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Abstract. Air pollutant sources and regional transport are important issues in air quality control. The GRAPES-CUACE 15 

(Global-Regional Assimilation and Prediction System coupled with CMA Unified Atmospheric Chemistry Environment) 

aerosol adjoint model was applied in detecting the emission sources of a haze episode in Beijing during Nov. 19-21, 2012. 

Two high PM2.5 peaks were measured respectively at 05:00 and 23:00 Beijing Time on Nov. 21st 2012, which were set as the 

objective functions for the aerosol adjoint model. The sensitive emission regions of the first PM2.5 peak were tracked to the 

west and south to Beijing with 2-3 day cumulative transport of air pollutants to Beijing, while the sensitive emission regions 20 

of the second peak were mainly located at the south to Beijing, where southeasterly moist air transport lead to the 

hygroscopic growth of particles and pollutant convergence in front of the Tai-hang Mountains in the daytime of Nov. 21st. 

The temporal variations of the sensitivity coefficients for the two PM2.5 concentration peaks in Beijing revealed that the 

response time of Beijing haze pollution to the local emissions was about 1-2 hours and to the surrounding emissions was 

about 7-8 hours. The contribution of surrounding emissions accounted for 67.3% and 61.0% for the first and second PM2.5 25 

pollution peaks respectively. The adjoint results were compared with the forward sensitivity simulations set of the 

Models-3/CMAQ system. Two modeling approches were well comparable in the assessments of atmospheric pollution 

control schemes for critical emission regions. The adjoint methods had higher computational efficiency than the forward 

sensitivity simulations. 
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1. Introduction 

The atmospheric chemistry adjoint model is a sensitivity calculation tool with high efficiency. It is developed on the basis of 

an atmospheric chemistry model according to the adjoint theory. Driven by the meteorological model, the source-oriented 

atmospheric chemistry model input emissions and output the temporal-spatial variations of pollutants. On the contrary, the 

receptor-oriented adjoint model inputs the gradients of the objective function to model variables, and outputs the 5 

temporal-spatial variations of the sensitivity of the objective function to any model parameters (Errico, 1997; Carmichael et 

al., 2008). Therefore, in concentration-source sensitivity analysis problems, the calculation efficiency of the adjoint method 

is much higher than that of the traditional finite difference method, which requires repeated input perturbations and results 

comparisons (Wang et al., 2015). Moreover, the traditional finite difference approach changes the state of the atmosphere and 

inevitably incurs truncation and cancellation errors (Constantin and Barrett, 2014). Nevertheless, the adjoint model integrates 10 

under certain atmospheric condition while calculating gradients, thus can provide exact sensitivities. As a result, if we set the 

objective function as the pollutant concentration over a region and at a time point (or during a time period), the adjoint 

sensitivity approach can be implemented in detecting influential emission sources in detail. 

Currently, application of the adjoint model in the atmospheric environment community mainly included: source attribution of 

ozone (or ozone health cost) (Nester and Panitz, 2006; Martienand Harley, 2006; Pappin and Hakami, 2013; Ashok and 15 

Barrett, 2016) and PM2.5 (Zhang et al., 2015); inverse modeling of emissions of black carbon, methane, carbon monoxide, 

inorganic PM2.5 precursors etc. (Hakami et al., 2005; Bousserez et al., 2016; Paulot et al., 2014; Yumimotoand Uno, 2006; 

Henze et al., 2009); and aiding optimal ozone reduction policy design using adjoint-based NOx marginal damage information 

(Mesbah et al., 2013). 

Beijing is an economic fast growing and densely populated metropolis, and the PM2.5 pollution problem in recent years in 20 

Beijing has become one of the focus issues of the people in various circles (Zhang et al., 2016; Sun et al., 2014; Guo et al., 

2010; Wu et al., 2015). There is an urgent need to ameliorate the air pollution problem, to reduce PM2.5 human exposure 

level and to improve visibility in Beijing. Till now, some researchers have estimated the contributions of local and 

transported pollutants to Beijing PM2.5 (or PM10) before, during and after severe pollution episodes using the flux calculation 

method (An et al., 2007; Jiang et al., 2015), while some others implemented the emission sources switch-on-off approach in 25 

quantifying the contributions of emissions in surrounding areas to haze in Beijing (Gao et al., 2016). Some others evaluated 

the expected effects of emission sources control policy through the finite difference method (Liu et al., 2014). Also, the 

Lagrangian particle dispersion model FLEXPART (FLEXible PARTicle dispersion model) has been used in backward 

tracking the potential source regions of one pollution episode (Gao et al., 2016) or of a month-long time period (Zhai et al., 

2016) in Beijing. Besides, based on the sampling data, the positive matrix factorization method (PMF) or the mass balance 30 

receptor model (CMB) were also conducted in PM2.5 source apportionment analysis (Yu et al., 2016; Zíkováet al., 2016; Liu 
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et al., 2016; Zheng et al., 2005). 

Previous studies can help in understanding the emission sources impacts on Beijing PM2.5. However, the work to track the 

Beijing PM2.5 sensitive sources by an adjoint model is still novel (Zhang et al., 2015). In this study, we applied the newly 

developed GRAPES-CUACE aerosol adjoint model (An et al., 2016) to track the sensitive emission sources of a high PM2.5 

episode in Nov. 2012 Beijing, during which time two PM2.5 concentration peaks occurred and were set as the objective 5 

functions. We then set the average PM2.5 concentration on 21st Nov. as the objective function and compared the adjoint 

results with the Models-3/CMAQ assessments (Zhai et al., 2016). This study explores the capability of the 

GRAPES-CUACE aerosol adjoint model in simulating the concentration-source relationships in detail, and provides 

guidance on the enaction of dynamic environmental control policy. 

2. Synoptic analysis of the pollution episode 10 

In combination of the Meteorological Information Comprehensive Analysis Processing System (MICAPS) results, the 

sounding stratification and the dew point-pressure curves at Nanjiao Station in Beijing (Figure 1), the flow field pattern, 

atmosphere stability and humidity over the mid-east region of China from Nov. 19th to Nov. 22nd were analyzed. Meanwhile, 

forming processes of two pollution peaks at the dawn and night of Nov. 21st 2012 were also qualitatively analyzed. From 

Nov. 19th to Nov. 20th, Beijing was under the influence of the low pressure between two high pressures. During the daytime 15 

of Nov. 19th and Nov. 20th, southerly winds prevailed below 925hPa and 1000hPa, and the relative humidity increased from 

Nov. 19th to Nov. 20th. During the nighttime of Nov. 19th and Nov. 20th, southerly winds transformed to northeasterly and 

easterly winds, which brought pollutants together with water vapor to Beijing. Meanwhile, thermal inversion existed below 

850hPa on Nov. 19th and Nov. 20th. The above analysis revealed that PM2.5 concentration accumulation from Nov. 19th to 

Nov. 20th was tightly connected with the southerly wind at daytime and the easterly wind at nighttime. 20 

During the daytime on Nov. 21st, Beijing-Tianjin-Hebei area was at the bottom of the high pressure with easterly wind 

prevailed on the 850hPa layer, thermal inversion maintained and relative humidity continued increasing. The mid-south 

Hebei was influenced by weak cold air and was controlled by northerly winds, and Beijing was mainly under the influence 

of the easterly wind that promoted pollutants convergence in front of the Tai-hang Mountains and carried abundant water 

vapor which accelerated hygroscopic growth of local particles. It can be seen that the pollution peak at the night of Nov. 21st 25 

was not only the result of pollutants accumulation during the ahead 2 days, but also the result of hygroscopic growth of local 

particles and pollutants convergence caused by the easterly wind at the daytime of Nov. 21st. According to previous 

researches (Chen et al., 2016; Li et al., 2016), this was a typical synoptic episode that gradually generate air pollutants over 

Beijing until a sudden and significant improvement of air quality resulted from strong winds. This was also the same episode 

that was analyzed in Zhai et al. (2016), thus facilitating further comparisons. 30 
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3. Methods 

3.1. Concepts of adjoint sensitivity analysis 

Sensitivity analysis plays an important role in the atmospheric environment community. Knowledge of emission sources 

impacts on pollutant concentration can help enacting air pollution control strategies. The adjoint model is of great efficiency 

in calculating the sensitivity of an objective function to any model variable at any time-step. To explicitly explain the 5 

concepts of an adjoint model, Fig. 1S (in the supplement) illustrates the schematic diagrams of the atmospheric chemistry 

forward and adjoint models. The atmospheric chemistry model takes emissions (S: S1, S2, …, Sn, …, SN) as inputs and 

outputs pollutant concentrations (C: C1, C2, …, Cm, …, CM) through forward integration. As any emission source Sn might 

has an influence on the concentration at every receptor site Cm, a pair of emission sources sensitivity tests through the 

traditional source-oriented finite difference method can obtain the contribution from one emission source (or a combined 10 

group of emission sources) to pollutants at any receptor site. Therefore, with N emission sources and M receptors in total, the 

pollutant contribution from each one of the N emission sources to each of the M receptors (a N×M matrix) can be obtained 

through N times of forward integration. That is, computational load increases proportionally with the increase of N. 

The receptor-oriented adjoint model is complementary to the forward model. The sensitivity map of a scalar function of 

pollutant concentration (the objective function) to every emission source (N×1 matrix) can be obtained through one 15 

backward adjoint integration (Sandu, 2005; An et al., 2016; Zhai, 2015). Therefore, the above-mentioned N×M matrix needs 

M times of adjoint integrations. Theoretically, the resulting N×M matrix from the forward and backward methods are the 

same within a small perturbation (Liu, 2005). Therefore, an atmospheric chemistry model is suitable for air pollution 

processes simulation and an adjoint model is efficient in quantifying receptor-source relationships (Liu, 2005). 

The adjoint model can work out the sensitivity of the objective function J to any emission source Sn: ∂J/∂Sn. If we are 20 

comparing a group of uniformly distributed emission sources, the larger the ∂J/∂Sn is, the bigger its influence has on J. 

However, obvious discrepancies of emission intensities existed between urban and rural areas, together with the seasonal and 

diurnal changes. Besides, emissions of different species might have different units and may differ in the order of magnitudes. 

Under these circumstances, relative contribution of each emission source can't be determined only by the gradient ∂J/∂Sn. 

Therefore, we define the sensitivity coefficients in this study as: (∂J/∂Sn)·Sn, which shares the same unit with the objective 25 

function, and can reflect exact contribution of each emission source to the objective function, thus making comparisons 

among emissions more convenient. 

3.2. Model description 

The GRAPES-CUACE (Global-Regional Assimilation and Prediction System coupled with CMA Unified Atmospheric 

Chemistry Environment) is an on-line coupled atmospheric-chemistry modeling system (Wang et al., 2009; Zhou et al., 2012; 30 
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Jiang et al., 2015) developed by the China Meteorological Administration (CMA). In GRAPES-CUACE, GRAPES-Meso is 

a regional meteorological model (Xue et al., 2008), and CUACE is an atmospheric chemistry modeling system independent 

of meteorological and climate models (Gong et al.，2009). The CUACE system is compatible with various kinds of 

meteorological models and can be used as a common platform for atmospheric constituent calculation. 

The GRAPES-CUACE aerosol adjoint model, developed on the basis of the GRAPES-CUACE modeling system according 5 

to the adjoint theory, includes the adjoint of the size-segregated multi-component aerosol algorithm CAM (Canadian Aerosol 

Module, Gong et al., 2003), the adjoint of the three interface programs that connected GRAPES-Meso and CUACE, and the 

adjoint of the aerosol transported processes. As CAM includes major aerosol processes in the atmosphere: generation, 

hygroscopic growth, coagulation, nucleation, condensation, dry deposition/sedimentation, below-cloud scavenging, aerosol 

activation, and chemical transformation of sulfur species in clear air and in clouds (Gong et al., 2003), the GRAPES-CUACE 10 

aerosol adjoint model is capable of simulating sensitivities of the objective function to primary aerosol sources while 

coupling major aerosol processes described above. 

Figure S2 shows the operational processes in this study. Before carrying out the adjoint simulation, the forward 

GRAPES-CUACE model should be integrated to save the unequilibrated variables in checkpoint files at the beginning of 

each external time step. Then the saved variables were input at each check point during the backward adjoint integration. As 15 

for intermediate unequilibrated variables, recalculation and stack storage (PUSH & POP) schemes were adopted. Details 

about the construction, framework and operation flowchart of the GRAPES-CUACE aerosol adjoint model were discussed in 

paper An et al. (2016). 

3.3. Model setup and validation 

The simulated domain in this study covered northeast China (105-125°E, 32.25-42.25°N) (Figure 2), which included 41×23 20 

simulation grid cells at the resolution of 0.5°×0.5°. With 31 vertical layers, the model integrated at a time step of 300s. The 

INTEXB-2006 with 0.5°×0.5° resolution (Zhang et al., 2009) that includes five aerosol species of black carbon (BC), organic 

carbon (OC), sulfate, nitrate, and fugitive dust particles, in addition to 27 gases, such as VOCs, NH3, CO, CO2, SOx and NOx 

(An et al., 2013) was implemented as the emissions inventory. The National Centers for Environmental Prediction (NCEP) 

Final Analysis (FNL) data set were used as the initial meteorological field and the meteorological boundary condition. The 25 

chemical initial and boundary values were set as the observed monthly means, and the initial values of all chemical species 

were from the 24 h forecast made by the previous day's simulation. To eliminate the discrepancy between idealized initial 

concentration field and the real concentration field, simulation started from 20:00 BT (Beijing Time) Nov. 15th, and the 

analyzed period was from 20:00 BT Nov. 18th to 20:00 BT Nov. 22nd.  

Figure 3a shows the comparisions of the observed and simulated hourly PM2.5 concentration curves from 20:00 BT Nov. 18th 30 

2012 to 20:00 BT Nov. 22nd 2012 and their scatter plots at the Chinese Research Academy of Environmental Sciences 
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(CREAS) observation station. The CRAES station provides measured PM2.5 concentrations locates in the northwest 

Chaoyang District at the Chinese Academy of Environmental Sciences and can be viewed as a representative urban 

observation station in Beijing (Zhai et al., 2016). 

Figure 3a reveals that the results of the GRAPES-CUACE modeling system corresponded well with the synoptic analysis of 

the pollution episode. The modeling system reproduced the PM2.5 accumulation processes from Nov. 19th to Nov. 21st in 5 

Beijing, and captured the two PM2.5 hourly concentration peaks at the dawn and night of Nov. 21st as well as the trough at 

Nov. 21st afternoon with a correlation coefficient of 0.93, even though the model overestimated the PM2.5 concentration 

values over the simulation period, which might attribute to the coarse resolution of the model settings (0.5°×0.5°) and the 

local environmental interference on the observation site. In addition, pre-existing studies (Zhou et. al., 2012; Wang et al., 

2015a; Wang et. al., 2015b; Jiang et. al., 2015) had convinced the stable simulation performance of the GRAPES-CUACE 10 

modeling system in reproducing air pollution levels and variation trends over northeast China. Above all, the following 

analysis mainly focused on the variations and contribution proportions of emission sources over different regions, thus 

analyzing results based on this simulation was considered reliable. 

3.4. Simulated haze episode 

Figure 4 shows the simulated surface PM2.5 concentration and wind field variations from 17:00 BT Nov. 19th 2012 to 11:00 15 

BT Nov. 22nd 2012. It can be seen that the simulation results were consistent with the above weather analysis. From Nov. 19th 

to Nov. 20th, PM2.5 concentration in Beijing accumulated under the influence of convergent wind field pattern: southerly 

wind field to the south, easterly wind field to the east, and westerly wind field to the west. Till 5:00 BT to 11:00 BT Nov. 21st, 

PM2.5 concentration value exceeded 550μg/m3over southern Beijing, south central Hebei as well as northwest Tianjin. 

Thereafter, PM2.5 concentration over Beijing, south central Hebei and Tianjin decreased before rising above 550μg/m3 at 20 

23:00 BT. That was because on Nov. 21st, under the influence of the easterly winds, pollutants converged ahead of the 

Tai-hang Mountains, and abundant water vapor was carried into Beijing and promoted local hygroscopic growth. Afterwards, 

during the daytime of Nov. 22nd, notable northwesterly wind dispersed pollutants in Beijing and ended this pollution episode. 

3.5. Objective function 

Same as the simulated and the observed hourly PM2.5 concentration variations at CREAS station, Beijing municipality also 25 

witnessed two hourly PM2.5 concentration peaks at 5:00 BT and 23:00 BT Nov. 21st 2012 (Figure 3b), which directly lead to 

the high PM2.5 concentration on Nov. 21st, the same pollution peak day analyzed in a previous research (Zhai et al., 2016). In 

order to analyze the critical emission sources of the two hourly PM2.5 concentration peaks, we take advantage of the adjoint 

model in simulating concentration-emission relationships and defined two objective functions as: hourly mean PM2.5 

concentration over Beijing at ①5:00 BT and ②23:00 BT of Nov. 21st 2012. Then, in order to demonstrate the reliability 30 
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and high-efficiency of the GRAPES-CUACE aerosol adjoint model in providing guidance on high-effective and 

high-efficient air quality control schemes design, a third objective function was defined as: ③average PM2.5 concentration 

over Beijing on 21st Nov. Subsequently, comparisons between results from the GRAPES-CUACE aerosol adjoint model and 

the Models-3/CMAQ assessments (Zhai et al., 2016) were made. 

4. Results 5 

4.1. Sensitivity coefficients distribution of primary PM2.5 emission sources 

Figure 5 illustrates the time-integrated sensitivity coefficients of the two hourly Beijing PM2.5 concentration peaks to 

emission sources. The sensitivity coefficients of the objective function to emission sources connected pollutants with 

emissions, and revealed the emissions impacts on peak PM2.5 concentrations. The larger the sensitivity coefficient value is, 

the greater its influence has on the objective function J. For example, the largest sensitivity coefficient in Figure 5d covers 10 

Daxing district with a value of 22.4μg/m3, which indicated that emissions emitted over this grid area had the greatest 

influence on the peak concentration. If emissions were reduced within a small range, decrease of PM2.5 concentration could 

be viewed as linearly. For example, if N% emissions were reduced over this grid cell from 05:00 BT Nov. 18th 2012 to 05:00 

BT Nov. 21st 2012, objective PM2.5 concentration would decrease by N%*22.4μg/m3. 

In Figure 5a and d and Figure 5e and h, with the accumulation along backward time sequence, the more influential regions 15 

(regions with relatively larger sensitivity coefficients) extended from local Beijing to its surrounding provinces. This 

phenomenon reflected that in this pollution episode, PM2.5 in Beijing was not only the results of local emissions, but also the 

results of emissions from surrounding regions including Hebei province, Tianjin city and even Shanxi and Shandong 

provinces. Emissions from the surrounding areas continuously transported to Beijing 2-3 days ahead of the peak polluted day, 

and lead to the continuous increase of Beijing air pollutants concentration. 20 

There were differences between the variations of the more sensitive emission regions of this two PM2.5 concentration peaks. 

Firstly, comparing the 12-hour time cumulated sensitivity coefficients distribution in Figure 5b and f, we can see that 

emissions to the southwest of Beijing already had a clearly influence on the 05:00 BT Nov. 21st PM2.5 concentration peak 

(Figure 5b), however, for the 23:00 BT Nov. 21st PM2.5 concentration peak, influential emission sources still concentrated 

over Beijing municipality (Figure 5f), with only a small fraction of influential emissions from east and south to Beijing. This 25 

was due to the southwest airstream to the southwest of Beijing from 23:00 BT Nov. 20th to 05:00 BT Nov. 21st and the 

southeasterly water vapor import on Nov. 21st afternoon to night which caused moisture absorption growth of local particles 

and the input of pollutants from Tianjin. 

Secondly, it can be seen from the 24-h (Figure 5c and g) and 72-h (Figure 5d and h) time cumulative sensitivity coefficients 

distributions that sensitivity coefficients over both local and surrounding Beijing have relatively large values. This reflected 30 
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that both of these two PM2.5 concentration peaks were influenced by local and surrounding emissions. Take a further 

comparison, the more influential emission regions of the two PM2.5 concentration peaks differed. For the first PM2.5 

concentration peak, 24-h cumulated influential source regions (Figure 5c) distributed over Beijing and the west and south to 

Beijing, and the 72-h cumulated influential source regions (Figure 5g) spread northeastward to Shanxi province. However, 

For the second PM2.5 concentration peak, time-cumulated influential source regions mainly located at the south of Beijing, 5 

and the 72-h cumulated influential source regions over west to Beijing (Shanxi province) (Figure 5h) covered a smaller area 

than that for the first PM2.5 concentration peak (Figure 5d).  

The above phenomenon showed that the variation of the sensitivity coefficients distribution, the meteorological condition 

and the pollution evolution processes corresponded with each other very well. Meanwhile, this indicated that, the adjoint 

model is powerful to quantitatively reproduce the generating processes of an air pollution episode from pollutants to 10 

emissions backward in time. 

4.2. Hourly variations of sensitivity coefficients and overall proportions of local and surrounding emission sources 

contribution to peak PM2.5 concentrations 

Figure 6 illustrates the hourly instantaneously sensitivity coefficients to local and surrounding emission sources (Figure 6a 

and b), their corresponding time integrated series (Figure 6c and d) and the contribution ratios of local and surrounding 15 

emission sources to the PM2.5 concentration peaks (Fig. 6e and f). It can be seen that along with the time reversed integration, 

instantaneous sensitivity coefficients of the PM2.5 concentration peaks to local (red solid square) and surrounding (red hallow 

square) emissions ascended to their maxima before showing a decreasing tendency. Meanwhile, detailed comparisons of the 

local and surrounding emissions hourly contribution revealed their significant differences.  

Analyzing Figure 6a and b along reversed time sequence, the peaks of the local emission sensitivity coefficients (red solid 20 

square) and the PM2.5 concentration peaks (blue solid circle) appeared at almost the same time, with the latter delayed for 1-2 

hours. This indicated that local emissions emitted 1-2 hours ahead of the PM2.5 peak values have the largest influence on the 

peak pollution. Analyzing along reversed time sequence (Figure 6a and b), we can see that for the first PM2.5 concentration 

peak, local emissions emitted 19 hours ahead of the pollution peak and earlier have negligible contribution with tiny 

fluctuation (Figure 6a). Similarly, for the second PM2.5 concentration peak, local emissions emitted 14 hours ahead of the 25 

PM2.5 concentration peak and earlier only have very little influence. This revealed that PM2.5 generated from local emissions 

can be transported to the downstream to Beijing after 14-19 hours. 

In contrast, peak sensitivity coefficients of the surrounding emissions (red hallow square) were 7-9 hours ahead of the PM2.5 

concentration peaks (Figure 6a and b), which indicated that influence of emissions from surrounding areas to Beijing PM2.5 

concentration reached their peaks 7-9 hours ahead of the pollution peak. Then along with backward integration, sensitivity 30 

coefficients showed overall decreasing trends together with periodic fluctuations. For the first PM2.5 concentration peak 
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(05:00 BT Nov. 21st), relative maximum contribution from surrounding areas (Figure 6a) appeared at 20:00 BT Nov. 20th, 

2:00 BT Nov. 20th and 5:00 BT Nov. 19th respectively along time-reversed sequence. The first time-reversed relative 

maximum sensitivity coefficient at 20:00 BT Nov. 20th was 7.2μg/m3, far greater than the local sensitivity coefficients 

(3.3μg/m3) at the same moment, while the second time-reversed relative maximum sensitivity coefficient at 2:00 BT Nov. 

20th was 4.7μg/m3, remarkably decreased from the first one. For the second PM2.5 concentration peak (23:00 BT Nov. 21st) 5 

(Figure 6b), relative maximum contribution from surrounding areas (red hallow square) appeared at 16:00 BT Nov. 21st, 

20:00 BT Nov. 20th, 2:00 BT Nov. 20th and 3:00 BT Nov 19th. The first time-reversed relative maximum sensitivity 

coefficient (5.1μg/m3) of the surrounding emissions was smaller than the local sensitivity coefficient (7.1μg/m3) at the same 

moment. The second time-reversed relative maximum sensitivity coefficient (5.0μg/m3) was about the same as the first one. 

This was because the second PM2.5 concentration peak was cumulated on the base of the first high PM2.5 concentration peak, 10 

thus emissions from the surrounding areas at 20:00 BT Nov. 20th also had a large influence on the second PM2.5 concentration 

peak, and even almost equal to the first relative maximum contribution at 16:00 BT Nov. 21st.  

Besides, analyzing the time-cumulated sensitivity coefficients series (Figure 6c and d) along reversed time sequence, we can 

see that for both PM2.5 concentration peaks, the dominate emission source areas transformed from the local to the 

surroundings. For the first PM2.5 concentration peak (05:00 BT Nov. 21st) (Figure 6c), the time-cumulated local emission 15 

sensitivity coefficients (red solid square) were larger than the time-cumulated surrounding emission sensitivity coefficients 

(red hallow square) from 11:00 BT Nov. 20th to 05:00 BT Nov. 21st(11 hours), which indicates that local emissions 

dominated during this 11-hour time period. Yet for the second PM2.5 concentration peak (23:00 BT Nov. 21st) (Figure 6d), 

local emissions influence dominated from 17:00 BT Nov. 20th to 23:00 BT Nov. 21st, which lasted for 31 hours, threefold of 

that of the first PM2.5 peak pollution. This phenomenon again indicated the tiny effect of emissions transportation processes 20 

on Nov. 21st, and the increase of PM2.5 concentration on Nov. 21st was mainly due to local generation. The above phenomena 

reflected that local emissions impacts on the second PM2.5 concentration peak were larger than that on the first PM2.5 peak. In 

another way, it revealed that impacts of surrounding emissions on the first PM2.5 concentration peak were rather impressive. 

Analyzing the hourly sensitivity coefficients along reversed time sequence in Figure 6a and b, it can be seen that the hourly 

contribution of both the local (red solid square) and surrounding (red hallow square) emissions had negligible impacts on the 25 

PM2.5 concentration peaks three days (72 hours) ahead of the objective time points. Therefore, comparing the time-cumulated 

sensitivity coefficients at 72 hours ahead of the two PM2.5 concentration peaks, we can obtain the local and surrounding 

emissions contribution percentages to these two PM2.5 concentration peaks (Figure 6e and f). Surrounding emissions had 

larger impacts on both of the two PM2.5 concentration peaks than local emissions, and the impacts of surrounding emissions 

on the first PM2.5 concentration peak was greater than that on the second PM2.5 concentration peak. For the first PM2.5 30 

concentration peak (at 05:00 BT Nov. 21st), surrounding emissions accounted for 67.3% while it was 32.7% for local 
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emissions (Figure 6e); for the second PM2.5 concentration peak (at 23:00 BT Nov. 21st), surrounding emissions contributed 

61.0% while local emissions contributed 39.0% (Figure 6f). It can be inferred from the local and surrounding emissions 

hourly sensitivity coefficients time series that due to the general circulation of the atmosphere and the local circulation at 

Beijing, contribution from the surrounding emissions to the peak PM2.5 had an obvious periodic fluctuation, thus leading to 

the notable contribution from surrounding emissions to peak PM2.5 concentration. Therefore, if joint control of pollutant 5 

emissions with Hebei province, Tianjin city and Shanxi province were implemented 2-3 days ahead of the first PM2.5 

concentration peak, then PM2.5 concentration accumulation due to transported pollutants could be effectively prevented, thus 

decreasing the concentration of these two PM2.5 concentration peaks. 

4.3. Comparisons of the adjoint results with Models-3/CMAQ assessments 

Based on a previous research in which the back-trajectory model FLEXPART was used in locating sensitive emission 10 

regions of the Beijing PM2.5 concentration in Nov. 2012, and the Models-3/CMAQ modeling system was then used in 

quantifying the effects of emission reduction schemes (at different ratios, during different times and over different regions) in 

reducing PM2.5 concentration on Nov. 21st in Beijing (Zhai et al., 2016), we then set the average PM2.5 concentration on 21st 

Nov. as the objective function and compared the adjoint results with the Models-3/CMAQ assessments. 

Figure 7 illustrates the time integrated sensitivity coefficient distributions when the Beijing average PM2.5 concentration on 15 

Nov. 21st was set as the objective function. Corresponded with previous research that advocated cooperation with 

surrounding provinces 2-3 days ahead of the most polluted day, adjoint time integrated sensitivity coefficients extended and 

intensified along 48-72h backward time integration. In order to assess source contribution from different regions, we refer to 

the research by Zhai et al. (2016) and defined four emission regions according to the adjoint results: the overall Huabei 

region (HuaB), the sensitive Huabei region (HuaB-sens), the overall Beijing municipality (BJ), and the sensitive Beijing 20 

region (BJ-sens) (Figure 8). In this research, grid cells with 72-h sensitivity coefficient larger than 3μg/m3 were chosen as the 

sensitive emission regions. The threshold value was chosen based on the relative magnitude of the sensitivity coefficients 

and the corresponding sources contribution ratios of sensitive regions to the objective function. Here the HuaB-sens accounts 

for 10.2% the area of HuaB and the BJ-sens accounts for 60.0% the area of BJ (Figure 8). 

From the emission sources contribution ratios to the peak PM2.5 concentration (Table 1) and the contrast of sensitive and full 25 

regions emission sources contributions to the peak PM2.5 concentration (Table 2), we can see that the adjoint results consisted 

very well with all conclusions from the assessments of critical source regions emission reduction schemes quantified by the 

Models-3/CMAQ system (Zhai et al., 2016). 

Firstly, the Nov. 21st PM2.5 concentration was an accumulated result from emissions 1-2 days ahead of the most polluted day 

till that day, rather than just an instinct result of emissions on Nov. 21st. For all four regions, emissions contribution ratios 30 

grew from 'd0' to 'd2' (implications of 'd0', 'd1' and 'd2' are listed below Table 1), especially from 'd0' to 'd1'. The contribution 
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ratios of emissions from BJ (or BJ-sens) and HuaB (or HuaB-sens) from 'd0' to 'd1' increased 6.2% (or 5.7%) and 32.0% (or 

18.9%). Thereafter, the sources contribution ratios again increased by 0.6% (or 0.5%) and 9.6% (or 3.6%) for emissions over 

BJ (or BJ-sens) and HuaB (or HuaB-sens) from 'd1' to 'd2'.  

Secondly, the above phenomenon also indicated that, with the accumulation of backward integration from 48h to 72h prior to 

Nov. 21st, emission sources contribution from HuaB (or HuaB-sens) to peak PM2.5 concentration increased obviously, while 5 

emission sources contribution from BJ (or BJ-sens) hardly increased. This can be explained by the role of pollutant 

transmission that surrounding emissions can continuously transport to Beijing 2-3 days ahead of the most polluted day (Zhai 

et al., 2016). 

Thirdly, the contribution efficiency (contribution ratios per grid cell) of emissions from the HuaB-sens and BJ-sens were 

significantly higher than that from the corresponding entire HuaB and BJ regions respectively. Although BJ-sens accounted 10 

only 60% the area of the entire BJ, its contribution to the peak PM2.5 concentration was 86.6%-88.2% of that of the entire BJ 

and its source contribution efficiency was 1.4 to 1.5 times that of BJ. Similarly, HuaB-sens accounted only 10.2% the area of 

the entire HuaB, its contribution to the peak PM2.5 concentration was 71.9% of that of the entire HuaB and its source 

contribution efficiency was 6.0-7.0 times that of the entire HuaB (Table 2). Last but not least, emissions from HuaB-sens 

contributed much more than emissions only from BJ-sens, which supported joint control. 15 

5. Conclusions 

In this research, the GRAPES-CUACE aerosol adjoint model was applied to detect the pivotal emission sources of a Nov. 

2012 haze episode, and the hourly peak PM2.5 concentrations at 05:00 BT and 23:00 BT Nov. 21st 2012 over Beijing were set 

as the objective functions. On this basis, contributions to peak PM2.5 concentration peaks from local and surrounding Beijing 

were compared. It turned out that the adjoint results corresponded very well with the real weather analysis, and could 20 

reasonably reflect that the more influential emission sources for the first PM2.5 concentration peak mainly spread over local 

Beijing and the west and south to Beijing in Hebei and Shanxi provinces due to transmission of pollutants 2-3 days ahead of 

the peak time. However, the more sensitive emission sources for the second PM2.5 concentration peak mainly concentrated 

over local Beijing and the south to Beijing in Hebei province for the reason that the second PM2.5 concentration peak was 

accumulated on the basis of the first PM2.5 concentration peak due to local particles hygroscopic growth and pollutants 25 

convergence ahead of the Tai-hang Mountains on Nov. 21st. Beijing PM2.5 concentration peak responded to local emissions in 

1-2 hours while to surrounding emissions in 7-8 hours. Surrounding emissions contribution proportion for the first PM2.5 

concentration peak was 67.3%, larger than that for the second PM2.5 concentration peak, which was 61.0%.  

We then set the average Beijing PM2.5 concentration on Nov. 21st as another objective function and compared adjoint results 

with Models-3/CMAQ assessments. It was shown that the adjoint results can provide all the conclusions made by the 30 
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Models-3/CMAQ assessments (Zhai et al., 2016). Joint controlling measures focused on sensitive emission regions (regions 

detected by an adjoint model or the FLEXPART model) implemented 2-3 days ahead of the predicted pollution peak day can 

help reduce emissions control costs as well as improve the controlling efficiency and maneuverability. Beyond that, the 

computational loads of the adjoint simulation were much smaller than the work in Models-3/CMAQ assessments (Zhai et al., 

2016). For the adjoint simulation, one forward integration (for un-equilibrated data saving) and one adjoint backward 5 

integration could obtain the influence of emissions from any emission region, during any time period to the peak PM2.5 

concentration. However, in the Models-3/CMAQ assessments, in order to compare the effects of emission reduction 

strategies over two different time periods, at two different ratios and over four different regions, 12 sensitivity tests were set 

and the forward model was integrated for 13 times (one basic simulation included).  

In conclusion, this research showed that the adjoint method is very powerful in simulating the concentration-emission 10 

relationship backward in time and can be utilized in helping make dynamic air quality control schemes. 

Acknowledgement 

This work was supported by the National Nature Science Foundation of China (41575151), the National Science-technology 

Support Plan Projects (2014BAC16B03), the Beijing Municipal Science & Technology Commission (Z131100006113013) 

and the Program for Postgraduate Research Innovation of Jiangsu Higher Education Institutions (KYZZ16_0346).  15 

References 

An, X. Q., Sun, Z. B., Lin, W. L., Jin, M., and Li, N.: Emission inventory evaluation using observations of regional 

atmospheric background stations of China, J. Environ. Sci., 25, 537-546, 2013. 

An, X. Q., Zhai, S. X., Jin, M., Gong, S. L., and Wang, Y.: Development of an adjoint model of GRAPES–CUACE and its 

application in tracking influential haze source areas in north China, Geosci. Model Dev., 9, 2153-2165, 2016. 20 

An, X. Q., Zhu, T., Wang, Z. F., Li, C. Y., and Wang, Y. S.: A modeling analysis of a heavy air pollution episode occurred in 

Beijing, Atmos. Chem. Phys., 7(12), 3103-3114, 2007. 

Ashok, A. and Barrett, S.: Adjoint-based computation of U.S. nationwide ozone exposure isopleths, Atmos. Environ., 133: 

68-80, 2016. 

Bousserez, N., Henze, D. K., Rooney, B., Perkins, A., Wecht, K. J., Turner, A. J., Natraj, V., and Worden, J.: Constraints on 25 

methane emissions in North America from future geostationary remote sensing measurements, Atmos. Chem. Phys., 16, 

6175-6190, 2016. 

Carmichael, G. R., Sandu, A., Chai, T. F., Daescu, N. D., Constantinescu, E. M., and Tang Y. H.: Predicting air quality: 

Improvements through advanced methods to integrate models and measurements, Journal of Computational Physics., 227(7): 

Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2016-911, 2016
Manuscript under review for journal Atmos. Chem. Phys.
Published: 25 November 2016
c© Author(s) 2016. CC-BY 3.0 License.



13 
 

3540-3571, 2008. 

Constantin, B. V. and Barrett, S. R.: Application of the complex step method to chemistry-transport modeling, Atmos. 

Environ., 99: 457-465, 2014. 

Chen, Z. Y., Xu, B., Cai, J., and Gao B. B.: Understanding temporal patterns and characteristics of air quality in Beijing: A 

local and regional perspective, Atmos. Environ., 127: 303-315, 2016. 5 

Errico, R. M.: What is an adjoint model? Bulletin of the American Meteorological Society, 78(11), 2577-2591, 1997. 

Gao, M., Carmichael, G. R., Wang, Y., Saide, P. E., Yu, M., Xin, J., Liu, Z., and Wang, Z.: Modeling study of the 2010 

regional haze event in the North China Plain, Atmos. Chem. Phys., 16(3), 1673-1691, 2016. 

Guo, Y. M., Tong, S. L., Li, S. S., Barnett, A. G., Yu, W. W., Zhang, Y. S., and Pan, X. C.: Gaseous air pollution and 

emergency hospital visits for hypertension in Beijing, China: a time-stratified case-crossover study, Environmental Health, 10 

9(1), 57, 2010. 

Hakami, A., Henze, D. K., and Seinfeld, J. H.: Adjoint inverse modelling of black carbon during the Asian Pacific Regional 

Aerosol Characterization Experiment, Journal of Geophysical Research, Vol. 110, D14301, 2005. 

Henze, D. K., Seinfeld, J. H., and Shindell, D. T.: Inverse modeling and mapping US air quality influences of inorganic PM 

2.5 precursor emissions using the adjoint of GEOS-Chem, Atmos. Chem. and Phys., 9(16) ,5877-5903, 2009. 15 

Jiang, C., Wang H., Zhao T. L., Li T., and Che H.: Modeling study of PM2.5 pollutant transport across cities in China’s 

Jing-Jin-Ji region during a severe haze episode in December 2013, Atmos. Chem. Phys., 15(10), 5803-5814, 2015. 

Li, L. J., Wang, Z. S., Zhang, D. W., Chen, T., Jiang, L., and Li, Y. T.: Analysis of heavy air pollution episodes in Beijing 

during 2013-2014, China Environmental Science, 36(1): 27-35, 2016 (in Chinese). 

Liu, F.: Adjoint model of Comprehensive Air quality Model CAMx – construction and application, Peking University 20 

Post-doctoral Reseach Report, 2005 (in Chinese). 

Liu, J., An, X. Q., Zhu, T., Zhai, S. X., and Li, N.: Evaluation of PM2.5 decrease in Beijing after emission restrictions in the 

Beijing-Tianjin-Hebei and surrounding, China Environ. Sci. 34 (11), 2726-2733, 2014 (in Chinese). 

Liu, Q. Y., Baumgartner, J., Zhang, Y. X., and Schauer, J. J.: Source apportionment of Beijing air pollution during a severe 

winter haze event and associated pro-inflammatory responses in lung epithelial cells, Atmos. Environ., 126, 28-35, 2016. 25 

Martien, P. T and Harley, R. A.: Adjoint sensitivity analysis for a three-dimensional photochemical model: application to 

Southern California, Environmental Science & Technology, 40(13), 4200-4210, 2006. 

Mesbah, S. M., Hakami, A., and Schott, S.: Optimal Ozone Reduction Policy Design Using Adjoint-Based NOx Marginal 

Damage Information, Environmental Science & Technology 47(23), 13528-13535, 2013. 

Nester, K. and Panitz, H. J.: Sensitivity analysis by the adjoint chemistry transport model DRAISfor an episode in the Berlin 30 

Ozone (BERLIOZ) experiment, Atmos. Chem. Phys. 6(8), 2091, 2006. 

Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2016-911, 2016
Manuscript under review for journal Atmos. Chem. Phys.
Published: 25 November 2016
c© Author(s) 2016. CC-BY 3.0 License.



14 
 

Pappin, A. J. and Hakami, A.: Source Attribution of Health Benefits from Air Pollution Abatement in Canada and the United 

States: An Adjoint Sensitivity Analysis, Environmental health perspectives 121(5), 572-579, 2013. 

Paulot, F., Jacob, D. J., Pinder, R. W., Bash, J. O., Travis, K. and Henze, D. K.: Ammonia emissions in the United States, 

European Union, and China derived by high-resolution inversion of ammonium wet deposition data: Interpretation with a 

new agricultural emissions inventory (MASAGE_NH3), Journal of Geophysical Research: Atmospheres, 4343-4364, 2014. 5 

Sandu, A., Daescu, D. N., Carmichael, G. R., and Chai, T.: Adjoint sensitivity analysis of regional air quality models, Journal 

of Computational Physics, 204, 222-252, 2005. 

Sun, Y. L., Jiang, Q., Wang, Z., Fu, P. Q., Li, J., Yang T., and Yin, Y.: Investigation of the sources and evolution processes of 

severe haze pollution in Beijing in January 2013, Journal of Geophysical Research: Atmospheres, 119(7), 4380-4398, 2014. 

Wang, H., Shi, G. Y., Zhang, X. Y., Gong, S. L., Tan, S. C., Chen, B., Che, H. Z., and Li, T.: Mesoscale modelling study of 10 

the interactions between aerosols and PBL meteorology during a haze episode in China Jing-Jin-Ji and its near surrounding 

region – Part 2: Aerosols’ radiative feedback effects, Atmos. Chem. Phys., 15, 3277-3287, 2015a. 

Wang, H., Xue, M., Zhang, X. Y., Liu, H. L., Zhou, C. H., Tan, S. C., Che, H. Z., Chen, B., and Li, T.: Mesoscale modelling 

study of the interactions between aerosols and PBL meteorology during a haze episode in Jing-Jin-Ji (China) and its nearby 

surrounding region – Part 1: Aerosol distributions and meteorological features, Atmos. Chem. Phys., 15, 3257-3275, 2015b. 15 

Wang, L. T., Wei, Z., Wei, W., Fu, J. S., Meng, C. C., and Ma, S.: Source apportionment of PM2.5 in top polluted cities in 

Hebei, China using the CMAQ model, Atmos. Environ., 122, 723-736, 2015. 

Wu, D., Xu, Y., and Zhang S. Q.: Will joint regional air pollution control be more cost-effective? An empirical study of 

China's Beijing–Tianjin–Hebei region, Journal of Environmental Management, 149, 27-36, 2015. 

Xue, J. and Chen, D.: Scientific Design and Application of Numerical Predicting System GRAPES, Science Press, Beijing, 20 

2008. 

Yu, L. D., Wang, G. F., Zhang, R. J., Zhang, L. M., Song, Y., Wu, B. B., Li, X. F., An K., and Chu, J. H.: Characterization 

and Source Apportionment of PM2.5 in an Urban Environment in Beijing, Aerosol and Air Quality Research, 13, 574-583, 

2013. 

Yumimoto, K. and Uno, I.: Adjoint inverse modeling of CO emissions over Eastern Asia using four-dimensional variational 25 

data assimilation, Atmos. Environ., 40(35), 6836-6845, 2006. 

Zhai, S. X.: Development of the adjoint of GRAPES-CUCAE aerosol module and model application to air pollution optimal 

control problems, MSc diss., Chinese Academy of Meteorological Sciences, 2015 (in Chinese). 

Zhai, S. X., An, X. Q., Liu, Z., Sun, Z. B., and Hou, Q.: Model assessment of atmospheric pollution control schemes for 

critical emission regions, Atmos. Environ., 124, Part B, 367-377, 2016. 30 

Zhai, S. X., An, X. Q., Liu, J., Wu, Q. Z., Li, N., and Zhang, X. L.: Effects of emission-sources reduction at different time 

Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2016-911, 2016
Manuscript under review for journal Atmos. Chem. Phys.
Published: 25 November 2016
c© Author(s) 2016. CC-BY 3.0 License.



15 
 

points on PM2.5 concentration over Beijing Municipality, China Environmental Science., 34(6), 1369-1379, 2014 (in 

Chinese). 

Zhang, H. F., Wang, S. X., Hao, J. M., Wang, X. M., Wang, S. L., Chai, F. H., and Li, M.: Air pollution and control action in 

Beijing, Journal of Cleaner Production, 112, Part 2: 1519-1527, 2016. 

Zhang, Q, Streets, D. G., Carmichael, G. R., He, K. B., Huo, H., Kannari, A., Klimont, Z., Park, I. S., Reddy, S., Fu, J. S., 5 

Chen, D., Duan, L., Lei, Y., Wang, L. T., and Yao, Z. L.: Asian emissions in 2006 for the NASA INTEX-B mission, Atmos. 

Chem. Phys., 9(14), 5131-5153, 2009. 

Zhang, L., Liu, L. C., Zhao, Y. H., Gong, S. L., Zhang, X. Y., Henze, D. K., Capps, S. L., Fu, T. M., Zhang, Q., and Wang, Y. 

X.: Source attribution of particulate matter pollution over North China with the adjoint method, Environmental Research 

Letters 10(8): 084011, 2015. 10 

Zheng, M., Salmon, L. G., Schauer, J. J., Zeng, L., Kiang, C., Zhang, Y., and Cass, G. R.: Seasonal trends in PM2.5 source 

contributions in Beijing, China. Atmos. Environ, 39(22), 3967-3976, 2005. 

Zhou C. H., Gong S. L., Zhang X. Y., Liu H. L., Xue M., Cao G. L., An X. Q., Che H. Z., Zhang Y. M., and Niu T.: Towards 

the improvements of simulating the chemical and optical properties of Chinese aerosols using an online coupled model – 

CUACE/Aero, Tellus B, 64(0), 2012. 15 

Zíková, N., Wang, Y., Yang, F., Li, X., Tian, M., and Hopke P. K.: On the source contribution to Beijing PM2.5 concentrations, 

Atmos. Environ., 134, 84-95, 2016. 

 

 

 20 
Figure 1. Sea-level pressure field (a-d, Beijing is marked with a red triangle), the Stratification and the dew point-pressure curves 

at Nanjiao Station (e-h) from 08:00 BT Nov. 20th 2012 to 20:00 BT Nov. 21st 2012. 
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Figure 2. Left: Model domain settings and location of Beijing municipality (BJ), Tianjin municipality (TJ), Heibei province (HB), 

Shandong province (SD) and Shanxi province (SX) ; right: Locations of the Chinese Research Academy of Environmental Sciences 

(CREAS) station, the Nanjiao (NJ) station, Daxing district (DX) and Chaoyang (CY) district. 

 5 

Figure 3. (a): Comparisons of the observed (black solid dots) and simulated (blue dot-line) hourly PM2.5 concentrations at CREAS 

station and their scatter plots (at the top-left corner); (b): Hourly variations of average PM2.5 concentration over Beijing 

municipality. 

 

 10 

 

Figure 4. Variations of simulated surface PM2.5 concentration and wind field distribution. 
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Figure 5. Time-integrated sensitivity coefficients of surface Beijing PM2.5 concentration peaks to primary emission sources.  

(a)-(d): 1-h, 12-h, 24-h and 72-h integrated sensitivity coefficients for the 5:00 BT Nov. 21st PM2.5 concentration peak;  

(e)-(h): 1-h, 12-h, 24-h and 72-h integrated sensitivity coefficients for the 23:00 BT Nov. 21st PM2.5 concentration peak. 5 

 

Figure 6. Hourly variations of surface Beijing PM2.5 concentration and sensitivity coefficients of surface Beijing PM2.5 

concentration peaks to local and surrounding primary emission sources. The left and right panels correspond to PM2.5 

concentration peaks on 05:00 BT and on 23:00 BT Nov. 21st 2012 respectively. (a)-(b) illustrate hourly variations of Beijing PM2.5 

concentration (black solid dot-line) and hourly instantaneously sensitivity coefficients to local (red solid square) and surrounding 10 

(red hollow square) emission sources. (c)-(d) show the time-integrated sensitivity coefficients to local (black solid square) and 

surrounding (black hollow square) emission sources. (e)-(f) are the contribution ratios of local and surrounding emission sources to 

PM2.5 concentration peaks. 
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Figure 7. 24-h (a), 48-h (b) and 72-h (c) integrated sensitivity coefficients of surface Beijing PM2.5 concentration on Nov. 21st 2012 

to primary emission sources. 

 

Figure 8. Domain definition of Huabei (HuaB, in red dot-dashed frame), Beijing (BJ, in black solid frame), sensitive Beijing 5 

(BJ-sens, red shaded) and sensitive Huabei (HuaB-sens, red shaded and blue shaded) regions.  

Notes: HuaB-sens area ratio = ‘HuaB-sens floor space’/‘HuaB floor space’×100%； 

BJ-sens area ratio = ‘BJ-sens floor space’/‘BJ floor space’×100%. 

   

Regions Number of grid cells Sensitive area ratios 

HuaB-sens 18 10.2% 

HuaB 176  

BJ-sens 6 60.0% 

BJ 10  
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Table 1 Primary emission sources contribution to the average PM2.5 concentration over Beijing on Nov 21st. 

Factors Time period BJ BJ-sens HuaB HuaB-sens 

SC/PC 

d0 14.5% 12.5% 25.6% 18.4% 

d1 20.7% 18.3% 57.5% 37.3% 

d2 21.3% 18.8% 67.1% 40.9% 

Notes: d0 refers to emissions contribution on 21st Nov.; d1 refers to emissions contribution from 20th to 21st Nov.; d2 refers to emissions 

contribution from 19th to Nov. 21st. 

SC/PC=‘time cumulative Sensitivity Coefficient’/‘Peak Concentration’; 

  5 
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Table 2 Contrast of sensitive and full region emission sources contribution 

GRAPES-CUACE aerosol adjoint model results Models-3/CMAQ results (Zhai et al., 2016) 

Time period Factors BJ-sens HuaB-sens BJ-sens HuaB-sens 

d0 
S/F(effect) 86.6% 71.9%   

S/F(efficiency) 1.4 7.0   

d1 
S/F(effect) 88.2% 64.9% 99.2% 93.7% 

S/F(efficiency) 1.5 6.3 1.8 5.3 

d2 
S/F(effect) 88.2%  61.0% 100.8% 87.2% 

S/F(efficiency) 1.5  6.0 1.9 5.0 

Notes: S/F(effect) = ‘Sensitivity Coefficient over sensitive source region’/‘Sensitivity Coefficient over corresponding full source region’; 

Contribution Efficiency= ‘Sensitivity Coefficient’/‘Number of region's simulation grid cells’; 

S/F(efficiency)= ‘Contribution Efficiency of sensitive region’/‘Contribution Efficiency of corresponding full source region’. 

 5 
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