿✿

be238

✿✿✿✿✿✿✿✿

controlled
✿✿✿

by
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

measurements, the
✿✿✿✿✿✿✿✿✿✿✿

noise-related
✿✿✿✿✿✿✿✿✿✿

components
✿✿✿✿✿✿✿

cannot.
✿✿✿

We
✿✿✿✿✿✿✿✿

therefore
✿✿✿✿✿✿✿✿

introduce
✿✿✿✿✿✿✿✿✿✿

constraints
✿✿✿

into
✿✿✿✿

our 3DVAR239

program such that only the
✿✿✿

Ns signal-related (transformed) model variables
✿✿✿✿✿✿✿✿✿

components
✿✿✿

of
✿✿✿

δx′ are allowed to be adjusted in240

the data-analysis procedure, while the noise-related components are not altered.
✿✿✿✿

This
✿✿

is
✿✿✿✿✿✿✿✿✿✿✿

accomplished
✿✿✿

by
✿✿✿✿✿✿

adding
✿✿

an
✿✿✿✿✿

extra
✿✿✿✿

term241

✿✿

JG
✿✿✿

to
✿✿

the
✿✿✿✿

cost
✿✿✿✿✿✿✿

function
✿✿

in
✿✿✿✿

Eq.
✿✿✿

(2),
✿✿✿✿✿

where
✿

242

JG =
1

2
δxT ·B−1/2 ·VR ·B−1

G ·VT
R ·B−1/2 · δx,

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(10)243

✿✿✿

and
✿✿✿✿✿

where
✿✿✿✿

BG
✿✿

is
✿

a
✿✿✿✿✿✿✿

diagonal
✿✿✿✿✿✿

matrix
✿✿✿✿✿

which
✿✿✿

we
✿✿✿✿✿✿✿

assume
✿✿

to
✿✿✿✿

have
✿✿✿

the
✿✿✿✿

form
✿

244

BG = σGdiag(w1,w2, . . . , . . . ,wK , c, . . . , c).
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(11)245

✿✿✿✿

Here
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

K =min{n,m},
✿✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿

number
✿

c
✿✿

is
✿✿✿✿✿✿✿✿

assumed
✿✿

to
✿✿✿

be
✿✿✿✿✿

much
✿✿✿✿✿✿

smaller
✿✿✿✿✿

than
✿✿✿

the
✿✿✿✿✿✿✿

smallest
✿✿✿✿✿✿✿

singular
✿✿✿✿✿✿

value.
✿✿✿

We
✿✿✿✿

note
✿✿✿✿

that
✿✿✿

the246

✿✿✿✿✿✿✿✿✿

formulation
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

constraint
✿✿✿✿

term
✿✿✿

in
✿✿✿

Eq.
✿✿✿✿

(11)
✿✿

is
✿✿

by
✿✿✿

no
✿✿✿✿✿

means
✿✿✿✿✿✿✿

unique.
✿✿✿✿✿

Other
✿✿✿✿✿✿✿

possible
✿✿✿✿✿✿✿

choices
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

matrix
✿✿✿

BG
✿✿✿

are
✿✿✿✿✿✿✿✿✿

discussed247

✿✿

in
✿✿✿✿✿✿✿✿

appendix
✿✿✿

D3.
✿✿✿✿✿✿✿✿

However,
✿✿✿

we
✿✿✿✿✿✿✿✿✿

performed
✿✿✿✿✿✿✿✿✿✿

preliminary
✿✿✿✿

tests
✿✿✿✿✿✿

which
✿✿✿✿✿✿✿

indicate
✿✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿✿✿✿

constrained
✿✿✿✿✿✿✿

3DVAR
✿✿✿✿✿✿✿✿

approach
✿✿

is
✿✿✿✿

not
✿✿✿✿

very248

✿✿✿✿✿✿✿

sensitive
✿✿

to
✿✿✿✿✿✿

exactly
✿✿✿✿✿

how
✿✿✿

one
✿✿✿✿✿✿✿

chooses
✿✿

to
✿✿✿✿✿✿✿✿✿

formulate
✿✿✿

the
✿✿✿✿✿

matrix
✿✿✿✿✿

BG,
✿✿

as
✿✿✿✿

long
✿✿

as
✿✿

it
✿✿✿✿✿✿✿

behaves
✿✿

in
✿✿✿✿✿

such
✿

a
✿✿✿✿

way
✿✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

noise-related249

✿✿✿✿✿✿✿✿✿✿

phase-space
✿✿✿✿✿✿✿

variables
✿✿✿

are
✿✿✿✿✿✿

tightly
✿✿✿✿✿✿✿✿✿✿

constrained,
✿✿✿✿✿

while
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

signal-related
✿✿✿✿✿✿✿

variables
✿✿✿✿

can
✿✿

be
✿✿✿✿✿✿

varied
✿✿✿✿✿✿✿✿

relatively
✿✿✿✿✿

freely
✿✿

by
✿✿✿

the
✿✿✿✿✿✿✿✿

analysis.250

✿✿✿

The
✿✿✿✿

free
✿✿✿✿✿✿✿✿✿

parameters
✿✿✿

σG
✿✿✿

and
✿✿

c
✿✿✿✿✿✿

should
✿✿

be
✿✿✿✿✿

tuned
✿✿

in
✿✿✿✿

such
✿

a
✿✿✿✿

way
✿✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿✿✿

constrains
✿✿✿

are
✿✿✿✿✿✿

neither
✿✿✿

too
✿✿✿✿

hard
✿✿✿✿

nor
✿✿✿

too
✿✿✿✿

soft.
✿✿

In
✿✿✿

the
✿✿✿✿✿✿

former251

✿✿✿✿

case,
✿✿✿

the
✿✿✿✿✿✿✿

analysis
✿✿✿

will
✿✿✿✿

stay
✿✿✿

too
✿✿✿✿

close
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

background
✿✿✿✿✿✿✿✿

estimate.
✿✿

In
✿✿

the
✿✿✿✿✿

latter
✿✿✿✿

case,
✿✿

it
✿✿✿

will
✿✿✿

not
✿✿✿✿✿

differ
✿✿✿✿✿

much
✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

unconstrained252

✿✿✿✿✿✿✿

analysis.253

2.5
✿✿✿✿✿✿✿✿

Numerical
✿✿✿✿

test
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

constrained
✿✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿✿✿✿✿✿✿

algorithm254

We study the performance of the 3DVAR system by performing a numerical experiment
✿✿✿

test. To this end, we first perform a255

reference run by driving the MATCH model with analysed meteorological data. These reference results are taken as the “true”256

chemical state of the atmosphere. We apply the optics model to the model output to generate synthetic “observations”.
✿

,
✿✿✿

i.e.,
✿✿

a257
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✿✿✿✿✿✿

vertical
✿✿✿✿✿✿

profile
✿✿

at
✿

a
✿✿✿✿✿✿✿

selected
✿✿✿✿✿✿✿✿✿✿

observation
✿✿✿✿✿

point
✿✿

of
✿✿✿✿✿✿✿✿✿

extinction
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿✿

backscattering
✿✿✿✿✿✿✿✿✿✿

coefficients
✿✿

at
✿✿✿✿

three
✿✿✿✿✿✿✿

typical
✿✿✿✿

lidar
✿✿✿✿✿✿✿✿✿✿✿

wavelengths.258

Next we run the MATCH model again, this time driven with 48 hour-forecast meteorological data. The results are taken as259

a proxy for a background model-estimate that is impaired by uncertainties. Finally, we perform a 3DVAR-analysis of the260

“observations” and the background estimate in an attempt to restore the reference results. In this numerical experiment
✿✿✿

test we261

have perfect knowledge of the true state, and we assume that our optics model is nearly perfect, thus providing nearly perfect262

observations . (We assumed an
✿✿✿

(we
✿✿✿✿✿✿✿✿

assumed
✿✿✿✿

that
✿✿✿

the
✿

observation error standard deviation of
✿✿

is 10 %
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

measurement263

✿✿✿✿

value).The only factor that may prevent us from fully restoring the reference state is a lack of information in the observed264

parameterson the chemical composition of the aerosol particles. Thus, comparison of the retrieval and reference results gives265

us an indication of how strongly different model variables can be controlled by the information contained in the observations.266

✿✿✿

We
✿✿✿✿✿✿✿

perform
✿✿✿

this
✿✿✿✿

test
✿✿✿

(i)
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

unconstrained
✿✿✿✿✿✿✿

3DVAR
✿✿✿✿✿✿✿✿✿

algorithm;
✿✿✿✿

and
✿✿✿

(ii)
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

constrained
✿✿✿✿✿✿✿

3DVAR
✿✿✿✿✿✿✿✿✿

algorithm.
✿✿✿✿

We267

✿✿✿✿✿✿✿

compare
✿✿✿✿

both
✿✿✿✿

runs
✿✿

in
✿✿✿✿✿

order
✿✿

to
✿✿✿✿✿

make
✿✿

a
✿✿✿

first
✿✿✿✿✿✿✿✿✿✿

assessment
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

impact
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

constraints.
✿✿

In
✿✿✿✿✿✿✿✿✿

particular,
✿✿✿

we
✿✿✿

are
✿✿✿✿✿✿✿✿✿

interested
✿✿

in
✿✿✿

the268

✿✿✿✿✿✿✿

prospect
✿✿

of
✿✿✿✿✿✿✿

reducing
✿✿✿

the
✿✿✿✿

risk
✿✿

of
✿✿✿✿✿✿✿✿✿✿

assimilating
✿✿✿✿✿

noise
✿✿

in
✿✿✿✿

such
✿✿

a
✿✿✿✿✿

highly
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

under-constrained
✿✿✿✿✿✿

inverse
✿✿✿✿✿✿✿✿

problem.269

3 Results270

3.1 Analysis of the information content of aerosol optical parameters271

To be specific, we
✿✿✿

We consider the set of parameters {kext(λ1), kext(λ2), kext(λ3), βsca(λ1), βsca(λ2),
✿✿✿✿✿✿✿✿✿

{kext(λ1),
✿✿✿✿✿✿✿✿

kext(λ2),272

✿✿✿✿✿✿✿

βsca(λ1),
✿✿✿✿✿✿✿✿

βsca(λ2),
✿

βsca(λ3)}, where kext and βsca denote the extinction and backscattering coefficients, respectively, and the273

wavelengths λ1 = 1064 nm, λ2 = 532 nm, and λ3 = 355 nm denote the first three Nd:YAG harmonics.
✿✿✿✿✿✿✿✿

Hereafter,
✿✿✿

we
✿✿✿✿

will274

✿✿✿✿✿✿✿✿

abbreviate
✿✿✿✿✿

these
✿✿✿✿✿✿✿✿✿

parameters
✿✿✿

by
✿✿✿✿✿✿✿✿✿✿✿✿

kext(λi) = ki,
✿✿✿✿✿✿✿✿✿✿✿✿

βsca(λj) = βj ,
✿✿✿✿✿✿✿

i= 1,2,
✿✿✿✿✿✿✿✿✿

j = 1,2,3.
✿

Out of this six-parameter
✿✿✿✿✿✿✿✿✿✿✿✿

five-parameter
✿

set275

we pick different subsets and analyse the singular values of the corresponding observation operators
✿✿✿✿✿✿✿✿✿✿✿

observability
✿✿✿✿✿✿✿

matrices.276

From those we compute the number of signal degrees of freedom as well as the change in Shannon-entropy
✿✿✿✿✿✿✿

Shannon
✿✿✿✿✿✿✿

entropy277

for each subset of measurements. The results are listed in Table 2, which shows a number of interesting findings:
✿✿

We
✿✿✿✿

will
✿✿✿✿✿

focus278

✿✿

on
✿✿✿✿✿

those
✿✿✿✿✿✿✿✿

parameter
✿✿✿✿✿✿

subsets
✿✿✿✿

that
✿✿✿

are
✿✿✿✿✿✿✿✿✿

technically
✿✿✿✿✿✿✿

relevant
✿✿

in
✿✿✿✿✿✿✿

practical
✿✿✿✿✿

lidar
✿✿✿✿✿✿✿✿✿✿

applications.
✿

279

When we increase
✿✿✿✿

Table
✿✿

2
✿✿✿✿✿

shows
✿

the number of wavelengths from one to two, then the number of signal degrees of freedom280

Ns shows a corresponding increase from 1 to around 1.95–2.00. The change in
✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿

reduction
✿✿✿

in
✿✿✿✿✿✿✿

Shannon
✿

entropy H281

indicates a similar trend; it increases from around 7 for a single wavelength to up to 12 for two wavelengths. (Compare, e.g.,282

cases 1., 2., and 3. to cases 4., 5., and 6.) Hence we almost double the information contained in the measurements. When283

we increase the number of wavelengths further from two to three, then Ns only increases from around 2.0 to around 2.7284

(compare cases 4., 5., and 6. to case 7, or case 9. to case 10.) This is also reflected in H; it only increases from around 12 to285

13. This indicates that in our particular case there is little extra information to be gained by extending
✿✿

for
✿✿✿✿✿✿✿✿

different
✿✿✿✿✿

values
✿✿✿

of286

✿✿

the
✿✿✿✿✿✿✿✿✿✿

observation
✿✿✿✿✿✿✿✿

standard
✿✿✿✿✿✿✿✿

deviation
✿✿✿

σo.
✿✿✿

For
✿✿✿✿

low
✿✿✿✿✿

values
✿✿✿

of
✿✿✿

σo, the number of spectral measurements beyond 2–3 wavelengths.287

Supplementing extinction with backscattering measurements results in a significant increase
✿✿✿✿✿

signal
✿✿✿✿✿✿✿

degrees
✿✿

of
✿✿✿✿✿✿✿✿

freedom
✿✿

is288

✿✿✿✿✿✿✿

identical
✿✿

to
✿✿✿

the
✿✿✿✿✿✿

number
✿✿✿

of
✿✿✿✿✿✿✿✿✿✿✿

observational
✿✿✿✿✿✿✿✿✿✿

parameters.
✿✿✿✿✿✿✿✿

However,
✿✿

as
✿✿✿

we
✿✿✿✿✿✿✿

increase
✿✿

σo
✿✿✿

we
✿✿✿✿✿✿✿

observe
✿

a
✿✿✿✿✿✿✿✿

decrease in Nsand H . This can289

be seen by comparing, e.g., cases 5. and 11. By adding βsca observations to kext observations the number of .
✿✿✿

For
✿✿✿✿✿✿✿✿

instance,
✿✿✿

for290
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Table 2. Signal
✿✿✿✿✿✿

Number
✿✿

of
✿✿✿✿✿✿

signal
✿

degrees of freedom Ns and change
✿✿✿✿✿✿✿

reduction
✿

in entropy H for
✿

as
✿✿

a
✿✿✿✿✿✿✿

function
✿✿

of
✿✿✿✿✿✿✿✿✿✿

observation

✿✿✿✿✿✿

standard
✿✿✿✿✿✿✿✿

deviation,
✿✿✿✿✿

taken
✿✿✿✿✿

from
✿

the lowest model layer (closest to the surface)and .
✿✿✿✿✿✿✿

Results
✿✿✿

are
✿✿✿✿✿✿

shown
✿✿✿

for
✿

different subsets of

{kext(λ1),kext(λ2),kext(λ3),βsca(λ1),βsca(λ2),βsca(λ3)}
✿✿

k1, where kext denotes the extinction coefficient
✿✿

k2, βsca
✿✿✿

β1,
✿✿✿

β2,
✿✿✿

β3,
✿✿✿✿✿

where

✿✿

ki
✿✿✿

and
✿✿

βi represents the
✿✿✿✿✿✿✿

extinction
✿✿✿

and
✿

backscattering coefficient, and
✿✿✿✿✿✿✿✿✿

respectively,
✿

at
✿

the wavelengths λ1 = 1064 nm, λ2 = 532 nm, and

λ3 = 355 nmdenote the first three Nd:YAG harmonics. Also shown are the singular values wi and their contributions N i
s and Hi to Ns and

H , respectively. The results have been obtained by assuming an observation standard deviation of 10 %.

No.

Parameters
✿✿✿

Obs.
✿✿✿

Std.
✿✿✿✿

dev. [
✿

%
✿

] Wavelengths

✿✿✿

No.
✿✿✿✿✿✿✿✿

Parameters Ns H 1.
4.

height
✿

1.
✿

kext
✿✿

β3

λ2, λ3
2 4.57 0.95 2.23

1.95 10.1
1 253 1.00 7.98

5. kext λ1, λ3
2 15.0 1.00 3.91

2.00 11.9
1

9.
✿

2.
βsca

✿✿✿✿✿

β1+β2
✿

λ1, λ3

✿✿✿

2.00 2
✿✿✿

20.6
✿

10.
✿

3.
✿

βsca
✿✿✿✿✿✿✿✿

β1+β2+β3 λ1, λ2, λ3
✿✿✿

3.00
✿

2
✿✿✿

27.3
✿

✿

4.
✿✿✿✿

β3+k3
✿ ✿✿✿

2.00
✿

2
✿✿✿

19.4
✿

✿

5.
✿✿✿✿✿✿✿✿

β1+β2+k2
✿✿✿

3.00
✿

2
✿✿✿

28.0
✿

12.
✿

6.
✿

kext, βsca

✿✿✿✿✿✿✿✿✿✿✿✿✿

β1+β2+β3+k2+k3
✿

λ1, λ2, λ3

✿✿✿

5.00
✿

4
✿✿✿

40.0
✿

6 0.53 0.22 0.18 height

✿✿✿✿✿✿✿

σo = 100
✿✿✿

%
✿✿✿

the
✿✿✿

five
✿✿✿✿✿✿✿✿✿

parameters
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

β1+β2+β3+k2+k3
✿✿✿✿

(last
✿✿✿✿

row)
✿✿✿✿

only
✿✿✿✿✿✿✿

provide
✿✿✿✿✿✿✿

roughly
✿✿✿✿✿✿

Ns = 3
✿

signal degrees of freedomincreases291

from 2 to 3.9, so it almost doubles, while .
✿✿✿✿

The
✿✿✿✿✿✿✿✿

reduction
✿✿

in
✿✿✿✿✿✿✿

Shannon
✿✿✿✿✿✿✿

entropy H increases from 12 to 18. Case 12 clearly reveals292

the limitations of extending the set of observed parameters; Ns is only 4.6, significantly lower than the number of observed293

parameters
✿✿✿✿✿✿

displays
✿✿✿

an
✿✿✿✿✿✿✿✿

analogous
✿✿✿✿✿✿✿✿✿

behaviour.
✿✿✿✿

For
✿✿✿✿✿✿✿

instance,
✿✿✿

for
✿✿✿✿✿✿

σo = 1
✿✿

%
✿✿✿

we
✿✿✿

see
✿✿✿✿

that
✿✿

H
✿✿✿✿✿✿✿✿✿✿

consistently
✿✿✿✿✿✿✿✿

increases
✿✿

as
✿✿✿✿

one
✿✿✿✿✿✿✿✿

increases294

✿✿

the
✿✿✿✿✿✿✿

number
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿

observational
✿✿✿✿✿✿✿✿✿✿

parameters.
✿✿✿✿

This
✿✿

is
✿✿✿✿✿

much
✿✿✿

less
✿✿✿✿✿✿✿✿✿✿

pronounced
✿✿✿

for
✿✿✿✿✿✿✿✿

σo = 100
✿✿✿

%.
✿✿

In
✿✿✿✿

that
✿✿✿✿

case,
✿✿✿

H
✿✿✿✿

does
✿✿✿✿✿✿✿

increase
✿✿

as
✿✿✿✿

one295

✿✿✿✿

goes
✿✿✿✿

from
✿

a
✿✿✿✿✿✿

single
✿✿✿✿✿✿✿✿

parameter
✿✿

to
✿✿✿✿

two
✿✿✿✿✿✿✿✿✿

parameters
✿✿✿✿✿✿✿✿

(compare
✿✿✿

the
✿✿✿✿

first
✿✿

to
✿✿✿

the
✿✿✿✿✿✿

second
✿✿✿

and
✿✿✿✿✿✿

fourth
✿✿✿✿✿

rows).
✿✿✿✿✿✿✿✿

However,
✿✿✿

as
✿✿✿

one
✿✿✿✿

adds
✿✿✿✿✿

more296

✿✿✿✿✿✿✿✿✿

parameters,
✿✿✿

the
✿✿✿✿✿✿✿

increase
✿✿✿

in
✿✿

H
✿✿✿✿✿

slows
✿✿✿✿✿

down
✿✿✿✿✿✿✿✿✿✿✿

considerably.
✿✿✿

For
✿✿✿✿

five
✿✿✿✿✿✿✿✿✿

parameters
✿✿✿✿

(last
✿✿✿✿✿

row), m=6. An inspection of wi shows that297

the singular values often display quite a dramatic decrease from the largest to the smallest value. By contrast, the contribution298

N i
s to the total number of signal degrees of freedom decreases more gently. This fact is interesting in relation to the choice of299

the covariance matrix of the weak constrains — see Eqs. (D18), (D19) and (D20)in the appendix. In view of our findings here,300

we conclude that (D18) would yield a very sharp transition from unconstrained to constrained model variables, Eq. (D19)would301

give a smooth transition, and Eq. (D20)would give a moderately sharp transition.
✿✿

H
✿✿

is
✿✿✿✿

only
✿✿✿✿✿

about
✿✿✿✿✿

twice
✿✿

as
✿✿✿✿

high
✿✿

as
✿✿✿

for
✿

a
✿✿✿✿✿✿

single302

✿✿✿✿✿✿✿✿

parameter
✿✿✿✿

(first
✿✿✿✿✿

row).303

We performed a sensitivity study on how the observation error affects the information content in the analysis
✿✿✿

This
✿✿✿✿✿✿✿✿✿

illustrates304

✿✿

the
✿✿✿✿✿✿✿

pivotal
✿✿✿✿✿✿✿✿✿

importance
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

observation
✿✿✿✿✿

error
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿

amount
✿✿

of
✿✿✿✿✿✿✿✿✿✿

information
✿✿✿

that
✿✿✿✿

can
✿✿

be
✿✿✿✿✿✿✿✿

obtained
✿✿✿✿

from
✿✿✿✿✿✿✿✿✿✿✿✿

measurements. It is305

important to understand that the observation error
✿✿

ǫo is not the same as the measurement error
✿✿✿

ǫm.
✿✿✿✿✿✿✿

Rather,
✿✿

in
✿✿✿

our
✿✿✿✿

case
✿✿✿

we
✿✿✿✿

have306

✿✿✿✿✿✿✿✿✿✿✿✿

ǫo = ǫm + ǫf ,
✿✿✿✿✿

where
✿✿

ǫf
✿✿✿✿✿✿✿

denotes
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

forward-model
✿✿✿✿

error
✿

[
✿✿✿

see,
✿✿✿✿

e.g.,
✿✿✿

Eq.
✿✿✿

(1)
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿✿

accompanying
✿✿✿✿

text
✿✿

in
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Rabier et al. (2002)]
✿

.
✿✿✿✿

Any307

✿✿✿✿✿✿✿✿✿

simplifying
✿✿✿✿✿✿✿✿✿✿✿

assumptions
✿✿

in
✿✿✿

the
✿✿✿✿✿

optics
✿✿✿✿✿✿

model
✿✿

or
✿✿✿✿✿✿✿✿✿

incomplete
✿✿✿✿✿✿✿✿✿✿

knowledge
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

particle
✿✿✿✿

size
✿✿✿✿✿✿✿✿✿✿

distribution,
✿✿✿✿✿✿✿✿✿✿✿

morphology,
✿✿✿✿✿✿✿✿

chemical308

✿✿✿✿✿✿✿✿✿✿

composition,
✿✿

or
✿✿✿✿✿✿✿✿

dielectric
✿✿✿✿✿✿✿✿✿

properties
✿✿✿

can
✿✿✿✿✿✿✿✿

contribute
✿✿

to
✿✿✿

ǫf . The latter contributes to the former, but the observation error contains309
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also other sources of error.For instance, if we deal with morphologically complex particles, but our lack of knowledge forces310

us to make assumptions and invoke approximations about the particle shapes, then this source of error contributes to the311

observation error. The same is the case if we lack information about the particles’ size distribution. Such assumptions also enter312

into our relatively simple optics model, so our previous assumption of an observation standard deviation of 10 % represents,313

most likely, a highly idealised case. 3
✿✿✿✿

Note
✿✿✿✿

also
✿✿✿

that
✿✿

in
✿✿✿✿✿✿✿✿✿✿

operational
✿✿✿✿✿✿✿✿✿✿

applications
✿✿✿✿✿

there
✿✿✿✿

may
✿✿

be
✿✿✿✿✿

other
✿✿✿✿✿

terms
✿✿✿✿✿✿✿✿✿✿✿

contributing
✿✿

to
✿✿✿

ǫo.314

✿✿✿

For
✿✿✿✿✿✿✿

instance,
✿✿

if
✿

a
✿✿✿✿✿

point
✿✿✿✿✿✿✿✿✿✿✿

measurement
✿✿

is
✿✿✿✿✿

taken
✿✿

at
✿

a
✿✿✿✿✿✿✿

location
✿✿✿✿

that
✿✿✿✿

does
✿✿✿

not
✿✿✿✿✿✿

provide
✿✿

a
✿✿✿✿

good
✿✿✿✿✿✿✿✿✿✿✿✿

representation
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

grid-cell
✿✿✿✿✿✿✿

average,315

✿✿✿

then
✿✿✿✿

one
✿✿✿✿✿

would
✿✿✿✿✿

have
✿✿

to
✿✿✿

add
✿

a
✿✿✿✿✿✿✿✿✿✿✿✿✿

representativity
✿✿✿✿✿

error
✿✿

ǫr
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

observation
✿✿✿✿✿

error.316

To get an idea about the significance of the observation error on the amount of information we can extract from measurements,317

we consider case 12 in table 2, and we varied the observation standard deviation from 1% to 100%. Table 3 shows how the total318

entropy and signal degrees of freedom vary with the observation standard deviation. The larger the standard deviation, the less319

information can be obtained from the observations. Both the total entropy H and the signal degrees of freedom Ns decrease320

with increasing standard deviation. For a standard deviation of 100 %, we only have two signal degrees of freedom contained321

in the six observed optical parameters. This demonstrates two important things.
✿✿✿

The
✿✿✿✿✿

strong
✿✿✿✿✿✿

impact
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

observation
✿✿✿✿✿

errors
✿✿✿

on322

✿✿

the
✿✿✿✿✿✿✿✿✿✿

information
✿✿✿✿✿✿✿

content
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿

measurements
✿✿✿✿✿✿✿

suggests
✿✿✿✿

two
✿✿✿✿✿✿✿✿✿✿

conclusions.
✿

323

1. It
✿

In
✿✿✿✿✿

order
✿✿

to
✿✿✿✿✿

make
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

forward-model
✿✿✿✿

error
✿✿✿

ǫf
✿✿

as
✿✿✿✿✿

small
✿✿

as
✿✿✿✿✿✿✿

possible,
✿✿

it is essential to develop accurate and realistic aerosol324

optics models. The most accurate measurements may intrinsically contain a wealth of information on aerosol properties.325

But we can only make use of this information to the extent that our observation operator is able to accurately describe326

the relation between the physical and chemical particle characteristics and their optical properties.327

2. It is equally essential to accurately estimate the contribution of the uncertainties in the aerosol optics modelto the328

observation error
✿

,
✿✿✿✿

i.e.,
✿✿

to
✿✿✿✿✿✿✿

estimate
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

forward-model
✿✿✿✿

error
✿✿✿

ǫf . If we underestimate this error, we will rely too much329

on the measurements than we should, thus assimilating noise. If we overestimate this error, we will waste informa-330

tion contained in the observations.
✿

In
✿✿✿✿✿✿✿✿

practice,
✿✿✿

one
✿✿✿✿

way
✿✿✿

to
✿✿✿✿✿✿✿

estimate
✿✿

ǫf
✿✿

is
✿✿✿

to
✿✿✿✿✿✿✿

compute
✿✿✿✿✿✿

optical
✿✿✿✿✿✿✿✿✿

properties
✿✿✿✿✿

while
✿✿✿✿✿✿✿

varying331

✿✿

the
✿✿✿✿✿✿✿✿✿

particles’
✿✿✿✿

size,
✿✿✿✿✿✿✿✿✿✿✿

morphology,
✿✿✿

and
✿✿✿✿✿✿✿✿✿

dielectric
✿✿✿✿✿✿✿✿

properties
✿✿✿✿✿✿

within
✿✿✿✿✿✿

typical
✿✿✿✿✿✿✿

ranges.
✿✿✿✿

The
✿✿✿✿✿✿✿

resulting
✿✿✿✿✿✿✿✿

variation
✿✿

in
✿✿✿✿

the
✿✿✿✿✿✿

optical332

✿✿✿✿✿✿✿✿

properties
✿✿✿✿

then
✿✿✿✿✿✿

allows
✿✿

us
✿✿

to
✿✿✿✿✿✿✿✿

estimate
✿✿✿

ǫf .
✿✿✿✿

(For
✿

a
✿✿✿✿✿✿

review
✿✿

of
✿✿✿✿✿✿✿

aerosol
✿✿✿✿✿

optics
✿✿✿✿✿✿✿✿✿

modelling
✿✿✿

see
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Kahnert et al. (2014, 2016) and333

✿✿✿✿✿✿✿✿

references
✿✿✿✿✿✿✿

therein).
✿

334

✿✿

In
✿✿✿✿✿

Table
✿✿

2
✿✿✿

we
✿✿✿✿✿

sorted
✿✿✿

the
✿✿✿✿✿✿

results
✿✿✿

for
✿✿✿✿

Ns
✿✿✿

and
✿✿✿

H
✿✿

by
✿✿✿✿✿✿✿✿

different
✿✿✿✿✿✿

values
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

observation
✿✿✿✿✿✿✿✿

standard
✿✿✿✿✿✿✿✿

deviation.
✿✿✿✿✿✿✿✿✿

However,
✿✿

it
✿✿

is335

✿✿✿✿✿✿✿✿

important
✿✿

to
✿✿✿✿✿

realise
✿✿✿✿

that
✿✿✿

the
✿✿✿✿✿

results
✿✿✿✿

also
✿✿✿✿✿✿

depend
✿✿✿

on
✿✿

the
✿✿✿✿✿✿✿✿✿✿

background
✿✿✿✿✿

error
✿✿✿✿✿✿✿

standard
✿✿✿✿✿✿✿✿

deviation,
✿✿✿

or,
✿✿✿✿

more
✿✿✿✿✿✿✿✿

precisely,
✿✿✿

on
✿✿✿

how
✿✿✿✿✿

large
✿✿✿

the336

✿✿✿✿✿✿✿✿✿

background
✿✿✿✿✿

error
✿✿✿✿✿✿✿

standard
✿✿✿✿✿✿✿✿✿

deviations
✿✿✿

are
✿✿✿✿✿✿✿✿✿

compared
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

observation
✿✿✿✿

error
✿✿✿✿✿✿✿

standard
✿✿✿✿✿✿✿✿✿✿

deviations.
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Johnson et al. (2005a) made337

✿✿✿

this
✿✿✿✿✿

point
✿✿✿✿

very
✿✿✿✿✿✿✿

explicit.
✿✿✿✿✿

They
✿✿✿✿✿✿✿✿

discussed
✿✿✿

an
✿✿✿✿✿✿✿✿

idealised
✿✿✿✿

case
✿✿✿✿

with
✿✿✿✿✿✿✿✿

diagonal
✿✿✿✿✿✿✿✿✿✿

background
✿✿✿✿✿

error
✿✿✿✿✿✿✿✿✿

covariance
✿✿✿✿✿✿

matrix
✿✿✿✿✿✿✿✿

B= σ2
b1✿✿✿✿

and338

✿✿✿✿✿✿✿✿✿

observation
✿✿✿✿✿

error
✿✿✿✿✿✿✿✿✿

covariance
✿✿✿✿✿✿

matrix
✿✿✿✿✿✿✿✿

R= σ2
o1.

✿✿✿✿✿

They
✿✿✿✿✿✿✿✿✿

considered
✿✿✿

the
✿✿✿✿

case
✿✿

of
✿✿✿✿✿

direct
✿✿✿✿✿✿✿✿✿✿✿✿✿

measurements,
✿✿✿

i.e.,
✿✿✿

the
✿✿✿✿✿✿

model
✿✿✿✿✿✿✿

variables
✿✿✿✿

and339

✿✿

the
✿✿✿✿✿✿✿✿

observed
✿✿✿✿✿✿✿✿✿✿

parameters
✿✿✿

are
✿✿✿

the
✿✿✿✿

same
✿✿✿✿

type
✿✿

of
✿✿✿✿✿✿✿✿✿

variables.
✿✿✿✿✿

Under
✿✿✿✿

such
✿✿✿✿✿✿✿✿

idealised
✿✿✿✿✿✿✿✿✿

conditions,
✿✿✿✿

they
✿✿✿✿✿✿✿

showed
✿✿✿✿

that
✿✿✿

one
✿✿✿

can
✿✿✿✿✿✿✿✿✿

maximise340

✿✿

the
✿✿✿✿✿✿✿

amount
✿✿

of
✿✿✿✿✿✿✿✿✿✿

information
✿✿✿✿

that
✿✿✿

can
✿✿✿

be
✿✿✿✿✿✿✿

obtained
✿✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

observations
✿✿

by
✿✿✿✿✿✿✿✿✿

optimising
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

regularisation
✿✿✿✿✿✿✿✿✿

parameter
✿✿✿✿✿

σb/σo
✿✿✿✿

(or,341

3A more realistic optics model, such as the one investigated in Andersson and Kahnert (2016) would help to reduce the observation standard deviation. For

future studies, such a model should be linearised and investigated in a similar way.
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✿✿✿✿✿✿✿✿✿✿

equivalently,
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

regularisation
✿✿✿✿✿✿✿✿

parameter
✿✿✿✿✿✿✿

σ2
o/σ

2
b ).

✿✿

In
✿✿✿✿

our
✿✿✿✿

more
✿✿✿✿✿✿✿

general
✿✿✿✿

case,
✿✿✿✿✿✿

instead
✿✿✿

of
✿✿

σb
✿✿✿

we
✿✿✿✿

need
✿✿

to
✿✿✿✿✿✿✿✿

consider
✿✿✿

the
✿✿✿

full
✿✿✿✿✿✿

matrix342

✿✿✿✿✿

B1/2,
✿✿✿✿✿✿

instead
✿✿

of
✿✿✿✿

σ−1
o ✿✿✿

we
✿✿✿✿

need
✿✿✿

to
✿✿✿✿✿✿✿

consider
✿✿✿✿✿✿

R−1/2,
✿✿✿✿

and
✿✿

in
✿✿✿✿✿

order
✿✿

to
✿✿✿✿✿✿✿✿

compare
✿✿✿

the
✿✿✿

two
✿✿✿✿✿✿✿

matrices
✿✿✿

we
✿✿✿✿✿

need
✿✿

to
✿✿✿✿

first
✿✿✿✿✿✿✿✿

transform
✿✿✿✿✿

B1/2
343

✿✿✿✿

from
✿✿✿✿✿

model
✿✿✿

to
✿✿✿✿✿✿✿✿✿

observation
✿✿✿✿✿

space
✿✿✿✿✿✿✿✿✿

according
✿✿

to
✿✿✿✿✿✿✿✿

H ·B1/2.
✿✿✿

So
✿✿

in
✿✿✿✿✿

place
✿✿

of
✿✿✿✿✿✿

σb/σo
✿✿✿

we
✿✿✿✿

need
✿✿

to
✿✿✿✿✿✿✿

consider
✿✿✿

the
✿✿✿✿✿

more
✿✿✿✿✿✿✿

general
✿✿✿✿✿✿✿

quantity344

✿✿✿✿✿✿✿✿✿✿✿✿✿✿

R−1/2 ·H ·B1/2,
✿✿✿✿

and
✿✿✿

we
✿✿✿✿

need
✿✿✿

to
✿✿✿✿✿✿✿✿✿

diagonalise
✿✿

it
✿✿✿

by
✿✿

a
✿✿✿✿✿✿✿

singular
✿✿✿✿✿

value
✿✿✿✿✿✿✿✿✿✿✿✿

decomposition
✿✿✿✿✿✿✿✿✿

according
✿✿

to
✿✿✿

Eq.
✿✿✿✿

(6).
✿✿✿✿

Thus
✿✿✿✿

the
✿✿✿✿✿✿✿

singular345

✿✿✿✿✿

values
✿✿✿

wi
✿✿✿✿✿✿✿✿

generalise
✿✿✿✿

the
✿✿✿✿✿✿✿✿

parameter
✿✿✿✿✿✿

σb/σo.
✿✿✿✿

The
✿✿✿✿✿

latter
✿✿✿✿✿✿

applies
✿✿

to
✿✿✿

the
✿✿✿✿

case
✿✿

of
✿✿✿✿✿✿

direct
✿✿✿✿✿✿✿✿✿✿

observations
✿✿✿✿

and
✿✿✿✿

error
✿✿✿✿✿✿✿✿✿

covariance
✿✿✿✿✿✿✿✿

matrices346

✿✿✿

that
✿✿✿

are
✿✿✿✿✿✿✿✿✿✿✿

proportional
✿✿

to
✿✿✿✿

unit
✿✿✿✿✿✿✿✿

matrices.
✿✿✿✿

The
✿✿✿✿✿✿

former
✿✿✿✿✿

apply
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿

general
✿✿✿✿

case
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿

non-diagonal
✿✿✿✿

error
✿✿✿✿✿✿✿✿✿✿

covariance
✿✿✿✿✿✿✿

matrices
✿✿✿✿

and347

✿✿✿✿✿✿

indirect
✿✿✿✿✿✿✿✿✿✿✿

observations.
✿

348

✿✿✿✿

From
✿✿✿✿

this
✿✿✿

we
✿✿✿✿

learn
✿✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿✿

singular
✿✿✿✿✿

values
✿✿✿

wi
✿✿✿✿✿✿✿

provide
✿✿

us
✿✿✿✿

with
✿

a
✿✿✿✿✿✿✿✿

(however
✿✿✿✿✿✿✿✿

abstract)
✿✿✿✿✿

means
✿✿✿

to
✿✿✿✿✿✿✿

quantify
✿✿✿✿

how
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

background349

✿✿✿✿✿✿✿

standard
✿✿✿✿✿✿✿✿✿

deviations
✿✿✿✿✿✿✿

compare
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

observation
✿✿✿✿✿✿✿✿

standard
✿✿✿✿✿✿✿✿✿

deviations.
✿✿✿

We
✿✿✿✿

pick
✿✿✿✿

one
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

columns
✿✿

in
✿✿✿✿

Tab.
✿✿

2,
✿✿✿✿✿✿✿

namely,
✿✿✿

the
✿✿✿✿

one350

✿✿

for
✿✿✿✿✿✿✿

σo = 50
✿✿✿

%,
✿✿✿✿

and
✿✿✿✿✿✿

expand
✿✿

it
✿✿

in
✿✿✿✿

Tab.
✿✿✿

3.
✿✿✿

We
✿✿✿✿✿

show
✿✿✿

the
✿✿✿✿✿✿✿

singular
✿✿✿✿✿✿

values
✿✿✿

wi,
✿✿✿

as
✿✿✿✿

well
✿✿

as
✿✿✿✿

their
✿✿✿✿✿✿✿✿✿✿✿✿

contributions
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

N i
s = w2

i /(1+w2
i )351

✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Hi = 0.5log2(1+w2
i )✿✿

to
✿✿✿

the
✿✿✿✿✿

sums
✿✿

in
✿✿✿✿

Eqs.
✿✿✿

(7)
✿✿✿✿

and
✿✿✿

(8),
✿✿✿✿✿✿✿✿✿✿✿

respectively.
✿✿✿✿

The
✿✿✿✿✿✿

results
✿✿✿✿✿✿

reveal
✿✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿✿

singular
✿✿✿✿✿

values
✿✿✿

wi
✿✿✿✿

can352

✿✿✿✿✿✿✿

decrease
✿✿✿✿✿

quite
✿✿✿✿✿✿

rapidly
✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿✿

largest
✿✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿

smallest
✿✿✿✿✿

value
✿✿✿✿

(see,
✿✿✿✿

e.g.,
✿✿✿✿

case
✿✿✿✿

No.
✿

6
✿✿✿

in
✿✿✿

the
✿✿✿✿✿

table).
✿✿✿✿✿✿✿✿✿

However,
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

corresponding353

✿✿✿✿✿✿✿✿✿✿

contribution
✿✿✿

N i
s ✿✿

to
✿✿✿

the
✿✿✿✿✿✿

number
✿✿✿

of
✿✿✿✿✿

signal
✿✿✿✿✿✿

degrees
✿✿✿

of
✿✿✿✿✿✿✿

freedom
✿✿✿✿✿✿✿

changes
✿✿✿✿✿

rather
✿✿✿✿✿✿✿✿

smoothly.
✿✿✿✿✿

Even
✿✿✿✿✿

those
✿✿✿✿✿✿✿

singular
✿✿✿✿✿

values
✿✿✿✿

that
✿✿✿

are
✿✿✿✿

only354

✿✿✿✿✿✿

slightly
✿✿✿✿✿

larger
✿✿✿✿

than
✿✿

1
✿✿✿✿

make
✿✿✿✿✿✿✿✿✿✿✿

contributions
✿✿✿

N i
s✿✿✿✿

that
✿✿

lie
✿✿✿✿✿

close
✿✿

to
✿✿

1
✿✿✿✿

(see,
✿✿✿✿

e.g.,
✿✿✿✿

i= 4
✿✿

in
✿✿✿✿

case
✿✿✿✿

No.
✿✿

6).
✿✿✿✿✿✿✿✿✿

However,
✿✿✿✿

once
✿✿

wi
✿✿✿✿

falls
✿✿✿✿✿✿

below
✿✿

1,355

✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

corresponding
✿✿✿✿✿✿✿✿✿✿✿

contribution
✿✿✿

N i
s ✿✿✿✿✿✿✿

becomes
✿✿✿✿✿

much
✿✿✿✿✿✿

smaller
✿✿✿✿

than
✿✿

1
✿✿✿✿

(see
✿✿✿✿

i= 5
✿✿

in
✿✿✿✿

case
✿✿✿✿

No.
✿✿

6).
✿

356

3.2 Numerical inverse-modelling experiment357

✿✿✿

Let
✿✿

us
✿✿✿✿

now
✿✿✿✿✿✿✿✿

compare
✿✿✿

the
✿✿✿✿✿✿✿

different
✿✿✿✿✿✿✿

subsets
✿✿

of
✿✿✿✿✿✿✿✿✿✿

parameters
✿✿

in
✿✿✿✿

Tab.
✿✿

2
✿✿✿

and
✿✿✿

3.
✿✿

In
✿✿✿✿

case
✿✿✿✿

No.
✿

1
✿✿✿

we
✿✿✿✿✿✿✿

observe
✿✿

a
✿✿✿✿✿

single
✿✿✿✿✿✿✿✿✿

parameter
✿✿✿✿

that358

✿✿✿✿✿✿✿

provides
✿

a
✿✿✿✿✿

single
✿✿✿✿✿✿

degree
✿✿

of
✿✿✿✿✿✿✿✿

freedom.
✿✿

In
✿✿✿✿✿

cases
✿✿✿

No.
✿

2
✿✿✿✿

and
✿

4
✿✿✿

we
✿✿✿✿✿✿✿

observe
✿✿✿

two
✿✿✿✿✿✿✿✿✿✿

parameters,
✿✿✿✿✿

which
✿✿✿✿✿

nearly
✿✿✿✿✿✿✿

doubles
✿✿✿

Ns.
✿✿✿✿✿✿✿✿✿✿✿

Comparison
✿✿

of359

✿✿✿✿

these
✿✿✿✿

two
✿✿✿✿

cases
✿✿✿✿✿✿

shows
✿✿✿

that
✿✿

it
✿✿✿✿

does
✿✿✿

not
✿✿✿✿✿

make
✿

a
✿✿✿✿✿✿✿✿✿

significant
✿✿✿✿✿✿✿✿

difference
✿✿✿✿✿✿✿

whether
✿✿✿

we
✿✿✿✿✿✿✿

observe
✿✿✿✿✿✿✿✿✿✿✿✿

backscattering
✿✿✿✿✿✿✿✿✿

coefficients
✿✿

at
✿✿✿✿✿✿✿✿

different360

✿✿✿✿✿✿✿✿✿✿

wavelengths,
✿✿✿

or
✿✿✿✿

both
✿✿✿✿✿✿✿✿

extinction
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿✿

backscattering
✿✿✿✿✿✿✿✿✿✿

coefficients
✿✿✿✿

each
✿✿

at
✿

a
✿✿✿✿✿

single
✿✿✿✿✿✿✿✿✿✿✿

wavelengths.
✿✿✿

In
✿✿✿✿✿

either
✿✿✿✿

case
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

measurements361

✿✿✿✿✿✿

provide
✿✿✿✿✿✿✿

roughly
✿✿✿

the
✿✿✿✿

same
✿✿✿✿✿✿✿

amount
✿✿

of
✿✿✿✿✿✿✿✿✿✿

information
✿✿

(in
✿✿✿✿✿

terms
✿✿

of
✿✿✿

Ns
✿✿✿

or
✿✿✿

H).
✿✿✿✿

The
✿✿✿✿

same
✿✿

is
✿✿✿

true
✿✿✿✿✿

when
✿✿✿✿✿✿✿✿✿✿

considering
✿✿✿✿✿

three
✿✿✿✿✿✿✿✿✿✿✿

observational362

✿✿✿✿✿✿✿✿✿

parameters
✿✿✿✿✿✿✿✿

(compare
✿✿✿✿✿

cases
✿✿✿✿

No.
✿

3
✿✿✿✿

and
✿✿✿

5).
✿✿✿✿

The
✿✿✿✿✿✿✿

3β+2α
✿✿✿✿

case
✿✿✿✿✿

(No.
✿✿

6)
✿✿✿✿✿✿

clearly
✿✿✿✿✿✿✿✿

provides
✿✿✿

the
✿✿✿✿✿✿

largest
✿✿✿✿✿✿✿

amount
✿✿

of
✿✿✿✿✿✿✿✿✿✿

information
✿✿✿

in363

✿✿✿✿✿✿✿✿✿

comparison
✿✿

to
✿✿✿

the
✿✿✿✿✿

other
✿✿✿✿✿

cases.
✿✿✿✿✿✿✿✿

However,
✿✿

as
✿✿✿

we
✿✿✿✿

saw
✿✿

in
✿✿✿

Tab.
✿✿

2,
✿✿✿✿✿✿✿✿✿✿

observation
✿✿✿✿✿

errors
✿✿✿✿

that
✿✿✿

are
✿✿✿✿

large
✿✿

in
✿✿✿✿✿✿✿✿✿✿

comparison
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

background364

✿✿✿✿✿

errors
✿✿✿

can
✿✿✿✿✿✿✿✿✿✿

significantly
✿✿✿✿✿✿

reduce
✿✿✿

the
✿✿✿✿✿✿✿

effective
✿✿✿✿✿✿✿✿✿✿

information
✿✿✿✿

that
✿✿✿

can
✿✿✿✿✿✿✿✿✿✿

assimilated
✿✿✿

into
✿✿

a
✿✿✿✿✿✿

model.365

We integrated the findings of 3.1 into our366

3.2
✿✿✿✿✿✿✿✿

Numerical
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

inverse-modelling
✿✿✿✿

test367

✿✿✿

We
✿✿✿✿✿✿✿✿

integrated
✿✿✿

the
✿✿✿✿✿✿✿✿

findings
✿✿

of
✿✿✿

3.1
✿✿✿✿

into
✿✿✿

our
✿

3DVAR program by constraining the algorithm to varying only the
✿✿✿✿✿✿✿

program
✿✿✿

by368

✿✿✿✿✿✿✿✿✿✿

constraining
✿✿✿

the
✿✿✿✿✿✿✿✿✿

algorithm
✿✿

to
✿✿✿✿✿✿✿

varying
✿✿✿✿

only
✿✿✿

the
✿

signal-related model variables. We employed the weak-constraint approach369

described in the appendix. More specifically, the constraints are formulated by use of the ansatz given in Eq. (D20), where we370

set the constant c′′ =min{wk,0.1}, and where wk is the smallest singular value of the scaled observation operator — see Eq.371

(C6).372

To illustrate the method we conduct a numerical experiment
✿✿✿

test
✿

as described in Sect. 2.5. We perform a 3DVAR analysis of373

the background field by assimilating four different vertical profilesof optical properties, namely, the backscattering coefficient,374
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Signal degrees of freedom Ns and change in entropy H as a function of observation standard deviation, taken from the first model layer and

case 12 in table 2.

Table 3.
✿✿✿✿

Signal
✿✿✿✿✿✿

degrees
✿✿✿

of
✿✿✿✿✿✿

freedom
✿✿✿

Ns
✿✿✿

and
✿✿✿✿✿✿

change
✿✿

in
✿✿✿✿✿✿

entropy
✿✿

H
✿✿✿

for
✿✿✿

the
✿✿✿✿✿

lowest
✿✿✿✿✿

model
✿✿✿✿

layer
✿✿✿✿✿✿

(closest
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿

surface).
✿✿✿✿

Also
✿✿✿✿✿

shown
✿✿✿

are
✿✿✿

the

✿✿✿✿✿✿

singular
✿✿✿✿✿

values
✿✿

wi
✿✿✿

and
✿✿✿✿

their
✿✿✿✿✿✿✿✿✿✿

contributions
✿✿✿

N i
s

✿✿✿

and
✿✿

Hi
✿✿

to
✿✿✿

Ns
✿✿✿

and
✿✿

H ,
✿✿✿✿✿✿✿✿✿✿

respectively.
✿✿✿

The
✿✿✿✿✿

results
✿✿✿✿

have
✿✿✿✿

been
✿✿✿✿✿✿

obtained
✿✿✿

by
✿✿✿✿✿✿✿

assuming
✿✿

an
✿✿✿✿✿✿✿✿✿

observation

✿✿✿✿✿✿

standard
✿✿✿✿✿✿✿

deviation
✿✿

of
✿✿

50
✿✿✿

%.

Obs. std. dev. (%)
✿✿✿

No.
✿ ✿✿✿✿✿✿✿✿

Parameters
✿

i
✿✿

wi
✿✿

N i
s
✿ ✿✿

Hi Ns H

✿✿

1.
✿✿

β3 1 5.96
✿✿✿

38.2 37.6 5
✿✿✿

1.00
✿

5.29
✿✿✿

5.26 24.3
✿✿✿

1.00
✿✿✿

5.26

✿

1
✿✿✿

108
✿✿✿

1.00
✿ ✿✿✿

6.76

10
✿

2.
4.61

✿✿✿✿✿

β1, β2
19.3

✿

2
✿✿✿

6.00
✿✿✿

0.97
✿ ✿✿✿

2.61
✿✿✿

1.97
✿✿✿

9.36

✿

1
✿✿✿

115
✿✿✿

1.00
✿ ✿✿✿

6.84

50
✿

3. 3.00
✿✿

β1,
✿✿✿

β2,
✿✿

β3
✿ ✿

2
✿✿✿

6.54
✿✿✿

0.98
✿ ✿✿✿

2.73
✿✿✿

2.71 10.5

100 2.33 7.8
✿

3
✿✿✿

1.68
✿✿✿

0.74
✿ ✿✿✿

0.97

✿

1
✿✿✿

83.3
✿✿✿

1.00
✿ ✿✿✿

6.38

✿✿

4.
✿✿✿✿

β3, k3
✿

2
✿✿✿

3.43
✿✿✿

0.92
✿ ✿✿✿

1.84
✿✿✿

1.92
✿✿✿

8.22

✿

1
✿✿✿

128
✿✿✿

1.00
✿ ✿✿✿

7.00

✿✿

5.
✿✿

β1,
✿✿✿

β2,
✿✿

k2
✿ ✿

2
✿✿✿

8.71
✿✿✿

0.99
✿ ✿✿✿

3.13
✿✿✿

2.77
✿✿✿✿

11.24

✿

3
✿✿✿

1.90
✿✿✿

0.78
✿ ✿✿✿

1.10

✿

1
✿✿✿

153
✿✿✿

1.00
✿ ✿✿✿

7.26

✿

2
✿✿✿

9.52
✿✿✿

0.99
✿ ✿✿✿

3.26

✿✿

6.
✿✿✿

β1,
✿✿

β2,
✿✿✿

β3,
✿✿✿

k2,
✿✿

k3
✿

3
✿✿✿

1.94
✿✿✿

0.79
✿ ✿✿✿

1.13
✿✿✿

3.89
✿✿✿

12.9

✿

4
✿✿✿

1.63
✿✿✿

0.73
✿ ✿✿✿

0.93

✿

5
✿✿✿

0.79
✿✿✿

0.38
✿ ✿✿✿

0.35

βbak, and the extinction coefficient,
✿✿

by
✿✿✿✿✿✿✿✿✿✿

assimilating
✿✿✿✿✿✿✿✿✿✿

“3β+2α”
✿✿✿✿✿✿✿

profiles,
✿✿✿

i.e.,
✿✿✿✿✿✿✿✿

synthetic
✿✿✿✿

lidar
✿✿✿✿✿✿✿✿✿✿✿✿

measurements
✿✿

of
✿✿✿✿

βsca
✿✿

at
✿✿✿

the
✿✿✿✿✿

three375

✿✿✿✿✿✿✿✿✿✿

wavelengths
✿✿✿✿✿

1064,
✿✿✿✿

532,
✿✿✿

and
✿✿✿✿

355
✿✿✿

nm
✿✿✿✿✿✿✿

together
✿✿✿✿

with kext , each at a wavelength of
✿✿

at
✿✿✿

the
✿✿✿

two
✿✿✿✿✿✿✿✿✿✿✿

wavelengths
✿✿✿

532
✿✿✿

and
✿

355 and 1064376

✿✿✿

nm. Thus in our case the number of singular values in each vertical layer is k = 4
✿✿✿✿✿

K = 5. We assume an idealised situation in377

which the observation standard deviation is only 10 %. As we see in Table 2 (row 11
✿✿✿✿

case
✿✿✿

No.
✿

6), the number of singular values378

larger than unity is ℓ= k = 4, and the number of signal degrees of freedom is Ns =3.9
✿✿✿✿✿✿✿

Ns = 4.9
✿✿

in
✿✿✿✿

this
✿✿✿✿

case. So we
✿✿✿✿✿✿

roughly379

have as many signal degrees of freedom as we have measurements.380

As an example, Fig. 1 shows the ammonium sulphate mixing ratio in the lowest model layer (closest to the surface)computed381

for the reference run (left), the background estimate (centre
✿✿✿✿✿

Figure
✿✿

1
✿✿✿✿✿

shows
✿✿✿✿✿✿✿

vertical
✿✿✿✿✿✿

profiles
✿✿✿

of
✿✿✿✿✿✿✿

selected
✿✿✿✿✿✿

aerosol
✿✿✿✿✿✿✿✿✿✿✿

components,382

✿✿✿✿✿✿

namely
✿✿✿✿✿

(from
✿✿✿

top
✿✿

to
✿✿✿✿✿✿✿

bottom):
✿✿✿✿✿✿✿

organic
✿✿✿✿✿✿

carbon
✿✿✿✿

(OC)
✿✿

in
✿✿✿

the
✿✿✿

3rd
✿✿✿✿

size
✿✿✿

bin
✿✿✿✿✿✿✿

(OC-3),
✿✿✿

OC
✿✿

in
✿✿✿

the
✿✿✿

4th
✿✿✿✿

size
✿✿✿

bin
✿✿✿✿✿✿✿

(OC-4),
✿✿✿✿✿✿✿✿

elemental
✿✿✿✿✿✿

carbon383

✿✿✿✿

(EC)
✿✿

in
✿✿✿

the
✿✿✿

3rd
✿✿✿✿

size
✿✿✿

bin
✿✿✿✿✿

(EC-3), and the
✿✿✿✿✿✿

mineral
✿✿✿✿

dust
✿✿

in
✿✿✿

the
✿✿

1st
✿✿✿✿

size
✿✿✿

bin
✿✿✿✿✿✿✿✿✿

(DUST-1).
✿✿✿✿

The
✿✿✿✿✿✿✿

reference
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿✿

background
✿✿✿✿✿✿

mixing
✿✿✿✿✿

ratios384
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Figure 1.
✿✿✿✿✿

Vertical
✿✿✿✿✿✿

profiles
✿✿

of
✿✿✿✿✿✿✿

selected
✿✿✿✿✿✿

aerosol
✿✿✿✿✿✿✿✿✿

components
✿✿

in
✿✿✿✿✿✿✿

different
✿✿✿

size
✿✿✿✿

bins.
✿✿✿✿✿

From
✿✿✿

top
✿✿

to
✿✿✿✿✿✿

bottom:
✿✿✿✿✿✿

organic
✿✿✿✿✿

carbon
✿✿✿

in
✿✿

the
✿✿✿

3rd
✿✿✿✿

size
✿✿✿

bin

✿✿✿✿✿✿

(OC-3),
✿✿✿

OC
✿✿

in
✿✿

the
✿✿✿

4th
✿✿✿✿

size
✿✿

bin
✿✿✿✿✿✿✿

(OC-4),
✿✿✿✿✿✿✿

elemental
✿✿✿✿✿✿

carbon
✿✿

in
✿✿

the
✿✿✿

3rd
✿✿✿✿

size
✿✿✿

bin
✿✿✿✿✿✿

(EC-3),
✿✿✿

and
✿✿✿

dust
✿✿

in
✿✿✿

the
✿✿✿

1st
✿✿✿

size
✿✿✿

bin
✿✿✿✿✿✿✿✿

(DUST-1).
✿✿✿

The
✿✿✿✿✿✿✿✿

reference

✿✿✿✿✿

results
✿✿✿

are
✿✿✿✿✿

shown
✿✿

in
✿✿✿✿✿

black,
✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿✿

background
✿✿✿✿

(first
✿✿✿✿✿✿

guess)
✿✿✿✿✿✿

estimate
✿✿

is
✿✿✿✿✿

shown
✿✿

in
✿✿✿✿✿✿

green.
✿✿✿

The
✿✿✿✿✿✿✿✿✿✿✿

unconstrained
✿✿✿✿✿✿

3DVAR
✿✿✿✿✿✿✿

analysis
✿✿✿✿✿

results
✿✿✿

are

✿✿✿✿✿✿✿

presented
✿✿

in
✿✿

the
✿✿✿

left
✿✿✿✿✿

panels
✿✿

in
✿✿✿✿

blue,
✿✿✿

the
✿✿✿✿✿✿✿✿✿

constrained
✿✿✿✿✿✿

3DVAR
✿✿✿✿✿✿

analysis
✿✿✿✿✿

results
✿✿✿

are
✿✿✿✿✿

shown
✿✿

in
✿✿

the
✿✿✿✿

right
✿✿✿✿✿

panels
✿✿

in
✿✿✿

red.

✿✿

are
✿✿✿✿✿✿

shown
✿✿

in
✿✿✿✿✿

black
✿✿✿✿

and
✿✿✿✿✿✿

green,
✿✿✿✿✿✿✿✿✿✿

respectively.
✿✿✿✿

The
✿

3DVAR analysis (right)4. Clearly,
✿✿✿✿✿✿

analysis
✿✿✿✿

was
✿✿✿

first
✿✿✿✿✿✿✿✿✿

performed
✿✿✿✿✿✿✿

without
✿✿✿✿

any385

✿✿✿✿✿✿✿✿✿

constraints;
✿✿✿

the
✿✿✿✿✿✿

results
✿✿✿

are
✿✿✿✿✿

shown
✿✿

in
✿✿✿

the
✿✿✿

left
✿✿✿✿✿✿

column
✿✿✿

by
✿✿✿

the
✿✿✿

blue
✿✿✿✿

line.
✿✿✿✿✿

Then
✿✿✿

the
✿✿✿✿✿✿

3DVAR
✿✿✿✿✿✿✿

analysis
✿✿✿✿

was
✿✿✿✿✿✿✿

repeated
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿✿✿✿✿

constraints386

✿✿

in
✿✿✿

Eq.
✿✿✿✿

(10)
✿✿✿

and
✿✿✿✿✿

(11);
✿✿✿

the
✿✿✿✿✿✿

results
✿✿✿

are
✿✿✿✿✿✿✿✿✿

represented
✿✿✿

in
✿✿✿

the
✿✿✿✿

right
✿✿✿✿✿✿

column
✿✿✿

by
✿✿✿

the
✿✿✿

red
✿✿✿✿

line.
✿✿✿✿✿✿✿

Clearly,
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

unconstrained
✿✿✿✿✿✿✿

analysis
✿✿✿✿✿

(blue387

✿✿✿✿

lines
✿✿

in the background field underestimates the reference field in most areas. We picked a location in Central Sweden (60◦N,388

15◦E) to compute backscattering and extinction profiles from the reference results , which were then 3DVAR-analysed in389

conjunction with the background field. The analysis (right) restores the reference mixing ratios at and near the observation site.390

So, at least for ammonium sulphate mixing ratios in the lowest model layer we seem to obtain a satisfying solution to the inverse391

modelling problem.
✿✿✿

left
✿✿✿✿✿✿✿

panels)
✿✿✿✿✿

yields
✿✿✿✿✿✿

results
✿✿✿

that
✿✿✿✿✿✿✿✿

oscillate
✿✿✿✿

quite
✿✿✿✿✿✿✿✿✿

erratically
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿

vertical
✿✿✿✿✿✿✿✿

direction.
✿✿✿✿✿

Also,
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

unconstrained392

✿✿✿✿✿✿

analysis
✿✿✿✿

can
✿✿✿✿✿

yield
✿✿✿✿✿✿✿✿✿✿✿✿

conspicuously
✿✿✿✿

high
✿✿✿✿✿✿

values
✿✿

at
✿✿✿✿✿

higher
✿✿✿✿✿✿✿✿

altitudes,
✿✿✿✿✿

even
✿✿✿✿✿✿

though
✿✿✿✿

both
✿✿✿

the
✿✿✿✿✿✿✿✿

reference
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿✿

background
✿✿✿✿✿✿

values
✿✿✿

are393

✿✿✿✿

both
✿✿✿✿

close
✿✿

to
✿✿✿✿✿

zero.
✿✿✿

By
✿✿✿✿✿✿✿

contrast,
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

constrained
✿✿✿✿✿✿✿

analysis
✿✿✿✿

(red
✿✿✿✿

lines
✿✿

in
✿✿✿

the
✿✿✿✿✿

right
✿✿✿✿✿✿

panels)
✿✿✿✿✿

yields
✿✿✿✿✿✿

results
✿✿✿✿

that
✿✿✿✿✿

better
✿✿✿✿✿

agree
✿✿✿✿

with
✿✿✿

the394

4The approach for generating a reference and background model-run has been explained in Sect. 2.5
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✿✿✿✿✿✿✿

reference
✿✿✿✿✿✿✿

results.
✿✿✿

The
✿✿✿✿✿✿✿✿

noisiness
✿✿

in
✿✿✿

the
✿✿✿✿✿✿

vertical
✿✿✿✿✿✿✿✿

direction
✿✿

is
✿✿✿✿✿✿✿✿✿✿

significantly
✿✿✿✿✿✿✿

reduced,
✿✿✿✿

and
✿✿✿

the
✿✿✿✿✿

results
✿✿

at
✿✿✿✿✿✿

higher
✿✿✿✿✿✿✿

altitudes
✿✿✿

are
✿✿✿✿✿✿✿✿

generally395

✿✿✿✿✿

lower
✿✿✿

than
✿✿✿✿✿

those
✿✿✿✿✿✿✿✿

obtained
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

unconstrained
✿✿✿✿✿✿✿✿

analysis.396

A closer inspection of the analysis performance is given in Fig. 2 . Each panel shows vertical profiles of mixing ratios at397

the observation site. We compare the analysis results (red solid line) to both the background estimate (blue dashed line)and the398

reference results (black solid line). The reference results of the secondary inorganic aerosol species
✿✿✿✿✿

Figure
✿✿

2
✿✿✿✿✿

shows
✿✿✿✿✿✿✿✿✿

analogous399

✿✿✿✿✿

results
✿✿✿

for
✿✿✿

the
✿✿✿✿

mass
✿✿✿✿✿✿

mixing
✿✿✿✿✿

ratios
✿✿

of
✿✿✿✿✿✿✿✿

different
✿✿✿✿✿✿

aerosol
✿✿✿✿✿✿✿✿✿✿

components,
✿✿✿✿✿

each
✿✿✿✿✿✿✿

summed
✿✿✿✿

over
✿✿

all
✿✿✿✿

size
✿✿✿✿

bins.
✿✿✿✿

The
✿✿✿✿✿✿

aerosol
✿✿✿✿✿✿✿✿✿✿

components
✿✿✿

are400

✿✿✿✿✿

(from
✿✿✿

top
✿✿

to
✿✿✿✿✿✿✿

bottom):
✿✿✿✿✿✿✿✿

elemental
✿✿✿✿✿✿

carbon
✿✿✿✿✿

(EC),
✿✿✿✿✿✿

organic
✿✿✿✿✿✿

carbon
✿✿✿✿✿

(OC),
✿✿✿✿✿✿✿

mineral
✿✿✿✿

dust
✿✿✿✿✿✿✿

(DUST),
✿✿✿

sea
✿✿✿✿

salt
✿✿✿✿✿✿

(NaCl),
✿✿✿✿✿✿✿✿✿

secondary
✿✿✿✿✿✿✿✿

inorganic401

✿✿✿✿✿✿✿

aerosols (SIA, which is the sum of
✿✿✿

i.e.,
✿✿✿

the
✿✿✿✿

sum
✿✿✿✿

over all sulphate, nitrate, and ammonium mixing ratios)are almost completely402

restored by the 3DVAR analysisat all altitudes. For elemental carbon (EC), organic carbon (OC), dust, and, even more so,403

sodium chloride (NaCl) the analysis overestimates
✿✿✿✿✿✿✿

species),
✿✿✿

and
✿✿✿✿✿

PM10
✿✿✿✿

(i.e.,
✿✿✿

the
✿✿✿✿

sum
✿✿✿✿

over
✿✿✿

all
✿✿✿✿✿✿

aerosol
✿✿✿✿✿✿✿✿✿✿✿

components).
✿✿✿✿✿✿✿

Clearly,
✿✿✿

the404

✿✿✿✿✿✿✿✿✿

constrained
✿✿✿✿✿✿✿

analysis
✿✿✿✿✿✿✿✿

faithfully
✿✿✿✿✿✿✿

retrieves
✿✿✿✿

both
✿✿✿✿✿

PM10
✿✿✿✿

and
✿✿✿✿

SIA.
✿✿✿

The
✿✿✿✿✿✿✿✿✿✿✿✿

unconstrained
✿✿✿✿✿✿✿

analysis
✿✿✿✿✿✿✿✿

performs
✿✿✿✿✿

almost
✿✿✿✿✿✿✿

equally
✿✿✿

well
✿✿✿

for
✿✿✿✿✿

these405

✿✿✿

two
✿✿✿✿✿✿✿✿

variables.
✿✿✿

Sea
✿✿✿✿

salt
✿✿✿

and
✿✿✿✿✿✿

mineral
✿✿✿✿

dust
✿✿✿

are
✿✿✿

not
✿✿✿✿

well
✿✿✿✿✿✿✿

retrieved
✿✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

measurements
✿✿

in
✿✿✿✿✿

either
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

constrained
✿✿

or
✿✿✿✿✿✿✿✿✿✿✿✿

unconstrained406

✿✿✿✿✿✿✿✿

approach.
✿✿✿

EC
✿✿✿✿

and
✿✿✿

OC
✿✿✿

are
✿✿✿✿

very
✿✿✿✿

well
✿✿✿✿✿✿✿✿

retrieved
✿✿

by
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

constrained
✿✿✿✿✿✿✿✿

analysis.
✿✿✿

For
✿✿✿✿✿

these
✿✿✿✿✿✿✿✿✿✿✿

components, the
✿✿✿✿✿✿✿✿✿✿✿✿

unconstrained
✿✿✿✿✿✿✿

analysis407

✿✿✿

has
✿

a
✿✿✿✿

very
✿✿✿✿✿

small
✿✿✿✿

bias
✿✿✿✿✿✿✿✿✿

compared
✿✿

to
✿✿✿

the
✿

reference resultsat altitudes between 0–2 km, while above 2 km the reference results408

are at least partially restored by the analysis. When we compare the different scales on the x-axes, we see that SIA makes the409

dominant contribution to the aerosol mixing ratio. Accordingly, the total aerosol mass mixing ratio (PM10) is almost equally410

well restored by the analysis as the SIA mixing ratio. Vertical profiles of elemental carbon (EC), organic carbon (OC), dust,411

secondary inorganic aerosols (SIA), sea salt, and total aerosol mass mixing ratio (PM10). Each panel shows the reference results412

(black solid line), background estimate (dashed blue line), and the 3DVAR analysis (red solid line). ,
✿✿✿

but
✿✿

it
✿✿

is
✿✿✿✿✿✿✿✿✿✿

considerably
✿✿✿✿✿

more413

✿✿✿✿

noisy
✿✿✿✿

(i.e.,
✿✿✿✿✿✿✿✿✿

oscillating
✿✿

in
✿✿✿

the
✿✿✿✿✿✿

vertical
✿✿✿✿✿✿✿✿✿

direction)
✿✿✿✿

than
✿✿

the
✿✿✿✿✿✿✿✿✿✿

constrained
✿✿✿✿✿✿✿

analysis.
✿✿✿✿

We
✿✿✿

also
✿✿✿✿

see,
✿✿✿✿✿

again,
✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿

mixing
✿✿✿✿✿

ratios
✿✿

at
✿✿✿✿✿✿

higher414

✿✿✿✿✿✿✿

altitudes
✿✿✿✿✿✿✿

obtained
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

unconstrained
✿✿✿✿✿✿✿

analysis
✿✿✿

can
✿✿

be
✿✿✿✿✿✿✿✿✿✿✿

unreasonably
✿✿✿✿✿

high.
✿✿✿✿

This
✿✿

is
✿✿✿✿✿✿✿✿

especially
✿✿✿✿✿✿✿✿✿✿

pronounced
✿✿✿

for
✿✿✿✿

OC.
✿✿

In
✿✿✿✿✿✿✿

general,415

✿✿✿✿✿✿✿

however,
✿✿✿

the
✿✿✿✿✿✿✿✿

problems
✿✿✿

we
✿✿✿✿✿✿✿✿✿

encounter
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

unconstrained
✿✿✿✿✿✿✿

analysis
✿✿✿

are
✿✿✿✿

less
✿✿✿✿✿✿✿✿✿✿

pronounced
✿✿

in
✿✿✿✿

Fig.
✿✿

2
✿✿✿✿

than
✿✿

in
✿✿✿✿

Fig.
✿✿

1.
✿✿

A
✿✿✿✿✿✿✿✿

possible416

✿✿✿✿✿✿✿✿✿

explanation
✿✿

is
✿✿✿✿

that
✿✿✿

SIA
✿✿✿✿

may
✿✿

be
✿✿✿✿✿

most
✿✿✿✿✿✿✿

strongly
✿✿✿✿✿✿

related
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

measurement
✿✿✿✿✿

signal,
✿✿✿✿

and
✿✿✿

SIA
✿✿

is
✿✿✿✿✿✿✿✿✿✿

dominating
✿✿✿

the
✿✿✿✿✿✿

aerosol
✿✿✿✿

mass
✿✿

in
✿✿✿✿

this417

✿✿✿✿

case.
✿✿✿

We
✿✿✿✿

will
✿✿✿✿✿

return
✿✿

to
✿✿✿✿

this
✿✿✿✿

point
✿✿✿✿✿✿✿

shortly.
✿✿✿✿✿✿✿

Another
✿✿✿✿✿✿✿

possible
✿✿✿✿✿

factor
✿✿

is
✿✿✿✿

that
✿✿✿

the
✿✿✿✿

noise
✿✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿

analysis
✿✿✿

can
✿✿

be
✿✿✿✿✿✿✿

damped
✿✿✿

by
✿✿✿✿✿✿✿✿

summing418

✿✿

up
✿✿✿✿✿✿

results
✿✿✿✿

over
✿✿✿✿✿✿

several
✿✿✿

size
✿✿✿✿✿

bins.419

Figure 3 shows the observations (blacksolid line) as well as the observation-equivalents of the background estimate (blue420

dashed line
✿✿✿✿

green) and the
✿✿✿✿✿✿✿✿✿✿✿

unconstrained
✿✿✿✿✿

(blue)
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿

constrained
✿✿✿✿✿

(red) 3DVAR analysis (red solid line) for all four observations,421

namely, βbak at 355 wavelength (top left), βbak at 1064 (top right), kext at 355 (bottom left), and kext at 1064 (bottom422

right)
✿✿✿✿✿✿✿

analysis
✿✿✿

for
✿✿

all
✿✿✿

five
✿✿✿✿✿✿✿✿✿✿✿

observations. We learn from this figure that the analysis follows the observations faithfully. The reason423

for this is that we assumed that the observations were highly accurate with an error standard deviation of only 10 %.
✿✿

In
✿✿✿✿

fact,
✿✿✿

the424

✿✿✿✿✿✿✿✿

difference
✿✿✿✿✿✿✿

between
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

observation-equivalent
✿✿✿✿✿✿✿

analysis
✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

observations
✿✿✿✿✿✿✿

deviate
✿✿

by
✿✿✿✿

even
✿✿✿✿

less
✿✿✿

than
✿✿✿

10
✿✿✿

%.
✿✿✿✿✿✿✿✿

However,
✿✿✿

our
✿✿✿✿

tests425

✿✿✿✿✿✿✿✿

confirmed
✿✿✿✿

that
✿✿

an
✿✿✿✿✿✿✿

increase
✿✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

observation
✿✿✿✿

error
✿✿✿✿✿✿✿✿✿

eventually
✿✿✿✿✿✿

results
✿✿

in
✿✿✿✿✿✿✿

analysis
✿✿✿✿✿✿

results
✿✿

of
✿✿✿✿✿✿

which
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

observation-equivalent426

✿✿✿✿✿✿✿✿✿✿

increasingly
✿✿✿✿✿✿✿

deviates
✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

observations
✿✿✿

(not
✿✿✿✿✿✿✿

shown).
✿

427

We have seen that the analysis provides a reasonable, but, as expected, not a perfect answer to the inverse problem. We have428

further seen that at (and near) the observation site it relies more on the observations than on the background estimate.
✿✿✿✿

Most429
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Figure 2. Ammonium sulphate
✿✿

As
✿✿✿

Fig.
✿✿

1,
✿✿✿

but
✿✿✿

for
✿✿✿

the
✿✿✿✿

total
✿✿✿✿

mass
✿

mixing ratio
✿✿✿✿✿✿✿

(summed
✿

over Europe
✿✿

all
✿✿✿

size
✿✿✿✿

bins). Left
✿✿

The
✿✿✿✿✿✿✿✿✿✿

components

✿✿

are
✿✿✿✿✿

(from
✿✿✿

top
✿✿

to
✿✿✿✿✿✿

bottom): reference field
✿✿

EC, centre: background field
✿✿✿

OC, right: 3DVAR analysis
✿✿✿✿✿

mineral
✿✿✿✿

dust,
✿✿✿

sea
✿✿✿✿

salt,
✿✿✿✿✿✿✿

secondary
✿✿✿✿✿✿✿✿

inorganic

✿✿✿✿✿✿

aerosols
✿✿✿✿

(sum
✿✿

of
✿✿

all
✿✿✿✿✿✿✿

sulphate,
✿✿✿✿✿✿

nitrate,
✿✿✿

and
✿✿✿✿✿✿✿✿

ammonium
✿✿✿✿✿✿✿

species),
✿✿✿

and
✿✿✿✿✿

PM10
✿✿✿✿

(sum
✿✿

of
✿✿

all
✿✿✿✿✿✿

aerosol
✿✿✿✿✿✿✿✿✿✿

components).The observation site is indicated

by the white circle. Note the nonlinear colour scale!
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Figure 3. Observations (black solid line), and observation-equivalents of the background estimate (dashed blue line
✿✿✿✿

green),
✿

and of the 3DVAR

analysis
✿✿✿✿✿✿✿✿✿✿

unconstrained
✿

(
✿✿✿✿

blue)
✿✿✿

and
✿✿✿✿✿✿✿✿✿

constrained
✿

(redsolid line)
✿✿✿✿✿✿

3DVAR
✿✿✿✿✿✿

analysis. The optical parameters and wavelengths are indicated above

each panel.

✿✿✿✿✿✿✿✿✿✿

importantly,
✿✿✿

we
✿✿✿✿

have
✿✿✿✿

seen
✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿✿✿✿

constraints
✿✿✿✿✿✿✿✿✿

introduced
✿✿✿

in
✿✿

the
✿✿✿✿✿✿✿

3DVAR
✿✿✿✿✿✿✿✿✿

algorithm
✿✿✿✿✿✿✿

suppress
✿✿✿✿✿

noise
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿

analysis,
✿✿✿✿✿✿✿✿✿

especially
✿✿

in430

✿✿✿

EC
✿✿✿

and
✿✿✿✿

OC. However, the previous figures tell us little about the effect of the constraints we introduced
✿✿

do
✿✿✿

not
✿✿✿✿✿✿

provide
✿✿✿

us
✿✿✿✿

with431

✿✿✿

any
✿✿✿✿✿

direct
✿✿✿✿✿✿

insight
✿✿

of
✿✿✿✿

how
✿✿✿✿✿✿✿

exactly
✿✿✿

the
✿✿✿✿✿✿✿✿✿

constraints
✿✿✿✿✿✿✿✿✿

accomplish
✿✿✿✿

this. To learn
✿✿✿✿

more
✿

about that we need to inspect the analysis in432

the abstract
✿✿✿✿

phase
✿

space of the transformed model variables δx′given
✿

.
✿✿✿✿✿✿

(Recall
✿✿✿✿

that
✿✿✿

we
✿✿✿✿✿✿

defined
✿✿✿✿

this
✿✿✿✿✿✿✿

variable in Eq. (C16)
✿✿

9)433

✿✿

as
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

δx′ =VT
R ·B−1/2 · (x−xb)). Figure 4 shows vertical profiles of all

✿

a
✿✿✿✿✿✿✿

selection
✿✿✿

of
✿✿✿

the,
✿✿

in
✿✿✿✿✿

total, 20 variables δx′
i. The error434

variance within which each of these variables is allowed to vary in the analysis is given by the diagonal elements of the matrix435

BG in Eq. (D20) . The first four of these are the singular values given in Table 2 (row11). The remaining 16 variances are436

set to 0.1. Thus the first element δx′
1 has by far the largest freedom to be adjusted by the

✿✿✿✿✿✿✿✿✿

background
✿✿✿✿✿✿✿

estimate
✿✿✿✿✿✿✿✿✿✿✿

corresponds
✿✿

to437

✿✿✿✿✿✿

δx′
i = 0

✿✿✿✿

and
✿

is
✿✿✿✿✿✿✿✿✿✿

represented
✿✿✿

by
✿✿✿

the
✿✿✿✿

green
✿✿✿✿

line.
✿✿✿✿

The
✿✿✿✿✿✿✿✿✿✿✿✿

unconstrained
✿✿✿✿✿✿✿

3DVAR
✿✿✿✿✿✿

analysis
✿✿✿✿✿✿✿✿✿

increment
✿✿

is
✿✿✿✿✿✿✿✿✿

represented
✿✿✿

by
✿✿✿

the
✿✿✿✿

blue
✿✿✿✿

line,
✿✿✿

the438

✿✿✿✿✿✿✿✿✿

constrained
✿

3DVAR algorithm. The error variance of the second element,
✿✿✿✿✿✿

analysis
✿✿✿✿✿✿✿✿✿

increment
✿✿

is
✿✿✿✿✿

shown
✿✿✿

by
✿✿✿

the
✿✿✿

red
✿✿✿✿

line.
✿✿✿

The
✿✿✿✿

first439

✿✿✿

five
✿✿✿✿✿

phase
✿✿✿✿✿

space
✿✿✿✿✿✿✿✿

elements
✿✿

in
✿✿✿

the
✿✿✿

top
✿✿✿✿

row
✿✿✿

are
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

signal-related
✿✿✿✿✿✿

control
✿✿✿✿✿✿✿✿✿

variables.
✿✿✿✿✿✿✿✿✿

Generally,
✿✿✿

the
✿✿✿✿✿✿✿✿✿

magnitude
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

constrained440

✿✿✿✿✿✿✿✿✿

increments
✿✿✿✿

(red)
✿✿

is
✿✿✿✿✿✿

larger
✿✿✿✿

than
✿✿✿

that
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

unconstrained
✿✿✿✿✿✿✿✿✿

increments
✿✿✿✿✿✿

(blue).
✿✿✿✿

The
✿✿✿✿✿✿✿✿✿✿✿

noise-related
✿✿✿✿✿

phase
✿✿✿✿✿

space
✿✿✿✿✿✿✿✿✿

elements,
✿✿✿

five
✿✿✿

of441

✿✿✿✿✿

which
✿✿✿

are
✿✿✿✿✿✿

shown
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿

bottom
✿✿✿✿

row,
✿✿✿✿✿✿

display
✿✿✿✿

the
✿✿✿✿✿✿✿

opposite
✿✿✿✿✿✿✿✿✿

behaviour.
✿✿✿✿

The
✿✿✿✿✿✿✿✿✿✿

constrained
✿✿✿✿✿✿✿✿✿

increments
✿✿✿

are
✿✿✿✿✿

close
✿✿✿

to
✿✿✿✿

zero,
✿✿✿

as
✿✿✿✿

they442

✿✿✿✿✿✿

should.
✿✿✿

The
✿✿✿✿✿✿✿✿✿✿✿✿

unconstrained
✿✿✿✿✿✿✿✿

elements
✿✿✿✿✿✿✿✿✿✿

consistently
✿✿✿✿

show
✿✿✿✿✿✿

higher
✿✿✿✿✿✿✿✿✿✿

magnitudes
✿✿✿

than
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

constrained
✿✿✿✿✿✿✿✿

elements.
✿✿✿✿✿✿✿✿

However,
✿✿✿

we
✿✿✿✿

also
✿✿✿

see443

✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

unconstrained
✿✿✿✿✿✿✿

analysis
✿✿✿✿

does
✿✿✿✿✿✿✿

produce
✿✿✿✿✿✿✿✿✿

increments
✿✿✿✿

that
✿✿✿

are
✿✿✿✿✿

largest
✿✿✿

for
✿✿✿

the
✿✿✿

two
✿✿✿✿✿✿✿✿

elements
✿✿✿

δx′
1✿✿✿✿

and δx′
2, is smaller by roughly444

one order of magnitude. The error variances of δx′
3 and δx′

4 are of comparable magnitude, and each one is about one order of445

magnitude smaller than that of δx′
2. Finally,

✿

,
✿✿✿✿✿

which
✿✿✿✿✿

most
✿✿✿✿✿✿✿

strongly
✿✿✿✿✿

relate
✿✿

to the error variances of the remaining 16 elements446

are about one order of magnitude smaller than that of δx′
4. Accordingly, the first element, δx′

1, is the one that deviates most447
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Figure 4.
✿✿✿✿✿✿

Vertical
✿✿✿✿✿✿

profiles
✿✿

of
✿✿

the
✿✿✿✿✿✿✿✿✿

transformed
✿✿✿✿✿

model
✿✿✿✿✿✿✿

variables
✿✿✿✿

δx′,
✿✿✿✿✿✿

defined
✿

in
✿✿✿

Eq.
✿✿✿

(9).
✿✿✿

The
✿✿✿✿✿

figure
✿✿✿✿✿

shows
✿✿✿✿✿

results
✿✿✿✿✿✿✿

obtained
✿✿✿

with
✿✿✿

the
✿✿✿✿✿✿✿✿✿

constrained

✿✿✿

(red)
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿✿

unconstrained
✿✿✿✿✿

(blue)
✿✿✿✿✿✿

3DVAR
✿✿✿✿✿✿✿

analysis.

strongly from zero. The elements δx′
2, δx′

3, and δx′
4 are varied much less in comparison. If we had imposed strong constraints,448

then the remaining elements would be exactly zero. However, our weak-constraint formulation allows even the other elements449

to deviate from zero within relatively tight limits. But several of them are, in fact, very close to zero, notably the elements δx′
i450

for i= 7–9, 11–14, 16, and 19.
✿✿✿✿✿✿✿✿✿✿✿

measurement
✿✿✿✿✿✿

signal.
✿✿✿✿✿

Based
✿✿✿

on
✿✿✿

our
✿✿✿✿✿

single
✿✿✿✿

test
✿✿✿✿

case
✿✿

we
✿✿✿✿✿✿

cannot
✿✿✿

say
✿✿

if
✿✿✿✿

this
✿

is
✿✿

a
✿✿✿✿✿

lucky
✿✿✿✿✿✿✿✿✿✿

coincidence451

✿✿

or
✿

a
✿✿✿✿✿✿✿✿✿

consistent
✿✿✿✿✿✿✿✿

property.
✿✿

If
✿✿✿

the
✿✿✿✿✿

latter,
✿✿

it
✿✿✿✿

may
✿✿✿✿✿✿✿

indicate
✿✿✿

that
✿✿✿

we
✿✿✿

are
✿✿✿✿✿

using
✿✿✿✿✿✿

rather
✿✿✿✿✿✿✿✿✿

reasonable
✿✿✿✿✿✿✿✿✿✿

background
✿✿✿✿✿

error
✿✿✿✿✿✿✿✿

statistics,
✿✿

so
✿✿✿✿

that452

✿✿

the
✿✿✿✿✿✿✿✿

analysis
✿✿✿✿✿✿✿✿

increment
✿✿

in
✿✿✿✿✿✿✿✿✿✿

observation
✿✿✿✿✿✿

space
✿✿

is
✿✿✿✿✿✿✿✿✿

distributed
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿

different
✿✿✿✿✿✿✿

variables
✿✿✿

in
✿✿✿✿✿

model
✿✿✿✿✿

space
✿✿✿

in
✿

a
✿✿✿✿✿✿✿

sensible
✿✿✿✿✿

way.
✿✿

If
✿✿✿

the453

✿✿✿✿✿✿

former,
✿

it
✿✿✿✿✿

could
✿✿✿

be
✿✿✿

the
✿✿✿✿

case
✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿✿

success
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

unconstrained
✿✿✿✿✿✿

analysis
✿✿

is
✿✿✿✿✿✿

largely
✿✿✿✿✿✿✿✿✿

dependent
✿✿✿

on
✿✿✿✿✿✿

whether
✿✿✿

or
✿✿✿

not
✿✿✿✿

those
✿✿✿✿✿✿✿

aerosol454

✿✿✿✿✿✿✿✿✿✿

components
✿✿✿✿✿✿✿✿

dominate
✿✿✿

the
✿✿✿✿

total
✿✿✿✿✿✿

aerosol
✿✿✿✿✿

mass
✿✿✿

that
✿✿✿✿✿

most
✿✿✿✿✿✿✿

strongly
✿✿✿✿✿

relate
✿✿

to
✿✿✿

the
✿✿✿✿✿✿

signal
✿✿✿✿✿✿

degrees
✿✿✿

of
✿✿✿✿✿✿✿

freedom.
✿✿✿

(In
✿✿✿✿

our
✿✿✿✿

case
✿✿✿

the
✿✿✿✿

total455

✿✿✿✿

mass
✿✿

is
✿✿✿✿✿✿✿✿✿

dominated
✿✿

by
✿✿✿✿

SIA,
✿✿✿✿✿✿

which
✿✿

is
✿✿✿✿

very
✿✿✿✿

well
✿✿✿✿✿✿✿

retrieved
✿✿✿

by
✿✿✿

the
✿✿✿✿✿✿✿✿

analysis).456

✿✿✿✿✿✿

Finally,
✿✿✿

we
✿✿✿✿✿

want
✿✿

to
✿✿✿✿✿✿

obtain
✿

a
✿✿✿✿✿

better
✿✿✿✿✿✿✿✿✿✿✿✿

understanding
✿✿✿

of
✿✿✿✿

how
✿✿✿

the
✿✿✿✿✿✿✿

aerosol
✿✿✿✿✿✿✿✿✿✿

components
✿✿

x
✿✿

in
✿✿✿✿✿✿

model
✿✿✿✿✿✿

space,
✿✿

or
✿✿✿✿

their
✿✿✿✿✿✿✿✿✿✿

increments457

✿✿✿

δx,
✿✿✿

are
✿✿✿✿✿✿

linked
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

signal-related
✿✿✿✿✿✿✿✿✿✿✿

phase-space
✿✿✿✿✿✿✿✿

elements
✿✿✿✿

δx′.
✿✿✿

To
✿✿✿

this
✿✿✿✿

end
✿✿✿

we
✿✿✿✿✿✿✿

inspect
✿✿✿

the
✿✿✿✿

first
✿✿✿✿

five
✿✿✿

row
✿✿✿✿✿✿✿

vectors
✿✿

of
✿✿✿✿

the458

✿✿✿✿✿✿✿✿✿✿✿✿

transformation
✿✿✿✿✿✿

matrix
✿✿✿✿✿✿✿✿✿✿

VT
R ·B−1/2

✿✿

in
✿✿✿

Eq.
✿✿✿

(9).
✿✿✿✿

The
✿✿✿✿✿✿✿✿✿

magnitude
✿✿

of
✿✿✿✿✿

these
✿✿✿✿✿✿✿

elements
✿✿✿✿

can
✿✿

be
✿✿✿✿✿

taken
✿✿

as
✿✿

a
✿✿✿✿✿✿✿

measure
✿✿✿

for
✿✿✿✿

how
✿✿✿✿✿

much
✿✿✿✿

each459

✿✿✿✿✿✿

aerosol
✿✿✿✿✿✿✿✿✿

component
✿✿

of
✿✿✿

δx
✿✿

in
✿✿✿✿✿✿

model
✿✿✿✿✿

space
✿✿✿✿✿✿✿✿✿

contributes
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

signal-related
✿✿✿✿✿✿✿

elements
✿✿

of
✿✿✿✿

δx′,
✿✿✿✿✿✿✿

Figure
✿

5
✿✿✿✿✿✿

shows
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

| (VT
R ·B−1/2)ij |460

✿✿

for
✿✿✿✿✿✿✿✿✿✿✿

i= 1, . . . ,5,
✿✿✿

and
✿✿✿

for
✿✿✿✿✿✿✿✿✿✿✿✿

j = 1, . . . ,20,
✿✿✿✿✿

where
✿✿

5
✿✿

is
✿✿✿

the
✿✿✿✿✿✿✿

number
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿

signal-related
✿✿✿✿✿✿✿✿✿✿

phase-space
✿✿✿✿✿✿✿✿

elements,
✿✿✿✿

and
✿✿✿

20
✿✿

is
✿✿✿

the
✿✿✿✿✿✿✿

number461

✿✿

of
✿✿✿✿✿✿

aerosol
✿✿✿✿✿✿✿✿✿✿✿

components
✿✿

in
✿✿✿✿✿✿

model
✿✿✿✿✿

space.
✿✿✿✿✿✿✿

Results
✿✿✿

are
✿✿✿✿✿✿

shown
✿✿✿

for
✿✿✿✿✿✿

model
✿✿✿✿✿

layers
✿✿

2
✿✿✿✿

(left
✿✿✿✿✿✿✿✿

column)
✿✿✿

and
✿✿✿

22
✿✿✿✿✿

(right
✿✿✿✿✿✿✿✿

column),
✿✿✿✿✿✿

which462

✿✿✿✿✿✿✿✿✿

correspond
✿✿

to
✿✿✿✿✿✿✿

altitudes
✿✿✿

of
✿✿✿✿✿

about
✿✿✿

100
✿

m
✿✿✿

and
✿✿

6 km,
✿✿✿✿✿✿✿✿✿✿✿

respectively.
✿✿✿✿

The
✿✿✿✿✿

x-axis
✿✿✿✿✿✿

shows
✿✿✿

sea
✿✿✿

salt
✿✿✿✿✿✿✿

(NaCl),
✿✿✿✿

EC,
✿✿✿

OC,
✿✿✿✿

and
✿✿✿✿

dust,
✿✿✿✿✿

each
✿✿

in463

✿✿✿

four
✿✿✿✿

size
✿✿✿✿✿

bins,
✿✿

as
✿✿✿✿

well
✿✿

as
✿✿✿

the
✿✿✿✿

four
✿✿✿✿

SIA
✿✿✿✿✿✿✿✿✿✿✿

components,
✿✿✿

i.e.,
✿✿✿✿✿✿✿✿

sulphates
✿✿✿✿✿✿

(SOX)
✿✿✿✿✿

other
✿✿✿✿

than
✿✿✿✿✿✿✿✿✿✿✿

(NH4)2SO4,
✿✿✿✿✿✿✿✿✿

ammonium
✿✿✿✿✿✿✿✿

sulphate
✿✿✿✿✿

(AS),464

✿✿✿✿✿✿✿✿✿

ammonium
✿✿✿✿✿✿

nitrate
✿✿✿✿✿

(AN),
✿✿✿

and
✿✿✿✿✿✿✿

nitrates
✿✿✿✿✿✿

(NOX)
✿✿✿✿

other
✿✿✿✿

than
✿✿✿✿✿✿✿✿✿

NH4NO3.465

✿✿✿✿✿✿✿✿✿✿

Comparison
✿✿

of
✿✿✿

the
✿✿✿✿

two
✿✿✿✿✿✿✿

columns
✿✿✿✿✿✿

clearly
✿✿✿✿✿✿✿✿✿✿✿

demonstrates
✿✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿✿

elements
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

transformation
✿✿✿✿✿✿

matrix
✿✿✿

can
✿✿✿✿

vary
✿✿✿✿✿✿✿✿✿✿✿

considerably466

✿✿✿✿

with
✿✿✿✿✿✿

vertical
✿✿✿✿✿

layer
✿✿✿

(or,
✿✿✿✿✿

more
✿✿✿✿✿✿✿✿

generally,
✿✿✿✿

with
✿✿✿✿✿✿✿✿

location).
✿✿✿✿

This
✿✿

is
✿✿✿✿✿✿✿

because
✿✿✿

the
✿✿✿✿

error
✿✿✿✿✿✿✿✿✿✿

covariance
✿✿✿✿✿

matrix
✿✿

B
✿✿✿✿✿✿

varies
✿✿✿✿

with
✿✿✿✿✿✿✿

location,
✿✿✿✿

and467

✿✿

the
✿✿✿✿✿✿

matrix
✿✿✿

R
✿✿✿✿✿

varies
✿✿✿✿

from
✿✿✿✿

one
✿✿✿✿✿✿✿✿✿✿

observation
✿✿✿

site
✿✿

to
✿✿✿✿✿✿✿

another
✿✿✿

(in
✿✿✿

our
✿✿✿✿

case,
✿✿✿✿✿

from
✿✿✿

one
✿✿✿✿✿✿✿

altitude
✿✿

to
✿✿✿✿✿✿✿✿

another).
✿✿✿✿✿

Hence
✿✿✿

the
✿✿✿✿✿✿

matrix
✿✿✿✿

VR
✿✿

is468
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Figure 5.
✿✿

The
✿✿✿✿

first
✿✿✿

five
✿✿✿✿

rows
✿✿✿✿✿

(from
✿✿✿

top
✿✿

to
✿✿✿✿✿✿

bottom)
✿✿

of
✿✿✿

the
✿✿✿✿✿

matrix
✿✿✿✿✿✿✿✿✿✿

V
T
R ·B−1/2

✿

at
✿✿✿

the
✿✿✿✿✿✿✿✿✿

observation
✿✿✿✿

site,
✿✿✿

and
✿✿✿

for
✿✿✿✿✿

model
✿✿✿✿

layers
✿✿

2
✿✿✿✿

(left)
✿✿✿

and
✿✿✿

22

✿✿✿✿✿

(right).
✿✿✿

The
✿✿✿✿✿✿✿

y-values
✿✿

are
✿✿✿✿✿✿✿✿✿

normalised
✿✿

by
✿✿✿✿✿✿

dividing
✿✿✿✿

them
✿✿✿

by
✿✿

the
✿✿✿✿✿✿✿✿

maximum
✿✿✿✿✿✿

element.
✿✿✿✿

The
✿✿✿✿

x-axis
✿✿✿✿✿✿✿

indicates
✿✿✿

the
✿✿✿✿✿

aerosol
✿✿✿✿✿✿✿✿✿✿

components
✿

in
✿✿✿✿✿

model
✿✿✿✿✿

space

✿

to
✿✿✿✿✿

which
✿✿✿

the
✿✿✿✿✿✿✿

elements
✿✿

of
✿✿✿

the
✿✿✿

row
✿✿✿✿✿✿

vectors
✿✿✿✿✿✿✿✿✿

correspond,
✿✿✿✿✿✿

namely,
✿✿✿

sea
✿✿✿

salt
✿✿✿✿✿✿

(NaCl),
✿✿✿

EC,
✿✿✿

OC,
✿✿✿

and
✿✿✿✿

dust,
✿✿✿✿

each
✿✿

in
✿✿✿✿

four
✿✿✿

size
✿✿✿✿

bins,
✿✿

as
✿✿✿

well
✿✿

as
✿✿✿

the
✿✿✿✿

four

✿✿✿

SIA
✿✿✿✿✿✿✿✿✿✿

components:
✿✿✿✿✿✿✿

sulphates
✿✿✿✿✿

(SOX)
✿✿✿✿✿

other
✿✿✿

than
✿✿✿✿✿✿✿✿✿✿

(NH4)2SO4,
✿✿✿✿✿✿✿✿✿

ammonium
✿✿✿✿✿✿

sulphate
✿✿✿✿✿

(AS),
✿✿✿✿✿✿✿✿✿

ammonium
✿✿✿✿✿

nitrate
✿✿✿✿✿

(AN),
✿✿✿

and
✿✿✿✿✿✿

nitrates
✿✿✿✿✿

(NOX)
✿✿✿✿✿

other

✿✿✿

than
✿✿✿✿✿✿✿✿

NH4NO3.

✿✿✿

also
✿✿✿✿✿✿✿✿✿

dependent
✿✿✿

on
✿✿✿✿✿✿✿

location
✿✿

—
✿✿✿

see
✿✿✿✿

Eq.
✿✿✿

(6).
✿✿✿✿✿✿✿✿✿✿✿✿

Consequently,
✿✿

it
✿✿

is
✿✿✿✿

very
✿✿✿✿✿✿✿

difficult
✿✿

to
✿✿✿✿

draw
✿✿✿✿✿✿✿

general
✿✿✿✿✿✿✿✿✿✿

conclusions
✿✿✿✿✿

about
✿✿✿✿✿

which
✿✿✿✿✿✿✿

aerosol469

✿✿✿✿✿✿✿✿✿✿

components
✿✿✿✿

make
✿✿

a
✿✿✿✿✿✿✿✿

dominant
✿✿✿✿✿✿✿✿✿✿✿

contriubution
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

signal-related
✿✿✿✿✿✿✿✿✿✿

phase-space
✿✿✿✿✿✿✿✿

variables;
✿✿✿✿

this
✿✿✿

can
✿✿✿✿

vary
✿✿✿✿

with
✿✿✿✿✿✿✿

location,
✿✿✿✿

and
✿

it
✿✿✿✿

can470

✿✿✿✿

vary
✿✿

for
✿✿✿✿✿✿✿✿

different
✿✿✿✿

data
✿✿✿✿

sets.471

✿✿✿✿✿✿✿✿

However,
✿✿

in
✿✿✿

our
✿✿✿✿

case
✿✿✿

the
✿✿✿✿

SIA
✿✿✿✿✿✿✿✿✿✿

components
✿✿✿✿✿✿✿✿✿✿

consistently
✿✿✿✿✿

make
✿✿

a
✿✿✿✿✿

strong
✿✿✿✿✿✿✿✿✿✿✿

contriubution
✿✿✿

to
✿✿✿

the
✿✿✿

first
✿✿✿✿✿✿✿✿✿✿✿✿

signal-related
✿✿✿✿✿✿✿

element
✿✿✿✿

δx′
1.472

✿✿✿✿

Since
✿✿✿✿

SIA
✿✿

is
✿✿✿✿✿✿✿✿✿

dominating
✿✿✿

the
✿✿✿✿✿✿✿

aerosol
✿✿✿✿

mass
✿✿✿✿✿✿

mixing
✿✿✿✿

ratio
✿✿

in
✿✿✿✿

this
✿✿✿

test
✿✿✿✿

case,
✿✿✿

the
✿✿✿✿✿✿✿

analysis
✿✿✿

was
✿✿✿✿

able
✿✿

to
✿✿✿✿✿✿✿

retrieve
✿✿✿✿✿✿

PM10.
✿✿✿

We
✿✿✿

also
✿✿✿

see
✿✿✿✿

that473

✿✿

the
✿✿✿✿

dust
✿✿✿✿✿✿✿✿✿✿

components
✿✿✿✿✿

make
✿✿✿✿

only
✿✿

a
✿✿✿✿

weak
✿✿✿✿✿✿✿✿✿✿✿

contribution
✿✿

to
✿✿✿✿

most
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

signal-related
✿✿✿✿✿✿✿✿

elements
✿✿✿✿

δx′
i,✿✿✿✿✿✿✿✿

especially
✿✿

to
✿✿✿

the
✿✿✿✿

first
✿✿✿✿

one.
✿✿✿✿

This474

✿

is
✿✿

a
✿✿✿✿✿

likely
✿✿✿✿✿✿✿✿✿✿

explanation
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿✿

difficulties
✿✿✿✿✿✿✿✿✿✿

encountered
✿✿

in
✿✿✿✿✿✿✿✿✿

retrieving
✿✿✿

the
✿✿✿✿

dust
✿✿✿✿

mass
✿✿✿✿✿✿✿

mixing
✿✿✿✿

ratio.
✿✿✿✿

Sea
✿✿✿

salt
✿✿

is
✿✿✿✿✿

more
✿✿✿✿✿✿✿✿✿✿✿

complicated.475

✿✿✿

Size
✿✿✿✿

bins
✿✿

3
✿✿✿

and
✿✿

4
✿✿

do
✿✿✿✿✿✿✿✿✿

contribute
✿✿✿✿✿✿✿✿✿✿✿

considerably
✿✿

to
✿✿✿✿

δx′
1,

✿✿✿

and
✿✿✿✿

also
✿✿

to
✿✿✿✿✿

some
✿✿

of
✿✿✿

the
✿✿✿✿✿

other
✿✿✿

four
✿✿✿✿✿✿✿✿✿✿

increments,
✿✿✿✿✿

while
✿✿✿✿

size
✿✿✿✿

bins
✿

1
✿✿✿✿

and
✿

2
✿✿✿

do476

✿✿✿

not
✿✿✿✿

make
✿✿

a
✿✿✿✿✿✿✿✿✿

significant
✿✿✿✿✿✿✿✿✿✿

contribution
✿✿

to
✿✿✿✿

most
✿✿✿

of
✿✿

the
✿✿✿✿

five
✿✿✿✿✿✿✿✿✿✿✿

signal-related
✿✿✿✿✿✿

control
✿✿✿✿✿✿✿✿✿

variables.
✿✿

In
✿✿✿

our
✿✿✿✿

case
✿✿✿

the
✿✿✿

sea
✿✿✿

salt
✿✿✿✿✿

mass
✿✿

is
✿✿✿✿✿✿✿

strongly477

✿✿✿✿✿✿✿✿

dominated
✿✿✿

by
✿✿✿

the
✿✿✿✿✿✿

second
✿✿✿✿

size
✿✿✿

bin
✿✿✿

(not
✿✿✿✿✿✿✿

shown).
✿✿✿✿

This
✿✿✿✿✿✿✿

explains
✿✿✿

the
✿✿✿✿✿✿✿✿✿

difficulties
✿✿✿

we
✿✿✿✿✿✿✿✿✿✿

encountered
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿

retrieval
✿✿✿

of
✿✿✿

sea
✿✿✿

salt.
✿

478
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4 Summary and conclusions479

We have quantified the information content of extinction and backscattering
✿✿✿✿✿✿✿✿✿✿✿✿✿

multiwavelength
✿✿✿✿

lidar
✿

measurements with regard480

to the chemical composition of aerosol particles. This has been done
✿✿✿✿✿✿✿

Different
✿✿✿✿✿✿✿✿✿✿✿

combinations
✿✿✿

of
✿✿✿✿✿✿✿✿

extinction
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿✿

backscattering481

✿✿✿✿✿✿✿✿✿✿

observations
✿✿

at
✿✿✿✿✿✿

several
✿✿✿✿✿✿✿✿✿

wavlengths
✿✿✿✿

have
✿✿✿✿✿

been
✿✿✿✿✿✿✿✿✿✿

investigated by determining the singular values of the
✿✿✿✿✿

scaled observation operator,482

by computing the number of signal degrees of freedom
✿✿

Ns, and by calculating the change in Shannon-entropy
✿✿✿✿✿✿✿✿

reduction
✿✿

in483

✿✿✿✿✿✿✿

Shannon
✿✿✿✿✿✿✿

entropy
✿✿

H
✿

caused by taking measurements. We first assumed a relatively low
✿✿✿✿✿✿✿✿

quantified
✿✿✿

Ns
✿✿✿✿

and
✿✿

H
✿✿✿

as
✿

a
✿✿✿✿✿✿✿✿

function484

✿✿

of observation standard deviation
✿✿

σo.
✿✿✿✿

The
✿✿✿✿✿✿✿✿✿✿

information
✿✿✿✿✿✿✿

content of 10 %. In that case, when adding measurements of βbak to485

measurements of kext, the information content nearly doubles. The same is true when we increase the number of wavelengths486

from a single wavelength to two wavelengths. However, when we further increase the number of wavelengths from two to three,487

then the gain in information is rather modest; there appeared to be little use in increasing the number of optical wavelengths488

beyond three. When the full set of six observations(both optical parameters at three wavelengths) is considered, then the489

number of signal degrees of freedom is 4.6. Thus we can constrain, at most, 4–5 model variables with this set of observations.490

✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

observations,
✿✿

as
✿✿✿✿✿✿✿✿

expressed
✿✿✿

by
✿✿✿

Ns
✿✿✿

and
✿✿✿

H ,
✿✿✿✿✿✿✿✿

decreased
✿✿✿

as
✿✿

σo
✿✿✿✿

was
✿✿✿✿✿✿✿✿

increased.
✿✿✿✿

This
✿✿✿✿✿✿✿

became
✿✿✿

the
✿✿✿✿✿

more
✿✿✿✿✿✿✿✿✿✿

pronounced
✿✿✿

the
✿✿✿✿✿

larger
✿✿✿

the491

✿✿✿✿✿✿

number
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿✿

simultaneously
✿✿✿✿✿✿✿✿

observed
✿✿✿✿✿✿✿✿✿

parameters
✿✿✿✿

was.492

These conclusions depend, to be sure, on the assumed observation standard deviation. We therefore performed a sensitivity493

study were we investigated how the observation standard deviation affects the information content. We observed a rather494

dramatic decrease in both the entropy and signal degrees of freedom with increasing observation standard deviation. Note495

that not only
✿✿✿

The
✿✿✿✿✿✿✿✿✿✿✿

observation
✿✿✿✿

error
✿✿✿✿✿✿✿

depends
✿✿✿✿

not
✿✿✿✿

only
✿✿✿

on
✿

the measurement error, but also the
✿✿

on
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

forward-model
✿✿✿✿✿

error.496

✿✿✿

The
✿✿✿✿✿

latter
✿✿✿✿✿✿✿

depends
✿✿✿

on
✿✿✿

the
✿

uncertainties in the aerosol optics modelcontribute to the observation error
✿✿✿✿✿✿✿✿✿✿✿✿

aerosol-optics
✿✿✿✿✿

model.497

This highlights the importance of developing accurate aerosol optics models and of obtaining an accurate estimate of the498

observation error, especially of the uncertainty in the aerosol optics model. This is a prerequisite for extracting as much499

information as possible from the measurements, while avoiding to extract noise rather than signal. More often than not, com-500

putational limitations and lack of knowledge force us to introduce simplifying assumptions about the particles’ morphologies.501

However, we know that aerosol optical properties can be highly sensitive to the shape (Mishchenko et al. (1997); Kahnert502

(2004)), small-scale surface roughness (Kahnert et al., 2012b), inhomogeneity (Mishchenko et al., 2014; Kahnert, 2015), ag-503

gregation (Fuller and Mackowski, 2000; Liu and Mishchenko, 2007; Kahnert and Devasthale, 2011), irregularity (Muinonen,504

2000; Bi et al., 2010), porosity (Vilaplana et al., 2006; Lindqvist et al., 2011; Kylling et al., 2014), and combinations thereof505

(Lindqvist et al., 2009; Kahnert et al., 2013; Lindqvist et al., 2014). We need to know how much these sources of uncertainty506

contribute to the observation standard deviation. One way of estimating this is to compare aerosol optical properties computed507

with simple shape models to either measurements or to computations based on more realistic particle shape models — see508

Kahnert et al. (2016)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Kahnert et al. (2014) for a recent review and a more detailed discussion.509

We exploited our analysis of the information content and the number of signal degrees of freedom by formulating weak510

constraints in a 3DVAR algorithm. More specifically, we transformed the model variables into a new basis
✿✿✿

The
✿✿✿✿✿✿✿

singular
✿✿✿✿✿✿

values511

✿✿

of
✿✿✿

the
✿✿✿✿✿

scaled
✿✿✿✿✿✿✿✿✿✿

observation
✿✿✿✿✿✿✿

operator
✿✿✿✿✿✿✿

provide
✿✿

us
✿✿✿✿

with
✿✿✿

an
✿✿✿✿✿✿✿

abstract
✿✿✿✿✿✿✿

measure
✿✿

to
✿✿✿✿✿✿✿

compare
✿✿✿

the
✿✿✿✿✿✿✿✿

standard
✿✿✿✿✿✿✿✿

deviations
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

background512
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✿✿✿✿✿

(prior)
✿✿✿✿✿✿✿✿

estimate
✿✿

to
✿✿✿✿✿

those
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

observations.
✿✿✿✿

The
✿✿✿✿✿✿

reason
✿✿✿✿

why
✿✿✿

this
✿✿

is
✿✿

a
✿✿✿✿✿

rather
✿✿✿✿✿✿✿

abstract
✿✿✿✿✿✿✿✿

measure
✿✿

is
✿✿✿✿✿✿✿

because
✿✿✿✿✿✿✿✿✿✿

background
✿✿✿✿

and513

✿✿✿✿✿✿✿✿✿

observation
✿✿✿✿✿✿

errors
✿✿✿

are,
✿✿

in
✿✿✿✿✿✿✿

general,
✿✿✿

in
✿✿✿✿✿✿✿

different
✿✿✿✿✿✿

spaces
✿✿✿

and
✿✿✿✿✿✿

cannot
✿✿✿

be
✿✿✿✿✿✿✿

directly
✿✿✿✿✿✿✿✿✿

compared.
✿✿✿✿✿✿✿✿

However,
✿✿✿

we
✿✿✿✿✿✿✿✿✿✿

constructed
✿

a
✿✿✿✿✿✿✿✿

mapping514

✿✿✿

that
✿✿✿✿✿✿✿✿✿

transforms
✿✿✿

the
✿✿✿✿

state
✿✿✿✿✿

vector
✿✿

in
✿✿✿✿✿✿✿

physical
✿✿✿✿✿✿✿

(model)
✿✿✿✿✿

space
✿✿

to
✿✿

an
✿✿✿✿✿✿✿

abstract
✿✿✿✿✿

phase
✿✿✿✿✿

space in which the components of the state vector515

can be divided
✿✿✿✿✿✿✿✿✿

partitioned
✿

into signal-related and noise-related components. We then added weak constraints to
✿✿✿

The
✿✿✿✿✿✿✿

singular516

✿✿✿✿✿

values
✿✿✿✿✿✿✿

indicate
✿✿

to
✿✿✿✿

what
✿✿✿✿✿✿

extent
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

signal-related
✿✿✿✿✿✿✿✿✿✿

phase-space
✿✿✿✿✿✿✿✿

variables
✿✿✿

can
✿✿✿

be
✿✿✿✿✿✿✿✿✿✿

constrained
✿✿

by
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

measurements.
✿✿✿

We
✿✿✿✿✿✿✿✿

exploited517

✿✿✿

this
✿✿✿

fact
✿✿✿

by
✿✿✿✿✿✿✿✿✿✿

constructing
✿✿✿✿✿

weak
✿✿✿✿✿✿✿✿✿

constraints
✿✿

in
✿

a
✿✿✿✿✿✿✿

3DVAR
✿✿✿✿

data
✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿✿✿✿

code,
✿✿✿✿✿

which
✿✿✿✿✿✿

limited
✿

the assimilation algorithm in such518

a way that only
✿✿

to
✿✿✿✿✿✿

acting
✿✿

on
✿

the signal-related transformed model variables are varied by the 3DVAR analysis . Numerical519

experiments showed that the 3DVAR algorithm provided a reasonable solution to the inverse problem; when
✿✿✿✿✿✿✿✿✿✿

phase-space520

✿✿✿✿✿✿✿

variables
✿✿✿✿

only
✿✿✿✿✿✿✿✿✿

(hereafter
✿✿✿✿✿✿✿

referred
✿✿

to
✿✿✿

as
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

constrained
✿✿✿✿✿✿✿

analysis
✿

).
✿✿✿✿

The
✿✿✿✿

idea
✿✿✿✿

was
✿✿

to
✿✿✿✿✿✿✿✿✿

maximise
✿✿✿

the
✿✿✿

use
✿✿✿

of
✿✿✿✿✿✿✿✿✿✿✿

information,
✿✿✿✿✿

while521

✿✿✿✿✿✿✿

avoiding
✿✿✿

the
✿✿✿✿

risk
✿✿

of
✿✿✿✿✿✿✿✿✿✿

assimilating
✿✿✿✿✿

noise
✿✿✿

by
✿✿✿✿✿✿✿✿✿

over-using
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

measurements.
✿✿✿✿✿

Thus,
✿✿✿✿

our
✿✿✿✿

main
✿✿✿✿✿✿✿✿✿

hypothesis
✿✿✿✿

was
✿✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

constrained522

✿✿✿✿✿✿

analysis
✿✿✿✿

will
✿✿✿✿✿

yield
✿✿✿✿

less
✿✿✿✿✿

noisy
✿✿✿✿✿

results
✿✿✿✿

than
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

unconstrained
✿✿✿✿✿✿✿✿

analysis.
✿✿✿✿✿✿✿✿✿

Numerical
✿✿✿✿

tests
✿✿✿✿✿✿✿✿✿

confirmed
✿✿✿✿

this
✿✿✿✿✿✿✿✿✿

hypothesis.
✿✿✿✿✿✿✿✿

Notably
✿✿

in523

✿✿

the
✿✿✿✿✿

case
✿✿

of
✿✿✿✿✿✿✿✿✿

elemental
✿✿✿✿✿✿

carbon
✿✿✿✿✿

(EC)
✿✿✿

and
✿✿✿✿✿✿✿

organic
✿✿✿✿✿✿

carbon
✿✿✿✿✿

(OC)
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

unconstrained
✿✿✿✿✿✿✿

analysis
✿✿✿✿✿

gave
✿✿✿✿✿✿

mixing
✿✿✿✿✿✿

ratios
✿✿✿

that
✿✿✿✿✿✿✿✿✿

oscillated524

✿✿✿✿✿✿✿✿✿✿

considerably
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿

vertical
✿✿✿✿✿✿✿✿

direction.
✿✿✿

The
✿✿✿✿✿✿✿✿✿✿

constrained
✿✿✿✿✿✿✿

analysis
✿✿✿✿✿✿

results
✿✿✿✿

were
✿✿✿✿✿✿✿✿✿✿✿

considerably
✿✿✿

less
✿✿✿✿✿✿

noisy.525

✿✿✿✿✿

When mapped into observation space, the analysis result closely reproduces
✿✿✿✿✿✿✿✿✿

reproduced
✿

the measurements. It also appeared526

that among the original model variables,
✿✿✿✿✿

When
✿✿✿✿✿✿

viewed
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿

abstract
✿✿✿✿✿

phase
✿✿✿✿✿

space,
✿✿✿

we
✿✿✿✿✿

found
✿✿✿✿

that
✿✿

the
✿✿✿✿✿✿✿✿✿✿

constrained
✿✿✿✿✿✿✿

analysis
✿✿✿✿

did,527

✿✿✿✿✿✿

indeed,
✿✿✿✿

yield
✿✿✿✿✿✿✿✿✿✿✿

noise-related
✿✿✿✿✿✿✿✿✿✿

components
✿✿✿✿

that
✿✿✿✿

were
✿✿✿✿✿

close
✿✿

to
✿✿✿✿✿

zero,
✿✿

as
✿✿✿✿

they
✿✿✿✿✿✿

should.
✿✿✿✿

This
✿✿✿✿

was
✿✿✿

not
✿✿

so
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

unconstrained
✿✿✿✿✿✿✿✿

analysis.528

✿✿✿✿

Also,
✿✿✿

the
✿✿✿✿✿✿✿✿✿

magnitude
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

signal-related
✿✿✿✿✿✿✿✿✿✿

phase-space
✿✿✿✿✿✿✿✿✿✿

components
✿✿✿✿

was
✿✿✿✿✿✿✿✿

generally
✿✿✿✿✿

larger
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

constrained
✿✿✿✿✿✿✿

analysis
✿✿✿✿

than
✿✿

in
✿✿✿

the529

✿✿✿✿✿✿✿✿✿✿✿

unconstrained
✿✿✿✿✿✿✿✿

analysis.
✿✿✿✿

This
✿✿✿✿✿✿✿

confirms
✿✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿✿✿✿

constraints
✿✿✿

we
✿✿✿✿✿✿✿✿✿

introduced
✿✿✿✿

work
✿✿

as
✿✿✿✿✿✿✿✿

intended.
✿

530

✿✿

In
✿✿✿

our
✿✿✿✿✿✿

specific
✿✿✿

test
✿✿✿✿

case
✿

secondary inorganic aerosol components were most faithfully retrieved by the inverse modelling solu-531

tion. Most importantly, it was demonstrated that the 3DVAR analysisfollows, indeed, the imposed constraints; the transformed532

model variables are adjusted within certain limits according to how strongly they relate to the signal degrees of freedom
✿

,533

✿✿✿✿✿✿✿

followed
✿✿✿

by
✿✿✿✿✿✿✿

organic
✿✿✿

and
✿✿✿✿✿

black
✿✿✿✿✿✿✿

carbon.
✿✿✿✿✿

Dust
✿✿✿

and
✿✿✿✿✿✿

seasalt
✿✿✿✿✿

mass
✿✿✿✿✿✿✿

mixing
✿✿✿✿✿

ratios
✿✿✿✿

were
✿✿✿✿✿

more
✿✿✿✿✿✿✿✿✿✿

challenging
✿✿✿

to
✿✿✿✿✿✿✿

retrieve.
✿✿✿✿

We
✿✿✿✿✿

could534

✿✿✿✿✿✿

explain
✿✿✿

this
✿✿✿

by
✿✿✿✿✿✿✿✿✿

inspecting
✿✿✿

the
✿✿✿✿✿

linear
✿✿✿✿✿✿✿✿✿✿

coefficients
✿✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

transformation
✿✿✿✿✿

from
✿✿✿✿✿✿✿

physical
✿✿✿✿✿

space
✿✿

to
✿✿✿✿

the
✿✿✿✿✿✿✿

abstract
✿✿✿✿✿

phase
✿✿✿✿✿

space.
✿✿✿✿

We535

✿✿✿✿✿

found
✿✿✿

that
✿✿✿✿✿

those
✿✿✿✿✿✿✿

aerosol
✿✿✿✿✿✿✿✿✿✿

components
✿✿✿✿

that
✿✿✿

had
✿✿✿

the
✿✿✿✿✿✿

largest
✿✿✿✿✿✿

weight
✿✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

transformation
✿✿✿✿✿

were
✿✿✿✿

most
✿✿✿✿✿✿✿✿

faithfully
✿✿✿✿✿✿✿✿

retrieved
✿✿✿

by
✿✿✿

the536

✿✿✿✿✿✿✿

analysis.
✿✿✿✿✿✿✿✿

However,
✿✿✿✿✿

these
✿✿✿✿✿

linear
✿✿✿✿✿✿✿✿✿

coefficients
✿✿✿✿✿✿

depend
✿✿✿

on
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

background
✿✿✿✿

error
✿✿✿✿✿✿✿✿✿✿

covariances
✿✿✿✿✿✿

(which
✿✿✿

can
✿✿✿✿✿✿

change
✿✿✿✿

with
✿✿✿✿✿✿✿✿

location),
✿✿✿✿

and537

✿✿

on
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

observation
✿✿✿✿

error
✿✿✿✿✿✿✿✿✿

variances.
✿✿✿✿✿✿✿✿✿

Therefore,
✿✿

it
✿✿

is
✿✿✿✿✿✿

difficult
✿✿✿

to
✿✿✿✿

draw
✿✿✿✿✿✿✿

general
✿✿✿✿✿✿✿✿✿✿

conclusions
✿✿✿✿✿

about
✿✿✿✿✿

which
✿✿✿✿✿✿

aerosol
✿✿✿✿✿✿✿✿✿✿✿

components
✿✿✿

are538

✿✿✿✿

most
✿✿✿✿✿

easily
✿✿✿✿✿✿✿✿

retrieved
✿✿

by
✿

a
✿✿✿✿✿

given
✿✿✿

set
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿

measurements.539

The results presented here suggest further questions that should be addressed in
✿✿

for
✿

future studies. We have performed this540

investigation with a mass transport model, thus focusing on the information content of optical measurements on
✿✿✿✿

with
✿✿✿✿✿✿

respect
✿✿

to541

the chemical composition of aerosols. When we include aerosol microphysical processes, then the model delivers the aerosols’542

size distribution, as well as their size-resolved chemical composition. This makes the problem quite different from the one543

✿✿✿

that
✿

we investigated here. First, the dimension of the model space is considerably larger for an aerosol microphysics transport544

model. Constraining such a model with limited information from measurements becomes even more challenging than in the545

case of a mass transport model. On the other hand, an aerosol microphysics model delivers information on the particles size546

distribution and mixing state. Therefore, this would require us to make fewer assumptions in the aerosol optics model, which547
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may reduce the observation error. The present study should
✿✿✿✿

could
✿

be extended to investigate the information contained in548

extinction and backscattering measurements for simultaneously constraining the chemical composition and the size of aerosol549

particles.550

Another important , and often highly underrated issue concerns the choice of the aerosol optics model. In the present study551

we employed a simple homogeneous-sphere model in which all chemical components were assumed to be externally mixed.552

There is little one can put forward in defence of this model other than pure convenience. In this model the [
✿✿✿✿✿✿✿✿✿

Regarding
✿✿✿

the553

✿✿✿✿✿✿✿✿✿✿

applicability
✿✿

of
✿✿✿✿✿✿✿✿✿

simplified
✿✿✿✿✿✿

model
✿✿✿✿✿✿✿

particles
✿✿

in
✿✿✿✿✿✿✿✿✿✿✿

atmospheric
✿✿✿✿✿

optics
✿✿✿

see
✿✿✿✿

the
✿✿✿✿✿✿

review
✿✿

by
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Kahnert et al. (2014)]
✿

.
✿✿✿

As
✿

a
✿✿✿✿✿

result
✿✿✿

of
✿✿✿

the554

✿✿✿✿✿✿✿✿✿✿✿✿✿

external-mixture
✿✿✿✿✿✿✿✿✿✿

assumption,
✿✿✿

the
✿

observation operator is linear, which is a prerequisite for much of the theoretical foundations555

of this study — see the appendix for details. However, it has been demonstrated that drastically simplifying assumptions, such556

as the external-mixture approximation, can give model results for aerosol optical properties that differ substantially from those557

obtained with more realistic nonlinear optics models (Andersson and Kahnert, 2016). It would therefore be important to extend558

the present study to include more accurate and realistic optics models. A first step could be to analyse the degree of nonlinearity559

of optics models that account for internal mixing of different aerosol species. If they turn out to be only mildly nonlinear, then560

one can linearise them and work with the Jacobian of the nonlinear observation operator. Otherwise the theoretical methods561

employed in this paper would have to be extended in order to accommodate nonlinear observation operators.562

Appendix A: Inverse problems563

Suppose we have a system described by a set of variables x1, . . . ,xn, summarised in a vector x. Suppose also that we have an564

operator Ĥ : Rn → R
m, x 7→ y = Ĥ(x) that allows us to compute a set of variables y1, . . . ,ym, summarised in a vector y. To565

take a specific example, we may think of x as a vector of
✿✿✿✿

mass
✿

mixing ratios of chemical aerosol species, y as a set of aerosol566

optical properties, and Ĥ as an aerosol optics model.
✿✿✿

The
✿✿✿✿✿✿✿

operator
✿✿

Ĥ
✿✿✿✿✿

maps
✿✿✿✿✿

from
✿✿✿✿✿

model
✿✿✿✿✿

space
✿✿✿✿

into
✿✿✿✿✿✿✿✿✿✿

observation
✿✿✿✿✿

space,
✿✿✿✿✿✿

which567

✿✿✿✿✿

allows
✿✿

us
✿✿✿

to
✿✿✿✿✿✿✿

compare
✿✿✿✿✿

model
✿✿✿✿✿✿

output
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿

observations.
✿

We consider the following two problems:568

1. Direct problem: Given x and Ĥ , calculate y = Ĥ(x).569

2. Inverse problem: Given y and Ĥ , solve y = Ĥ(x) for x.570

A pair of such problems is inverse to each other; it is, therefore, somewhat arbitrary which problem we choose to call the571

direct problem, and which one we call the inverse problem. However, one of the problems is usually well-posed, while the572

other one is ill-posed. Such is also the case in aerosol optics modelling. It is customary to call the well-posed problem the573

direct problem, and the ill-posed one the inverse problem.574

An equation y = Ĥ(x) is called well-posed if it has the following properties:575

1. Existence: For every y ∈ R
m, there is at least one x ∈ R

n for which y = Ĥ(x).576

2. Uniqueness: For every y ∈ R
m, there is at most one x ∈ R

n for which y = Ĥ(x).577

3. Stability: The solution x depends continuously on y.578
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If any of these properties is not fulfilled, then the problem is called ill-posed.579

Appendix B: 3-dimensional
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Three-dimensional
✿

variational data assimilation580

Data assimilation is usually employed for constraining models by use of measurements, but it can also be used to solve inverse581

problems. Here we focus on one specific data assimilation method known as 3-dimensional
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

three-dimensional variational data582

assimilation, or 3DVAR.583

In a CTM we discretise the geographic domain of interest into a 3-dimensional
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

three-dimensional grid. In each grid cell, the584

aerosol particles are characterised by the mass concentrations
✿✿✿✿✿✿

mixing
✿✿✿✿

ratio
✿

of each chemical component in the aerosol phase,585

such as sulphate, nitrate, ammonium, mineral dust, black carbon, organic carbon, and sea salt. Suppose we summarise all these586

mass concentrations
✿✿✿✿✿✿

mixing
✿✿✿✿✿

ratios from all grid cells into one large vector x ∈ R
n. The model provides us with a first guess587

of the atmospheric aerosol state, known as a background estimate 4 xb.4 Suppose also that we have m observations, which we588

summarise in a vector y ∈ R
m. We further have an observation operator Ĥ : Rn → R

m, x 7→ Ĥ(x) that maps the state vector589

x from model space to observation space5. We further denote by xt the true state of the atmosphere, by ǫb = xt−xb the error590

of the background estimate, and by ǫo = Ĥ(xt)−y the observation error.6 If the background errors are not correlated with the591

observation errors, then
✿✿✿✿

The
✿✿✿✿✿✿✿✿✿✿

background
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿

observation
✿✿✿✿✿

errors
✿✿✿

are
✿✿✿✿✿✿✿

assumed
✿✿

to
✿✿✿

be
✿✿✿✿✿✿✿

unbiased
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿✿

uncorrelated
✿✿✿✿✿

with
✿✿✿✿

each
✿✿✿✿✿

other.592

✿✿✿✿

Then
✿

their joint probability distribution becomes separable, i.e.593

P (ǫb,ǫo) = Pb(ǫb)Po(ǫo). (B1)594

The true state of the atmosphere is, of course, unknown. Therefore, our definition of the errors and their probability distri-595

bution is only of conceptual use, but not of any practical value. However, we can reinterpret the probability distributions by596

replacing ǫb in the argument of Pb with x−xb, and by replacing ǫo in the argument of Po with Ĥ(x)−y. We further assume597

that both the background and the observation errors are normally distributed. Thus we may write598

Pb(x) = (2π |B |)−1/2 exp

(

−
1

2
(x−xb)

T ·B−1 · (x−xb)

)

(B2)599

Po(x) = (2π |R |)−1/2 exp

(

−
1

2
(Ĥ(x)−y)T ·R−1 · (Ĥ(x)−y)

)

. (B3)600

Here B and R denote the covariance matrices of the background and observation errors, respectively, and | · | denotes the601

matrix determinant. In this form, Pb(x) represents the probability that the atmospheric aerosol particles are found in state x,602

4In the remote sensing and inverse modelling community, the background estimate is more commonly referred to as the a priori estimate.
4
✿

In
✿✿✿

the
✿✿✿✿

remote
✿✿✿✿✿✿

sensing
✿✿

and
✿✿✿✿✿

inverse
✿✿✿✿✿✿✿

modelling
✿✿✿✿✿✿✿✿

community,
✿✿

the
✿✿✿✿✿✿✿✿

background
✿✿✿✿✿✿

estimate
✿✿

is
✿✿✿

more
✿✿✿✿✿✿✿✿

commonly
✿✿✿✿✿

referred
✿✿

to
✿

as
✿✿✿

the
✿

a
✿✿✿✿

priori
✿✿✿✿✿

estimate.
5The optics model Ĥ usually has to invoke assumptions about physical aerosol properties that are relevant for the optical properties, but not provided by

the CTM output, e.g. assumptions about the morphology of the particles. If the CTM is a simple mass-transport model without aerosol microphysics, then it

is also necessary to invoke assumptions about the size distribution of the aerosols.
6The

✿✿

We
✿✿✿✿

stress,
✿✿✿✿

once
✿✿✿✿

more,
✿✿✿

that
✿✿

the
✿

observation error must not be confused with the measurement error
✿✿

ǫm. The latter contributes to the former, but the

observation error contains also other sources of error. For instance, if we deal with morphologically complex particles, but our lack of knowledge forces us

to make assumptions and invoke approximations about the particle shapes, then this source of
✿✿✿✿✿✿✿✿✿

forward-model
✿

error
✿✿

ǫf
✿

contributes to the observation error.

The same is the case if we lack information about the particles’ size distribution.
✿

In
✿✿✿✿✿✿✿✿

operational
✿✿✿✿✿✿✿✿

applications
✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

representativity
✿✿✿

error
✿✿✿

ǫr
✿✿

can
✿✿✿✿

also
✿✿✿

make
✿✿

a

✿✿✿✿✿✿✿

substantial
✿✿✿✿✿✿✿✿

contribution
✿✿

to
✿✿

ǫo.
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given a background estimate xb with error covariance matrix B. Similarly, Po(x) is the probability that the system is found in603

state x, given measurements y with error covariances R.7604

Equations (B1)–(B3) can be summarised in the form605

P (x) =
1

2π(|B | · |R |)−1/2

1

2π(|B | · |R |)1/2
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

exp(−J(x)) (B4)606

J(x) =
1

2

[

(x−xb)
T ·B−1 · (x−xb)+ (Ĥ(x)−y)T ·R−1 · (Ĥ(x)−y)

]

,607

(B5)608

where J is suggestively called the costfunction
✿✿✿

cost
✿✿✿✿✿✿✿

function, since it can be interpreted as a measure for how “costly” it is for609

a state x to simultaneously deviate from the background estimate and the measurements within the permitted error bounds.610

The deviations are weighted with the inverse error covariance matrices. For instance, this means that for measurements with a611

small error variance, a deviation Ĥ(x)−y becomes “more costly”.612

We are interested in the most probable aerosol state of the atmosphere, i.e., in that state xa for which the probability613

distribution attains its maximum. This is obviously the case when the argument of the exponential in Eq. (B4) assumes a614

minimum. Thus we seek to minimise the costfunction
✿✿✿✿

cost
✿✿✿✿✿✿✿

function
✿

J . The variational method is based on computing the615

gradient of the costfunction, ∇J
✿✿✿

cost
✿✿✿✿✿✿✿

function,
✿✿✿✿✿

∇xJ , and to use this in a descent algorithm to iteratively search for the minimum616

of J .617

In practice it is common to introduce the variable δx= x−xb, and use the first-order Taylor expansion of the observation618

operator,619

Ĥ(x) = Ĥ(xb)+H · δx, (B6)620

where the (m×n)-matrix H denotes the Jacobian of Ĥ at x= xb. If Ĥ is only mildly non-linear, and if the components of δx621

are sufficiently small, then we can substitute this first-order approximation into Eq. (B5), which yields622

J = Jb + Jo (B7)623

Jb(δx) =
1

2
δxT ·B−1 · δx (B8)624

Jo(δx) =
1

2

(

Ĥ(xb)+H · δx−y
)T

·R−1 ·
(

Ĥ(xb)+H · δx−y
)

(B9)625

The components of the vector δx are the control variables that are iteratively varied by the algorithm until the minimum of the626

costfunction
✿✿✿✿

cost
✿✿✿✿✿✿✿

function is found.627

The solution to the equation ∇J = 0
✿✿✿✿✿✿✿✿✿

∇xJ = 0n
✿

is a solution to the inverse problem
✿✿✿✿✿

(where
✿✿✿

0n
✿✿✿✿✿✿✿

denotes
✿✿✿

the
✿✿✿✿

null
✿✿✿✿✿✿

vector628

✿✿

in
✿✿✿✿✿✿✿✿✿✿✿✿

n-dimensional
✿✿✿✿✿✿

model
✿✿✿✿✿

space); we input the observations y into the algorithm, and as output we obtain a result in model629

space that is consistent with the measurements (within the given error bounds).8 What if the measurements contain insufficient630

7The observation errors are often
✿✿✿✿✿

assumed
✿✿

to
✿✿

be uncorrelated
✿✿✿

(this
✿

is
✿✿

not
✿✿✿✿✿

always
✿✿✿✿

true). In such case the matrix R is diagonal, where the diagonal elements

are the observation error variances.
8
✿✿

By
✿✿✿✿✿

solving
✿✿✿

the
✿✿✿✿✿✿✿

equation
✿✿✿✿✿✿✿✿✿✿✿✿

∇J |x=xa
= 0n

✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿

analysed
✿✿✿✿

state
✿✿✿

xa
✿

it
✿✿✿

can
✿✿✿

be
✿✿✿✿✿

shown
✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿

solution
✿✿

to
✿✿✿

the
✿✿✿✿✿✿

inverse
✿✿✿✿✿✿

problem
✿✿

is
✿✿✿✿

given
✿✿✿

by

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

xa = xb +K · (y− Ĥ(xb)),
✿✿✿✿✿

where
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

K=B ·HT · (H ·B ·HT +R)−1

✿✿

is
✿✿✿✿✿

known
✿✿

as
✿✿✿

the
✿✿✿✿

gain
✿✿✿✿✿

matrix.
✿✿✿✿

This
✿✿✿✿✿✿✿

illustrates
✿✿✿

that
✿✿

the
✿✿✿✿✿✿

analysis
✿✿✿✿✿✿

updates
✿✿✿

the
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information about the state x? The algorithm will still provide an answer to the inverse problem, but the missing information631

will be supplemented by the background estimate xb. The weighting of the two pieces of information, xb and y, is controlled632

by the respective error covariance matrices. Thus data assimilation is a statistical approach, which can be expected to give good633

results on average, but not in every single time-step of the model run. This can become highly problematic if we only have634

very few observations, i.e., m≪ n,
✿✿✿✿✿✿

where
✿✿

n
✿✿

is
✿✿

the
✿✿✿✿✿✿✿✿✿

dimension
✿✿✿

of
✿✿✿

the
✿✿✿✿✿

model
✿✿✿✿✿

space. If we allow all model variables to be freely635

adjusted by the assimilation algorithm in such a severely under-constrained case, then the algorithm may just assimilate noise636

✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

measurements
✿

rather than signal, resulting in unreasonable solutions to the inverse problem (e. g. Kahnert (2009)).637

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(e.g. Kahnert, 2009). To avoid such problems, one needs to systematically analyse the information content of the observations638

and constrain the assimilation algorithm to only operate on the signal degrees of freedom.639

Appendix C: Information content of measurements640

Our ultimate goal is to formulate the data assimilation problem in such a way that the information contained in the mea-641

surements is fully exploited, but not over-used. To this end, we first need to know how many independent quantities can be642

determined from a specific set of measurements. We investigate this question by borrowing ideas from retrieval and information643

theory — see Rodgers (2000) for more detailed explanations.644

The main idea is to compare the variances of the model variables to those of the observations. Only those model variables645

whose variance is larger than those of the observations can be constrained by measurements. However, to actually make such a646

comparison is rather tricky
✿✿✿✿✿

poses
✿✿✿

two
✿✿✿✿✿✿✿✿

problems. The first problem is that one cannot readily compare error covariance matrices.647

The second problem is that model variables and measurements are in different spaces. We first address the second problem.648

When we account for observation errors ǫo, then the basic relation between model variables and observations is, to first order649

y = Ĥ(xb)+H · δx+ ǫo. (C1)650

The error covariance matrices are given by the expectation values B= 〈δx · δxT 〉, and R= 〈ǫo · ǫ
T
o 〉, where the dot denotes a651

dyadic product.The 9
✿✿✿✿

From
✿✿✿

Eq.
✿✿✿✿✿

(C1)
✿✿

we
✿✿✿

see
✿✿✿✿

that
✿✿

the
✿

covariance matrix of δy = y−Ĥ(xb) is given by 〈δy·δyT 〉 =H·B·HT+R,652

where we assumed that background and observation errors are uncorrelated. This last equation suggests that we can compare653

model and observation errors in the same space by transforming the background error covariance matrix from the space of654

(n×n) matrices to the space of (m×m) matrices viz. H ·B ·HT .655

✿✿✿✿✿✿✿✿

background
✿✿✿✿✿

estimate
✿✿✿

xb
✿✿

by
✿✿✿✿✿✿

mapping
✿✿

the
✿✿✿✿✿✿✿

increment
✿✿✿✿✿✿✿✿✿

(y− Ĥ(xb))
✿✿✿✿

from
✿✿✿✿✿✿✿✿

observation
✿✿✿✿

space
✿✿

to
✿✿✿✿

model
✿✿✿✿

space
✿✿

by
✿✿✿

use
✿

of
✿✿✿

the
✿✿✿

gain
✿✿✿✿✿

matrix.
✿✿✿

The
✿✿✿✿✿✿✿✿

correlations
✿✿✿✿✿

among

✿✿

the
✿✿✿✿

model
✿✿✿✿✿✿✿

variables
✿✿✿

enter
✿✿✿

into
✿✿

the
✿✿✿✿

gain
✿✿✿✿

matrix
✿✿✿✿✿

through
✿✿✿

the
✿✿✿✿

matrix
✿✿✿

B.
✿

In
✿✿✿

our
✿✿✿

case
✿✿

the
✿✿✿✿✿✿

vertical
✿✿✿✿✿✿✿✿

correlations
✿✿

are
✿✿✿✿

rather
✿✿✿✿

weak
✿

in
✿✿✿✿✿✿✿✿

comparison
✿✿

to
✿✿✿✿✿✿✿✿

correlations
✿✿✿✿✿

among

✿✿✿✿✿

different
✿✿✿✿✿

aerosol
✿✿✿✿✿✿

species.
9
✿✿

The
✿✿✿✿✿✿✿✿✿

expectation
✿✿✿✿

value
✿✿

of
✿✿

a
✿✿✿✿✿

discrete
✿✿✿✿✿✿

variable
✿✿

a
✿✿✿

that
✿✿✿✿✿✿

assumes
✿✿✿✿✿

values
✿✿✿✿✿✿✿✿✿✿✿

a1,a2, . . . ,an
✿✿✿

with
✿✿✿✿✿✿✿✿✿✿

corresponding
✿✿✿✿✿✿✿✿✿

probabilities
✿✿✿✿✿✿✿✿✿✿

p1,p2, . . . ,pn
✿✿

is
✿✿✿✿

given
✿✿✿

by

✿✿✿✿✿✿✿✿✿✿✿✿

〈a〉=
∑n

i=1
piai.
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To address the first problem, we diagonalise the covariance matrices by making the following change of variables656

δx̃ = B−1/2 · δx (C2)657

δỹ = R−1/2 · (y− Ĥ(xb)) (C3)658

H̃ = R−1/2 ·H ·B1/2. (C4)659

Here B1/2 denotes the positive square root10 of the matrix B, and B−1/2 denotes its inverse.
✿✿✿

The
✿✿✿✿✿✿

scaled
✿✿✿✿✿✿✿✿✿✿

observation
✿✿✿✿✿✿✿

operator660

✿✿

H̃
✿✿

is
✿✿✿✿✿✿✿✿✿

sometimes
✿✿✿✿✿✿✿

referred
✿✿

to
✿✿

as
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

observability
✿✿✿✿✿✿

matrix. In the new basis, the costfunction
✿✿✿

cost
✿✿✿✿✿✿✿

function in (B7)–(B9) becomes661

J =
1

2
δx̃T · δx̃+

1

2

(

H̃ · δx̃− δỹ
)T

·
(

H̃ · δx̃− δỹ
)

. (C5)662

The covariance matrices are now unit matrices. This can also be seen by considering the transformed errors, e.g. ǫ̃o =R−1/2·ǫo663

and computing 〈ǫ̃o · ǫ̃
T
o 〉 =R−1/2 · 〈ǫo · ǫ

T
o 〉 ·R

−1/2=1
✿✿✿✿✿

1m×m, since 〈ǫo · ǫ
T
o 〉=R.

✿✿✿✿✿

(Here,
✿✿✿✿✿✿

1m×m
✿✿✿✿✿✿✿

denotes
✿✿✿

the
✿✿✿✿

unit
✿✿✿✿✿

matrix
✿✿✿

in664

✿✿✿✿✿✿✿✿✿✿✿✿

m-dimensional
✿✿✿✿✿✿✿✿✿✿

observation
✿✿✿✿✿✿

space.)
✿

Similarly, we find 〈δx̃ · δx̃T 〉= 1
✿✿✿✿✿

1n×n. The covariance matrix of the transformed mea-665

surement vector δỹ is given by 〈δỹ · δỹT 〉= H̃ · H̃T +1
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

H̃ · H̃T +1m×m. The first term is the model error covariance term666

transformed into observation space, while the second term (the unit matrix) is the diagonalised observation error covariance667

matrix.668

We are still not in a position to make a meaningful comparison of model and observation errors, since the first term, H̃ ·H̃T ,669

is still not diagonal. To make it so we need to perform one more transformation. To this end, we consider the singular value670

decomposition of the matrix H̃,671

H̃=R−1/2 ·H ·B1/2 =VL ·W ·VT
R. (C6)672

Here H̃ is a (m×n)-matrix, the matrix of the left-singular vectors VL is a (m×m)-matrix, the matrix VR containing the673

right-singular vectors is a (n×n)-matrix, and the (m×n)-matrix W consists of two blocks. If m< n, then the left block674

of W is a (m×m)-diagonal matrix containing the m singular values w1, . . . ,wm on the diagonal; the right block is a (m×675

(n−m))-nullmatrix
✿✿✿✿

-null
✿✿✿✿✿✿

matrix. Similarly, if m> n, then the upper block of W is a (n×n)-diagonal matrix containing the n676

singular values on the diagonal, while the lower block is a ((m−n)×n)-nullmatrix
✿✿✿✿

-null
✿✿✿✿✿✿

matrix.677

We now make another change of variables:678

δx′ = VT
R · δx̃ (C7)679

δy′ = VT
L · δỹ (C8)680

H′ = VT
L · H̃ ·VR. (C9)681

The matrices VL and VR are orthogonal, i.e., VT
L ·VL = 1

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

VT
L ·VL = 1m×m, and similarly for VR. Thus, substitution of682

(C7)–(C9) into (C5) yields683

J =
1

2
δx′T · δx′ +

1

2
(H′ · δx′ − δy′)

T
· (H′ · δx′ − δy′) . (C10)684

10A matrix A is called a square root of a matrix B if A ·A=B
✿✿✿✿✿✿✿✿✿

AT ·A=B. The positive square root of B, which is denoted by B1/2, has the property

x
T ·B1/2 ·x≥ 0 for all x. If B is itself positive and symmetric, as is the case for covariance matrices, then the positive square root exists and is unique.
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Evidently, the transformation given in (C7)–(C9) preserves the diagonality of the background and observation error covariance685

matrices. What about the covariance matrix 〈δy′ · δy′T 〉 in the new basis? Using ǫ′o= VT
L · ǫ̃o= VT

L ·R−1/2 · ǫo, as well as686

Eqs. (C1), (C2)–(C4), and (C7
✿✿✿

C6)–(C9), we obtain 〈δy′ · δy′T 〉= H′ ·H′T +1
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

H′ ·H′T +1m×m. The contribution of the687

background error covariances in this coordinate system is H′ ·H′T , which is a diagonal matrix. This becomes clear from Eqs.688

(C6) and (C9), which yields689

H′ ·H′T =W ·WT , (C11)690

which is a (m×m) diagonal matrix. Thus in this coordinate system we can readily compare the diagonal elements of the691

transformed background error covariance matrix H′ ·H′T to the diagonal (unit) elements of the observation error covariance692

matrix 1
✿✿✿✿✿

1m×m. Roughly, those singular values wi on the diagonal of W that are larger than unity correspond to model variables693

δx′
i that can be controlled by the measurements. Those singular values smaller than unity correspond to model variables that694

are only related to noise.695

In the above discussion we relied on plausibility arguments. We mention that there are more systematic ways of approaching696

the problem. Here we merely state some key results without going into details. The interested reader is referred to
✿✿✿✿✿✿

chapter
✿✿

2
✿✿

in697

Rodgers (2000). However, in all approaches the main quantities of interest are always the singular values of the
✿✿✿✿✿✿✿✿✿✿✿

observability698

matrix R−1/2 ·H ·B1/2.699

One can compute the number of signal degrees of freedom Ns from the expectation value of Jb in Eq. (B8). The result can700

be expressed in terms of the singular values wi of the transformed observation operator in Eq. (C6)
✿✿✿✿✿✿✿✿✿✿✿

observability
✿✿✿✿✿

matrix:701

Ns =
∑

i
min{m,n}
i=1
✿✿✿✿✿✿✿

w2
i /(1+w2

i )., (C12)702

✿✿✿✿✿

where
✿✿

n
✿

is
✿✿✿

the
✿✿✿✿✿✿✿✿✿

dimension
✿✿

of
✿✿✿✿✿✿

model
✿✿✿✿✿

space,
✿✿✿✿

and
✿✿

m
✿✿

is
✿✿✿

the
✿✿✿✿✿✿✿✿✿

dimension
✿✿

of
✿✿✿✿✿✿✿✿✿✿

observation
✿✿✿✿✿

space.703

Another approach is based on information theory. Given a system described by a probability distribution function P (x), one704

defines the Shannon-entropy
✿✿✿✿✿✿✿

Shannon
✿✿✿✿✿✿✿

entropy705

S(P ) =−

∫

P (x)lnlog2
✿✿✿

(

P (x)

P0(x)

)

dx, (C13)706

where P0 is a normalisation factor needed to make the argument of the logarithm dimensionless. A decrease in entropy ex-707

presses an increase in our knowledge of the system. For instance, if we initially describe the system by Pi(x), and, after taking708

measurements, by Pf (x), then the measurement process has changed the entropy by an amount709

H = S(Pi)−S(Pf ). (C14)710

In our case, we assume that all errors are normally distributed. In that case, one can show that711

H =
1

2

∑

i ln
min{m,n}
i=1 log2
✿✿✿✿✿✿✿✿✿✿

(1+w2
i ). (C15)712

H can be interpreted as a measure for the information content of a set of measurements.713
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Our findings so far suggest a general strategy for how to optimise the amount of information that we can extract
✿✿✿

can
✿✿✿

be714

✿✿✿✿✿✿✿

extracted
✿

from measurements. First, we need to compute the singular value decomposition in Eq. (C6), as well as the transfor-715

mation given in (C2) and (C7), which we can summarise as716

δx′ =VT
R ·B−1/2 · δx. (C16)717

Then we want to formulate the minimisation of the costfunction
✿✿✿

cost
✿✿✿✿✿✿✿

function
✿

in such a way that only those components of718

δx′ are adjusted by the assimilation algorithm that correspond to the largest singular values of the matrix W in (C6). All other719

elements of δx′ should be left alone. In other words, we want to constrain the minimisation of the costfunction
✿✿✿✿

cost
✿✿✿✿✿✿✿

function to720

the subspace of the signal degrees of freedom of the state vector. Thus, in order to implement this idea, we first need to discuss721

how to incorporate constraints into the theory.722

Appendix D: Minimisation of the costfunction
✿✿✿

cost
✿✿✿✿✿✿✿✿

function
✿

with constraints723

In the minimisation of the costfunction
✿✿✿

cost
✿✿✿✿✿✿✿

function
✿

all elements of the control vector δx are independently adjusted until the724

minimum of J is found. This may not be a prudent approach if the information contained in the observations is insufficient725

to constrain all model variables. In such case one should introduce constraints that reduce the number of independent control726

variables. However, this needs to be done in a clever way; the goal is to neither under-use the measurements (thus wasting727

available information), nor to over-use them (thus assimilating noise).728

For reasons we will explain later we formulate the constraints as weak conditions. However, for didactic reasons as well as729

for the sake of completeness, we will also mention how to formulate constraints as strong conditions.730

D1 Minimisation of the costfunction
✿✿✿

cost
✿✿✿✿✿✿✿✿

function with strong constraints731

Given k constraints in the form gi(δx)=0, i= 1, . . . ,k, the most general way of finding the minimum of J(δx) under the732

constraints gi is the method of Lagrange multipliers. More specifically, one introduces k Lagrange multipliers λ1, . . . ,λk and733

defines the function734

L(δx1, . . . , δxn,λ1, . . . ,λk) = J(δx1, . . . , δxn)+

k
∑

i=1

λigi(δx1, . . . , δxn); (D1)735

then one solves the minimisation problem736

∇L(δx1, . . . , δxn,λ1, . . . ,λk) = 0n+k
✿✿✿

, (D2)737

where ∇=∇δx1,...,δxn,λ1,...,λk
is now a (n+ k)-dimensional gradient operator

✿

,
✿✿✿

and
✿✿✿✿✿✿

where
✿✿✿✿✿

0n+k
✿✿✿✿✿✿

denotes
✿✿✿

the
✿✿✿✿

null
✿✿✿✿✿

vector
✿✿

in
✿✿✿

an738

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(n+ k)-dimensional
✿✿✿✿

space. Note that in this general formulation of the problem the constraints can even be nonlinear. We are739

specifically interested in linear constraints, which can be expressed in the form G · δx= 0
✿✿✿✿✿✿✿✿✿✿

G · δx= 0k. Then the constrained740
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minimisation problem becomes741

L(δx,λ) = J(δx)+λT ·G · δx (D3)742

∇δx,λL(δx,λ) =





∇δxJ(δx)+λT ·G

G · δx



= 0n+k
✿✿✿

. (D4)743

Compared to the unconstrained minimisation problem, the introduction of k constraints has increased the dimension of the744

problem from n to n+k. Naively, one may have expected that the dimension would, on the contrary, be reduced to n−k. This745

is indeed the case if the constraints are linear, and if the function J is quadratic, as is the case in Eqs. (B7)–(B9). To see this,746

let us first write those equations more concisely in the form747

J =
1

2

(

δxT ·Q1 · δx+QT
2 · δx+ δxT ·Q2 +Q3

)

(D5)748

Q1 = B−1 +HT ·R−1 ·H (D6)749

Q2 = HT ·R−1 · (Ĥ(xb)−y) (D7)750

Q3 = (Ĥ(xb)−y)T ·R−1 · (Ĥ(xb)−y). (D8)751

(Note that the covariance matrices and their inverses are symmetric ,
✿

(i.e. , RT =R, etc.) The unconstrained minimisation752

problem requires us to solve the equation ∇J =Q1 · δx+Q2 = 0
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

∇δxJ =Q1 · δx+Q2 = 0n. Now we want to minimise the753

costfunction
✿✿✿✿

cost
✿✿✿✿✿✿✿

function subject to the the linear constraints754

G · δx= 0k, (D9)755

where G is a (k×n)-matrix, δx is an n-vector, and
✿✿✿

0k is the null-vector in R
k. Let us denote the kernel11 of G by ker(G). Let756

further z1, . . . ,zn−k denote a basis of ker(G). We define the (n× (n− k))-matrix757

Z=
(

z1 · · · zn−k

)

(D10)758

the column vectors of which are just the basis vectors of ker(G). Obviously, G ·Z= 0, where 0
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

G ·Z= 0k×(n−k),
✿✿✿✿✿✿

where759

✿✿✿✿✿✿✿✿

0k×(n−k) denotes the ((k× (n− k))-nullmatrix
✿✿✿✿

-null
✿✿✿✿✿✿

matrix. If δx is a vector in R
n for which there exists a vector ξ ∈ R

n−k
760

such that Z · ξ = δx, then we automatically have G · δx= 0
✿✿✿✿✿✿✿✿✿✿

G · δx= 0k, i.e., δx satisfies the linear constraints. Thus we can761

formulate the constrained minimisation problem by substitution of δx= Z · ξ into Eq. (D5), which yields762

J =
1

2

(

ξT ·ZT ·Q1 ·Z · ξ+QT
2 ·Z · ξ+ ξT ·ZT ·Q2 +Q3

)

(D11)763

0k = ∇ξJ = ZT ·Q1 ·Z · ξ+ZT ·Q2. (D12)764

Thus we have reduced the (n+k)-dimensional constrained minimisation problem given in Eq. (D4) to a problem consisting of765

the following two steps.766

11The kernel or nullspace
✿✿

null
✿✿✿✿

space of a matrix is the set of all vectors z such that G ·z = 0. The kernel is a subspace of the full vector space R
n with

dim ker(G)= n− k.
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1. Determine a basis of the nullspace
✿✿✿

null
✿✿✿✿✿

space
✿

ker(G); this yields the matrix Z.767

2. Solve the unconstrained (n− k)-dimensional optimisation problem given in Eq. (D12). From the (n− k)-vector ξ that768

minimises the costfunction
✿✿✿

cost
✿✿✿✿✿✿✿

function
✿

in (D11), we then obtain the solution δx= Z ·ξ that minimises the costfunction769

✿✿✿

cost
✿✿✿✿✿✿✿

function
✿

in (D5) subject to the constraint (D9).770

D2 Minimisation of the costfunction
✿✿✿

cost
✿✿✿✿✿✿✿✿

function with weak constraints771

In the approach described in the previous section the solution satisfies the constraints exactly. Therefore, this approach is known772

as the minimisation of the costfunction
✿✿✿

cost
✿✿✿✿✿✿✿

function
✿

with strong constraints. In the weak-constraint approach the constraints773

only need to be satisfied within specified error bounds.774

The formulation of the weak-constraint approach is conceptually quite simple. One incorporates the constraints by adding775

an extra term to the costfunction
✿✿✿✿

cost
✿✿✿✿✿✿✿

function (B7), i.e.776

J = Jb + Jo + JG (D13)777

JG =
1

2
δxT ·GT ·B−1

G ·G · δx, (D14)778

which also gives an extra term in the gradient of the costfunction
✿✿✿

cost
✿✿✿✿✿✿✿

function,779

∇δx
✿

JG =GT ·B−1
G ·G · δx. (D15)780

We will assume that the matrix BG=diag(σG
1 , . . . ,σ

G
k ) is diagonal, where k is the number of constraints. The “error variances”781

σG
i along the diagonal of BG allow us to fine-tune the influence of each constraint on the solution. If σG

i is small, then the ith782

constraint is relatively strong, and vice versa. The choice of these variances is a matter of experimenting and tuning. Typically,783

if the σG
i are made too large, then there is a risk that the minimisation algorithm ignores the constraints all together. In that case784

the solution will be very similar to the unconstrained solution. On the other hand, if the σG
i are made too small, then JG can785

make the dominant contribution to J . In that case, there is a risk that the minimisation routine largely ignores the observations786

and returns a solution that lies quite close to the background estimate.787

D3 Constraints designed for making optimum use of the information contained in the observations788

We now want to incorporate the results of Section C into the variational data assimilation method. More specifically, we want789

to formulate weak constraints, Eq. (D14), based on the singular values of the observation operator in Eq. (C6). To this end,790

we make the change of variables given in Eq. (C16). We assume, without loss of generality, that the first ℓ singular values are791

greater than unity. Thus we only want to use the corresponding components δx′
1, . . . , δx

′
ℓ as independent control variables in the792

3DVAR algorithm, while the remaining components remain unchanged, at least approximately,
✿

within specified error bounds.793
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If we were to formulate this requirement as a strong constraint, as in Eq. (D9), then it would take the form794

δx′ =VT
R ·B−1/2 · δx=





























δx′
1

...

δx′
ℓ

0
...

0





























. (D16)795

Thus the matrix expressing the constraints is given by G=VT
R ·B−1/2, which is a (n×n) matrix.796

The weak constraint approach is, arguably, more suitable in our case. We have, in the preceding text, frequently used the797

terms signal degrees of freedom and noise degrees of freedom. Although it was conceptually useful to make this distinction, it798

is important to stress that there is no sharp boundary between the two. Rather, there is a smooth transition from singular val-799

ues w1 >w2 > · · ·>wℓ ≥ 1 to singular values 1>wℓ+1 >wℓ+2 > · · ·>wk (k =min{n,m}
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

1>wℓ+1 >wℓ+2 > · · ·>wK800

✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(K =min{n,m}). For this reason we choose to formulate the constraints as weak constraints. This allows us to make a smooth801

transition from free to constrained control variables, where the transition from one regime to the other can be controlled by the802

singular values.803

In order to apply the weak-constraint approach, we need to substitute the constraint-matrix G=VT
R ·B−1/2 into Eq. (D14),804

which yields805

JG =
1

2
δxT ·B−1/2 ·VR ·B−1

G ·VT
R ·B−1/2 · δx, (D17)806

where BG is a (n×n) matrix. We want to set up this matrix in such a way that we obtain a smooth transition from freely adapt-807

able control variables δx′
1, . . . δx

′
ℓ to increasingly constrained variables δx′

ℓ+1, . . . δx
′
k, . . . , δxn

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

δx′
ℓ+1, . . . δx

′
k, . . . , δx

′
n. One pos-808

sible choice of the matrix BG , which is suggested by Eq. (C11), would be809

BG = σGdiag(w1
2,w2

2, . . . ,wℓ
2, . . . ,wk

2, c, . . . , c), (D18)810

where σG is a free scaling factor, and where the last n− k diagonal elements are equal to a constant c
✿✿✿✿✿✿

c≪ wk
✿

chosen to be811

much smaller than w2
k. Another possible

✿✿

the
✿✿✿✿✿✿✿

smallest
✿✿✿✿✿✿✿

singular
✿✿✿✿✿

value
✿✿✿

wk.
✿

812

✿✿✿✿✿✿

Clearly,
✿✿✿✿

how
✿✿✿

we
✿✿✿

set
✿✿

up
✿✿✿

the
✿✿✿✿✿✿

matrix
✿✿✿

BG
✿✿

is
✿✿✿

not
✿✿✿✿✿✿✿

unique.
✿✿✿

For
✿✿✿✿✿✿✿

instance,
✿✿

a
✿✿✿✿

more
✿✿✿✿✿✿✿

general choice would be813

BG = σG · diag(λ1,λ2, . . . ,λℓ, . . . ,λk, c
′, . . . , c′),814

λi = w2
i /(1+w2

i ),815

816

BG = σGdiag(wp
1 ,w

p
2 , . . . ,w

p
ℓ , . . . ,w

p
k, c, . . . , c),

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(D19)817
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where c′ ≪ λk.
✿✿✿✿✿✿✿

c≪ wp
k,

✿✿✿

and
✿✿✿✿✿

where
✿✿✿

the
✿✿✿✿✿✿✿✿

exponent
✿✿

p
✿✿✿✿✿

would
✿✿✿

be
✿✿✿✿✿✿

another
✿✿✿✿✿✿✿✿✿

parameter
✿✿✿

that
✿✿✿✿

can
✿✿

be
✿✿✿✿✿✿✿✿✿

employed
✿✿

to
✿✿✿✿

tune
✿✿✿✿

how
✿✿✿✿✿✿

steeply
✿✿✿

the818

✿✿✿✿✿✿✿✿

transition
✿✿✿✿

from
✿✿✿✿✿✿✿✿✿✿✿✿

unconstrained
✿✿

to
✿✿✿✿✿✿✿✿✿

constrained
✿✿✿✿✿✿✿

control
✿✿✿✿✿✿✿

variables
✿✿✿✿✿

takes
✿✿✿✿✿

place.
✿✿✿

Yet
✿✿✿✿✿✿✿

another
✿✿✿✿✿

choice
✿✿✿✿✿✿

would
✿✿

be
✿

819

BG
✿✿

=
✿

σG · diag(µ1,µ2, . . . ,µℓ, . . . ,µk, c, . . . , c),
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(D20)820

µi
✿

=
✿

w2
i /(1+w2

i ),
✿✿✿✿✿✿✿✿✿✿✿

(D21)821

✿✿✿✿✿

where
✿✿✿✿✿✿✿

c≪ µk. This ansatz is suggested by Eq. (C12), i.e., each of the elements δx′
1, . . . δx

′
k is weighted with its corresponding822

contribution to the number of signal degrees of freedom. It turns out that Eq. (D18) gives a relatively sharp transition from823

unconstrained to constrained model variables, while
✿✿

We
✿✿✿✿✿

tested
✿✿✿

all
✿✿✿✿✿

three
✿✿✿✿✿✿✿✿✿

approaches
✿✿✿✿

(the
✿✿✿

one
✿✿

in
✿

Eq. (D19) gives a very gentle824

transition. Another ansatz that lies in between these two extremes would be825

BG = σGdiag(w1,w2, . . . ,wℓ, . . . ,wk, c
′′, . . . , c′′),826

where c′′ ≪ wk.827

Despite the mathematical foundation of this approach we are left with some room for experimentation in
✿✿

for
✿✿✿✿✿✿

p= 2).
✿✿✿✿✿✿

These828

✿✿✿✿

tests
✿✿✿✿✿✿

showed
✿✿✿✿

that the formulation of the matrix BG. It is a matter of experience to test different approaches and select the one829

that proves to be most suited.
✿✿✿✿✿✿

different
✿✿✿✿✿✿✿✿✿✿

approaches
✿✿✿✿

often
✿✿✿✿✿

yield
✿✿✿✿✿✿✿

analysis
✿✿✿✿✿✿

results
✿✿✿

that
✿✿✿

are
✿✿✿✿

quite
✿✿✿✿✿✿✿

similar.
✿✿✿✿✿✿✿✿

However,
✿✿

in
✿✿✿✿

each
✿✿✿✿✿✿✿✿

approach830

✿✿

the
✿✿✿✿

free
✿✿✿✿✿✿✿✿✿

parameters
✿✿✿

σG
✿✿✿✿

and
✿

c
✿✿✿

are
✿✿✿✿✿

tuned
✿✿

to
✿✿✿✿✿✿✿✿

different
✿✿✿✿✿✿

values.
✿✿

If
✿✿✿

they
✿✿✿

are
✿✿✿✿

not
✿✿✿✿

well
✿✿✿✿✿

tuned,
✿✿✿✿

then
✿✿✿

the
✿✿✿✿✿✿✿

analysis
✿✿✿✿✿

tends
✿✿✿✿✿

either
✿✿✿✿✿✿

toward
✿✿✿

the831

✿✿✿✿✿✿✿✿✿

background
✿✿✿✿✿✿✿✿

estimate
✿✿

or
✿✿✿✿✿✿

toward
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

unconstrained
✿✿✿✿✿✿✿✿

analysis,
✿✿

as
✿✿✿✿✿✿✿✿

explained
✿✿✿✿✿✿

earlier
✿✿

in
✿✿✿

the
✿✿✿

text
✿✿✿✿✿✿✿✿✿

following
✿✿✿

Eq.
✿✿✿✿✿✿

(D15).832

Appendix E: Practical aspects of the implementation833

✿✿✿

We
✿✿✿

will
✿✿✿✿

here
✿✿✿✿✿✿

discuss
✿✿✿✿✿

some
✿✿✿✿✿✿✿✿

practical
✿✿✿✿✿✿

aspects
✿✿✿

that
✿✿✿

are
✿✿✿✿✿✿

mainly
✿✿✿✿✿✿✿✿✿

interesting
✿✿✿

for
✿✿✿✿✿✿

model
✿✿✿✿✿✿✿✿✿

developers.
✿

834

One of the main practical problems is the dimension n of the model space. The grid-size is typically on the order Nx ×835

Ny×Nz ∼ 100×100×10, and the number of aerosol components is on the order of Nc ∼10–100. Hence the dimension of the836

model space is n∼ 106–107. In our case, the matrix H̃ in (C6) is a (m×n) matrix. To numerically perform a singular value837

decomposition of such a large matrix would be a formidable task.838

In variational data assimilation we encounter a similar problem in the inversion of the matrix B. In our 3DVAR code this839

problem is alleviated by using a so-called spectral formulation. The idea is to make a Fourier-transformation in the horizontal840

coordinates and to assume that all horizontal error correlations are homogeneous and isotropic. Under these assumptions841

one obtains one background error covariance matrix for each horizontal wavenumber; each of these matrices has dimension842

Nz×Nc ∼ 103–104. This can further be reduced to about 102 by making a reduced eigenvalue diagonalisation. The details are843

explained in Kahnert (2008).844

In our case we are primarily interested in constraining the chemical
✿✿✿✿✿✿

aerosol
✿

components. Therefore,
✿✿✿

we
✿✿✿✿✿✿✿✿

formulate
✿✿✿

our
✿✿✿✿✿

weak845

✿✿✿✿✿✿✿✿✿

constraints
✿✿

in
✿

a
✿✿✿✿✿✿

suitable
✿✿✿✿✿✿✿✿

subspace
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

physical
✿✿✿✿✿

space.
✿✿✿✿✿✿✿✿

Suppose,
✿✿✿

for
✿✿✿✿✿✿✿✿

simplicity,
✿✿✿✿

that
✿✿✿

we
✿✿✿✿

have
✿✿✿✿✿✿

reduced
✿✿✿

all
✿✿✿✿

data
✿

to
✿

the best solution846

for us is to simply restrict ourselves to the chemical subspace. To this end, we select a grid-point12 (i, j, l) and consider the847

12Since the error correlations are assumed to be homogeneous in space any point in the horizontal direction will do.
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✿✿✿✿✿✿

vertical
✿✿✿✿✿✿✿✿✿

resolution
✿✿

of
✿✿✿

our
✿✿✿✿✿✿

model.
✿✿✿

Let
✿✿✿✿✿✿✿✿✿✿✿✿

νl = 1, . . . ,ml
✿✿✿✿

label
✿✿✿

all
✿✿✿✿✿✿✿✿✿✿✿✿

measurements
✿✿✿

that
✿✿✿

lie
✿✿✿✿✿✿

within
✿✿✿✿✿

model
✿✿✿✿✿

layer
✿

l.
✿✿✿✿✿✿✿✿

Suppose
✿✿✿✿✿✿

further
✿✿✿✿

than848

✿✿✿✿✿✿

(iα, jα)
✿✿

is
✿✿✿

the
✿✿✿✿✿✿✿✿

horizontal
✿✿✿✿

grid
✿✿✿✿✿

point
✿✿✿✿✿✿✿✿

belonging
✿✿

to
✿✿✿✿✿✿✿✿✿✿

observation
✿✿

νl
✿✿✿

(so
✿✿✿✿

that
✿✿✿

the
✿✿✿✿✿

index
✿

α
✿✿✿✿✿✿✿

depends
✿✿✿

on
✿✿✿

the
✿✿✿✿

layer
✿✿

l
✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

observation849

✿✿✿

νl).
✿✿✿✿✿✿✿

Consider
✿✿✿

the
✿

reduced background error covariance matrix B0 with components B0
k;k′ =Bi,j,l,k;i,j,l,k′ , where

✿✿✿

with
✿✿✿✿✿✿✿✿

elements850

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

B
(α,l)
k,k′ =Biαjαlk,iα,jαlk′ ,

✿

k,k′ = 1, . . . ,NcSimilarly, we consider reduced matrices R0, H0, ,
✿

and H̃0 = (R0)−1/2 ·H0 ·B0,851

and we numerically compute the
✿✿

Nc
✿✿

is
✿✿✿

the
✿✿✿✿✿✿✿

number
✿✿

of
✿✿✿✿✿✿✿

aerosol
✿✿✿✿✿✿✿✿✿✿

components.
✿✿✿✿✿✿✿✿

Consider
✿✿✿✿✿✿

further
✿✿✿

the
✿✿✿✿✿✿✿

reduced
✿✿✿✿✿✿✿✿✿✿✿

observability
✿✿✿✿✿✿

matrix852

✿✿✿✿

with
✿✿✿✿✿✿✿

elements
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

H̃
(l)
νl,k

=
∑Nc

k′=1R
−1/2
νl,νl

Hm,iα,jαlk′{(B(α,l))1/2}k′,k,
✿✿✿✿✿

where
✿✿✿✿✿✿✿✿✿✿✿✿

m=m(l,νl)
✿✿✿✿✿

labels
✿✿✿

the
✿✿✿✿

νlth
✿✿✿✿✿✿✿✿✿✿

observation
✿✿

in
✿✿✿✿✿✿

model853

✿✿✿✿

layer
✿✿

l.
✿✿✿✿✿✿✿✿✿

Analogous
✿✿

to
✿✿✿✿

Eq.
✿✿✿✿

(C6),
✿✿✿

we
✿✿✿✿

now
✿✿✿✿✿✿✿

perform
✿✿

a
✿

singular value decomposition of the latter. From this we obtain, for each854

level l, a constraint matrix (V0
R)

T · (B0)−1/2 analogous to the one
✿

in
✿✿✿

the
✿✿✿✿✿✿✿

reduced
✿✿✿✿✿

space
✿

855

H̃
(l)
νl,k

=

min{ml,Nc}
∑

s=1

(V
(l)
L )νl,sw

(l)
s (V

(l)
R )k,s.

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(E1)856

✿✿✿

The
✿✿✿✿✿✿✿✿✿

dimension
✿✿

of
✿✿✿

this
✿✿✿✿✿✿✿✿✿✿✿✿

SVD-problem
✿✿

is
✿✿✿

now
✿✿✿✿✿✿✿✿✿✿✿

considerably
✿✿✿✿✿✿✿

reduced.
✿✿✿✿

The
✿✿✿✿✿✿

number
✿✿

of
✿✿✿✿✿✿✿

singular
✿✿✿✿✿

values
✿✿

is
✿✿✿✿✿

equal
✿✿

to
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

K =min{Nc,ml}.857

✿✿✿

The
✿✿✿✿✿✿✿✿

constraint
✿✿✿✿✿✿

matrix
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

G=VT
R ·B−1/2

✿✿✿✿✿✿

reduces
✿✿

to
✿

858

Gs,k =

Nc
∑

k′=1

(V
(l)
R )k′,s{(B

(α,l))−1/2}k′,k.

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(E2)859

✿✿✿

We
✿✿✿✿

now
✿✿✿✿✿

invoke
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

assumption
✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

constraints
✿✿✿✿✿✿✿✿

computed
✿✿

at
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

observation
✿✿✿

site
✿✿✿

are
✿✿✿✿

also
✿✿✿✿

valid
✿✿

at
✿✿✿✿✿✿✿✿✿✿✿

neighbouring
✿✿✿✿✿✿

points,
✿✿✿✿

i.e.,860

✿✿

we
✿✿✿✿✿

apply
✿✿✿

the
✿✿✿✿✿✿✿✿

constraint
✿✿✿✿✿✿

matrix
✿✿✿✿✿

given in Eq. (D16) , but reduced to the chemical subspace. We then simply apply these chemical861

constraints throughout the horizontal domain (again, assuming horizontal homogeneity).
✿✿✿

E2)
✿✿

in
✿✿✿

Eq.
✿✿✿✿✿

(D17)
✿✿✿✿✿✿✿✿✿

according
✿✿

to862

JG =
1

2

∑

ijlkk′s

δxijlk′Gs,k′(B−1
G )sGs,kδxijlk,

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(E3)863

✿✿✿✿✿

where
✿✿✿✿✿✿

(BG)s
✿✿✿✿✿✿

denotes
✿✿✿

the
✿✿✿✿✿✿✿✿✿

diagnonal
✿✿✿✿✿✿✿

elements
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

matrix
✿✿✿✿✿

given
✿✿

in
✿✿✿✿✿✿

(D18).12
✿

.864

Another aspect concerns the positive square root of the background error covariance matrix, which appears in essential parts865

of the theory, namely, in Eqs. (C6) and (D16). In theoretical developments it is, arguably, didactically expedient to work with866

the matrix B1/2. But in practice there are numerically more efficient formulations. One such approach is discussed in Kahnert867

(2008) in the context of a spectral formulation of the variational method. In our present problem we employ the
✿✿✿

The
✿✿✿✿✿✿✿

spectral868

✿✿✿✿✿✿✿✿✿

formulation
✿✿

is
✿✿✿✿✿✿✿

applied
✿✿

to
✿✿✿

the
✿✿✿

full
✿✿✿✿✿✿✿✿

B-matrix
✿✿

in
✿✿✿✿✿

order
✿✿

to
✿✿✿✿✿✿

reduce
✿✿✿

the
✿✿✿✿✿✿✿✿✿

dimension
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

problem
✿✿✿

of
✿✿✿✿✿✿✿✿✿✿✿

diagonalising
✿✿✿

this
✿✿✿✿✿✿✿

matrix.
✿✿✿✿

This869

✿✿✿✿✿✿

method
✿✿

is
✿✿✿

our
✿✿✿✿✿✿✿

method
✿✿✿

of
✿✿✿✿✿

choice
✿✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

formulation
✿✿

of
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

background
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿

observation
✿✿✿✿✿✿

terms
✿✿

in
✿✿✿

the
✿✿✿✿

cost
✿✿✿✿✿✿✿

function
✿✿✿✿✿

given
✿✿✿

in870

✿✿✿✿

Eqs.
✿✿✿✿✿

(B8)
✿✿✿

and
✿✿✿✿✿

(B9),
✿✿✿✿✿✿✿✿✿✿✿

respectively.
✿✿✿✿✿✿✿✿

However,
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

formulation
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

constraint
✿✿✿✿

term
✿✿✿✿✿

given
✿✿

in
✿✿✿

Eq.
✿✿✿✿✿✿

(D17)
✿✿✿

we
✿✿✿

can
✿✿✿✿✿✿✿✿✿✿✿

substantially871

12
✿✿

For
✿✿✿✿

those
✿✿✿✿✿

readers
✿✿✿✿✿✿✿

interested
✿✿

in
✿✿✿✿✿

spectral
✿✿✿✿✿✿✿✿✿

formulations
✿✿

of
✿✿✿✿✿

3DVAR
✿✿

we
✿✿✿✿

refer
✿✿

to
✿✿✿

Eqs.
✿✿✿✿✿✿✿

(28)–(30)
✿

in
✿✿✿✿✿✿✿✿✿✿✿

Kahnert (2008).
✿✿✿✿✿✿✿

Expressed
✿✿

by
✿✿✿

the
✿✿✿✿✿

spectral
✿✿✿✿✿

control
✿✿✿✿✿

vector

✿✿✿✿✿✿✿✿

χ=U · δx,
✿✿

the
✿✿✿✿

weak
✿✿✿✿✿✿✿

constraint
✿

in
✿✿✿

the
✿✿✿

cost
✿✿✿✿✿

function
✿✿✿✿

takes
✿✿

the
✿✿✿✿✿✿

spectral
✿✿✿

form
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

JG = 1

2
χ

† ·U−† ·GT ·B−1

G ·G ·U−1 ·χ,
✿✿

and
✿✿

its
✿✿✿✿✿✿✿✿

contribution
✿✿

to
✿✿

the
✿✿✿✿✿✿

gradient

✿

of
✿✿✿

the
✿✿✿

cost
✿✿✿✿✿

function
✿✿✿✿✿✿

becomes
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

∇χJG =U−† ·GT ·B−1

G ·G ·U−1 ·χ.
✿✿

We
✿✿✿

see
✿✿

that
✿✿✿✿

these
✿✿✿✿✿✿✿✿

expressions
✿✿✿✿✿

involve
✿✿

the
✿✿✿✿✿✿✿✿

computation
✿✿

of
✿✿

the
✿✿✿✿✿✿

variable
✿✿✿✿✿✿✿✿✿✿

δx=U−1 ·χ

✿

in
✿✿✿✿✿✿

physical
✿✿✿✿

space.
✿✿✿✿

Thus,
✿✿✿✿

even
✿✿✿✿

when
✿✿✿✿

using
✿

a
✿✿✿✿✿

spectral
✿✿✿✿✿✿✿✿

formulation
✿✿

of
✿✿

the
✿✿✿✿✿✿

3DVAR
✿✿✿✿✿

method,
✿✿✿

one
✿✿✿

can
✿✿✿

still
✿✿✿✿✿✿

compute
✿✿

the
✿✿✿✿✿✿✿

constraints
✿✿

in
✿✿✿✿✿✿

physical
✿✿✿✿

space
✿✿✿

and
✿✿

add
✿✿✿✿

their

✿✿✿✿✿✿✿✿

contributions
✿✿

to
✿✿

J
✿✿

and
✿✿✿✿

∇J .
✿✿✿

The
✿✿✿✿✿✿

advantage
✿✿

of
✿✿✿

this
✿✿

is,
✿✿

as
✿✿✿✿✿✿

explained
✿✿✿✿✿

above,
✿✿✿

that
✿✿

the
✿✿✿✿

SVD
✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

observability
✿✿✿✿

matrix
✿✿✿

can
✿✿

be
✿✿✿✿✿✿✿

computed
✿

in
✿✿✿

the
✿✿✿✿✿

reduced
✿✿✿✿✿✿✿

subspace,

✿✿✿✿

which
✿✿✿✿✿✿✿✿

substantially
✿✿✿✿✿✿

reduces
✿✿

the
✿✿✿✿✿✿✿

dimension
✿✿

of
✿✿

the
✿✿✿✿✿✿✿

numerical
✿✿✿✿

SVD
✿✿✿✿✿✿

problem.
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✿✿✿✿✿

reduce
✿✿✿

the
✿✿✿✿✿✿✿✿✿

dimension
✿✿✿

of
✿✿✿

the
✿✿✿✿✿

matrix
✿✿✿

B
✿✿

by
✿✿✿✿✿✿✿✿

working
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿

reduced
✿✿✿✿✿

space
✿✿

in
✿✿✿✿✿

which
✿✿✿✿✿

only
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

covariances
✿✿✿✿✿

B(α,l)
✿✿✿✿✿✿

among
✿✿✿✿✿✿✿

aerosol872

✿✿✿✿✿✿✿✿✿✿

components
✿✿✿

are
✿✿✿✿✿✿✿✿✿✿

considered.
✿✿✿✿

One
✿✿✿✿✿

could
✿✿✿✿✿✿✿✿

compute
✿✿✿

the
✿✿✿✿✿✿

matrix
✿✿✿✿✿✿✿✿✿✿✿

(B(α,l))−1/2
✿✿

in
✿✿✿✿

Eq.
✿✿✿✿✿

(D17)
✿✿✿

by
✿✿✿✿✿✿✿✿✿✿✿

diagonalising
✿✿✿✿

the
✿✿✿✿✿

matrix
✿✿✿✿✿✿✿

B(α,l).873

✿✿✿✿✿✿✿✿

However,
✿

a
✿✿✿✿✿✿✿✿✿✿

numerically
✿✿✿✿✿

much
✿✿✿✿

more
✿✿✿✿✿✿✿

efficient
✿✿✿✿✿✿✿✿

approach
✿✿

is
✿✿

to
✿✿✿

not
✿✿✿✿✿

work
✿✿✿✿

with
✿✿✿✿✿✿

positive
✿✿✿✿✿✿

square
✿✿✿✿

root,
✿✿✿

but
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿✿✿✿

so-called Cholesky874

decomposition13 of the B-matrix,875

B(α,l)
✿✿✿

=CT
u ·Cu, (E4)876

where Cu is an upper triangular matrix. Thus the actual algorithm we used for formulating the constrained minimisation of the877

costfunction
✿✿✿✿

cost
✿✿✿✿✿✿✿

function is obtained by replacing in the preceding formulas all incidences of the matrix B1/2 with the matrix878

CT
u (and, similarly, by replacing the inverse matrix B−1/2 by the inverse of the Cholesky factor, C−T

u ).879
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