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Abstract. Air pollution sources and their regional transport are important issues for air quality control. The Global–Regional 

Assimilation and Prediction System coupled with the China Meteorological Administration Unified Atmospheric Chemistry 

Environment (GRAPES–CUACE) aerosol adjoint model was applied to detect the sensitive primary emission sources of a 15 

haze episode in Beijing occurring between 19 and 21 November 2012. The high PM2.5 concentration peaks occurring at 05:00 

and 23:00 LT (GMT+8) over Beijing Municipality on November 21, 2012, were set as the cost functions for the aerosol 

adjoint model. The critical emission regions of the first PM2.5 concentration peak were tracked to the west and south of 

Beijing, with 2 to 3 d cumulative transport of air pollutants to Beijing. The critical emission regions of the second peak were 

mainly located to the south of Beijing, where southeasterly moist air transport led to the hygroscopic growth of particles and 20 

pollutant convergence in front of the Taihang Mountains during the daytime on November 21. The temporal variations in the 

sensitivity coefficients for the two PM2.5 concentration peaks revealed that the response time of the onset of Beijing haze 

pollution from the local primary emissions is approximately 1–2 h and that from the surrounding primary emissions it is 

approximately 7–12 h. The upstream Hebei Province has the largest impact on the two PM2.5 concentration peaks, and the 

contribution of emissions from Hebei Province to the first PM2.5 concentration peak (43.6%) is greater than that to the 25 

second PM2.5 concentration peak (41.5%). The second largest influential province for the 05:00 LT PM2.5 concentration peak 

is Beijing (31.2%), followed by Shanxi (9.8%), Tianjin (9.8%), and Shandong (5.7%). The second largest influential 

province for the 23:00 LT PM2.5 concentration peak is Beijing (35.7%), followed by Shanxi (8.1%), Shandong (8.0%), and 

Tianjin (6.7%). The adjoint model results were compared with the forward sensitivity simulations of the Models-3/CMAQ 

system. The two modeling approaches are highly comparable in their assessments of atmospheric pollution control schemes 30 

for critical emission regions, but the adjoint method has higher computational efficiency than the forward sensitivity method. 

The results also imply that critical regional emissions reduction could be more efficient than individual peak emission 

control for improving regional PM2.5 air quality. 
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1.  Introduction 

The application of adjoint theory to atmospheric chemistry models can enable the efficient calculation of the sensitivities of a 

few variables or metrics with respect to a large number of input parameters (Marchuk, 1974; Sandu et al., 2005; Hakami et 

al., 2007). Classic atmospheric chemistry models use inputs of emission sources to output the spatial–temporal variation of 

pollutants, thus is source-oriented. By contrast, adjoint models are receptor-oriented, for they use the gradients of the cost 40 

function to model variables (usually pollutant concentrations) as inputs and output the spatial–temporal variations of the 

sensitivities of the cost function to emissions (Errico, 1997; Carmichael et al., 2008). Therefore, in concentration–source 

sensitivity analysis, the adjoint method is more computationally efficient than others, such as the traditional finite difference 

method, which requires repeated input perturbations and result comparisons (Wang et al., 2015). Moreover, the finite 

difference approach changes the state of the modeled atmosphere and inevitably incurs truncation and cancellation errors 45 

(Constantin and Barrett, 2014). When calculating gradients, the adjoint model integrates under certain atmospheric conditions; 

thus, it can provide exact sensitivities. Although the adjoint approach is not strictly a method used for source apportionment 

because it provides merely tangent linear derivatives (gradients) that are likely to be valid over only a limited range of values 

for the parameters (emissions), it does provide valuable information about the dependence of aerosol concentrations on 

emissions (Henze et al., 2007 and 2009; Zhang et al., 2015). If we set the cost function as the pollutant concentration over a 50 

region at a point in time (or during a time period), the adjoint sensitivity approach can detect critical emission sources in 

detail and reveal the changes in concentration due to perturbations in emission sources. 

Beijing is a rapidly growing economic center and a densely populated metropolis whose recent PM2.5 pollution problems 

have garnered considerable attention (Zhang et al., 2016; Sun et al., 2014; Guo et al., 2010; Wu et al., 2015). PM2.5 pollution 

in Beijing is significantly influenced by the regional transport of pollutants from its environs. As such, the joint control over 55 

effective air pollution emission sources has been promoted. Research using approaches such as the flux calculation method 

(An et al., 2007), the back-trajectory model (Zhai et al., 2016), and observation analysis (Li et al., 2016), has revealed that 

southerly winds almost always promote high PM2.5 conditions in Beijing. Studies have also indicated that more than 50% of 

PM2.5 pollutants originate in surrounding provinces and cities, including southern Hebei, Tianjin, eastern Shanxi, and 

Shandong Provinces (Jiang et al., 2015; Gao et al., 2016). Studies have also shown that joint regional air pollution 60 

management control can be more cost-effective (Wu et al., 2015) and that joint control schemes in critical source zones 

(detected by a back-trajectory model) prior to unfavorable meteorological conditions can help reduce costs and improve 

efficiency (Zhai et al., 2016). The above studies either determined pollution pathways through meteorological analysis or 

analyzed air pollutant concentration sensitivities for a limited group of emission sources. If air pollution can be spatially and 

temporally traced back to its emission sources, decision-making regarding air pollution management can be better addressed. 65 
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Unlike back-trajectory approaches or statistical factor analysis, the adjoint approach accounts for chemical and physical 

processes combined with transport; thus, it efficiently estimates the incremental influence of specific sources on air quality 

(Henze et al., 2009). Recently, An et al. (2016) developed the aerosol adjoint module of the atmospheric chemical modeling 

system GRAPES-CUACE (the Global–Regional Assimilation and Prediction System coupled with the China Meteorological 

Administration Unified Atmospheric Chemistry Environment) and estimated the average black carbon (BC) concentrations 70 

over Beijing at the highest concentration time with respect to BC amounts emitted over the Beijing–Tianjin–Hebei region. 

They also indicated the effectiveness of controlling the most influential regions during critical time intervals, as detected by 

the adjoint sensitivity analysis. Zhang et al. (2015) attributed the sources of Beijing’s PM2.5 by using the GEOS-Chem 

adjoint model and summarized that residential (49.8%) and industrial sources (26.5%) are the largest contributors. They 

further noted that 45%–53% of PM2.5 pollutants in Beijing and Tianjin are from local sources, whereas the Hebei Province 75 

sources contribute approximately 26%. Both Zhang et al. (2015) and An et al. (2016) demonstrated the high efficiency and 

accuracy of the atmospheric chemistry adjoint model in identifying Beijing air pollution sources. 

In this study, we apply the newly developed GRAPES-CUACE aerosol adjoint model (An et al., 2016) to track the sensitive 

primary emission sources of a high PM2.5 episode that occurred in Beijing in November 2012. The two PM2.5 concentration 

peaks that occurred were set as the cost functions. By detecting the primary emission sources of these two hourly PM2.5 80 

peaks, our work advances the understanding of the impacts of emission sources by providing detailed insights into the spatial 

and temporal variability of emission source contributions from each of the surrounding provinces and from local and 

environs transports. We then set the average PM2.5 concentration from November 21 as the cost function and compared the 

adjoint model results with the Models-3/CMAQ assessments (Zhai et al., 2016). Furthermore, we also compared emission 

source impacts on the Beijing PM2.5 concentration peak from zones with maximum adjoint sensitivities and 85 

emission-intensive zones. This study explores the capability of the GRAPES-CUACE aerosol adjoint model to simulate 

detailed concentration–source relationships and provide guidance for flexible environmental control policy. 

2. Synoptic analysis of the pollution episode 

Atmospheric stability and humidity over the mid-eastern region of China from the 19th to the 22nd of November 2012 were 

analyzed in combination with the results of the Meteorological Information Comprehensive Analysis Processing System, the 90 

sounding stratification and dew point-pressure curves (temperature-logarithmic pressure diagrams) from Nanjiao Station (Fig. 

1left) in Beijing (Fig. 2), and the flow field pattern. Meanwhile, the formation of two pollution peaks at dawn and at night on 

November 21, 2012, was also qualitatively analyzed. During the period between the 19th and 20th of November, Beijing was 

under the influence of a low-pressure system situated between two high pressures. During the daytime, southerly winds 

prevailed below 925 and 1000 hPa, and the relative humidity increased during this time period. During the nighttime, 95 
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southerly winds shifted to northeasterly and easterly winds, thus transporting pollutants, together with water vapor, to 

Beijing. In this same time period, thermal inversions occurred below 850 hPa. The above analysis reveals that the 

accumulation of PM2.5 concentrations was tightly connected with southerly winds during the daytime and easterly winds at 

night. 

During the daytime on the 21st of November, the Beijing–Tianjin–Hebei area was located at the bottom of a high-pressure 100 

system, with easterly winds prevailing in the 850 hPa layer. The thermal inversion remained, and the relative humidity 

continued to increase. The mid-southern Hebei Province was influenced by a mass of cold air controlled by northerly winds, 

whereas Beijing was mainly under the influence of an easterly wind that promoted pollutant convergence in front of the 

Taihang Mountains and carried abundant water vapor, which accelerated the hygroscopic growth of local particles. It can be 

concluded, that the pollution peak on the night of November 21st was not only the result of the accumulation of pollutants 105 

during the previous 2 d but also the result of the hygroscopic growth of local particles and the convergence of pollutants 

caused by daytime easterly winds. According to prior research (Chen et al., 2016; Li et al., 2016), this event was typical of a 

synoptic episode that gradually generates air pollution over Beijing until a sudden and significant improvement in air quality 

due to strong winds. This is also the same episode that was analyzed by Zhai et al. (2016), thus facilitating further 

comparisons. 110 

3. Methods 

3.1. Concepts of the adjoint sensitivity analysis 

Sensitivity analysis plays an important role in atmospheric environmental research. Understanding the impacts of emissions 

on pollutant concentrations is helpful for the development of effective air pollution control strategies. The adjoint model is 

efficient in calculating the sensitivity of an cost function to any model variable at any time step. Figure 3 shows the 115 

schematic diagrams of the forward atmospheric chemistry model and the adjoint model. The atmospheric chemistry model 

takes emissions (S: S1, S2, …, Sn, …, SN) as inputs and outputs pollutant concentrations (C: C1, C2, …, Cm, …, CM) through 

forward integration. Any emission source (Sn) might have an influence on the concentration at any receptor site (Cm). A pair 

of emission source sensitivity tests using the traditional source-oriented finite difference method can determine the 

contribution of an emission source (or a combined group of emission sources) to the pollution level at any receptor site. 120 

Therefore, with N emission sources and M receptors in total, the contribution from each of the N emission sources to each of 

the M receptors (an N × M matrix) can be obtained through N + 1 iterations of forward integration (one base simulation 

included). The receptor-oriented adjoint model is complementary to the forward model. The sensitivity map of a scalar 

function of pollutant concentration (the cost function) to every emission source (N × 1 matrix) can be obtained by performing 

one backward adjoint integration (Sandu, 2005; An et al., 2016; Zhai, 2015), with the above-mentioned N × M matrix 125 



5 
 

requiring M iterations of the adjoint integration. Theoretically, the N × M matrices resulting from the forward and backward 

methods are the same within a small perturbation (Marchuk, 1986), considering the nonlinearity of PM2.5 formation. 

Adjoint sensitivities are the tangent linear derivatives (gradients) of the cost function to model parameters (emissions) and 

are likely to be valid over only a limited range of values for each parameter (Henze et al., 2007 and 2009). In this study, the 

GRAPES-CUACE aerosol adjoint model considered only primary PM2.5 (explained in Sect. 3.2), and the primary PM2.5 130 

emission sources and PM2.5 concentrations had an approximately linear relationship (see Fig. S1 in the supplement). Given 

the linear relationship between the concentration of PM2.5 and its primary emission sources, the magnitude of perturbations 

did not influence the representative of the adjoint sensitivities when comparing the contributing proportions of emission 

sources from different regions. However, if the adjoint sensitivities are used to represent the absolute emission source 

contributions, errors will increase with an increase in perturbations. In Fig. S1, we can see that the adjoint sensitivity results 135 

are similar to the finite difference results, and the difference between the adjoint sensitivity results and the finite difference 

results grows with the increase of emissions reduction ratios (the blue line with circular symbols and the red line with 

triangle symbols are close, particularly when the X-axis are within 30%); therefore, the adjoint sensitivity coefficients are 

likely to be representative over PM2.5 primary emission reduction ratios from 5% to 90% or at least over a modest range of 

emission perturbations commensurate with typical emission abatement strategies (10–30%). All in all, an atmospheric 140 

chemistry model is suitable for simulating air pollution processes, whereas an adjoint model is efficient in quantifying 

receptor–source relationships. 

The adjoint model can calculate the sensitivity of the cost function (J) to any emission source (Sn), as denoted by ∂J/∂Sn. If 

we compare a group of uniformly distributed emission sources, larger ∂J/∂Sn values indicate the greater influence of Sn on J. 

However, emission intensities are obviously not uniform across urban and rural areas, and seasonal and diurnal changes add 145 

even more nonuniformity. Furthermore, the emissions of different species of pollutants may have different units and may 

differ in their order of magnitude. Under these circumstances, the relative contribution of each emission source cannot be 

determined only by calculating the gradient ∂J/∂Sn. Therefore, we define the sensitivity coefficients in this study as 

(∂J/∂Sn)·Sn, which shares the same unit as the cost function and reflects the absolute changes in the cost function due to 

perturbations in emission sources; this definition makes the contrast between emission sources more convenient. 150 

3.2. Model description 

The GRAPES-CUACE is an online coupled atmospheric chemistry modeling system (Wang et al., 2009; Zhou et al., 2012; 

Jiang et al., 2015) developed by the CMA. GRAPES-Meso is a regional meteorological model (Xue et al., 2008) within 

GRAPES-CUACE, and CUACE is an atmospheric chemistry modeling system independent of meteorological and climate 

models (Gong et al., 2009). The CUACE system adopted the Canadian Aerosol Module (CAM) (Gong et al., 2003), a 155 

size-segregated multi-component aerosol algorithm, as its aerosol module and the second-generation Regional Acid 
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Deposition Model (RADM II) (Stockwell et al., 1990) as its gaseous chemistry model. CAM contains computations for 

numerous major aerosol processes in the atmosphere: generation, hygroscopic growth, coagulation, nucleation, condensation, 

dry deposition/sedimentation, below-cloud scavenging, aerosol activation, and chemical transformation of sulfur species in 

clear air and in clouds (Gong et al., 2003), which is coherently integrated with the gaseous chemistry component in CUACE. 160 

Given that the nitrates and ammonium formed through gaseous oxidation are unstable and prone to further decomposition 

back to their precursors, CUACE adopts ISORROPIA to calculate the thermodynamic equilibrium between them and their 

gas precursors (Zhou et al., 2012). The CUACE system is compatible with various kinds of meteorological models and can 

be used as a common platform for atmospheric constituent calculation. 

The GRAPES-CUACE aerosol adjoint model was developed by applying adjoint theory to the GRAPES-CUACE modeling 165 

system. The current version of the adjoint model includes the adjoint of CAM (Gong et al., 2003), the adjoint of the three 

interface programs that pass meteorological variable values from GRAPES-Meso to chemical processes in CUACE, and the 

adjoint of the aerosol transport processes. Considering that the adjoint of the gaseous chemistry (RADM II) and the adjoint 

of the thermodynamic equilibrium (ISORROPIA) processes are not included in the GRAPES-CUACE aerosol adjoint model, 

the GRAPES-CUACE aerosol adjoint model is capable of simulating sensitivities of the cost function to primary PM2.5 170 

sources. Hence Sn defined in Sect. 3.1 refers to primary PM2.5 sources. After the tangent linear model (TLM) and the adjoint 

model are built (the adjoint model is a concomitant of the TLM), they are divided into smaller sections and tested separately 

before the assembled TLM and the adjoint model are confirmed valid. The details of the adjoint verification can be found in 

An et al. (2016). 

Figure 4 shows the operational processes used in this study. To ensure that the forward and backward models were in the 175 

same chemical state, the forward GRAPES-CUACE model was first integrated to save the model state variables 

(concentrations) in checkpoint files at the beginning of each external time step (Sandu et al., 2005; Henze et al., 2007). These 

saved variables were then inputted at each checkpoint during the backward adjoint integration. To handle intermediate 

variables, this study adopted both recalculation and stack storage (PUSH & POP) schemes. Details about the construction, 

framework, and operational flowchart of the GRAPES-CUACE aerosol adjoint model are discussed in An et al. (2016). 180 

3.3. Model setup, data, and validation 

The simulated domain in this study covered northeast China (105°E–125°E, 32.25°N–42.25°N) (Fig. 1), which included 41 × 

23 simulation grid cells with 31 vertical layers at the resolution of 0.5° × 0.5°. The model was integrated at a time step of 300 

s. The National Centers for Environmental Prediction Final Analysis dataset was used to define the initial meteorological 

field and the meteorological boundary conditions. The initial and boundary values for O3 and OH were taken from climatic 185 

means and zeros for each aerosol species during the first run; thereafter, the daily initial values of all chemical species were 

determined by the 24 h forecast made by the previous day’s simulation. To eliminate the discrepancy between the idealized 
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initial concentration field and the real concentration field, the simulation was started at 20:00 Beijing LT (GMT+8) on 

November 10, 2012, with the analysis period running from 20:00 LT on November 17, 2012, to 19:00 LT on November 22, 

2012. 190 

This study used hourly gridded off-line emission sources processed by the SMOKE module, which is based on statistical 

data of anthropogenic emissions reported from government agencies for 2007. Anthropogenic emissions include primary 

PM2.5 and pollutant gases (Cao et al., 2011). Emission source types included biomass combustion, residences, power 

generation, industry, transportation, livestock and poultry breeding, fertilizer use, waste disposal, solvent use, and light 

industrial product manufacturing (Cao et al., 2011). Furthermore, natural sea salt and natural sand/dust emissions were also 195 

calculated in the model. 

Figure 5 illustrates the gridded distribution of the overall primary PM2.5 sources. Figure 6 shows the hourly variability of the 

overall PM2.5 sources in Beijing. In Fig. 5, there are four intensive source zones over Beijing and its surrounding provinces: 1) 

southern Beijing and Tianjin (TJ), 2) southern Hebei (HB), 3) middle Shanxi (SX), and 4) north central Shandong (SD). 

Meanwhile, a secondary intensive source zone was observed over northern SX. In Fig. 6, it is noted that the overall primary 200 

PM2.5 source emission intensity decreased to its lowest level at 05:00 LT. Thereafter, emission intensity began to increase 

and remained high from 11:00 to 19:00 LT, with a little trough at 14:00 LT. 

The observation data includes meteorological elements (2 m temperature and 10 m wind speed) and PM2.5 concentrations. 

The meteorological data were collected from the Nanjiao (NJ: 116.47°E, 39.8°N), Haidian (HD: 116.28°E, 39.93°N) and 

Shangdianzi (SDZ: 117.12°E, 40.65°N) stations. The NJ and HD stations are representative urban observatory stations and 205 

the SDZ station is a typical background station. These three stations are part of the measurement network run by the Beijing 

Meteorology Bureau and uses standard measurement equipment and methods. PM2.5 measurements used in this study were 

obtained from the observation stations of the Chinese Research Academy of Environmental Sciences (CRAES: 116.39°E, 

40.03°N), as well as of Guanyuan (GY: 116.34°E, 39.93°N) and Dingling (DL: 116.22°E, 40.29°N). The CRAES station is 

located in the northwest Chaoyang District at the Chinese Academy of Environmental Sciences, and the GY station is 210 

located in Xicheng District. Both the CRAES station and the GY station are representative urban observation stations in 

Beijing. The DL station is located in the relatively clean Changping District in northern Beijing and provides background 

values for observed PM2.5 concentrations (Fig. 1). 

The reliability of the GRAPES-CUACE modeling system is evaluated in terms of both meteorological and chemical 

simulations. Figure 7 shows the hourly variations of the observed and simulated 2 m temperature (T2m) and 10 m wind 215 

speed (WS10m), and Table 1 lists the corresponding statistical parameters. The correlation coefficients (Rs) between the 

observed and simulated hourly T2m are 0.77, 0.75 and 0.74, passing the 99% confidence level with root mean square error 

(RMSE) values of 1.5, 1.6 and 1.7 °C, respectively at observatory sites NJ, HD and SDZ. Mean Biase (MB) values for the 
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T2m demonstrate a slight underestimate in NJ (-0.1 °C) and HD (-0.3 °C), and overestimate in SDZ (0.8 °C). The variations 

of the WS10m are generally captured by the model with Rs of 0.70, 0.73 and 0.46, and with RMSEs of 1.4, 1.5 and 1.8 m s-1 220 

at NJ, HD and SDZ stations respectively (passed the 99% confidence level). Overall, the GRAPES-Meso could reasonably 

reproduce the observed meteorology. 

Figure 8a–6c show the observed and simulated hourly PM2.5 concentration curves from 20:00 LT on November 17 to 19:00 

LT on November 22 at the CRAES, GY, and DL observational stations, and Table 2 lists the statistical parameters. Figure 

8a–6c reveal that the results of the GRAPES-CUACE modeling system correspond well with the synoptic analysis of the 225 

pollution episode. The modeling system was able to reproduce the PM2.5 accumulation processes observed from the 19th to 

21st of November in Beijing and captured the two PM2.5 hourly concentration peaks during the dawn and night of November 

21, as well as the trough during the afternoon on November 21 at the CRAES, GY, and DL stations, with correlation 

coefficients (Rs) of 0.87, 0.91, and 0.69, respectively (Table 2). However, the model overestimated PM2.5 concentration 

values over the period with normalized mean biases (NMBs) of 57.2%, 108.1%, and 10.7% at the CRAES, GY, and DL 230 

stations, respectively. The overestimation was also reflected in the positive mean bias (MB) and mean fractional bias (MFB) 

values. For the CRAES, GY, and DL stations, the MFBs were 53.6%, 65.2%, and 15.6%, respectively, and the 

corresponding mean fractional errors (MFEs) were 60.1%, 68.3%, and 39.6%, respectively. MFEs and MFBs are all within 

the criteria proposed by Boylan and Russel (2006)—model performance criteria are met when the MFE and MFB are less 

than or equal to approximately +75% and ±60%, respectively—except for the MFB at GY, which is a little high. 235 

Secondary aerosol formations are important processes in atmospheric physics and chemistry and have large uncertainties, 

according to the current understanding on the atmospheric environment. The lack of heterogeneous chemical reactions 

(Wang et al., 2016; Cheng et al., 2016; Guo et al., 2014; Zhang et al., 2015) in the forward GRAPES-CUACE model could 

be a factor contributing to the modeling uncertainties in this study. Generally, the three factors controlling the discrepancies 

in air quality modeling are as follows: 1) air pollutant emissions, 2) physical and chemical processes in the atmosphere, and 240 

3) meteorology, particularly in the boundary layer (An et al., 2013; Cheng et al., 2016; Wang et al., 2015a; Wang et al., 2016). 

The overestimation of PM2.5 in this study might be attributed to the uncertainties of these three factors in the model. Prior 

studies (Zhou et al., 2012; Wang et al., 2015a; Wang et al., 2015b; Jiang et al., 2015) have demonstrated the stable 

simulation performance of the GRAPES-CUACE modeling system in reproducing air pollution levels and variation trends 

over northeast China. Above all, the following analysis mainly focuses on the variations and the contributing proportions of 245 

emission sources over different regions. Therefore, adjoint sensitivity analysis was not significantly affected by the 

overestimation of PM2.5, and these modeling results can be considered reliable. 



9 
 

4. Results 

4.1. Simulated haze episode and cost function 

Figure 9 shows the simulated surface PM2.5 concentrations and the wind field variations from 17:00 LT on November 19 to 250 

11:00 LT on November 22. It can be seen that the simulation results are consistent with the qualitative weather analysis of 

this time period. From the 19th to the 20th of November, PM2.5 accumulated in Beijing under the influence of a convergent 

wind field pattern: a southerly wind field to the south, an easterly wind field to the east, and a westerly wind field to the west. 

From 5:00 LT to 11:00 LT on November 21, PM2.5 concentrations exceeded 550 μg m−3 over southern Beijing, south-central 

Hebei, and northwest Tianjin. After this peak, PM2.5 concentrations over Beijing, south-central Hebei, and Tianjin decreased 255 

to a trough in the afternoon, before rising again to above 550 μg m−3 at 23:00 LT. The decrease in PM2.5 concentrations from 

the morning to the afternoon is typical for Beijing and resulted mainly from diurnal variation of the planetary boundary layer, 

with vertical mixing after sunrise effectively diluting the pollutants (Zhao et al., 2009; Liu et al., 2015; Tang et al., 2016). 

The concentration peak at 23:00 LT was driven by the influence of the easterly winds, which caused pollutant convergence 

against the Taihang Mountains and carried abundant water vapor that promoted local hygroscopic growth. Thereafter, during 260 

the daytime on November 22, a notable northwesterly wind dispersed pollutants in Beijing, thus ending this pollution 

episode. 

The municipality of Beijing (covering both rural and urban Beijing) experienced two hourly PM2.5 concentration peaks at 

5:00 LT and 23:00 LT on November 21 (Fig. 8d), similar to those observed at the three observation stations. These peaks 

resulted in the observed high daily average PM2.5 concentration on November 21, which was analyzed in previous research 265 

(Zhai et al., 2016). To analyze the critical emission sources of the two hourly PM2.5 concentration peaks, we took advantage 

of the adjoint model for simulating concentration–emission relationships and defined two cost functions as the hourly mean 

PM2.5 concentrations over Beijing at (i) 5:00 LT and (ii) 23:00 LT on November 21. To demonstrate the reliability and 

efficiency of the GRAPES-CUACE aerosol adjoint model to provide guidance toward effective and flexible air quality 

control designs, a third cost function was defined as (iii) the average PM2.5 concentration over Beijing on November 21. 270 

Subsequently, comparisons between results from the GRAPES-CUACE aerosol adjoint model and the Models-3/CMAQ 

assessments (Zhai et al., 2016) were made. 

4.2. Spatial distribution of primary PM2.5 emission source sensitivity coefficients 

Figure 10 illustrates the distribution of time-integrated sensitivity coefficients to emission sources for the two concentration 

peaks in the hourly PM2.5 in Beijing. The sensitivity coefficients of the cost function to emission sources connected 275 

pollutants with emissions and revealed the incremental impacts of emissions on peak PM2.5 concentrations. A larger 

sensitivity coefficient value corresponds to its greater influence on the cost function, J. For example, the largest sensitivity 
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coefficient in Figure 10d was in the cell that includes Daxing District, with a value of 22.4 μg m−3. This indicates that 

emissions stemming from this area had the greatest influence on the peak concentration when integrated over 72 h. If 

emissions were reduced within a small range, the decrease in PM2.5 concentrations should be linear. For example, if 280 

emissions from this cell were reduced by N% from 05:00 LT on November 18 to 05:00 LT on November 21, the target PM2.5 

concentration would decrease by N%*22.4 μg m−3. 

When looking at the accumulation along an inverse time sequence, as shown in Figs. 10a-h, the more influential regions 

(regions with relatively larger sensitivity coefficients) extended from local Beijing (the target region that covers the entire 

Beijing Municipality) to its surrounding provinces. This phenomenon reflected that the PM2.5 pollution episode in Beijing 285 

was not only the result of local emissions but also the result of emissions from surrounding regions, including Hebei 

Province, Tianjin, and even Shanxi and Shandong Provinces. Emissions from the surrounding areas were continuously 

transported to Beijing 2 to 3 d ahead of the peak pollution day, thus leading to the observed increase in Beijing’s air pollution 

concentration. 

There are differences in the variations in the more sensitive emission regions of these two PM2.5 concentration peaks. First, 290 

by comparing the 12 h cumulative sensitivity coefficients distribution in Figs. 10b and 10f, we can see that emissions to the 

southwest of Beijing already had a clear influence on the 05:00 LT November 21 PM2.5 concentration peak (Fig. 10b). 

However, for the 23:00 LT November 21 PM2.5 concentration peak, the influential emission sources were still concentrated 

over Beijing Municipality (Fig. 10f), with only a small fraction of influential emissions coming from the east and south of 

Beijing. This is due to the southwesterly airstream positioned to the southwest of Beijing from 23:00 LT on November 20 to 295 

05:00 LT on November 21, and the southeasterly water vapor imported during the afternoon and night of November 21, 

which caused the moisture–absorption growth of local particles and brought pollutants from Tianjin. 

Second, it can be seen from the distributions of the 24 (Figs. 10c and 10g) and 72 h (Figs. 10d and 10h) cumulative 

sensitivity coefficients that sensitivity coefficients both in and around Beijing had relatively large values, thus indicating that 

both of these PM2.5 concentration peaks were influenced by local and surrounding emissions. However, the most influential 300 

emission regions differed between the two PM2.5 concentration peaks. For the first PM2.5 concentration peak, the key 24 h 

source regions (Fig. 10c) were distributed over Beijing and to the west and south of Beijing. The key 72 h source regions 

(Fig. 10g) were to the northeast in Shanxi Province. However, for the second PM2.5 concentration peak, the key 24 h source 

regions were mainly located to the south of Beijing, whereas the key 72 h source regions were to the west of Beijing (Shanxi 

Province) (Fig. 10h) and covered a smaller area than that for the first PM2.5 concentration peak (Fig. 10d). 305 

The results of these simulations show that the variation in the distribution of the sensitivity coefficients, the meteorological 

conditions, and the pollution evolution processes correspond with each other very well. This indicates that the 
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GRAPES-CUACE aerosol adjoint model is capable of estimating the sensitivity of concentrations to emission sources by 

propagating a perturbation in concentration backward in time by incorporating meteorological and chemical processes. 

4.3. Influence of local and surrounding emission sources on peak PM2.5 concentrations 310 

Figure 11 illustrates the hourly instantaneous sensitivity coefficients to local Beijing (the target region that covers the entire 

Beijing Municipality), its surrounding emission sources (emissions from Hebei, Tianjin, Shandong, and Shanxi Provinces) 

(Figs. 11a and 11b), and their corresponding time-integrated series (Figs. 11c and 11d). The magnitudes of the sensitivity 

coefficients reflect the incremental influence of local and surrounding emissions to the objective PM2.5 peaks. It can be seen 

that the instantaneous sensitivity coefficients of the PM2.5 concentration peaks to local (red closed squares) and surrounding 315 

(red open squares) emissions increased to their maximal points before showing a decreasing tendency. However, detailed 

comparisons of the hourly contribution revealed significant differences between the local and surrounding emissions. 

When studying Figs. 11a and 11b along a reversed time sequence, the local emission sensitivity coefficient maximums (red 

closed squares) and the PM2.5 concentration peaks (black closed circles) appeared at almost the same time, with the latter 

delayed by 1 to 2 h. This indicates that local emissions released 1 to 2 h ahead of the PM2.5 peak values were the main 320 

contributors to the peak pollution concentrations. After the sensitivity coefficient reached a maximum, local emission 

sensitivity coefficients decreased sharply to minimal values at 14 h (for the 05:00 LT PM2.5 peak) or 19 h (for the 23:00 LT 

PM2.5 peak) ahead of the pollution peak and remained low. This revealed that PM2.5 generated from local emissions was 

transported away from Beijing after about 14–19 h. 

By contrast, maximal sensitivity coefficients of the surrounding emissions (red open squares) occurred 7–12 h ahead of the 325 

PM2.5 concentration peaks (Figs. 11a and 11b), thus indicating a 7 to 12 h delay in the arrival of emissions from surrounding 

areas to Beijing. Similar to the backward integration, sensitivity coefficients showed overall decreasing trends with periodic 

fluctuations. For the first PM2.5 concentration peak (05:00 LT on November 21), three maximal contributions from 

surrounding areas (Fig. 11a) appeared along the reversed time sequence at 17:00 LT on November 20 (12 h ahead of the 

target time), 1:00 LT on November 20 (28 h ahead of the target time), and 4:00 LT on November 19 (49 h ahead of the target 330 

time). The first time-reversed relative maximal sensitivity coefficient of 7.5 μg m−3 was noted at 17:00 LT on November 20, 

whereas the second and the third time-reversed relative maximal sensitivity coefficients of 5.2 and 1.5 μg m−3 were observed 

at 1:00 LT on November 20 and 4:00 LT on November 19, respectively. For the second PM2.5 concentration peak (23:00 LT 

on November 21) (Fig. 11b), the relative maximal contributions from surrounding areas (red open squares) appeared at 16:00 

LT on November 21 (7 h ahead of the objective time), at 20:00 LT on November 20 (27 h ahead of the objective time), at 335 

23:00 LT on November 19 (48 h ahead of the objective time), and at 3:00 LT on November 19 (68 h ahead of the objective 

time); their corresponding sensitivity coefficients were 5.3, 5.4, 2.6, and 0.9 μg m−3, respectively. It is worth noting that 

sensitivity coefficients maximal points for the 23:00 LT PM2.5 peak appeared at time points similar to those of the sensitivity 
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coefficients maximal points for the 05:00 LT PM2.5 peak. The sensitivity coefficients around the second maximal 

contribution, approximately from 17:00 LT on November 20 to 0:00 LT on November 21, remained at a relatively large 340 

value (about 4.7 to 5.4 μg m−3), even slightly larger than that of the first maximal sensitivity coefficient. This is because the 

second PM2.5 concentration peak was the result of cumulative increases based on the first high PM2.5 concentration peak; 

therefore, emissions from the surrounding areas from the night of November 20 to early in the morning on November 21 also 

had a large influence on the second PM2.5 concentration peak, almost slightly rivaling the influence of the later emissions 

sensitivity peak. 345 

On the basis of Fig. 11, we can also see that for both PM2.5 concentration peaks, the dominant emission source areas shifted 

from the local to the surroundings areas over the backward time sequence (Figs. 11c and 11d). For the first PM2.5 

concentration peak (05:00 LT on November 21) (Fig. 11c), the cumulative local emission sensitivity coefficients (red closed 

squares) were larger than the surrounding emission sensitivity coefficients (red open squares) between 12:00 LT on 

November 20 and 05:00 LT on November 21 (lasted for 17 h), thus indicating that local emissions dominated during this 17 h 350 

time period. For the second PM2.5 concentration peak (23:00 LT on November 21) (Fig. 11d), local emissions dominated 

from 21:00 LT on November 20 to 23:00 LT on November 21, which lasted for 26 h (9 h longer than that of the first PM2.5 

peak pollution period). This phenomenon indicates the tiny effect of emission transport processes on November 21 and that 

the increase in PM2.5 concentrations on November 21 was mainly due to local source generation. This reinforces the 

importance of the impact of emissions from surrounding regions on the accumulation seen in the first PM2.5 concentration 355 

peak. 

4.4. Impact of emission sources from different provinces around Beijing to peak PM2.5 concentrations 

The emission sensitivity coefficients were then divided into different provinces around Beijing to investigate their influence 

on the PM2.5 concentration peaks over Beijing Municipality. Figure 12 illustrates the hourly instantaneous sensitivity 

coefficients to emission sources from Beijing Municipality (BJ), Hebei Province (HB), Tianjin city (TJ), Shanxi Province 360 

(SX), and Shandong Province (SD) (Figs. 12a and 12b), their corresponding time-integrated series (Figs. 12c and 12d), and 

the overall contribution proportions of the emission sources from each province to the PM2.5 concentration peaks (Figs. 12e 

and 12f). As shown in Fig. 12, the impacts of emission sources from BJ, HB, TJ, SX, and SD on BJ PM2.5 concentration 

peaks are quite different in both variability and magnitude. 

For the PM2.5 concentration peak occurring at 05:00 LT on November 21, emission sources from HB contributed the most 365 

among surrounding provinces, and the variation in HB’s hourly sensitivity coefficients showed consistent periodic 

fluctuations with that of surrounding emissions. Three maximal points of the HB hourly sensitivity coefficients of variation 

occurred at the same time as that of surrounding emission sources. Corresponding sensitivity coefficients were 5.3, 3.2, and 

0.8 μg m−3, respectively (Fig. 12a). The largest influential time period for emissions from TJ appeared 13 h ahead of the 
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objective time (at 16:00 LT on November 20), followed by an obvious secondary maximal point that appeared 24 h ahead of 370 

the objective time (at 05:00 LT on November 20). Sensitivity coefficients from SX showed a small peak (approximately 0.7 

μg m−3) 9 h ahead of the objective time (at 20:00 LT on November 20), which was caused by a secondary intensive emission 

zone in northern SX that was relatively close to BJ (Fig. 5). As intensive emission sources in SX and SD are far from BJ (Fig. 

5), it took 33–36 h for SX and SD emissions to reach BJ. 

It is worth noting that, except for the maximal sensitivity coefficients of HB and TJ observed at 16:00 LT on November 21 375 

(7 h ahead of 23:00 LT on November 21), prior sensitivity coefficient maximal points for the PM2.5 concentration peak 

observed at 23:00 LT on November 21 appeared at the same time as the maximal points of sensitivity coefficients when the 

PM2.5 concentration peak observed at 05:00 LT on November 21 was set as the cost function. For example, for both PM2.5 

concentration peaks, sensitivity coefficients of TJ emission sources reached a maximal point at 16:00 LT on November 20, 

and SX emission source sensitivity coefficients in turn showed two maximal points at 20:00 LT on November 20 and at 380 

20:00 LT on November 19. The situations at HB and SD are similar: even when maximal points do not appear at the exact 

same time, high value periods are consistent for the two cost functions. The above phenomenon again revealed that the PM2.5 

concentration peak observed at 23:00 LT on November 21 was cumulative on the basis of the PM2.5 concentration peak 

observed at 05:00 LT on November 21 and that if the PM2.5 concentration peak at 05:00 LT on November 21 can be 

effectively reduced, the PM2.5 concentration peak at 23:00 LT on November 21 can be reduced accordingly, thus decreasing 385 

the overall PM2.5 concentrations on November 21. These results also reflected the advantage of the adjoint model in 

detecting temporal–spatial sensitive emission sources in detail. 

Figures 12c and 12d show that along the backward time sequence, the time-integrated sensitivity coefficients of HB 

continuously rose after the time-integrated sensitivity coefficients of other provinces were prone to remain constant. At 

around 02:00 LT to 03:00 LT on November 20, the time-cumulated emissions influence from HB exceeded that from local 390 

BJ emissions for both PM2.5 concentration peaks, thus reflecting that emissions from HB played a leading role in pollutant 

accumulation for the first BJ PM2.5 concentration peak and that the influence of local emissions was dominant between the 

two PM2.5 concentration peaks, that is, during the daytime on November 21. 

The hourly sensitivity coefficients in Figs. 12a and 12b show that the impact of emission sources from Beijing and each 

surrounding province decreased to negligible values (close to zero) 72 h ahead of the objective time points. Meanwhile, 395 

corresponding time-integrated sensitivity coefficients in Figs. 12c and 12d also stopped increasing 72 h prior to the objective 

time points. Therefore, by integrating sensitivity coefficients 72 h ahead of the two PM2.5 concentration peaks, we can obtain 

the overall contributing proportions of emission sources from each province to the BJ PM2.5 concentration peaks (Figs. 12e 

and 12f). Among all provinces, HB has the largest impact on the two PM2.5 concentration peaks, and the contribution of HB 

emissions to the first PM2.5 concentration peak (43.6%) was greater than to the second PM2.5 concentration peak (41.5%). 400 
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For the 05:00 LT PM2.5 concentration peak, the second largest emission source contribution was from Beijing (31.2%), 

followed by SX (9.8%), TJ (9.8%), and SD (5.7%); for the 23:00 LT PM2.5 concentration peak, the second largest emission 

source contribution was from Beijing (35.7%), followed by SX (8.1%), SD (8.0%), and TJ (6.7%). 

From all the above analysis, we can conclude that joint management control of air pollution sources in Hebei Province, 

Tianjin City, and Shandong and Shanxi Provinces 2 to 3 d ahead of the first PM2.5 concentration peak can effectively reduce 405 

PM2.5 concentration accumulation resulting from the transport of pollutants, thus decreasing the BJ PM2.5 concentration 

peaks. 

4.5. Comparisons of the adjoint results with Models-3/CMAQ assessments 

Prior research used a back-trajectory model, namely, FLEXPART, to locate sensitive emission regions of Yanqihu, Beijing, 

on November 2012. The study then used the Models-3/CMAQ modeling system to quantify the effects of emission reduction 410 

schemes at different ratios, during different time periods, and over different regions on the reduction of PM2.5 concentrations 

on November 21 in Beijing (Zhai et al., 2016). On the basis of these results, we set the average PM2.5 concentration over 

Beijing Municipality on November 21 as the cost function and compared the adjoint results with the Models-3/CMAQ 

assessments. Figure 13 illustrates the time-integrated sensitivity coefficient distributions when the Beijing average PM2.5 

concentration on November 21 was set as the cost function. The magnitudes of the sensitivity coefficients reflect the 415 

incremental influence of primary emission sources on the objective PM2.5 concentrations. Similar to previous research (Zhai 

et al., 2016) that advocated the joint management control of emissions with the surrounding provinces 2 to 3 d ahead of the 

most polluted day, adjoint time-integrated sensitivity was intensified and extended during 48 to 72 h backward time 

integration. 

To assess the adjoint sensitive source zone on decreasing PM2.5 concentrations over Beijing and to compare the adjoint 420 

results with the Models-3/CMAQ assessments, we referred to the research by Zhai et al. (2016) and selected four emission 

regions: the overall Huabei region (HuaB), the sensitive Huabei region (HuaB-sens), the overall Beijing Municipality (BJ), 

and the sensitive Beijing region (BJ-sens) (Fig. 14). Grid cells with 72 h cumulative sensitivity coefficients larger than 3 μg 

m−3 were included in the sensitive emission regions (HuaB-sens and BJ-sens), and grid cells with smaller sensitive values 

are outside the sensitive emission regions. Therefore, sensitive emission regions have relatively larger impact on the PM2.5 425 

peak concentrations than regions outside them. Here the HuaB-sens accounts for 10.2% of the area of HuaB and the BJ-sens 

accounts for 60.0% of the area of BJ, thus making them analogous to the regions defined by Zhai et al. (2016). In the work 

by Zhai et al. (2016), HuaB-sens accounted for 17.6% of the area of HuaB and BJ-sens accounted for 54.2% of the area of 

BJ. Furthermore, on the basis of the emission magnitudes (Fig. 5), we defined regions with emission intensities larger than 

4.1 × 10-7 g·s−1 within HuaB as the “Emis-intensive” regions (Fig. 14). The Emis-intensive region has the same area as that 430 

of the HuaB-sens. 
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Table 3 lists the ratios of the time cumulative sensitivity coefficients to peak PM2.5 concentrations (SC/PC) over the BJ, 

BJ-sens, HuaB, HuaB-sens, and Emis-intensive regions at three different time points: 0 (d0), 1 (d1), and 2 d (d2) in advance 

of the most polluted day. The SC/PC reflects the reduction ratios of peak PM2.5 concentrations due to the absence of 

emissions over different regions and during different periods, that is, emission source contribution ratios to peak PM2.5 435 

concentrations. From Table 3, we can see that the adjoint model results are highly consistent with the Models-3/CMAQ 

system results (Zhai et al., 2016). The PM2.5 concentrations on November 21 reflect an accumulated result from emissions 

released in the day or 2 d prior to the most polluted day rather than a simple result of emissions on November 21. For all the 

BJ, BJ-sens, HuaB, and HuaB-sens regions, emission contribution ratios grew from “d0” to “d2” (“d0,” “d1,” and “d2” are 

defined in the caption of Table 3), particularly from “d0” to “d1.” The contribution ratios of emissions from BJ (and BJ-sens) 440 

and HuaB (and HuaB-sens) increased by 6.2% (5.8%) and 31.9% (18.9%) from “d0” to “d1,” respectively. Thereafter, the 

contribution ratios again increased by 0.6% (0.5%) and 9.6% (3.6%), respectively, for emissions over BJ (or BJ-sens) and 

HuaB (or HuaB-sens) from “d1” to “d2.” The above phenomenon also indicates that with the accumulation of time-reversed 

integration from 48 to 72 h prior to November 21, emission source contributions from HuaB (or HuaB-sens) to peak PM2.5 

concentrations increased more obviously, whereas emission source contributions from BJ (or BJ-sens) hardly increased at all. 445 

This can be explained by surrounding emissions being continuously transported to Beijing 2 to 3 d ahead of the most 

polluted day (Zhai et al., 2016). 

Similar to the work in Models-3/CMAQ assessments, Table 4 shows comparisons of sensitive emission, full emission, and 

Emis-intense region source contribution effects and efficiencies to peak PM2.5 concentrations. In Table 4, S/F(effect) in the 

BJ-sens column refers to the ratios of sensitivity coefficients over BJ-sens to sensitivity coefficients over BJ, and S/F(effect) 450 

in the HuaB-sens (or the Emis-intense) column refers to the ratios of sensitivity coefficients over HuaB-sens (or 

Emis-intense) to sensitivity coefficients over HuaB. Correspondingly, S/F(efficiency) refers to the ratios of sensitivity 

coefficients per unit area over BJ-sens (or over HuaB-sens and Emis-intense) to sensitivity coefficients per unit area over BJ 

(or over HuaB). Therefore, S/F(effect) and S/F(efficiency) reflect emission source reduction effects and reduction efficiency 

over critical (or emission intensive) regions. The implication of “d0,” “d1,” and “d2” results in Table 4 are the same as they 455 

are in Table 3. As shown in Table 4, the contribution efficiencies (contribution ratios per unit area) of emissions from the 

HuaB-sens and BJ-sens regions are significantly higher than those from the corresponding entire HuaB and BJ regions, 

respectively. Although BJ-sens covers only 60% of the area of the entire BJ, its contribution to the peak PM2.5 concentrations 

is 86.6%–88.2% of that of the entire BJ. Its source contribution efficiency is 1.4 to 1.5 times that of BJ. Similarly, HuaB-sens 

covers only 10.2% of the area of the entire HuaB, but its contribution to the peak PM2.5 concentrations is 61.0%–71.9% of 460 

that of the entire HuaB, and its source contribution efficiency is 6.0 to 7.0 times that of the entire HuaB (Table 4). Finally, 

emissions from HuaB-sens contribute much more than emissions only from BJ-sens, which supports joint management 
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control. Analogously, in the Models-3/CMAQ assessments, BJ-sens (or HuaB-sens) covers 54.2% (or 17.6) of the area of BJ 

(or HuaB), and its emissions reduction effect is 99.2%–100% (or 87.2%–93.7%) of that of the entire BJ (or HuaB), and its 

source contribution efficiency is 1.8 to 1.9 times (or 5.0 to 5.3 times) that of BJ (or HuaB). 465 

We then compared emission source contribution ratios, effect, and efficiency from the HuaB-sens and the Emis-intense 

regions. As shown in Table 3 and Table 4, although the Emis-intense region has the same area as HuaB-sens, its SC/PC, S/F 

(effect), and S/F(efficiency) are all much smaller. The source contribution ratios to PM2.5 concentrations on November 21 

(SC/PC) from the “Emis-intense” regions are 9.7%, 17.6%, and 18.5% smaller, respectively, than those from HuaB-sens 

(Table 3), and the source contribution effect from the “Emis-intense” regions (S/F (effect)) are 37.9%, 30.7%, and 27.6% 470 

smaller, respectively, than the S/F (effect) of HuaB-sens, thus indicating that controlling air pollution sources from adjoint 

critical emission regions has better effects and higher efficiency than controlling emission sources from emission-intensive 

regions. 

The computational loads of the adjoint simulation were much smaller than the comparable assessments made with the 

Models-3/CMAQ modeling (Zhai et al., 2016). For the adjoint simulation, one forward integration (for model state variables 475 

saving) and one backward adjoint integration can enable the determination of the influence of emissions from any source 

region during any time period to PM2.5 concentration peaks. For the Models-3/CMAQ assessments, to compare the effects of 

emission reductions over two different time periods at two different ratios and over four different regions, 12 sensitivity tests 

with a control simulation are required. Although the deficiency of the adjoint analysis in this study is that we did not include 

PM2.5 concentration precursor emission impacts, we find through comparison that the two modeling approaches are highly 480 

comparable in their assessments of atmospheric pollution control for critical emission regions. Overall, the adjoint 

sensitivities of peak PM2.5 concentrations to primary PM2.5 emissions using the GRAPES-CUACE aerosol adjoint model can 

provide valuable reference for evaluating emission impacts on pollutant concentrations and air quality control. 

5. Conclusions 

In this research, the GRAPES-CUACE aerosol adjoint model was applied to detect the pivotal emission sources of a 485 

November 2012 haze episode over Beijing, and the hourly peak PM2.5 concentrations at 05:00 LT and 23:00 LT on 

November 21, 2012, were set as the cost functions. The peak PM2.5 concentration contributions from local Beijing emissions 

and neighboring provinces were well compared. The adjoint model results corresponded well with the real weather analysis 

for this period and correctly described the spatial distribution of the most influential emission sources over time for both 

PM2.5 concentration peaks. The 05:00 LT PM2.5 concentration peak was mainly influenced by local Beijing emissions and the 490 

emissions from Hebei, Tianjin, and Shanxi because of the transmission of pollutants 2 to 3 d ahead of the peak time. The 

23:00 LT PM2.5 concentration peak was more sensitive to local Beijing emissions, and the regions to the south of Beijing in 
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Hebei Province, because of the accumulation from the first PM2.5 concentration peak, local particle hygroscopic growth, and 

pollutants trapped against of the Taihang Mountains on November 21. The upstream Hebei province has the largest impact 

on both PM2.5 concentration peaks, and the contribution of Hebei emissions to the first PM2.5 concentration peak (43.6%) 495 

was greater than that to the second PM2.5 concentration peak (41.5%). In Beijing, PM2.5 concentration peaks responded to 

local emissions in 1 to 2 h, whereas surrounding emissions took 7 to 12 h to influence Beijing’s air quality. The relationship 

between PM2.5 and their primary emission sources is complicated by different weather conditions. Aerosol impacts on 

meteorological fields could be significant, which might further affect the aerosol pollution condition in the lower troposphere. 

Also, aerosol-cloud interactions might modify temperature and moisture profiles and precipitation (Wang et al., 2011), 500 

leading to potential feedback on the atmospheric chemistry. Moreover, climate change also has potential impacts on the 

pollution conditions in China (Wu et al., 2016). Further studies are required to investigate the relationship with adjoint 

sensitivities’ representation of emission source contribution under different weather conditions. 

We compared the adjoint results with Models-3/CMAQ assessments and found that the adjoint model results can provide 

evidence for all the conclusions supported by the Models-3/CMAQ assessments (Zhai et al., 2016). We then defined the 505 

“Emis-intense” region as an emission-intensive region within the Huabei region that has the same area as that of sensitive 

Huabei region (HuaB-sens) and compared its emission source contributions with those of HuaB-sens and HuaB. Overall, we 

concluded that narrowing the emission sources reduction scope to target critical source zones (zones detected by an adjoint 

model or a FLEXPART model), rather than emission-intensive regions, 2 to 3 d prior to unfavorable meteorological 

conditions can effectively decrease PM2.5 concentrations and improve the efficiency of PM2.5 reduction measures. Meanwhile, 510 

the adjoint simulation is far more computationally efficient than the assessments with Models-3/CMAQ modeling. The 

adjoint method is a powerful tool for simulating the relationship between emissions and concentrations, and it can be utilized 

to help improve flexible air quality control schemes. As we are now coupling the CB-IV mechanism in the 

GRAPES-CUACE forward model and embedding the CB-IV adjoint into the adjoint of GRAPES-CUACE, we will estimate 

sensitivities to both primary and precursor gaseous emission sources after this development. 515 
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Table 1 Performance statistics between observed and simulated meteorology 

  Nanjiao  Haidian  Shangdianzi 

  Obs. Mod. MB R RMSE  Obs. Mod. MB R RMSE  Obs. Mod. MB R RMSE 

T (°C) 4.2 4.1 -0.1 0.77 1.5  3.6 3.3 -0.3 0.75 1.6  1.0  1.8 0.8 0.74 1.7 

WS (m s-1) 1.9 2.4 0.5 0.70 1.4  1.5 2.4 0.9 0.73 1.5  1.9 2.6 0.6 0.46 1.8 

 

 

Table 2. Performance statistics of PM2.5 concentrations. 610 
Simulated 

Time Period 
Stations 

Obs. 

(μg·m−3) 

Sim. 

(μg·m−3) 
R 

MB 

(μg·m−3) 

NMB 

(%) 

NME 

(%) 

MFB 

(%) 

MFE 

(%) 

20:00 Nov. 17–

22, 2012 

CRAES 121.5 190.9 0.87 69.4 57.2 185.2 53.6 60.1 

GY 139.0 289.4 0.91 150.4 108.1 183.3 65.2 68.3 

DL 101.4 112.2 0.69 10.8 10.7 85.6 15.6 39.6 

Notes: Mean bias: MB =
ଵ

୬
∑ (Sim୧ − Obs୧)

୬
୧ୀଵ ; 

Normalized mean bias: NMB =
∑ (ୗ୧୫ିୠୱ)ొ

సభ

∑ ୠୱ
ొ
సభ

× 100%; Normal mean error: NME =
ଵ

୬
∑

|ୗ୧୫ିୠ |

ୠୱ
× 100%୬

୧ୀଵ ; 

Mean fractional bias: MFB=
ଵ


∑

(ୗ୧୫ିୠୱ)

(ୠୱାୗ୧୫/ଶ)


୧ୀଵ ; Mean fractional error: MFE=

ଵ


∑

|ୗ୧୫ିୠୱ|

(ୠୱାୗ୧୫/ଶ)


୧ୀଵ . 
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Table 3. Emission source contribution to the average PM2.5 concentration over Beijing on Nov 21. 

Factors Time period BJ BJ-sens HuaB HuaB-sens Emis-intense 

SC/PC 

d0 14.5% 12.5% 25.6% 18.4% 8.7% 

d1 20.7% 18.3% 57.5% 37.3% 19.7% 

d2 21.3% 18.8% 67.1% 40.9% 22.4% 

Notes: d0 refers to emission contributions from November 21; d1 refers to emissions contribution from the 20th to the 21st of November; 

d2 refers to emission contributions from the 19th to the 21st of November. 

SC/PC = time cumulative Sensitivity Coefficient/Peak Concentration; 

 620 
 

Table 4. Contrast of sensitive (or Emis-intense) and full region emission source contributions. 

GRAPES-CUACE aerosol adjoint model results  Models-3/CMAQ results (Zhai et al., 2016) 

Time period Factors BJ-sens HuaB-sens Emis-intense  BJ-sens HuaB-sens 

d0 
S/F(effect) 86.6% 71.9% 34.0%    

S/F(efficiency) 1.4 7.0 3.3    

d1 
S/F(effect) 88.2% 64.9% 34.2%  99.2% 93.7% 

S/F(efficiency) 1.5 6.3 3.3  1.8 5.3 

d2 
S/F(effect) 88.2%  61.0% 33.4%  100.8% 87.2% 

S/F(efficiency) 1.5  6.0 3.3  1.9 5.0 

Notes: S/F(effect) = Sensitivity Coefficient over sensitive source region/Sensitivity Coefficient over corresponding full source region; 

Contribution Efficiency = Sensitivity Coefficient/Number of region's simulation grid cells; 

S/F(efficiency) = Contribution Efficiency of sensitive region/Contribution Efficiency of corresponding full source region. 625 
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Figure 1: Left: Model domain and location of Beijing Municipality (BJ), Tianjin Municipality (TJ), Heibei Province (HB), 

Shandong Province (SD), and Shanxi Province (SX); right: Locations of the Chinese Research Academy of Environmental Sciences 

(CRAES) station, the Guanyuan (GY) station, the Dingling (DL) station, the Nanjiao (NJ) station, Daxing district (DX) and 630 
Chaoyang (CY) district. 

 

 

 
Figure 2: (a–d): Sea-level pressure field; (e–h): temperature-logarithmic pressure diagrams (blue dotted curves indicate dew 635 
point-pressure; red solid curves indicate stratification) at the Nanjiao Station from 08:00 (local time) on November 20, 2012, to 

20:00 (local time) on November 21, 2012. 
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Figure 3: Schematic diagrams of the atmospheric chemistry forward (a) and adjoint (b) models. S1, S2, …, Sn, …, SN are emission 640 
sources of different sectors, or of different species, at different locations etc., and S is the emission vector; C1, C2, …, Cm, …, CM 

are pollutant concentrations at different sites, or of different species, and C is the concentration vector. 

 

 

Figure 4: Operational processes of the GRAPES-CUACE aerosol adjoint 645 
 

 

Figure 5: Gridded distribution of PM2.5 primary emission sources. 

 
Figure 6: Hourly variation in primary PM2.5 emission sources in Beijing. 650 
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Figure 7: The temporal variations of observed and simulated hourly 2 m temperature (T2m) (a-c) and 10 m wind speed (WS10m) 

(e-f) at Nanjiao, Haidian and Shandianzi stations. The observed WS10m are 10-min averaged wind speed. 

 655 

 

Figure 8: (a)-(c): Comparisons of the observed (black solid triangles) and simulated (blue dot-line) hourly PM2.5 concentrations at 

the CRAES, GY, and DL stations; (d): Hourly variations in the average PM2.5 concentrations over Beijing Municipality. 
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 660 
Figure 9: Variations of simulated surface PM2.5 concentrations and wind field distributions. 

 

Figure 10: Time-integrated sensitivity coefficients of surface Beijing PM2.5 concentration peaks to primary PM2.5 sources. (a–d): 1, 

12, 24, and 72 h integrated sensitivity coefficients for the 5:00 LT PM2.5 concentration peak on November 21; (e–h): 1, 12, 24, and 

72 h integrated sensitivity coefficients for the 23:00 LT PM2.5 concentration peak on November 21. 665 
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Figure 11: Hourly variations of surface PM2.5 concentrations in Beijing and sensitivity coefficients of surface PM2.5 concentration 

peaks in Beijing to local and surrounding primary PM2.5 sources. The left and right panels correspond to PM2.5 concentration 

peaks at 05:00 LT and at 23:00 LT on the 21st of November 2012, respectively. (a–b) Hourly variations of Beijing PM2.5 

concentrations (black solid dot-line) and hourly instantaneous sensitivity coefficients to local (red closed squares) and surrounding 670 
(red open squares) emission sources. (c–d) The time-integrated sensitivity coefficients to local (red closed squares) and 

surrounding (red open squares) emission sources. 
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Figure 12: Sensitivity coefficients of surface PM2.5 concentration peaks in Beijing to primary emission sources from local Beijing 

and each of the surrounding provinces. The left and right panels correspond to PM2.5 concentration peaks at 05:00 LT and at 675 
23:00 LT on November 21, 2012, respectively. (a–b) Hourly instantaneous sensitivity coefficients to emission sources from local 

Beijing, Hebei Province, Tianjin City, Shanxi Province, and Shandong Province. (c–d) The time-integrated sensitivity coefficients 

to local and surrounding provincial emission sources. (e–f) The contribution ratios of emission sources from each surrounding 

province to PM2.5 concentration peaks. 

 680 

Figure 13: The 24 (a), 48 (b), and 72 h (c) integrated sensitivity coefficients of surface PM2.5 concentrations to primary emission 

sources in Beijing on November 21, 2012. 
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Figure 14: Domain definition of Huabei (HuaB, in red dot-dashed frame), Beijing (BJ, in black solid frame), sensitive Beijing 

(BJ-sens, red shaded), sensitive Huabei (HuaB-sens, both red and blue shaded), and emission intensive (Emis-intense, in pink solid 685 
frame) regions. 

Notes: HuaB-sens area ratio = HuaB-sens floor space/HuaB floor space × 100%； 

BJ-sens area ratio = BJ-sens floor space/BJ floor space × 100%; 

Emis-intense area ratio = Emis-intense floor space/HuaB floor space × 100%. 


