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Responses to referee #3 and referee #2 on “Detection of critical PM2.5 emission sources and their 
contributions to a heavy haze episode in Beijing, China, using an adjoint model”, and marked-up 
version of the manuscript. 

Dear referees, 

Thank you very much for your valuable comments. Revisions in the marked-up manuscript version are 
in red. This document is organized as follows: the referees’ comments are in black and responses to the 
comments are in blue. 

To Referee #3 

Suggestions for revision or reasons for rejection (will be published if the paper is accepted for 
final publication) 

The  revised  manuscript  by  Zhai  et  al.  has  addressed  many  of  the  previous  reviewer  concerns, 

particularly with  regards  to  expanding  their work  to  better  demonstrate  the  value  of  their  adjoint 

modeling.  They  also  include  additional  comparison  to  observations,  and  expanded  comparison  to 

previous work.  Still,  I  found  the  description  of  the  treatment  of  secondary  aerosol  species  such  as 

sulfate  and  nitrate  very  confusing  (not  clear  if  these  are  even modeled  as  secondary  species),  the 

model  evaluation  showed  significant  model  overestimation,  and  the  presentation  of  adjoint 

sensitivities  for  the purpose of  source attribution  is not  considered or presented  carefully.  I believe 

addressing  these  issues constitutes another  round of major  revisions, after which  this article will be 

more suitable for publication in ACP.   

Major comments:   

A large fraction of the PM2.5 concentrations in the pollution episodes studied here consist of secondary 

inorganic aerosol. However, there are several issues related to the treatment of such species that need 

to be clarified: 

1.  It  is  not  clear  if  ISORROPIA  and  it’s  adjoint were  used  in  this  study.  The  authors  state  that  the 

GRAPES‐CUASE aerosol adjoint includes CAM, citing Gong et al., 2003, but that version of CAM did not 

use ISORROPIA, which wasn’t added until Zhou et al. (2012). This needs to be clarified. Developing the 

adjoint  of  ISORROPIA  is  an  extremely  challenging  task,  the  subject  of  an  entire  manuscript  by 

developers of ISORROPIA (Capps et al., 2012). If the authors did include ISORROPIA, did they develop 

their own version, or use the one from Capps 2012 (ANISORROPIA)?   

Response: In this study, the forward GRAPES-CUACE modeling system is an online coupled 
atmospheric chemistry modeling system, and CUACE is an atmospheric chemistry modeling system 
independent of meteorological and climate models. CUACE adopts CAM (Canadian Aerosol Module) 
as its aerosol module, the RADM II mechanism as its gaseous chemistry and ISORROPIA to calculate 
the thermodynamic equilibrium between nitrates (and ammonium) and their gas precursors. 

The current version of the GRAPES-CUACE aerosol adjoint model includes ①the adjoint of CAM, ②
the adjoint of three interface programs that pass meteorological variable values to the chemistry 
processes, and ③the adjoint of the aerosol transport processes. Since the adjoint of gaseous chemistry 
and the adjoint of ISORROPIA are now under development, the current version of the aerosol adjoint 
model doesn’t include the adjoint of ISORROPIA yet. The current version of the GRAPES–CUACE 
aerosol adjoint model is capable of coupling major aerosol processes in the atmosphere into its 
simulations of the sensitivities of the objective function to primary aerosol sources. These are 
clarified in the first and second paragraphs of Section 3.2 (P6 Line 147-168).  
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2. This  issue  is  further confused by  the  fact  that  (Section 3.3)  the authors  state  the model  includes 

emissions of sulfate and nitrate. But sulfate and nitrate are species that are formed secondarily in the 

atmosphere, and the emitted species should be SO2 and NOx (and NH3). If instead the model somehow 

approximates  inorganic  PM2.5  as  being  a  primary,  rather  than  secondary,  aerosol,  the  validity  and 

accuracy of  this assumption needs  to be discussed, as  it would be  in conflict with most  regional air 

quality models.  It might though explain the very high bias of the GRAPES‐CUASE model compared to 

the observations.   

Response: Thank you for pointing this out. In GRAPES-CUACE, sulfate and nitrate come from both 
primary emissions and secondary formation from SO2 and NOx. The sulfate and nitrate emissions here 
refer to primary sulfate and nitrate particle sources. To make the emissions description clear, we 
added ‘primary’ before OC, sulfate and nitrate in Section 3.2 (P6, line 167), Section 3.3 (P6, line 
186) and Section 4.5.  

We agree with the referee’s comment on inorganic PM2.5. In the revised manuscript, we clarified that the 
emission inventory also included SO2 and NOx (and NH3) besides sulfate and nitrate in the forward 
GRAPES-CUACE modeling. Secondary aerosol formations is an important process of atmospheric 
physics and chemistry with large uncertainties, based on the current understanding on atmospheric 
environment. Generally, three factors controlling the discrepancies in air quality modeling are 1) air 
pollutant emissions, 2) physical and chemical processes in the atmosphere and 3) meteorology 
especially in the boundary layer (An et al., 2013; Cheng et al., 2016; Wang et al., 2015a; Wang et al., 
2016). Overestimation of PM2.5 in this study might be attributed to the uncertainties of these three 
factors in model. Details are explained in the last paragraph in section 3.3. 

3. Even if the authors did include secondary inorganic aerosols in their adjoint modeling, the accuracy 

of  their  adjoint  model  for  estimating  the  contribution  of  emissions  perturbations  to  PM2.5 

concentrations is undermined by two issues: adjoint code accuracy and nonlinearity of PM2.5 formation 

(even within a perfect adjoint code).   

3a Adjoint accuracy: While trying to  investigate this  in the present paper and previous manuscripts,  I 

came  to  realize  that  the GRAPES‐CAUSE model has not demonstrated  the accuracy of  the emissions 

sensitivity coefficients, which  is particularly  important  if the authors are calculating the sensitivity of 

secondary aerosol species (e.g. nitrate) with respect to precursor emissions (NOx). Maybe they don’t 

include secondary aerosols in their work (not clear, see previous question), but if they do they need to 

provide detailed evaluation of adjoint sensitivities to demonstrate it is working. In An et al. (2016) they 

present  results  for  the passing  the  Lagrange  condition  for a particular model  configuration, but  the 

details of that configuration were not clear (how long was the simulation? what species were included 

in xrow?), and  results  specifically  relating  to aerosol  thermodynamics were not  reported. They only 

showed tests with respect to concentrations, not emissions. Given the difficulties identified in Capps et 

al.  (2012) with  evaluating  the  extremely  nonlinear,  discontinuous  ISORROPIA  behavior  using  finite 

difference approaches, I’m skeptical as to the accuracy of the aerosol adjoint sensitivities for SO2, NOx 

and NH3.  It would  helpful  if  they  could  show  some  finite  difference  tests  relating  estimates  of  the 

change  in PM2.5 owing  to perturbations of emissions of SO2, NOx and NH3  in particular grid cells,  for 

perturbations of various magnitudes. Not only would these tests evaluate the accuracy of the model, 

they would also help determine the range of perturbations over which the adjoint sensitivities can be 

interpreted as source contributions, as discussed below.   

Response: The forward GRAPES-CUACE modeling system considers secondary PM2.5 formations 
from precursor gases. However, in the GRAPES-CUACE aerosol adjoint model, the adjoint of gaseous 
chemistry is now under development. Therefore, gaseous precursor emissions were not considered 
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while calculating the sensitivity of aerosols with respect to emissions. Clarifications have been made 
in Section 3.2.  

In An et al. (2016), the tangent linear (TLM) and the adjoint model were tested according to rigorous 
mathematical derivations, which is a different method from the finite difference test that were 
implemented in the validation of the adjoint of CMAQ (Hakami et al., 2007), the adjoint of 
GEOS-Chem (Henze et al., 2005), etc. Our clarifications have been made in Section 3.2, Paragraph 
2. 

In our validation (An et al., 2016), the tangent linear and the adjoint model integrate at a time step of 30 
min. The tangent linear model was integrated for 10 steps, and the adjoint model was integrated for 12 
steps (6 hours). In addition, in the work of An et al. (2016), every input variable in the model has passed 
the validation, but we only illustrate two variables (xrow and rhop) as examples due to limited space of 
the paper. CAM involves six types of particles – sulfate, OC, BC, nitrate, sea salt, and soil dust – which 
are divided into 12 sections using the multiphase multicomponent aerosol particle size separation 
algorithm and were represented by Xrow in the model. Rhop represents particle wet radius. As 
mentioned before, although we did include ISORROPIA in the forward GRAPES-CUACE model while 
simulating PM2.5, we didn’t include ISORROPIA adjoint in the current version of the 
GRAPES-CUACE aerosol adjoint model. Therefore, aerosol adjoint sensitivities for SO2, NOx and NH3 
are not considered in this study.  

Following your suggestion, we further verified the adjoint code by comparing the adjoint sensitivities 
with the finite difference results: 

 

Figure 1 Comparisons of the adjoint sensitivity coefficients (red line with triangle symbols) and the finite difference 

results (blue line with circular symbols) for PM2.5 primary emission reduction ratios at 5%, 10%, 20%, 30%, 50%, 70% 

and 90% over simulation domain for the Nov. 21 05:00, 2012 PM2.5 peak. 

Figure 1 shows the comparisons of the adjoint sensitivity results and the finite difference results. From 
Fig.1, we can see that PM2.5 concentration and its primary emission sources have a linear relationship. 
Because of the linear relationship between PM2.5 concentration and its primary emission sources, the 
magnitude of perturbations will not influence the representative of the adjoint sensitivities when 
comparing contribution proportions of emission sources from different regions. However, if using the 
adjoint sensitivities to represent the absolute emission source contributions, errors will increase with the 
increase of perturbations. In Fig. 1, we can see that the adjoint sensitivity results are close to the finite 
difference results, so that the adjoint sensitivity coefficients are likely to be valid over PM2.5 primary 
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emission reduction ratios from 5% to 90%, or at least over a modest range of emissions perturbations 
commensurate with typical emissions abatement strategies (10-30%). A new paragraph in red 
characters is added in Section 3.1 to clarify this, and Fig. 1 is added as Fig. S3 in the supplement. 

3b  Nonlinearity:  For  nonlinear models  of  PM2.5  formation,  adjoint  sensitivities  can  not  be  directly 

equated to source contributions, even if they are correctly coded. In my original response, I requested 

the  authors  clarify  this  issue  in  their  description  of  the  use  of  adjoint  sensitivities,  but  their 

modifications in this regard fell short. The abstract presents adjoint sensitivities as contributions, with 

no  consideration  for  this  issue.  The  first  paragraph  of  the  introduction  and  several  other  locations 

highlights the benefits of adjoint sensitivity analysis without recognizing the limitation of this approach 

for evaluating  complete  source  contributions.  The  authors need  to  think more  carefully  about how 

their  results  can be  considered. Over what  range of emissions perturbations,  to which  species,  are 

their  sensitivities  accurately  representative?  Did  they  test  this?  Or  there  are  other  studies  in  the 

literature to reference here? Does this impact their comparison to the forward modeling study of Zhai 

et al (2016)? 

Response: Thank you very much for your comments and we have revised the manuscript following 
your suggestions. Adjoint sensitivities are the tangent linear gradients of the objective function to 
emissions (or initial concentrations), and are equivalent to the increments of the objective function 
owning to small perturbations (Henze et al., 2007 and 2009). For nonlinear models of PM2.5 formation, 
the state of the system might change under large perturbations in input variables. Therefore, we are very 
caution to use sensitivities to represent emission sources contributions for large changes in emissions. 
The limitation of the adjoint approach for evaluating complete source contributions is added in 
the first paragraph of the introduction. A new paragraph marked in red color is added in Section 
3.1 to clarify this, and Fig. 1 is added as Fig. S3 in the Supplement. 

In this study, we only consider adjoint sensitivity of the peak PM2.5 concentration to its primary 
emission sources, and the peak PM2.5 concentration have a linear relationship with its primary particle 
sources in GRAPES-CUACE through finite difference tests (Fig. 1). As the adjoint results are close to 
the finite difference results, adjoint sensitivities are likely to be representative over PM2.5 primary 
emission reduction ratios from 5% to 90%. As discrepancies between the adjoint sensitivity results and 
the finite difference results increase with the increase of emission reduction ratios, the adjoint sensitivity 
coefficients at least are representative over a modest range of emissions perturbations commensurate 
with typical emissions abatement strategies (10-30%). Clarifications are added in Section 3.1 in red. 

There are several literatures that considered the representative of the adjoint sensitivities in source 
attribution. It turns out that the adjoint model is overall a promising tool for examining the 
dependence of aerosol concentrations on emissions (Henze et al., 2007).  

Take three typical researches for example: 

①  In the work by Henze et al. (2007), the authors explore the robustness of the aerosol sensitivities 
with respect to the magnitude of the emissions. It turns out that while individual sensitivities may be 
valid only over limited range, the sensitivity field as a whole appears fairly robust. ② Similarly, in 
another work by Henze et al. (2009), they point out that while adjoint sensitivity analysis is not strictly a 
method for source apportionment, it does have several attractive aspects for estimating the 
incremental influence of specific sources on air quality attainment. Then the authors present that the 
adjoint sensitivities are likely to be valid over a modest range of emissions perturbations commensurate 
with typical emissions abatement strategies (10-30%). ③ Zhang et al. (2015) implement the adjoint 
method in source apportionment of particulate matter pollution over North China. They use the 
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magnitudes of adjoint sensitivities to approximately represent source contributions to PM2.5 
concentrations. They also examined that the sum of the adjoint sensitivity accounts 86% of the 
simulated mean PM2.5 concentration, and point out that the discrepancy is mainly attributed to the 
nonlinear response of PM2.5 to emissions.  

In this study, several factors might impact the comparison of the adjoint results and the forward 
modeling study of Zhai et al (2016), for example, the differences in emissions accuracies, and the 
differences in meteorological and chemical mechanisms in MM5-CMAQ and GRAPES-CUACE 
models. Except for the above mentioned factors, compared with the forward modeling analysis which 
considers both primary and precursor sources of PM2.5, the deficiency of the adjoint analysis in this 
study is that we didn’t include PM2.5 precursor emissions. Nevertheless, through comparison, we find 
that the two modeling approaches are highly comparable in their assessments of atmospheric 
pollution control for critical emission regions. Overall, the adjoint sensitivities of peak PM2.5 
concentration to primary particulate emissions using the GRAPES-CUACE aerosol adjoint model 
can provide valuable reference on evaluating emission impacts on pollutant concentrations and 
air quality control. Clarifications are added in Section 4.5 in red. 

4.  I appreciate  the additional content on model evaluation. Still,  the performance here seems  to be 

presented in a somewhat overly optimistic light. The authors did not deeply consider reasons why their 

model  seems  to  overestimate  PM2.5  peaks  by  >200  μg/m3.  They mention  the  possibility  of model 

resolution error, but the biases seem large and typically in the opposite direction of model resolution 

bias, although  if the authors know that the measurement sites are  located  in  locations that are more 

pristine than the surrounding areas, this should be stated. It seems that other sources of error, such as 

uncertainties  in  emissions,  or  treatment  of  all  PM2.5  as  primary  species  (see  other  comments with 

regards  to  sulfate,  nitrate,  etc.) may  be  to  blame.  Lastly,  and  even more  importantly,  the  authors 

should  figure out how  these  types of model performance deficiencies  impact  their  interpretation of 

adjoint sensitivities. Can these be used to estimate uncertainties  in their sensitivity analysis as well? 

The  authors  also did not  address my previous  specific questions  about  the  ability  to  simulate  such 

peaks without  inclusion of heterogenous  chemical  reactions  recently  identified  (Wang  et  al., PNAS, 

2016,  doi:10.1073/pnas.1616540113;  Cheng  et  al.,  Science  Advances,  2016, 

doi:10.1126/sciadv.1601530) —  I would  have  thought  their model would  be  low  biased,  not  high 

biased. Please explain.   

Response: Thank you for your comments. In the revised manuscript, we clarified that the emission 
inventory also included SO2 and NOx (and NH3) besides sulfate and nitrate in the forward 
GRAPES-CUACE modeling. Secondary aerosol formations are important processes of atmospheric 
physics and chemistry with large uncertainties, based on the current understanding on atmospheric 
environment. Generally, three factors controlling the discrepancies in air quality modeling are 1) air 
pollutant emissions, 2) physical and chemical processes in the atmosphere and 3) meteorology 
especially in the boundary layer (An et al., 2013; Cheng et al., 2016; Wang et al., 2015a; Wang et al., 
2016). Overestimation of PM2.5 in this study might be attributed to the uncertainties of these three 
factors in model. As the following analysis mainly focus on the variations and contribution proportions 
of emission sources over different regions, adjoint sensitivity analysis are not significantly affected by 
overestimation of PM2.5 and these modeling results can be considered reliable. Clarifications are made 
in Section 3.3. 

The recently identified heterogeneous chemical reactions (Wang et al., 2016; Cheng et al., 2016) are 
missing sources of sulfate formation during high PM2.5 episodes in traditional chemical models (e.g.: 
the current GRAPES-CUACE modeling system). In future model development, we should try to include 
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recently identified chemical reactions in chemical models to improve the simulation performance. We 
suppose other deficiencies in model simulation and data observation mentioned above might offset the 
underestimation here.  

5: Most of the sensitivity results appear to be integrated across all sectors and species, and reflect the 

influence of all PM2.5 emissions.  It would be useful, however,  to know  the extent  to which different 

species  and  sector  contribute  as well,  as  policies  generally  target  particular  species  and  sectors.  It 

would also show another benefit of the adjoint modeling approach, which provides information across 

species and sectors without any additional model runs.   

Response: Thank you very much for your suggestion. Since the quantifying of relative contributions of 
local emission and regional transport is a critical issue for air pollution management and is still in 
debate, in this study, we focus on detection of critical emission source regions with the help of adjoint 
sensitivity analysis. To know the contribution of different species and sectors would be useful to policy 
making, and we have worked on emissions contributions from different species. Due to limited space of 
the paper, this part of study is not included in this work. 

Minor comments:   

‐ Abstract: missing a period.   

Response: The Global–Regional Assimilation and Prediction System coupled with CMA Unified 
Atmospheric Chemistry Environment (GRAPES–CUACE) aerosol adjoint model was applied to detect 
the sensitive emission sources of a haze episode in Beijing during 19–21 November 2012. 

‐ ISORROPIA is mis‐spelled.   

Response: Revised. 

‐  I was curious about their use of the word “unequilibrated”, so  I checked Henze et al. (2007).  In the 

latter,  this  word  was  used  specifically  with  regards  to  the  input  variables  for  the  aerosol 

thermodynamic equilibrium calculation.  It does not make  sense  to use  in  the current manuscript as 

written —  I  suggest  “…integrated  to  save  the model  state  variables  (concentrations)  in  checkpoint 

files…”.   

Response: Thank you. We have revised “unequilibrated data” to “model state variables” according to 
your suggestion. 

Abstract, last sentence: This is a key point, but it needs rewording. Suggest: “…controlling air pollutant 

sources from regions identified using adjoint sensitive analysis would lead to greater PM2.5 reductions 

per source control than from regions with the greatest emission intensities.” 

Response: Thank you. We have reworded this sentence according to your valuable suggestion. 

Introduction: The phrase  “adjoint  sensitive  zone” needs  to  reworded, or at  least defined, as  “zones 

with maximum adjoint sensitivities” or similar.   

Response: Thank you. “Zones with maximum adjoint sensitivities” is surely a clearer description of 
zones that are detected by adjoint sensitivity coefficients. We have reworded “adjoint sensitive zone” to 
“zones with maximum adjoint sensitivities”. 

Fig 5: Why is there also not a black line connecting the triangles showing the observation points? This 

would make it easier to compare the patterns of the observations as compared to the model. 

Response: Black lines connecting triangles are added in Fig. 5. 
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Section  4.3:  Although  now  defined  earlier,  as  requested,  it might  be  good  to  restate  here what  is 

defined as “local”. 

Response: Restated. 
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To Referee #2 

Suggestions for revision or reasons for rejection (will be published if the paper is accepted for final 

publication) 

This  study  attempts  to  quantitatively  identify  the  aerosol  contributions  from  different  regions  to  a 

typical  Beijing  haze  event  by  using  aerosol  adjoint  model.  Since  the  quantifying  of  relative 

contributions of  local emission and regional transport  is a critical  issue for air pollution management 

and  is  still  in  debate,  this  study  could  be  interest  of  readership  of ACP  journal  given  the  relatively 

comprehensive analysis and solid discussions performed in this study. But several concepts below still 

need a little more clarification before going to publication. 

1.  In  several places  (e.g.,  the  titles of  section 4.2,  Figs. 2  and 7‐10),  it  seems  this  study  focuses on 

primary  emission  sources.  But  the  modeling  study  by  GRAPES–CUACE  adopted  in  this  study  did 

consider  the  chemistry  of  secondary  aerosol  formation  and  thus  the  secondary  source  of  PM2.5, 

according  to  the  description  in  section  3.2. Why  the  authors  did  not  report  the  results  related  to 

secondary aerosol source? Or what the exact definition of “primary emission sources” here? To avoid 

confusion, please  also  clarify  this  in  abstract.  That  is, denote  that  this  study  is working on primary 

emission sources only.   

Response: Thank you for your suggestion. The forward GRAPES-CUACE modeling system consists of 
chemistry of secondary aerosol formation, as described in the first paragraph in section 3.2. In the 
second paragraph of section 3.2, we have stated that the current GRAPES-CUACE aerosol adjoint 
model consists of the adjoint of CAM, the adjoint of three interface programs and the adjoint of the 
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aerosol transport processes, and is therefore capable of simulating the sensitivities of the objective 
function to primary aerosol sources: BC, primary OC, primary sulphate, primary nitrate and fugitive 
dust particles. Clarifications have been made in the abstract, section 3.2, section 3.3, etc. 

2. In section 4.3, what the exact definition of “local” and “surrounding emission”? For example, how far 

geographically away from the receipt site in Beijing could be treated as the local emission? For example, 

the emission in Beijing municipality is local or surrounding ones? In addition, if the gas precursors were 

transported  from a  location of  the  long distance  to  the receipt site  in Beijing and  formed secondary 

aerosols, would this portion of locally formed aerosols be attributed to local or surrounding emission in 

this modeling study? 

Response: In this study, “local” refers to the target region that covers the entire Beijing municipality 
(area that in the black solid frame in Fig. 11), and “surrounding emissions” refers to emissions emitted 
in Hebei, Tianjin, Shanxi and Shandong provinces. Therefore, emissions in Beijing municipality are 
local emissions. Gas precursors that transported from a location of long distance to the receipt site in 
Beijing and formed secondary aerosols are attributed to surrounding emissions. 

Revisions in the manuscript: We have restated the definition of local and surrounding emissions at the 
beginning of section 4.3 as: Figure 8 illustrates the hourly instantaneous sensitivity coefficients to local 
Beijing (the target region that covers the entire Beijing municipality) and its surrounding emission 
sources (emissions from Hebei, Tianjin, Shandong and Shanxi provinces) (Figure 8a and 8b) and 
their corresponding time-integrated series (Figure 8c and 8d). 

3. The content  in Figure 1  (particularly Fig. 1e‐h)  is not  readable. Please provide clearer one.  In  the 

caption of Figure 11, both red and blue shaded in the figure denote sensitive Huabei? 

Response: Clearer content of Figure 1 are provided in the manuscript. Enlarged content of Figure 1 are 
then deleted in the Supplement. 

Yes, both red and blue shaded region denotes sensitive Huabei. To make it clear, we revised “red shaded 
and blue shaded” to “both red and blue shaded” in the caption of Figure 11. 
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Abstract. Air pollutant sources and regional transport are important issues in air quality control. The Global–Regional 

Assimilation and Prediction System coupled with CMA Unified Atmospheric Chemistry Environment (GRAPES–CUACE) 

aerosol adjoint model was applied to detect the sensitive emission sources of a haze episode in Beijing during 19–21 November 

2012. High PM2.5 concentration peaks occurred at 05:00 and 23:00 LT (GMT+8) over Beijing municipality on 21 November 

2012, which were set as the objective functions for the aerosol adjoint model. The sensitive emission regions of the first PM2.5 

peak were tracked to the west and south of Beijing with 2- to 3-day cumulative transport of air pollutants to Beijing, whereas 

the sensitive emission regions of the second peak were mainly located to the south of Beijing, where southeasterly moist air 

transport led to the hygroscopic growth of particles and pollutant convergence in front of the Taihang Mountains in the daytime 

of 21 November. The temporal variations of the sensitivity coefficients for the two PM2.5 concentration peaks reveal that the 

response time of Beijing haze pollution to local primary emissions is about 1–2 hours, and that to the surrounding primary 

emissions is about 7–12 hours. The upstream Hebei province has the largest impacts on the two PM2.5 concentration peaks, 

and the contribution of Hebei emissions to the first PM2.5 concentration peak (43.6%) is greater than to the second PM2.5 

concentration peak (41.5%). The second largest influential province is Beijing (31.2%), followed by Shanxi (9.8%), Tianjin 

(9.8%) and Shandong (5.7%) for the 05:00 PM2.5 peak, and Beijing (35.7%) followed by Shanxi (8.1%), Shandong (8.0%) 

and Tianjin (6.7%) for the 23:00 PM2.5 peak. The adjoint results were compared with the forward sensitivity simulations of the 

Models-3/CMAQ system. The two modelling approaches are highly comparable in their assessments of atmospheric pollution 

control schemes for critical emission regions, but the adjoint method has higher computational efficiency than the forward 

sensitivity method. This work also reflects that controlling air pollutant sources from regions identified using adjoint 

sensitive analysis would lead to greater PM2.5 reductions per source control than from regions with the greatest emission 

intensities.  
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1.  Introduction 

The application of the adjoint theory to atmospheric chemistry models can enable efficient calculation of sensitivities of a few 

variables or metrics with respect to a large number of input parameters (Marchuk, 1974; Sandu et al., 2005; Hakami et al., 

2007). Classic source-oriented atmospheric chemistry models use inputs of emissions to output the spatial-temporal variation 

of pollutants. By contrast, receptor-oriented adjoint models take the gradients of the objective function to model variables as 

inputs, and output the spatial-temporal variations of the sensitivity of the objective function to model parameters (Errico, 1997; 

Carmichael et al., 2008). Therefore, in concentration source sensitivity analysis problems, the calculation efficiency of the 

adjoint method is much higher than that of the traditional finite difference method, which requires repeated input perturbations 

and result comparisons (Wang et al., 2015). Moreover, the finite difference approach changes the state of the modelled 

atmosphere and inevitably incurs truncation and cancellation errors (Constantin and Barrett, 2014). The adjoint model 

integrates under certain atmospheric conditions while calculating gradients, and thus can provide exact sensitivities. Although 

the adjoint approach is not strictly a method for source apportionment and provides merely tangent linear derivatives 

(gradients) which are likely to be valid over only a limited range of values for the parameters (emissions), they do provide 

valuable information about the dependence of aerosol concentrations on emissions (Henze et al., 2007 and 2009; Zhang et al., 

2015). If we set the objective function as the pollutant concentration over a region at a point in time (or during a time period), 

the adjoint sensitivity approach can detect sensitive emission sources in detail by revealing the changes in concentration due to 

perturbations in emission sources.  

Beijing is a rapidly growing economic centre and densely populated metropolis, and its recent PM2.5 pollution problems have 

garnered considerable attention (Zhang et al., 2016; Sun et al., 2014; Guo et al., 2010; Wu et al., 2015). PM2.5 pollution in 

Beijing is significantly influenced by regional transport of pollutants from its environs, and joint control of air pollutant 

emission sources has been promoted. Research using approaches like the flux calculation method (An et al., 2007), the 

back-trajectory model (Zhai et al., 2016), and the observation analysis (Li et al., 2016) have revealed that southerly wind 

almost always resulted in high PM2.5 conditions in Beijing. Studies have also pointed out that more than 50% of PM2.5 

pollutants originate in surrounding provinces and cities, including southern Hebei, Tianjin, eastern Shanxi, and Shandong 

provinces (Jiang et al., 2015; Gao et al., 2016). Studies also show that joint regional air pollution control can be more 

cost-effective (Wu et al., 2015), and that joint control schemes in sensitive source zones (detected by a back-trajectory model) 

prior to unfavorable meteorological conditions can help reduce costs and improve efficiency (Zhai et al., 2016). The above 

studies either provided pollutant pathways through meteorological analysis or analyzed air pollutant concentration 

sensitivities to a limited group of emission sources. However, if air pollution is spatially and temporally traced back to its 

emission sources, decision making regarding air pollution can be better addressed. 
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Differently from back trajectories or statistical factor analysis, the adjoint approach accounts for chemical and physical 

processes combined with transport, and can efficiently estimate the incremental influence of specific sources on air quality 

(Henze et al., 2009). Recently, An et al. (2016) developed an adjoint model of GRAPES-CUACE and estimated the 

sensitivity of average black carbon (BC) concentrations over Beijing at the highest concentration time with respect to BC 

amounts emitted over the Beijing-Tianjin-Hebei region and pointed out the effectiveness of controlling the most influential 

regions during critical time intervals detected by the adjoint sensitivity analysis. Zhang et al. (2015) attributed sources of 

Beijing PM2.5 using the adjoint GEOS-Chem model and summarized that residential (49.8%) and industrial sources (26.5%) 

make the largest contributions, and that 45%–53% PM2.5 pollutants in Beijing and Tianjin are from local sources, whereas 

Hebei province sources contribute about 26%. Both Zhang et al. (2015) and An et al. (2016) showed the high efficiency and 

accuracy of atmospheric chemistry adjoint model in Beijing air pollutant source apportionment. 

In this study, we apply the newly developed GRAPES–CUACE (Global–Regional Assimilation and Prediction System 

coupled with CMA Unified Atmospheric Chemistry Environment) aerosol adjoint model (An et al., 2016) to track the sensitive 

emission sources of a high PM2.5 episode in November 2012 Beijing, during which time two PM2.5 concentration peaks occur 

and are set as the objective functions. By detecting sensitive emission sources of these two hourly PM2.5 peaks, our work 

advances the understanding of emission source impacts by providing detailed insights into the spatial and temporal 

variability of emission source contributions from each of the surrounding provinces as well as from local and environs 

transports. We then set the average PM2.5 concentration on 21 November as the objective function and compared the adjoint 

results with the Models-3/CMAQ assessments (Zhai et al., 2016). In addition, we also compared emission sources impacts to 

Beijing PM2.5 peak from zones with maximum adjoint sensitivities and emission intensive zones. This study explores the 

capability of the GRAPES–CUACE aerosol adjoint model in simulating the concentration–source relationships in detail and 

provides guidance for flexible environmental control policy. 

2. Synoptic analysis of the pollution episode  

Atmospheric stability and humidity over the mid-east region of China from 19 to 22 November 2012 were analysed in 

combination with Meteorological Information Comprehensive Analysis Processing System (MICAPS) results, the sounding 

stratification and the dew point-pressure curves (temperature-logarithmic pressure diagrams) at Nanjiao Station in Beijing 

(Figure 1), and the flow field pattern. Meanwhile, the forming processes of two pollution peaks at dawn and at night on 21 

November 2012 are also qualitatively analysed. From 19 to 20 November, Beijing was under the influence of a low-pressure 

system between two high pressures. During the daytime of 19 and 20 November, southerly winds prevail below 925 h Pa and 

1000 h Pa, and the relative humidity increased during this time period. During the night-time periods of 19 and 20 November, 

southerly winds shifted to northeasterly and easterly winds, which brought pollutants together with water vapour to Beijing. 
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Meanwhile, thermal inversions existed below 850hPa during these two days. The above analysis reveals that PM2.5 

concentration accumulation was tightly connected with southerly wind during the daytime and the easterly wind at night. 

During the daytime on 21 November, the Beijing-Tianjin-Hebei area was at the bottom of a high pressure system, with easterly 

winds prevailing in the 850hPa layer. The thermal inversion remained, and the relative humidity continued to increase. 

Mid-south Hebei was influenced by cold air and was controlled by northerly winds, while Beijing was mainly under the 

influence of an easterly wind that promoted pollutant convergence in front of the Taihang Mountains and carried abundant 

water vapour which accelerated hygroscopic growth of local particles. It can be concluded that the pollution peak on the night 

of 21 November is not only the result of pollutant accumulation during the previous 2 days, but also the result of hygroscopic 

growth of local particles and pollutant convergence caused by the easterly wind during the daytime of 21 November. 

According to previous research (Chen et al., 2016; Li et al., 2016), this is a typical synoptic episode that gradually generates air 

pollutants over Beijing until a sudden and significant improvement of air quality results from strong winds. This is also the 

same episode that is analysed in Zhai et al. (2016), thus facilitating further comparisons. 

3. Methods 

3.1. Concepts of adjoint sensitivity analysis 

Sensitivity analysis plays an important role in atmospheric environment research. Knowledge of the impacts of emission 

sources on pollutant concentrations can help enact effective air pollution control strategies. The adjoint model is efficient at 

calculating the sensitivity of an objective function to any model variable at any time step. Figure S1 contains schematic 

diagrams of the forward atmospheric chemistry model and adjoint model. The atmospheric chemistry model takes emissions (S: 

S1, S2, …, Sn, …, SN) as inputs and outputs pollutant concentrations (C: C1, C2, …, Cm, …, CM) through forward integration. 

Any emission source Sn might has an influence on the concentration at any receptor site Cm. A pair of emission source 

sensitivity tests, using the traditional source-oriented finite difference method, can obtain the contribution from one emission 

source (or a combined group of emission sources) to pollutants at any receptor site. Therefore, with N emission sources and M 

receptors in total, the pollutant contribution from each of the N emission sources to each of the M receptors (an N×M matrix) 

can be obtained through N+1 iterations of forward integration (one base simulation included). The receptor-oriented adjoint 

model is complementary to the forward model. The sensitivity map of a scalar function of pollutant concentration (the 

objective function) to every emission source (N×1 matrix) can be obtained through one backward adjoint integration (Sandu, 

2005; An et al., 2016; Zhai, 2015), and the above-mentioned N×M matrix requires M iterations of adjoint integration. 

Theoretically, the resulting N×M matrix from the forward and backward methods are the same within a small perturbation 

(Marchuk, 1986), considering the nonlinearity of PM2.5 formation.  
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Adjoint sensitivities are the tangent linear derivatives (gradients) of the objective function to model parameters (emissions), 

and are likely to be valid over only a limited range of values for parameters (Henze et al., 2007 and 2009). In this study, the 

GRAPES-CUACE aerosol adjoint model considers only primary particulate sources (explained in Section 3.2), and the 

primary particulate emission sources and PM2.5 concentrations have an approximately linear relationship (see Fig. S3 in the 

supplement). Because of the linear relationship between PM2.5 concentration and its primary emission sources, the magnitude 

of perturbations will not influence the representative of the adjoint sensitivities when comparing contribution proportions of 

emission sources from different regions. However, if using the adjoint sensitivities to represent the absolute emission source 

contributions, errors will increase with the increase of perturbations. In Fig. S3, we can see that the adjoint sensitivity results 

are close to the finite difference results, so that the adjoint sensitivity coefficients are likely to be representative over PM2.5 

primary emission reduction ratios from 5% to 90%, or at least over a modest range of emissions perturbations commensurate 

with typical emissions abatement strategies (10-30%). Therefore, an atmospheric chemistry model is suitable for simulating 

air pollution processes, whereas an adjoint model is efficient in quantifying receptor-source relationships. 

The adjoint model can work out the sensitivity of the objective function J to any emission source Sn, denoted ∂J/∂Sn. If we 

compare a group of uniformly distributed emission sources, larger ∂J/∂Sn values indicate greater influence of emission source 

Sn on J. However, emission intensities are obviously not uniform between urban and rural areas, and seasonal and diurnal 

changes add even more nonuniformity. In addition, emissions of different species may have different units and may differ in 

order of magnitude. Under these circumstances, the relative contribution of each emission source cannot be determined only by 

the gradient ∂J/∂Sn. Therefore, we define the sensitivity coefficients in this study as (∂J/∂Sn)·Sn, which shares the same unit 

with the objective function, and reflects the absolute changes in the objective function due to perturbations in emission sources, 

thus making contrast among emissions sources more convenient. 

3.2. Model description 

The GRAPES–CUACE is an online coupled atmospheric chemistry modelling system (Wang et al., 2009; Zhou et al., 2012; 

Jiang et al., 2015) developed by the China Meteorological Administration (CMA). GRAPES-Meso is a regional 

meteorological model (Xue et al., 2008) within GRAPES–CUACE, and CUACE is an atmospheric chemistry modelling 

system independent of meteorological and climate models (Gong et al., 2009). The CUACE system adopted the 

size-segregated multi-component aerosol algorithm CAM (Canadian Aerosol Module) (Gong et al., 2003) as its aerosol 

module and the second generation of Regional Acid Deposition Model (RADM Ⅱ) mechanism (Stockwell et al., 1990) as 

its gaseous chemistry. CAM contains numerous major aerosol processes in the atmosphere: generation, hygroscopic growth, 

coagulation, nucleation, condensation, dry deposition/sedimentation, below-cloud scavenging, aerosol activation and chemical 

transformation of sulphur species in clear air and in clouds (Gong et al., 2003), which is coherently integrated with the gaseous 

chemistry in CUACE. Since the nitrates and ammonium formed through the gaseous oxidation are unstable and prone to 
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further decomposition back to their precursors, CUACE adopts ISORROPIA to calculate the thermodynamic equilibrium 

between them and their gas precursors (Zhou et al., 2012). The CUACE system is compatible with various kinds of 

meteorological models and can be used as a common platform for atmospheric constituent calculation. 

The GRAPES–CUACE aerosol adjoint model was developed by applying adjoint theory to the GRAPES–CUACE modelling 

system. The current version of the adjoint model includes the adjoint of CAM (Canadian Aerosol Module, Gong et al., 2003), 

the adjoint of the three interface programmes that pass meteorological variable values from GRAPES-Meso to chemical 

processes in CUACE, and the adjoint of the aerosol transport processes. After the adjoint model is built, its accuracy is 

verified according to rigorous mathematical derivations. Details of the adjoint verification can be found in An et al. (2007). 

Therefore, the GRAPES–CUACE aerosol adjoint model is capable of coupling major aerosol processes contained in CAM 

(described in the above paragraph) in the atmosphere into its simulations of the sensitivities of the objective function to 

primary aerosol sources. Hence Sn defined in section 3.1 includes BC, primary OC, primary sulphate, primary nitrate and 

fugitive dust particles. 

Figure S2 shows the operational processes used in this study. In order to ensure that the forward and the backward models were 

in the same chemical state, the forward GRAPES–CUACE model was first integrated to save the model state variables 

(concentrations) in checkpoint files at the beginning of each external time step (Sandu et al., 2005; Henze et al., 2007). These 

saved variables were then input at each cheque point during the backward adjoint integration. To handle intermediate variables, 

this study adopted recalculation and stack storage (PUSH & POP) schemes. Details about the construction, framework and 

operational flowchart of the GRAPES–CUACE aerosol adjoint model are discussed in An et al. (2016).  

3.3. Model setup, data and validation 

The simulated domain in this study covered northeast China (105°E –125°E, 32.25°N –42.25°N) (Figure 4), which included 

41×23 simulation grid cells with 31 vertical layers at the resolution of 0.5°×0.5°. The model integrated at a time step of 300s. 

The National Centers for Environmental Prediction (NCEP) Final Analysis (FNL) dataset was used to define the initial 

meteorological field and the meteorological boundary conditions. The initial and boundary values for O3 and OH were taken 

from climatic means and zeros for each aerosol species during the first run, then the daily initial values of all chemical species 

were determined by the 24-h forecast made by the previous day's simulation. To eliminate the discrepancy between the 

idealized initial concentration field and the real concentration field, the simulation started at 20:00 Beijing LT (GMT+8) on 10 

November 2012 and the analysed period ran from 20:00 LT on 17 November 2012 to 20:00 LT on 22 November 2012. 

This study used hourly gridded off-line emission source processed by the SMOKE module, which is based on statistical data 

from government agencies for 2007 for anthropogenic emissions. Anthropogenic emissions include five aerosol species of 

black carbon (BC), primary organic carbon (OC), primary sulphate, primary nitrate and fugitive dust particles, in addition to 

27 gases, such as VOCs, NH3, CO, CO2, SOx and NOx (Cao et al., 2011). Emission source types include biomass combustion, 
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residences, power generation, industry, transportation, livestock and poultry breeding, fertilizer use, waste disposal, solvent 

use, and light industrial product manufacture (Cao et al., 2011). Besides, natural sea salt and natural sand/dust emissions are 

also calculated in the model.  

Figure 2 illustrates the gridded distribution of the overall primary particle sources and Fig. 3 shows the hourly variability of 

the overall particle sources (as well as sulphate as an example) in Beijing. In Fig. 2, there are four intensive source zones 

over Beijing and its surrounding provinces: 1) southern Beijing and Tianjin (TJ), 2) southern Hebei (HB), 3) middle Shanxi 

(SX) and 4) north central Shandong (SD). Meanwhile, there is a secondary intensive source zone over northern SX. In Fig. 3, 

overall primary particle source emission intensity decreases to its lowest level at 05:00. Thereafter, emission intensity begins 

to increase and remains high from 11:00 to 19:00, with a little trough at 14:00. The source intensity temporal profile of every 

particle species is similar, and sulphate is illustrated for example. 

Measurements used in this paper were obtained from the observation stations of Chinese Research Academy of 

Environmental Sciences (CREAS: 116.39°E, 40.03°N), the Guanyuan (GY: 116.34°E, 39.93°N) and the Dingling (DL: 

116.22°E, 40.29°N). The CRAES station locates in northwest Chaoyang District at the Chinese Academy of Environmental 

Sciences, and the GY station locates at Xicheng district. Both the CREAS station and the GY station are representative urban 

observation stations in Beijing. The DL station locates in relatively clean Changping district at northern Beijing and provides 

background values of observed PM2.5 concentrations (Fig. 4). 

The reliability of the GRAPES-CUACE modelling system is evaluated by comparisons with hourly PM2.5 concentration 

observations from 20:00 LT 17 November to 20:00 LT 22 November at CREAS, GY and DL observational stations (Figs. 

5a-c, Table 1). Figure 5a-c show the observed and simulated hourly PM2.5 concentration curves from 20:00 LT 17 November 

to 20:00 LT 22 November, and Table 1 lists the statistical metrics. Figure 5a-c reveal that the results of the GRAPES–CUACE 

modelling system correspond well with the synoptic analysis of the pollution episode. The modelling system reproduces the 

PM2.5 accumulation processes from 19 to 21 November in Beijing, and captures the two PM2.5 hourly concentration peaks 

during the dawn and night of 21 November, as well as the trough during 21 November afternoon at CREAS, GY and DL 

stations, with correlation coefficients (Rs) of 0.87, 0.91 and 0.69, respectively (Table 1). However, the model overestimates 

PM2.5 concentration values over the period with normalized mean biases (NMBs) of 57.2%, 108.1% and 10.7% at CREAS, 

GY and DL stations, respectively. The over-estimation is also reflected by the positive mean bias (MB) and mean fractional 

bias (MFB) values. MFBs at CREAS, GY and DL stations are 53.6%, 65.2% and 15.6%, respectively, whereas 

corresponding mean fractional errors (MFEs) are correspondingly 60.1%, 68.3% and 39.6%. MFEs and MFBs are all within 

the criteria proposed by Boylan and Russel (2006) —that is, model performance criteria have been met when MFE and the 

MFB are less than or equal to approximately +75% and ±60%, respectively—except for the MFB at GY, which is a little 

high. Secondary aerosol formations are important processes of atmospheric physics and chemistry with large uncertainties, 
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based on the current understanding on atmospheric environment. Generally, three factors controlling the discrepancies in air 

quality modeling are 1) air pollutant emissions, 2) physical and chemical processes in the atmosphere and 3) meteorology 

especially in the boundary layer (An et al., 2013; Cheng et al., 2016; Wang et al., 2015a; Wang et al., 2016). Overestimation 

of PM2.5 in this study might be attributed to the uncertainties of these three factors in model. Prior studies (Zhou et. al., 2012; 

Wang et al., 2015a; Wang et. al., 2015b; Jiang et. al., 2015) have proven the stable simulation performance of the GRAPES–

CUACE modelling system in reproducing air pollution levels and variation trends over northeast China. Above all, the 

following analysis mainly focus on the variations and contribution proportions of emission sources over different regions, 

therefore, adjoint sensitivity analysis are not significantly affected by overestimation of PM2.5 and these modelling results can 

be considered reliable. 

4. Results 

4.1. Simulated haze episode and objective function 

Figure 6 shows the simulated surface PM2.5 concentration and wind field variations from 17:00 LT on 19 November to 11:00 

LT on 22 November It can be seen that the simulation results are consistent with the qualitative weather analysis of this time 

period. From 19 to 20 November, PM2.5 accumulated in Beijing under the influence of a convergent wind field pattern: a 

southerly wind field to the south, an easterly wind field to the east and a westerly wind field to the west. From 5:00 LT to 11:00 

LT on 21 November, PM2.5 concentrations exceeded 550μg m-3 over southern Beijing, south-central Hebei and northwest 

Tianjin. After this peak, PM2.5 concentration over Beijing, south-central Hebei and Tianjin decreased to a trough in the 

afternoon, before rising again above 550μg m-3 at 23:00 LT. The decrease of PM2.5 from the morning to the afternoon was 

typical for Beijing, and resulted mainly from diurnal variation of the planetary boundary layer, with vertical mixing after 

sunrise effectively diluting pollutants (Zhao et al., 2009; Liu et al., 2015; Tang et al., 2016). The concentration peak at 23:00 

LT was driven by the influence of the easterly winds, which caused pollutant convergence against the Taihang Mountains, and 

carried abundant water vapour that promoted local hygroscopic growth. Afterwards, during the daytime of 22 November, a 

notable northwesterly wind dispersed pollutants in Beijing, thus ending this pollution episode. 

Beijing municipality (area that cover both rural and urban Beijing) experienced two hourly PM2.5 concentration peaks at 5:00 

LT and 23:00 LT on 21 November (Figure 5d), similar to those observed at the three observation stations. These peaks resulted 

in the high daily average PM2.5 concentration on 21 November, which was analysed in previous research (Zhai et al., 2016). In 

order to analyse the critical emission sources of the two hourly PM2.5 concentration peaks, we took advantage of the adjoint 

model in simulating concentration-emission relationships and defined two objective functions as the hourly mean PM2.5 

concentration over Beijing at (i) 5:00 LT and (ii) 23:00 LT on 21 November. To demonstrate the reliability and efficiency of 

the GRAPES–CUACE aerosol adjoint model to provide guidance toward effective and flexible air quality control designs, a 
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third objective function was defined as (iii) average PM2.5 concentration over Beijing on 21 November. Subsequently, 

comparisons between results from the GRAPES–CUACE aerosol adjoint model and the Models-3/CMAQ assessments (Zhai 

et al., 2016) were made. 

4.2. Spatial distribution of primary PM2.5 emission sources sensitivity coefficients 

Figure 7 illustrates the distribution of time-integrated sensitivity coefficients to emission sources for the two concentration 

peaks in the hourly PM2.5 in Beijing. The sensitivity coefficients of the objective function to emission sources connected 

pollutants with emissions and revealed the incremental impacts of emissions on peak PM2.5 concentrations. The larger the 

sensitivity coefficient value is, the greater its influence on the objective function J. For example, the largest sensitivity 

coefficient in Figure 7d was in the cell that includes Daxing district, with a value of 22.4μg m-3. This indicates that emissions 

emitted in this area had the greatest influence on the peak concentration when integrated over 72 hours. If emissions were 

reduced within a small range, decrease of PM2.5 concentration should be linear. For example, if emissions from this cell were 

reduced by N% from 05:00 LT 18 November to 05:00 LT 21 November, the target PM2.5 concentration would decrease by 

N%*22.4μg m-3. 

In Figure 7a and 7d and Figure 7e and 7h, with the accumulation along inverse time sequence, the more influential regions 

(regions with relatively larger sensitivity coefficients) extended from local Beijing (the target region that covers the entire 

Beijing municipality) to its surrounding provinces. This phenomenon reflects that in this pollution episode, PM2.5 in Beijing 

was not only the result of local emissions, but also the result of emissions from surrounding regions, including Hebei province, 

Tianjin and even Shanxi and Shandong provinces. Emissions from the surrounding areas were continuously transported to 

Beijing 2 to 3 days ahead of the peak pollution day, leading to the observed increase in Beijing’s air pollutant concentration. 

There are differences in the variations of the more sensitive emission regions of these two PM2.5 concentration peaks. First, 

comparing the 12-hour cumulative sensitivity coefficients distribution in Figure 7b and 7f, we can see that emissions to the 

southwest of Beijing already had a clear influence on the 05:00 LT 21 November PM2.5 concentration peak (Figure 7b), 

however, for the 23:00 LT 21 November PM2.5 concentration peak, influential emission sources still concentrate over Beijing 

municipality (Figure 7f), with only a small fraction of influential emissions coming from east and south of Beijing. This is due 

to the southwesterly airstream positioned to the southwest of Beijing from 23:00 LT on 20 November to 05:00 LT on 21 

November and the southeasterly water vapour import during the afternoon and night of 21 November, which caused moisture–

absorption growth of local particles and brought pollutants from Tianjin. 

Second, it can be seen from the distributions of the 24-h (Figure 7c and 7g) and 72-h (Figure 7d and 7h) cumulative sensitivity 

coefficients that sensitivity coefficients both in and around Beijing had relatively large values, which reflects that both of these 

PM2.5 concentration peaks are influenced by local and surrounding emissions. However, the most influential emission regions 

differed between the two PM2.5 concentration peaks. For the first PM2.5 concentration peak, the key 24-h source regions (Figure 
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7c) are distributed over Beijing and the west and south of Beijing and the key 72-h source regions (Figure 7g) are to the 

northeast, in Shanxi province. However for the second PM2.5 concentration peak, the key 24-h source regions are mainly 

located to the south of Beijing, and the key 72-h source regions are to the west of Beijing (Shanxi province) (Figure 7h), and 

cover a smaller area than that for the first PM2.5 concentration peak (Figure 7d). 

The results of these simulations show that the variation of the sensitivity coefficients distribution, the meteorological condition 

and the pollution evolution processes correspond with each other very well. This indicates that the GRAPES–CUACE aerosol 

adjoint model is capable of estimating the sensitivity of concentration to emission sources by propagating a perturbation in 

concentration backward in time with incorporating meteorological and chemical processes. 

4.3. Local and surrounding emission sources influence on peak PM2.5 concentrations 

Figure 8 illustrates the hourly instantaneous sensitivity coefficients to local Beijing (the target region that covers the entire 

Beijing municipality) and its surrounding emission sources (emissions from Hebei, Tianjin, Shandong and Shanxi provinces) 

(Figure 8a and 8b) and their corresponding time-integrated series (Figure 8c and 8d). The magnitudes of the sensitivity 

coefficients reflect the incremental influence of local and surrounding emissions to the objective PM2.5 peaks. It can be seen 

that the instantaneous sensitivity coefficients of the PM2.5 concentration peaks to local (red closed squares) and surrounding 

(red open squares) emissions ascended to their maximal points before showing a decreasing tendency. However, detailed 

comparisons of the hourly contribution of local and surrounding emissions revealed their significant differences.  

Analysing Figure 8a and 8b along a reversed time sequence, the maximum of the local emission sensitivity coefficients (red 

closed squares) and the PM2.5 concentration peaks (blue closed circles) appeared at almost the same time, with the latter 

delayed by 1 to 2 hours. This indicates that local emissions released 1 to 2 hours ahead of the PM2.5 peak values have the largest 

influence on the peak pollution concentrations. After the sensitivity coefficient maximum points, local emission sensitivity 

coefficients decrease sharply to minimal values at 14 hours (for the 05:00 PM2.5 peak) or 19 hours (for the 23:00 PM2.5 peak) 

ahead of the pollution peak and then stay low. This revealed that PM2.5 generated from local emissions was transported away 

from Beijing after about 14–19 hours. 

In contrast, maximal sensitivity coefficients of the surrounding emissions (red open squares) occurred 7–12 hours ahead of the 

PM2.5 concentration peaks (Figure 8a and 8b), which indicates a 7- to 12-hour delay for emissions from surrounding areas to 

arrive to Beijing. As with backward integration, sensitivity coefficients show overall decreasing trends with periodic 

fluctuations. For the first PM2.5 concentration peak (05:00 LT 21 November), three maximal contributions from surrounding 

areas (Figure 8a) appeared at 17:00 LT 20 November (12 hours ahead of the target time), 1:00 LT 20 November (28 hours 

ahead of the target time) and 4:00 LT 19 November (49 hours ahead of the target time), respectively, along the reversed time 

sequence. The first time-reversed relative maximal sensitivity coefficient, at 17:00 LT on 20 November is 7.5μg m-3, while the 

second and the third time-reversed relative maximal sensitivity coefficients at 1:00 LT on 20 November and 4:00 LT on 19 
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November are 5.2μg m-3 and 1.5μg m-3 respectively. For the second PM2.5 concentration peak (23:00 LT on 21 November) 

(Figure 8b), the relative maximal contributions from surrounding areas (red open squares) appear at 16:00 LT on 21 November 

(7 hours ahead of the objective time), 20:00 LT on 20 November (27 hours ahead of the objective time), 23:00 LT on 19 

November (48 hours ahead of the objective time) and 3:00 LT 19 November (68 hours ahead of the objective time), and their 

corresponding sensitivity coefficients are 5.3μg m-3, 5.4μg m-3, 2.6μg m-3 and 0.9μg m-3 respectively. It is worth noting that 

sensitivity coefficients maximal points for the 23:00 PM2.5 peak appear at time points around sensitivity coefficients 

maximal points for the 05:00 PM2.5 peak. The sensitivity coefficients around the second maximal contribution, 

approximately from 17:00 LT on 20 November to 0:00 LT on 21 November, remain at a relatively large value (about 4.7 to 

5.4μg m-3), even slightly larger than that of the first maximal sensitivity coefficient. This is because the second PM2.5 

concentration peak is cumulated on the basis of the first high PM2.5 concentration peak, thus emissions from the surrounding 

areas from the night on 20 November to early in the morning on 21 November also have a large influence on the second PM2.5 

concentration peak, almost slightly rivalling the influence of the later emissions sensitivity peak. 

Based on Figure 8, we can also see that for both PM2.5 concentration peaks, the dominant emission source areas shifted from 

the local to the surroundings over backward time sequence (Figs. 8c and 8d). For the first PM2.5 concentration peak (05:00 LT 

on 21 November) (Figure 8c), the cumulative local emission sensitivity coefficients (red closed squares) were larger than the 

surrounding emission sensitivity coefficients (red open squares) from 12:00 LT on 20 November to 05:00 LT on 21 November 

(lasted for 17 hours), which indicates that local emissions dominated during this 17-hour time period. For the second PM2.5 

concentration peak (23:00 LT on 21 November) (Figure 8d), local emissions dominated from 21:00 LT on 20 November to 

23:00 LT on 21 November, which lasted for 26 hours, 9 hours longer than that of the first PM2.5 peak pollution. This 

phenomenon again indicates the tiny effect of emissions transport processes on 21 November, and that the increase of PM2.5 

concentration on 21 November is mainly due to local generation. This reinforces the importance of emissions from 

surrounding regions in accumulating the first PM2.5 concentration peak. 

4.4. Emission sources impacts from different provinces around Beijing to peak PM2.5 concentrations 

We then divided emission sensitivity coefficients into different provinces over Beijing’s surroundings to investigate their 

influence on the PM2.5 peaks over Beijing municipality. Fig. 9 illustrates the hourly instantaneous sensitivity coefficients to 

emission sources from Beijing municipality (BJ), Hebei province (HB), Tianjin city (TJ), Shanxi province (SX) and 

Shandong province (SD) (Figs. 9a and 9b), their corresponding time-integrated series (Figs. 9c and 9d) and the overall 

contribution proportions of emission sources from each province to the PM2.5 concentration peaks (Figs. 9e and 9f). As shown 

in Fig. 9, emission sources impacts from BJ, HB, TJ, SX and SD on BJ PM2.5 peaks are quite different in both variation 

trends and magnitudes. 
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For the 05:00 of 21 November PM2.5 peak, emission sources from HB contribute the most among surrounding provinces, and 

HB’s hourly sensitivity coefficients variation shows consistent periodic fluctuations with that of surrounding emissions. 

Three maximal points of the HB hourly sensitivity coefficients variation occur at the same time as that of surrounding 

emission sources. Corresponding sensitivity coefficients are 5.3μg m-3, 3.2μg m-3 and 0.8μg m-3, respectively (Fig. 9a). The 

largest influential time period of emissions from TJ appeared 13 h ahead of the objective time (at 16:00 20 November), 

followed by an obvious secondary maximal point that appeared 24 h ahead of the objective time (at 05:00 20 November). 

Sensitivity coefficients from SX show a small peak (about 0.7μg m-3) 9 h ahead of the objective time (at 20:00 20 

November), which is caused by a secondary intensive emission zone in northern SX and relatively close to BJ (Fig. 2). As 

intensive emission sources in SX and SD are far from BJ (Fig. 2), it took 33–36 h for SX and SD emissions to reach BJ. 

For the 23:00 November 21 PM2.5 peak, it’s worth noting that, except for the maximal sensitivity coefficients of HB and TJ 

at 16:00 21 November (7 h ahead of 23:00 21 November), prior sensitivity coefficient maximal points appeared at the same 

time as the maximal points of sensitivity coefficients when the 05:00 21 November PM2.5 concentration peak was set as the 

objective function. For example, for both PM2.5 concentration peaks, sensitivity coefficients of TJ emission sources reached a 

maximal point at 16:00 20 November, and SX emission source sensitivity coefficients showed two maximal points at 20:00 

20 November and 20:00 19 November in turn. The situations at HB and SD are similar, as even when maximal points do not 

appear at the exact same time, high value periods are consistent for the two objective functions. The above phenomenon 

again revealed that the 23:00 21 November PM2.5 concentration peak was accumulated on the basis of the 05:00 21 

November PM2.5 concentration peak, and that if the 05:00 21 November PM2.5 concentration peak can be effectively reduced, 

the PM2.5 concentration peak at 23:00 21 November can be reduced accordingly, thus decreasing the overall PM2.5 

concentration on 21 November. These results also reflected the adjoint model’s advantage in detecting temporal-spatial 

sensitive emission sources in detail. 

Figs. 9c and 9d show that along the backward time sequence, time-integrated sensitivity coefficients of HB continuously rise 

after time-integrated sensitivity coefficients of other provinces are prone to remain constant. At around 02:00 to 03:00 20 

November, the time-cumulated emissions influence from HB exceeded that from local BJ emissions for both PM2.5 peaks, 

which reflected that emissions from HB play a leading role in pollutant accumulation for the first BJ PM2.5 peak, and that 

local emissions influence dominates between the two PM2.5 peaks, that is, during the the daytime of 21 November. 

The hourly sensitivity coefficients in Figs. 9a and 9b show that emission source impacts from Beijing and each surrounding 

province decrease to negligible values (close to zero) 72 h ahead of the objective time points. Meanwhile, corresponding 

time-integrated sensitivity coefficients in Figs. 9c and 9d also stop increasing 72 h prior to the objective time points. 

Therefore, by integrating sensitivity coefficients 72 hours ahead of the two PM2.5 concentration peaks, we can obtain the 

overall contribution proportions of emission sources from each province to the BJ PM2.5 peaks (Figs. 9e and 9f). Among all 
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provinces, HB has the largest impact on the two PM2.5 concentration peaks, and the contribution of HB emissions to the first 

PM2.5 concentration peak (43.6%) is greater than to the second PM2.5 concentration peak (41.5%). The second largest 

emission source contributing province is Beijing (31.2%), followed by SX (9.8%), TJ (9.8%) and SD (5.7%) for the 05:00 

PM2.5 peak, and Beijing (35.7%) followed by SX (8.1%), SD (8.0%) and TJ (6.7%) for the 23:00 PM2.5 peak.  

From all the above analysis, we can conclude that joint control of air pollutant sources with Hebei province, Tianjin city, 

Shandong and Shanxi provinces 2 to 3 days ahead of the first PM2.5 concentration peak can effectively reduce PM2.5 

concentration accumulation due to transported pollutants, thus decreasing the concentrations of the BJ PM2.5 peaks. 

4.5. Comparisons of the adjoint results with Models-3/CMAQ assessments 

Previous research used a back-trajectory model, FLEXPART, to locate sensitive emission regions of Yanqihu, Beijing in 

November 2012. The study then used the Models-3/CMAQ modelling system to quantify the effects of emission reduction 

schemes at different ratios, during different time periods and over different regions on PM2.5 concentration reduction on 21 

November in Beijing (Zhai et al., 2016). Based on this, we set the average PM2.5 concentration over Beijing municipality on 21 

November as the objective function and compared the adjoint results with the Models-3/CMAQ assessments. Figure 10 

illustrates the time-integrated sensitivity coefficient distributions when the Beijing average PM2.5 concentration on 21 

November was set as the objective function. The magnitudes of the sensitivity coefficients reflect the incremental influence 

of primary emission sources to the objective PM2.5 concentration. As with previous research (Zhai et al., 2016) that advocated 

joint control of emissions with surrounding provinces 2 to 3 days ahead of the most polluted day, adjoint time-integrated 

sensitivity intensified and extended during 48- to 72-h backward time integration.  

In order to assess the adjoint sensitive source zone on decreasing PM2.5 concentration over Beijing and to compare the adjoint 

results with the Models-3/CMAQ assessments, we referred to the research by Zhai et al. (2016) and selected four emission 

regions: the overall Huabei region (HuaB), the sensitive Huabei region (HuaB-sens), the overall Beijing municipality (BJ) and 

the sensitive Beijing region (BJ-sens) (Figure 11). Grid cells with 72-h cumulative sensitivity coefficients larger than 3μg m-3 

were included in the sensitive emission regions (HuaB-sens and BJ-sens), and grid cells with smaller sensitive values are 

outside the sensitive emission regions. Therefore, sensitive emission regions have relatively larger impact on the PM2.5 peak 

concentrations than regions outside them. Here the HuaB-sens accounts for 10.2% the area of HuaB and the BJ-sens accounts 

for 60.0% the area of BJ, which makes them analogous to the regions defined by Zhai et al. (2016). In the work by Zhai et al. 

(2016), HuaB-sens accounts for 17.6% of the area of HuaB and BJ-sens accounts for 54.2% of the area of BJ. In addition, 

based on emission magnitudes (Fig. 2), we defined regions with emission intensities larger than 4.1×10-7g·s-1 within HuaB as 

the “Emis-intensive” regions (Fig. 11). The Emis-intensive region has the same area as that of the HuaB-sens. 

Table 2 lists the ratios of the time cumulative sensitivity coefficients to peak PM2.5 concentration (SC/PC) over the BJ, 

BJ-sens, HuaB, HuaB-sens, and Emis-intensive regions at 3 different time points: 0 days (d0), 1 day (d1) and 2 days (d2) in 



22 
 

advance of the most polluted day. The SC/PC reflects the reduction ratios of peak PM2.5 concentration due to absence of 

emissions over different regions and during different periods, that is, emission source contribution ratios to peak PM2.5 

concentration. From Table 2, we can see that the adjoint results are highly consistent with the Models-3/CMAQ system results 

(Zhai et al., 2016). The 21 November PM2.5 concentration was an accumulated result from emissions released in the day or two 

days leading up to the most polluted day, rather than a simple result of emissions on 21 November. For all the BJ, BJ-sens, 

HuaB and HuaB-sens regions, emissions contribution ratios grew from ‘d0’ to ‘d2’ (‘d0’, ‘d1’ and ‘d2’ are defined in the 

caption of Table 2), especially from ‘d0’ to ‘d1’. The contribution ratios of emissions from BJ (and BJ-sens) and HuaB (and 

HuaB-sens) increased by 6.2% (5.8%) and 31.9% (18.9%), respectively, from ‘d0’ to ‘d1’. Thereafter, the contribution ratios 

again increased by 0.6% (0.5%) and 9.6% (3.6%), respectively, for emissions over BJ (or BJ-sens) and HuaB (or HuaB-sens) 

from ‘d1’ to ‘d2’. The above phenomenon also indicates that, with the accumulation of time-reversed integration from 48h to 

72h prior to 21 November, emission source contributions from HuaB (or HuaB-sens) to peak PM2.5 concentration increases 

more obviously, while emission source contributions from BJ (or BJ-sens) hardly increase at all. This can be explained by 

surrounding emissions being continuously transported to Beijing 2 to 3 days ahead of the most polluted day (Zhai et al., 2016). 

Similarly to the work in Models-3/CMAQ assessments, Table 3 shows comparisons of sensitive emission, full emission, and 

Emis-intense region source contribution effects and efficiencies to peak PM2.5 concentration. In Table 3, S/F(effect) in the 

BJ-sens column refers to the ratios of sensitivity coefficients over BJ-sens to sensitivity coefficients over BJ, and S/F(effect) 

in the HuaB-sens (or the Emis-intense) column refers to the ratios of sensitivity coefficients over HuaB-sens (or 

Emis-intense) to sensitivity coefficients over HuaB. Correspondingly, S/F(efficiency) refers to the ratios of sensitivity 

coefficients per unit area over BJ-sens (or over HuaB-sens and Emis-intense) to sensitivity coefficients per unit area over BJ 

(or over HuaB). Therefore, S/F(effect) and S/F(efficiency) reflect emission source reduction effects and reduction efficiency 

over sensitive (or emission intensive) regions. The implication of ‘d0’, ‘d1’ and ‘d2’ in Table 3 are the same as they are in 

Table 2. As shown in Table 3, the contribution efficiencies (contribution ratios per unit area) of emissions from the HuaB-sens 

and BJ-sens are significantly higher than those from the corresponding entire HuaB and BJ regions respectively. Although 

BJ-sens covers only 60% the area of the entire BJ, its contribution to the peak PM2.5 concentration is 86.6%–88.2% of that of 

the entire BJ. Its source contribution efficiency is 1.4 to 1.5 times that of BJ. Similarly, HuaB-sens covers only 10.2% the area 

of the entire HuaB, its contribution to the peak PM2.5 concentration is 61.0%–71.9% of that of the entire HuaB, and its source 

contribution efficiency is 6.0-7.0 times that of the entire HuaB (Table 3). Finally, emissions from HuaB-sens contribute much 

more than emissions only from BJ-sens, which supports joint control. Analogously, in the Models-3/CMAQ assessments, 

BJ-sens (or HuaB-sens) covers 54.2% (or 17.6) the area of BJ (or HuaB), and its emissions reduction effect is 99.2%–100% 

(or 87.2%-93.7%) of that of the entire BJ (or HuaB), and its source contribution efficiency is 1.8 to 1.9 times (or 5.0 to 5.3 

times) that of BJ (or HuaB).  
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We then compared emission source contribution ratios, effect and efficiency from the HuaB-sens and the Emis-intense 

regions. As shown in Table 2 and Table 3, although the Emis-intense region has the same area as HuaB-sens, its SC/PC, S/F 

(effect) and S/F(efficiency) are all much smaller. The source contribution ratios to PM2.5 concentration on 21 November 

(SC/PC) from ‘Emis-intense’ are 9.7%, 17.6% and 18.5% smaller than those from HuaB-sens (Table 2), and the source 

contribution effect from ‘Emis-intense’ regions (S/F (effect)) are 37.9%, 30.7% and 27.6% smaller than the S/F (effect) of 

HuaB-sens, indicating that controlling air pollutant sources from adjoint sensitive emission regions has better effects and 

higher efficiency than controlling emission sources from emission-intensive regions. 

The computational loads of the adjoint simulation were much smaller than the comparable assessments made with the 

Models-3/CMAQ modelling (Zhai et al., 2016). For the adjoint simulation, one forward integration (for model state variables 

saving) and one backward adjoint integration can obtain the influence of emissions from any source region, during any time 

period to PM2.5 peaks. For the Models-3/CMAQ assessments, to compare the effects of emission reductions over two different 

time periods, at two different ratios and over four different regions, 12 sensitivity tests with a control simulation are required. 

Although the deficiency of the adjoint analysis in this study is that we didn’t include PM2.5 precursor emissions impacts, 

through comparison, we find that the two modelling approaches are highly comparable in their assessments of atmospheric 

pollution control for critical emission regions. Overall, the adjoint sensitivities of peak PM2.5 concentration to primary 

particulate emissions using the GRAPES-CUACE aerosol adjoint model can provide valuable reference on evaluating 

emission impacts on pollutant concentrations and air quality control. 

5. Conclusions 

In this research, the GRAPES–CUACE aerosol adjoint model was applied to detect the pivotal emission sources of a 

November 2012 haze episode, and the hourly peak PM2.5 concentrations at 05:00 LT and 23:00 LT on 21 November 2012 over 

Beijing were set as the objective functions. Contributions to PM2.5 concentration peaks from local Beijing and its surrounding 

provinces were compared. The adjoint results correspond well with the real weather analysis for this period, and correctly 

describe the spatial distribution of the most influential emission sources over time for both PM2.5 concentration peaks. The 

05:00 PM2.5 concentration peak was mainly influenced by local Beijing emissions, and the emissions from Hebei, Tianjin and 

Shanxi, due to transmission of pollutants 2 to 3 days ahead of the peak time. The 23:00 PM2.5 concentration peak was more 

sensitive to local Beijing emissions, and the regions to the south of Beijing, in Hebei province, because of accumulation from 

the first PM2.5 concentration peak and local particle hygroscopic growth and pollutants trapped against of the Taihang 

Mountains on 21 November. The upstream Hebei province has the largest impacts on both PM2.5 concentration peaks, and 

the contribution of Hebei emissions to the first PM2.5 concentration peak (43.6%) is greater than to the second PM2.5 
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concentration peak (41.5%). In Beijing, PM2.5 concentration peaks respond to local emissions in 1 to 2 hours, while 

surrounding emissions take 7 to 12 hours to influence Beijing’s air quality. 

We compared the adjoint results with Models-3/CMAQ assessments and found that the adjoint results can provide evidence for 

all the conclusions supported by the Models-3/CMAQ assessments (Zhai et al., 2016). We then defined the ‘Emis-intense’ 

region as an emission-intensive region within Huabei region that has the same area of that of sensitive Huabei region 

(HuaB-sens) and compared its emission source contributions with those of HuaB-sens and Huabei. Overall, we concluded 

that narrowing emission sources reduction scope to sensitive source zones (zones detected by an adjoint model or a 

FLEXPART model), rather than emission intensive regions, 2 to 3 days prior to unfavorable meteorological conditions can 

effectively decrease PM2.5 concentration and improve the efficiency of PM2.5 reduction measures. Meanwhile, the adjoint 

simulation is far more computationally efficient than the assessments with Models-3/CMAQ modelling. The adjoint method is 

a powerful tool for simulating the relationship between emissions and concentrations, and it can be utilised to help improve 

flexible air quality control schemes. 
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Table 1 Performance statistics of PM2.5 concentration. 

Simulated 

Time Period 
Stations 

Obs. 

(μg·m-3) 

Sim. 

(μg·m-3) 
R 

MB 

(μg·m-3)

NMB 

(%) 

NME 

(%) 

MFB 

(%) 

MFE 

(%) 

20:00 Nov. 

17-22, 2012 

CREAS 121.5 190.9 0.87 69.4 57.2 185.2 53.6 60.1 

GY 139.0 289.4 0.91 150.4 108.1 183.3 65.2 68.3 

DL 101.4 112.2 0.69 10.8 10.7 85.6 15.6 39.6 

Notes: Mean bias: MB ൌ
ଵ

୬
∑ ሺSim୧ െ Obs୧ሻ
୬
୧ୀଵ ;  

Normalized mean bias: NMB ൌ
∑ ሺୗ୧୫౟ି୓ୠୱ౟ሻ
ొ
౟సభ

∑ ୓ୠୱ౟
ొ
౟సభ

ൈ 100%; Normal mean error:	NME ൌ
ଵ

୬
∑ |ୗ୧୫౟ି୓ୠୱ౟|

୓ୠୱ౟
ൈ 100%୬

୧ୀଵ ; 

Mean fractional bias: MFB=
ଵ

୒
∑ ሺୗ୧୫౟ି୓ୠୱ౟ሻ

ሺ୓ୠୱ౟ାୗ୧୫౟/ଶሻ
୒
୧ୀଵ ; Mean fractional error: MFE=

ଵ

୒
∑ |ୗ୧୫౟ି୓ୠୱ౟|

ሺ୓ୠୱ౟ାୗ୧୫౟/ଶሻ
୒
୧ୀଵ  

 

 

Table 2 Emission sources contribution to the average PM2.5 concentration over Beijing on Nov 21st. 

Factors Time period BJ BJ-sens HuaB HuaB-sens Emis-intense

SC/PC 

d0 14.5% 12.5% 25.6% 18.4% 8.7% 

d1 20.7% 18.3% 57.5% 37.3% 19.7% 

d2 21.3% 18.8% 67.1% 40.9% 22.4% 

Notes: d0 refers to emissions contribution from 21 November; d1 refers to emissions contribution from 20 to 21 November; d2 refers to 

emissions contribution from 19 to 21 November 

SC/PC=‘time cumulative Sensitivity Coefficient’/‘Peak Concentration’; 

 

 

Table 3 Contrast of sensitive (or emis-intense) and full regions emission sources contribution 

GRAPES–CUACE aerosol adjoint model results Models-3/CMAQ results (Zhai et al., 2016)

Time period Factors BJ-sens HuaB-sens Emis-intense BJ-sens HuaB-sens 

d0 
S/F(effect) 86.6% 71.9% 34.0%   

S/F(efficiency) 1.4 7.0 3.3   

d1 
S/F(effect) 88.2% 64.9% 34.2% 99.2% 93.7% 

S/F(efficiency) 1.5 6.3 3.3 1.8 5.3 

d2 
S/F(effect) 88.2%  61.0% 33.4% 100.8% 87.2% 

S/F(efficiency) 1.5  6.0 3.3 1.9 5.0 

Notes: S/F(effect) = ‘Sensitivity Coefficient over sensitive source region’/‘Sensitivity Coefficient over corresponding full source region’; 

Contribution Efficiency= ‘Sensitivity Coefficient’/‘Number of region's simulation grid cells’; 

S/F(efficiency)= ‘Contribution Efficiency of sensitive region’/‘Contribution Efficiency of corresponding full source region’. 

  



28 
 

 

 

Figure 1. (a–d): Sea-level pressure field; (e–h): temperature-logarithmic pressure diagrams (blue dotted curves indicate dew 

point-pressure; red solid curves indicate stratification) at Nanjiao Station from 08:00 (local time) on 20 November 2012 to 20:00 

(local time) on 21 November 2012. 

 

Figure 2. Gridded distribution of PM2.5 primary emission sources. 

 

Figure 3. Hourly variation of primary PM2.5 emission sources in Beijing. 
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Figure 4. Left: Model domain and location of Beijing municipality (BJ), Tianjin municipality (TJ), Heibei province (HB), Shandong 

province (SD) and Shanxi province (SX); right: Locations of the Chinese Research Academy of Environmental Sciences (CREAS) 

station, the Guanyuan (GY) station, the Dingling (DL) station, the Nanjiao (NJ) station, Daxing district (DX) and Chaoyang (CY) 

district. 

 

Figure 5. (a)-(c): Comparisons of the observed (black solid triangles) and simulated (blue dot-line) hourly PM2.5 concentrations at 

CREAS station, GY station and DL station; (d): Hourly variations of average PM2.5 concentration over Beijing municipality. 

   

 108oE  112oE  116oE  120oE  124oE 

  34oN 

  36oN 

  38oN 

  40oN 

  42oN 

BJ

HB
SX

SD

TJ

 30'  116oE  30'  117oE  30' 
 20' 

 40' 

  40oN 

 20' 

 40' 

  41oN 

NJ

CREAS

GY

DL

DX

CY

0

100

200

300

400

500

0

200

400

600

800

17
 1

2:
00

18
 0

0:
00

18
 1

2:
00

19
 0

0:
00

19
 1

2:
00

20
 0

0:
00

20
 1

2:
00

21
 0

0:
00

21
 1

2:
00

22
 0

0:
00

22
 1

2:
00

23
 0

0:
00

0

100

200

300

17
 1

2:
00

18
 0

0:
00

18
 1

2:
00

19
 0

0:
00

19
 1

2:
00

20
 0

0:
00

20
 1

2:
00

21
 0

0:
00

21
 1

2:
00

22
 0

0:
00

22
 1

2:
00

23
 0

0:
00

0

100

200

300

400 (d)

(a)

(c)

 

 

 

CREAS (b)
 

 

 

GY

  

 

  Observation       Simulated

DL

 

 

BJ



30 
 

 

 

 

 

Figure 6. Variations of simulated surface PM2.5 concentration and wind field distributions.	

 

Figure 7. Time-integrated sensitivity coefficients of surface Beijing PM2.5 concentration peaks to primary emission sources. (a–d): 

1-h, 12-h, 24-h and 72-h integrated sensitivity coefficients for the 5:00 LT on 21 November PM2.5 concentration peak; (e–h): 1-h, 

12-h, 24-h and 72-h integrated sensitivity coefficients for the 23:00 LT on 21 November PM2.5 concentration peak. 



31 
 

 

Figure 8. Hourly variations of surface PM2.5 concentrations in Beijing and sensitivity coefficients of surface PM2.5 concentration 

peaks in Beijing to local and surrounding primary emission sources. The left and right panels correspond to PM2.5 concentration 

peaks at 05:00 LT and at 23:00 LT on 21 November 2012 respectively. (a–b) illustrate hourly variations of Beijing PM2.5 

concentration (black solid dot-line) and hourly instantaneously sensitivity coefficients to local (red closed squares) and surrounding 

(red open squares) emission sources. (c–d) show the time-integrated sensitivity coefficients to local (red closed squares) and 

surrounding (red open squares) emission sources.  
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Figure 9. Sensitivity coefficients of surface PM2.5 concentration peaks in Beijing to primary emission sources from local Beijing and 

each of the surrounding provinces. The left and right panels correspond to PM2.5 concentration peaks at 05:00 LT and at 23:00 LT 

on 21 November 2012 respectively. (a–b) illustrate hourly instantaneous sensitivity coefficients to emission sources from local 

Beijing, Hebei province, Tianjin city, Shanxi province and Shandong province. (c–d) show the time-integrated sensitivity 

coefficients to local and surrounding provincial emission sources.  (e–f) are the contribution ratios of emission sources from each 

surrounding province to PM2.5 concentration peaks. 

 

Figure 10. 24-h (a), 48-h (b) and 72-h (c) integrated sensitivity coefficients of surface PM2.5 concentrations to primary emission 

sources in Beijing on 21 November 2012. 
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Figure 11. Domain definition of Huabei (HuaB, in red dot-dashed frame), Beijing (BJ, in black solid frame), sensitive Beijing 

(BJ-sens, red shaded), sensitive Huabei (HuaB-sens, both red and blue shaded) and emission intensive (Emis-intense, in pink solid 

frame) regions.  

Notes: HuaB-sens area ratio = ‘HuaB-sens floor space’/‘HuaB floor space’ ；×100%  

BJ-sens area ratio = ‘BJ-sens floor space’/‘BJ floor space’×100%;  

Emis-intense area ratio = ‘Emis-intense floor space’/‘HuaB floor space’×100%. 

 

Regions Number of grid cells Sensitive area ratios (%) 

HuaB-sens 18 10.2 

HuaB 176  

BJ-sens 6 60.0 

BJ 10  

Emis-intense 18 10.2 


