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Abstract. Spatial proxies used in bottom-up emission inventories to derive the spatial distributions of 

emissions are usually empirical and involve additional levels of uncertainty. Although uncertainties in 

current emission inventories have been discussed extensively, uncertainties resulting from improper 

spatial proxies have rarely been evaluated. In this work, we investigate the impact of spatial proxies on 

the representation of gridded emissions by comparing six gridded NOx emission datasets over China 

developed from the same magnitude of emissions and different spatial proxies. GEOS-Chem modeled 

tropospheric NO2 vertical columns simulated from different gridded emission inventories are compared 

with satellite-based columns. The results show that differences between modeled and satellite-based 

NO2 vertical columns are sensitive to the spatial proxies used in the gridded emission inventories. The 

total population density is less suitable for allocating NOx emissions than nighttime light data because 

population density tends to allocate more emissions to rural areas. Determining the exact locations of 

large emission sources could significantly strengthen the correlation between modeled and observed 

NO2 vertical columns. Using vehicle population and an updated road network for the on-road transport 

sector could substantially enhance urban emissions and improve the model performance. When further 

applying industrial gross domestic product (IGDP) values for the industrial sector, modeled NO2 

vertical columns could better capture pollution hotspots in urban areas and exhibit best performance of 

the six cases comparing to satellite-based NO2 vertical columns (slope = 1.01 and R2 = 0.85). This 

analysis provides a framework for information from satellite observations to inform bottom-up 

inventory development. In the future, more effort should be devoted to the representation of spatial 

proxies to improve spatial patterns in bottom-up emission inventories. 



1 Introduction 

Emission inventories are essential for predicting spatial and temporal variations in air pollutants and for 

helping policy makers develop pollution control strategies. The traditional way of developing an 

emission inventory is the bottom-up approach whereby activity rates and emission factors are 

aggregated for all known sources (e.g., Streets et al., 2003; Zhang et al., 2009). Emission inventories 

are most commonly estimated as emission totals of municipal districts (e.g., counties, provinces, or 

countries) because activity data from statistical yearbooks are typically available for such districts (e.g., 

Woo et al., 2003; Ohara et al., 2007; Kurokawa et al., 2013). However, gridded emissions are needed to 

apply inventories in chemical transport models. 

Many methods for allocating regional emission totals to grids are available. The most accurate 

approach involves allocating emissions for which the actual latitude/longitude coordinates of the 

emitting facilities (e.g., power plants or cement plants) are available. For mobile and area sources (i.e., 

sources for which the exact emission locations are unknown), parameters of so-called spatial proxies 

must be used to represent the spatial distributions of emissions. For example, emissions from road 

transportation sources can be allocated based on road networks, and residential emissions that are 

strongly related to human activities can be gridded using population densities or nighttime lights 

(Streets et al., 2003; Woo et al., 2003; Ohara et al., 2007; Zhang et al., 2009; Oda et al., 2011). In many 

cases, industrial emissions are also allocated by proxies because of the limited information available. 

The selection of such spatial proxies is empirical, and their representations of real-world spatial 

emissions patterns are of considerable concern (Zhou and Gurney, 2011; Andres et al., 2012). Recent 

efforts have been made to reveal the uncertainties of spatial proxies used in bottom-up CO2 inventories 

(Rayner et al., 2010; Zhou and Gurney, 2011; Andres et al., 2012; Gately et al., 2013; Gately et al., 

2015; Andres et al., 2016), and sophisticated method of allocating emissions to high-resolution grids 

have been formulated (Gurney et al., 2009; Rayner et al., 2010; Nassar et al., 2013; Asefi-Najafabady 

et al., 2014). Using population density to downscale fossil fuel emissions can induce biases when 

analyses are conducted at sub-national scales (Rayner et al., 2010). A high-resolution fossil fuel CO2 

emission inventory for the United States further confirms that source heterogeneities are significant and 

vary by region and sector, indicating that population density is a biased spatial proxy below the state 

level (Zhou and Gurney, 2011). The above studies suggest that using population density as a spatial 

proxy may not be appropriate under the hidden assumption that per capita emissions are homogeneous 

within a region. However, population density remains one of the most widely used spatial proxies in 

global and regional emission inventories (Zhang et al., 2009; Lu et al., 2011; Kurokawa et al., 2013), 

and uncertainties transmitted from improper spatial proxies to chemical transport models have rarely 

been evaluated. 

Recent remarkable development in satellite-based remote sensing instruments, or the so-called 

top-down approach, provides additional constraints to evaluate and improve the existing understanding 

of emission inventories (Martin et al., 2008; Streets et al., 2013). Tropospheric column densities of 

important trace gases, such as NO2, SO2, CO, and HCHO, derived from satellite instruments generate 

an abundance of useful information on the emission sources of these gases (e.g., Duncan et al., 2010; 

Boeke et al., 2011; Lin, 2012; Pechony et al., 2013; Stavrakou et al., 2015; Wang et al., 2015; Liu et al., 

2016), despite the biases intrinsic to satellite retrievals (Boersma et al., 2008; Lin et al., 2014). Many 

studies have compared model-simulated column densities with satellite-derived columns to validate the 

accuracy of bottom-up emissions (e.g., van Noije et al., 2006; Uno et al., 2007; Kim et al., 2009; Sheel 

et al., 2010; Lin et al., 2010; Itahashi et al., 2014; Han et al., 2015) and have attributed discrepancies 



between modeled and satellite-based column densities to errors in the magnitudes and/or spatial 

distributions of the emission inventories used in their models. Inverse modeling techniques can further 

derive “top-down” emission inventories with optimized magnitudes and emission spatial distributions 

(e.g., Martin et al., 2003; Jaeglé et al., 2005; Martin et al., 2006; Wang et al., 2007; Lin, 2012; Tang et 

al., 2013; Stavrakou et al, 2015). For example, Lin (2012) found that the widely used Intercontinental 

Chemical Transport Experiment-Phase B (INTEX-B) inventory may underestimate NOx emissions in 

polluted urban areas or near large point sources. Lamsal et al. (2013) demonstrated that urban NO2 

pollution is a power law scaling function of population size. The exponent values vary by region, 

reflecting regional differences in industrial development and per capita emissions. Although these 

top-down studies have identified uncertainties in the spatial representation of current NOx inventories 

and have provided correction factors, these factors are difficult to incorporate into bottom-up 

inventories or apply to emissions of other species because less attention has been paid to gridding 

processes in bottom-up approaches, which vary by sector and are shared across different species. 

In this work, we use NOx as a case to study the influence of spatial proxies on spatial distributions of 

bottom-up emission inventories because NO2 satellite retrieval is less uncertain and the spatial 

distributions of tropospheric NO2 vertical columns are similar to those of surface NOx emissions, 

especially in the summer when the lifetime of NOx is short (Richter et al., 2005; Beirle et al., 2003; Lin, 

2012). Based on the same magnitude of NOx emissions, we develop six sets of gridded emission data 

using different spatial proxies. We then use these gridded emissions and the nested GEOS-Chem to 

simulate tropospheric NO2 vertical columns and compare them with satellite-based observations. The 

effects of spatial proxies on the modeled NO2 vertical columns and representations of different spatial 

proxies are evaluated and discussed. 

2 Methods and Data 

2.1 Review of spatial proxies 

We first review the sector-specific spatial proxies utilized in several widely used regional NOx emission 

inventories covering China, including TRACE-P (Streets et al., 2003), INTEX-B (Zhang et al., 2009), 

Regional Emission inventory in Asia (REAS) version 1 (Ohara et al., 2007), and REAS version 2 

(Kurokawa et al., 2013), as shown in Table 1. In bottom-up inventories, spatial proxies are usually 

sector dependent and shared across different species. In general, all of these inventories rely on similar 

approaches to allocate emissions from combustion sources. Emissions from large-capacity power 

generation units are typically allocated according to their latitude/longitude information, which is the 

most accurate way to distribute emissions, whereas the population density is used to distribute 

emissions from small power plants whose locations are unknown (Streets et al., 2003; Ohara et al., 

2007; Zhang et al., 2009). Recently, power plant locations from the Carbon Monitoring for Action 

(CARMA) database (Wheeler and Ummel, 2008) are used to locate emissions (Kurokawa et al., 2013), 

providing a larger dataset of power plants than previous work. However, the accuracy of the CARMA 

database is still uncertain (Oda et al., 2011). 

For industrial and residential combustion, population density is the most frequently used spatial proxy 

because such emissions are believed to be highly correlated with human activities. Total population 

density is applied for industrial combustion in the TRACE-P and REAS emission inventories (Streets 

et al., 2003; Ohara et al., 2007; Kurokawa et al., 2013), which may allocate a large fraction of industrial 



emissions to rural areas because, in China, the rural population exceeds the urban population (China 

Statistical Yearbook, National Bureau of Statistics, 2007). In the INTEX-B inventory (Zhang et al., 

2009), the urban population is used rather than the total population because industrial activities occur 

more often in urban areas; however, this strategy is still based on an assumption that per capita 

industrial emissions are the same across regions within a country. Per capita emissions among regions 

can differ widely in terms of the regions’ levels of economic development and industrial activity or 

overall standards of living. Lamsal et al. (2013) found that in different urban areas worldwide, per 

capita emissions varied significantly because of differing energy consumption rates and energy 

production infrastructure. 

For the transportation sector, road networks are widely used to spatially distribute on-road vehicle 

emissions based on the assumption that traffic volumes remain the same on different types of roads 

(e.g., Streets et al., 2003; Ohara et al., 2007). However, this is not true because of the existence of 

varied vehicle populations and road capacities. Commonly used road networks in the above inventories 

are extracted from the Digital Chart of the World (DCW) (DMA, 1993), which has not been updated 

since 1992. In this case, using DCW road networks to allocate on-road emissions in China may create 

significant biases in the spatial distributions of emissions because road construction has occurred 

continuously over the past two decades. 

Based on our review of the spatial proxies used in bottom-up emission inventories for China, it can be 

concluded that such spatial proxies are empirical and may have introduced considerable uncertainties 

into the spatial distributions of emissions. Studies on fossil fuel CO2 inventories have made tremendous 

efforts to improve the spatial distribution of emissions based on satellite-derived nighttime light (Oda 

et al., 2011), fuel sales and traffic data (McDonald et al., 2014), multivariate regressions (Wang et al., 

2013; Gately et al., 2015), or combined fossil fuel data assimilation systems (Rayner et al., 2010; 

Asefi-Najafabady et al., 2014), shedding new light on ways to improve the spatial distribution of air 

pollutant inventories. 

2.2 Gridded NOx emission inventory 

The bottom-up NOx emission inventory evaluated in this work is obtained from the Multi-resolution 

Emission Inventory for China (MEIC, http://www.meicmodel.org) for 2006. The MEIC inventory is 

developed using a technology-based methodology which estimates anthropogenic emissions in China 

from ~700 emitting sources (Zhang et al., 2007, 2009; Lei et al., 2011). Table 2 presents the 2006 

anthropogenic NOx emissions estimated by the MEIC for China. 

We then develop six sets of gridded NOx emission data using the same magnitude of emissions from 

the MEIC and different spatial proxies, as presented in Table 3. Many geographic information system 

(GIS) grid-based spatial proxies (e.g., population density and road networks) are at a resolution of 1 km 

× 1 km. In this work, emissions are first gridded at a resolution of 1 km × 1 km and then regridded to a 

resolution of 0.667° lon × 0.5° lat to fit the GEOS-Chem model. The first two emission datasets 

evaluate two types of common spatial proxy maps: population distributions and nighttime lights. In the 

first gridded emission dataset (S1), all emissions are allocated based on population densities obtained 

from the Landscan population database (ORNL, 2006). The Gridded Population of the World (GPW) 

population map is also frequently used to allocate emissions, but we do not include it in our analysis 

because the uncertainties introduced by differences in population maps are minor (Andres et al., 2016). 

In the second dataset (S2), all emissions are allocated based on the nighttime lights map drawn from 

the Defense Meteorological Satellite Program Operational Linescan System (DMSP-OSL) satellite 



(http://www.ngdc.noaa.gov/dmsp/download_rad_cal_96-97.html). These two scenarios, which involve 

single type of spatial proxy for all sectors, are simplifications of the common practice utilized in 

current emission inventories. We use S1 as the base case and make modifications upon it to evaluate 

different spatial proxies used in different sectors. Figure 1 compares the spatial distributions of the total 

population and nighttime light data. The nighttime light data present more significant urban-rural 

gradients than the total population density data and, thus, may better represent differences in economic 

development levels between urban and rural areas. 

Our previous study revealed that the locations of large point sources in emission inventories 

significantly affect the prediction accuracy of the chemical transport models (Wang et al., 2012). A 

third dataset (S3) is used to investigate the effects of using the exact locations of emissions from large 

point sources. S3 is based on S1 but consists of a unit-based power plant emission dataset including the 

locations of ~6,400 power generation units across China (Liu et al., 2015) to override power sector 

emissions. 

The fourth dataset (S4) is based on S3 but uses DCW road networks to allocate on-road transportation 

emissions, which have been applied in several widely used regional emission inventories for China. In 

S4, emissions are allocated according to the road’s length, neglecting the distinctions of road classes 

and capacities. An improved approach of allocating on-road transport emissions is implemented in the 

fifth dataset (S5). We use the county-level vehicle population as a spatial proxy to distribute provincial 

emissions of on-road transportation to each county (an administrative unit one level lower than city). 

The county-level vehicle population is simulated by the Gompertz Function (𝑉 =  𝑉∗ × 𝑒𝛼𝑒𝛽𝐸
), where 

V and V* represents actual and saturation level of total vehicle ownership (vehicles/1000 people) 

separately and E represents per-capita GDP (more information is provided in Zheng et al., 2014). The 

new proxy overrides the assumption of linear relationships between vehicle ownership and population 

density or road density. Then, county-level emissions are mapped into grids using GIS-based road 

networks, which includes various road types (highway, national, provincial and county roads) and the 

total vehicle kilometers traveled data is used as allocation weights on different road types. As stated in 

Sect. 2.1, the DCW road networks have not been updated since 1992 and, thus, represent the road 

conditions of the early 1990s (Fig. 2b). Hence, we update the road network data to a new version 

(China Digital Road-network Map [CDRM] data developed in 2010 by the National Administration of 

Surveying, Mapping and Geoinformation of China), which reflects the current road conditions (Fig. 2c). 

Comparisons between county-level vehicle populations, the total population and these two types of 

road networks are shown in Fig. 2(d-f). Densely populated regions typically have larger vehicle 

populations and, therefore, greater road network demands. However, the DCW road network fails to 

provide detailed accounts of the roads in urban areas, and as a result, the emissions allocated to these 

regions are underestimated. The updated CDRM road networks can help resolve this shortcoming. 

In the last dataset (S6), further modifications of S5 are made to better represent the spatial patterns of 

the industrial sector. We use the Industrial Gross Domestic Product (IGDP) as a first-step spatial proxy 

instead of population density. Fig. 3 shows the correlations between the normalized industrial 

emissions and three factors (total population, urban population and IGDP) at the provincial level. IGDP 

is more closely correlated with emissions (R2 = 0.72) than other factors, indicating that IGDP can better 

represent the spatial patterns of industrial activities than population density. Using population density 

as a spatial proxy to allocate industrial emissions assumes that per capita industrial emissions are the 

same across regions, which may result in underestimations for industrialized regions and 

overestimations for rural regions. In S6, provincial emissions are first distributed into counties 

http://www.ngdc.noaa.gov/dmsp/download_rad_cal_96-97.html


according to the IGDP of each county, and then county-level emissions are allocated to grids based on 

the population densities drawn from Landscan. 

2.3 GEOS-Chem model 

The GEOS-Chem model is a global, three-dimensional (3-D) model of atmospheric chemistry that 

includes > 80 species and > 300 reactions (Bey et al., 2001; Park et al., 2004). The nested-grid 

GEOS-Chem model developed by Chen et al. (2009) is used in this work. It has a horizontal resolution 

of 0.667° lon × 0.5° lat with 47 vertical layers and a nested-grid domain that covers China and most of 

its neighboring countries (70°E-150°E, 11°S-55°N). The global model, which has a spatial resolution 

of 2.5° lon × 2° lat, provides time-varying boundary conditions via the one-way nested approach. Both 

global and nested simulations are driven by the 3-D meteorological fields of GEOS5 assimilated by the 

Goddard Earth Observing System (GEOS) at the National Aeronautics and Space Administration 

(NASA) Global Modeling and Assimilation Office (GMAO; http://gmao.gsfc.nasa.gov/). Mixing in the 

planetary boundary layer follows a non-local scheme (Lin and McElroy, 2010) that improves upon 

previous assumptions of a fully mixed boundary layer. Convection occurs according to a modified 

Relaxed Arakawa-Schubert scheme (Rienecker et al., 2008). 

In this study, we use GEOS-Chem version 09-01-02 to simulate tropospheric NO2 vertical columns 

over China for 2006. The EDGAR v3 emission inventory (Olivier and Berdowski, 2001) is used for 

global anthropogenic emissions, and the East/Southeast Asia region is replaced with the INTEX-B 

inventory (Zhang et al., 2009). We further override the anthropogenic NOx emission inventory for 

China using the six datasets described in Sect. 2.2. To remove the effects of the initial concentration 

fields, a 1-year spin up is conducted. We use averaged summer (June, July and August [JJA]) NO2 

columns for this evaluation because the short lifetime of NO2 in the summer favors NO2 column 

linkage with local NOx emissions. We average daily 2-h modeled tropospheric NO2 vertical columns at 

a local time of 1300-1500 and sample the model at grids coincident with the daily satellite pixels used 

in the final average columns. 

Grids in the nested-grid GEOS-Chem model are 0.667° lon × 0.5° lat, and their areas range from 

2,500-4,000 km2 over eastern China, comparable to the mean size of a county (~3,000 km2) in this 

region. Thus, the spatial pattern of emissions evaluated in this work can represent the spatial variations 

of emissions at the county level. To draw comparisons with other county-level indicators, gridded NO2 

column densities simulated using this model are resampled to county averages by area weights. In this 

work, a total of 2,364 county-level districts are covered, including both counties and municipal districts 

across China. 

2.4 Satellite data 

The satellite data used in this work comes from the Ozone Monitoring Instrument (OMI) aboard the 

Aura satellite (Levelt et al., 2006). NO2 slant column densities are derived using a Differential Optical 

Absorption Spectroscopy (DOAS) algorithm (Platt, 1994; Boersma et al., 2002; Bucsela et al., 2006). 

The tropospheric slant NO2 column densities used in this work are drawn from the Dutch OMI NO2 

(DOMINO) product (version 2, collection 3) (Boersma et al., 2011) available from the Tropospheric 

Emission Monitoring Internet Service (TEMIS) (http://www.temis.nl/). The air mass factor (AMF) is a 

multiplicative factor used to convert slant columns into vertical columns (Palmer et al., 2001). The 

retrieved tropospheric vertical NO2 column is sensitive to the NO2 vertical profile used during the AMF 

http://gmao.gsfc.nasa.gov/
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calculation. Following Lamsal et al. (2010), we revise the AMF by replacing the original NO2 profile 

with that generated from the nested-grid GEOS-Chem model using S1-S6 emissions described above. 

The new NO2 vertical profiles have a finer spatial resolution of 0.667° lon × 0.5° lat compared to the 

original resolution of 3° lon × 2° lat. Six scenario-specific OMI NO2 products are generated for 

comparison with corresponding model results, and higher resolution prior profiles could reduce the bias 

by 3%-6% between modeled and satellite data for different scenarios. In this work, we restrict the use 

of OMI pixels to those at a solar zenith angle of ≤ 70° and a cloud fraction of ≤ 0.3 in the final 

averaged columns. Pixels at swath edges (five pixels on each side) are rejected to reduce spatial 

averaging. Finally, each OMI pixel is allocated to 0.667° lon × 0.5° lat grids by area weights with 

corner coordinate information to create daily tropospheric vertical NO2 column maps. The retrieved 

NO2 columns are also resampled from pixels to county averages to draw comparisons with indicators at 

the county level. 

3 Results and Discussion 

3.1 Results 

The spatial distributions of tropospheric NO2 vertical columns over China in the summer simulated 

from six gridded inventories are presented and compared with scenario-specific satellite-observed NO2 

vertical columns in Fig. 4. Because all the inventories in model simulations have the same emissions 

totals, differences among S1-S6 reflect differences in the spatial allocations of the total emissions. In 

general, modeled and observed NO2 vertical columns exhibit similar patterns but different fine 

structures. All modeled cases can reproduce highly polluted areas over the North China Plain and 

Yangtze River Delta, whereas many pollution hotspots in these regions are underestimated compared to 

the satellite data in S1. As discussed above, using the total population distribution as a spatial proxy 

may have misrepresented the urban-rural gradients of economic development levels and allocated 

disproportionately large fractions of emissions to rural regions. Consequently, urban emission hotspots 

may have been underestimated because, in China, the rural population exceeds the urban population. 

Figure 5 compares modeled and satellite-retrieved tropospheric NO2 vertical columns by county in 

China for the analyzed six cases. The first column in Fig. 5 compares the model and satellite data for 

all districts and counties in China for the summer of 2006. Modeled NO2 columns are generally in good 

agreement with OMI NO2 columns, with regression slopes varying from 0.78~1.01 and R2 values 

varying from 0.75~0.86. Simulations obtained using S1 substantially underestimate NO2 columns 

compared to satellite-based columns, especially in densely populated regions. Tropospheric NO2 

vertical columns simulated using S2 present more pollution hotspots compared to S1, particularly in 

economically developed regions, such as the capital cities in each province. Using nighttime lights as a 

spatial proxy (S2) instead of the total population can improve the model’s performance. In this case, 

the slope and R2 increase to 0.94 and 0.81, respectively, and the normalized mean bias (NMB) 

increases from -11.1% to -6.0%. These results indicate that the nighttime light map may serve as a 

better indicator for NOx emissions than the total population because it can better represent a region’s 

economic development level than the total population. 

When using the exact positions of power plants instead of total population density for the power sector 

(S3 vs. S1), most hotspots in the simulated tropospheric NO2 vertical columns are enhanced, and the 

discrepancies between the modeled and observed columns are reduced. Model simulations based on S3 



correlate better with satellite observations (slope = 0.87 and R2 = 0.83) than those based on S1, proving 

the importance of determining the positions of large point sources. NO2 columns simulated using S4 

have more bias than those generated using S3, mainly because of underestimations of on-road 

transportation emissions resulting from the use of outdated DCW road networks as a proxy, as 

discussed above. Model simulations based on S5 agree better with satellite-based NO2 columns (slope 

= 0.95 and R2 = 0.86) than those based on S3 and S4, which shows that using vehicle population and 

CDRM road networks can better represent transportation emissions. When using IGDP to constrain 

industrial emissions, modeled NO2 vertical columns further improved (S6 vs. S5). Results indicate that 

improvements in the transportation sector have more significant effects on modeled NO2 columns than 

that in the industrial sector. Finally, the simulations based on S6 exhibit the best performance for all six 

cases compared to satellite observations (slope = 1.01 and R2 = 0.85). 

To further understand the biases in the model simulations, we divide all counties into three 

categories—counties in four municipalities (i.e., Beijing, Tianjin, Shanghai and Chongqing), urban 

counties, and suburban counties according to administrative district definition—and compare the 

modeled and observed NO2 columns for these three categories (Fig. 5). For the four Chinese 

municipalities studied, emission totals are allocated from cities to counties; however, for other 

provinces, emissions are allocated from province to counties. Municipalities are defined as a separate 

category in the following analysis. 

Model underestimation in S1 mainly occurs for urban counties (Fig. 5c, slope = 0.53 and NMB = 

-20.3%). This approach, which uses the total population as a spatial proxy, assumes that the per capita 

emissions in different regions in a province are the same. However, because of varied industrial levels 

and economic patterns, per capita emissions can be very different across regions. According to Lamsal 

et al. (2013), the tropospheric NO2 column is a power law scaling function of the population size, and 

the exponent is affected by regional differences in per capita emissions. Using population density as a 

spatial proxy in these areas significantly underestimates the emissions in urban areas, as shown in Fig. 

5c. Using nighttime lights to allocate emissions can significantly improve the model’s performance for 

urban areas (Fig. 5g, slope = 1.02 and NMB = -1.8%), although overestimations are identified in a few 

counties. This finding demonstrates the feasibility of using nighttime lights alone as a spatial proxy 

when more complex indicators are not available. After determining the exact positions of power plant 

emissions, the model simulations are substantially improved for all types of regions (Fig. 5j-5l); 

however, the urban emissions are still underestimated (Slope = 0.69 and NMB = -13.2%), possibly 

because of underestimations of the industrial and transportation emissions in urban regions when the 

population density is applied as a spatial proxy. For S4, the model performances are slightly worse than 

those for S3 for urban regions. In S4, the vehicle populations of different counties are assumed to be 

linearly correlated with the outdated DCW road networks, and as a result, the on-road transportation 

emissions in urban areas may be substantially underestimated. Using vehicle population and the 

updated road networks can significantly improve this issue (S5) and NMB decreases to -4.6%. Finally, 

for S6, the model performances are further improved for urban regions. Thus, using IGDP and the 

updated road network as spatial proxies can better represent the emission sources for urban areas. 

For the four municipalities studied, total populations and nighttime lights alone cannot effectively 

represent emission patterns because these proxies are concentrated in city centers, whereas large 

emission sources, such as power plants and industrial activities, have largely been relocated away from 

urban regions in municipalities. When the locations of power emissions are considered, the correlation 

between the modeled and observed NO2 columns is significantly improved (Fig. 5j, 5n, and 5r). 



However, using the IGDP and updated road network as spatial proxies disproportionately concentrates 

emissions in urban areas, resulting in an overestimation of modeled NO2 columns. 

Fig. 6 presents the distributions of ratios between simulated and satellite-based county-level NO2 

column densities for the six cases. We remove those counties with OMI NO2 columns of less than 3 × 

1015 molecules cm-2 to avoid the influence of the background areas with more uncertain retrieved 

columns. After rejecting the background regions, ~770 counties (33%) covering much of eastern China 

remain. Model simulations based on S6 exhibit the best performance. Differences between the modeled 

and satellite-based NO2 columns are within 20% for 391 counties in S6 compared to 310 and 331 

counties in S1 and S2, respectively. Model simulations of S1 present large negative biases compared to 

satellite-based NO2 columns, with 119 counties underestimated by over 50% (66 counties for S6). 

However, for S2, positive biases between the modeled and satellite-based NO2 columns exceed 50% 

for 28 counties (10 counties for S5), indicating that using nighttime light maps may overestimate urban 

emissions in certain regions. 

3.2 Uncertainties 

This work is subject to several uncertainties. Biases between model simulations and satellite data come 

not only from emission inventories but also from the model itself or satellite retrievals. Potential errors 

in nested-grid GEOS-Chem model simulations are compounded by errors in GEOS-5 meteorological 

fields, PBL heights, and a variety of chemical parameters selected in a given model. Model simulation 

errors for eastern China are estimated to present a negative systematic bias of 10–20% (season 

dependent) plus a random error of 30% according to previous work (Martin et al., 2003; Lin and 

McElroy, 2011; Lin et al., 2012). Sensitivity simulations (Lin et al., 2012) of the above model factors 

show that none of them can fully explain the bias between model simulations and satellite observations. 

Combining all these modifications can achieve better agreement with satellite observations but cannot 

eliminate the negative biases associated with extremely polluted locations (Lin et al., 2012), suggesting 

that model errors are not the primary cause of model-satellite biases for urban areas. 

The stated uncertainties of individual DOMINO v2.0 NO2 column retrievals are estimated at 1.0 × 1015 

molecules cm−2 + 25% (Boersma et al., 2011), which demonstrates the dominance of errors arising 

during the calculation of AMF in polluted areas (Boersma et al., 2007). In particular, DOMINO v2.0 

OMI products do not explicitly account for the effects of aerosols on solar radiation, which are 

important for the calculation of AMF and particularly significant for eastern China because of its high 

aerosol loadings. In Lin et al. (2014), explicitly including aerosol scattering and absorption exerts either 

positive or negative effects on retrieved NO2, with a mean effect of 14%. However, aerosol effects 

cannot fully explain the large discrepancies observed between model and satellite results for urban 

areas. 

Biases in the satellite NO2 data could affect the comparisons for different scenarios. Previous studies 

indicated that the OMI NO2 columns could be biased high for 20% over China (Irie et al., 2008; Lin et 

al., 2014). In this case, the best scenario of spatial proxies would be S4 instead of S6. If the OMI data is 

biased low instead of biased high, the best scenario will remain the same but with less agreement 

compared to satellite observations. However, given the high sensitivity of modeled NO2 columns to 

spatial proxies, we can still conclude that the spatial proxies used in gridded emission inventories could 

affect the representation of bottom-up emission inventory significantly. 

Other factors, such as the resolution, may also introduce uncertainty. The spatial proxies in S6 are quite 

good at the resolution of 0.667° lon × 0.5° lat used in this work, which roughly corresponds to the 



county level in eastern China. However, they may not be suitable at other resolutions. Further work 

based on models with finer grids should be performed to explore appropriate spatial proxies at finer 

resolutions. Natural emissions from lightning and soil sources are not discussed in this work, although 

they are suggested to be underestimated by approximately 16% for China for 2006; they account for 

less than 3% and 6% of anthropogenic emissions, respectively, and even less in highly polluted regions 

(Lin, 2012). 

3.3 Discussion 

In this work, we use NOx emissions to relate the biases between model simulations and observations to 

local emissions and evaluate the impacts of spatial proxies on the distributions of bottom-up emission 

inventories at the county level using satellite constraints. Insight obtained from this work can be 

applied to other species generated from fossil fuel combustion (e.g., SO2 and CO2) because they 

typically come from the same sources. Our method represents a feasible approach to studying species 

that are difficult to validate directly because suitable observation data are not available and/or lifetimes 

are long. 

As shown in Sect. 2.1 and described in this work, regardless of how spatial proxies are adjusted in a 

bottom-up inventory, they are always empirical and contribute uncertainties to the spatial 

representation of emission inventories. A companion paper of this work found that large uncertainties 

existed in proxy-based inventories on urban scale (less than 0.25°) by comparing the proxy-based 

inventory with an inventory developed from exact locations of emitting facilities in Hebei, China 

(Zheng et al., 2017). Critical evaluations must be conducted to ensure the accuracy of these proxies. 

Our work presents a practical means to diagnose this problem and involves using satellite observations 

as an indicator of ground emissions to determine the relationships between emissions and local 

parameters. Our approach also has the attribute of propagating information from satellite observations 

into bottom-up inventory developments. 

The approach presented here can also be expanded to other regions because a universal relationship 

exists between emissions and the economy. Spatial proxies that work well for China may not be 

suitable for other regions because of regional differences in energy consumption, industrial 

development and living standards, as demonstrated in Lamsal et al. (2013). However, by integrating 

local satellite observation data, a better understanding of the spatial distribution of emissions and their 

relationships to local parameters can be obtained, which has implications for the local selection of 

spatial proxies. 

4 Concluding Remarks 

The spatial proxies used when developing gridded emissions inventories are empirical and can 

introduce uncertainties in bottom-up emissions inventories. This issue has rarely been evaluated. In this 

work, we evaluate the effects of spatial proxies on the representations of spatial distributions of 

emissions using an integrated framework of bottom-up emission inventories, a chemical transport 

model, and satellite observations. We first develop six sets of gridded NOx emissions for China using 

the same magnitude of emissions from the MEIC and different spatial proxies. The spatial proxies 

considered in this study include the following: the total population, nighttime lights, the locations of 

power plants, IGDP, vehicle populations and two different road network datasets. The nested-grid 

GEOS-Chem model is then used to simulate tropospheric NO2 vertical columns using the six gridded 



emissions, and modeled NO2 columns are compared to satellite-based NO2 columns derived from OMI 

data. 

We found that the spatial proxies used in gridded emission inventories significantly affect simulated 

NO2 columns. The model performance is largely dependent on the representations of urban emissions 

in the bottom-up inventory, which are very sensitive to spatial proxies. Using the total population 

density tends to allocate more emissions to rural areas and to underestimate NO2 columns compared to 

satellite observations. Nighttime lights represent urban emissions better than population density 

because they correlate more closely with economic development levels. When using sophisticated 

combinations of different proxies to represent urban emissions (i.e., positions of large point sources, 

IGDP, vehicle populations, and the most recent road network), modeled NO2 columns agree better with 

satellite observations, indicating that improving the spatial representation of emissions could 

significantly increase the accuracy of emission inventories. 

The results of this work emphasize the importance of spatial proxies for bottom-up emission inventory 

development. Discrepancies between models and observations should be attributed to not only errors in 

the magnitude of total emission estimates but also spatial proxies. Although the selection of spatial 

proxies in this work is still empirical and may not represent the best case, we illustrate methods for 

improving gridded emission inventories by carefully selecting spatial proxies. This study provides a 

framework to apply information from satellite observations to inform bottom-up inventory 

development. The approach used here could be further extended to other species and regions, and more 

advanced optimized approaches could be introduced into the development of emission inventories of 

different air pollutants (Asefi-Najafabady et al., 2014; Gately et al., 2013; Nassar et al., 2013). More 

efforts should be made to improve the spatial distributions of bottom-up emission inventories in the 

future. 
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Table 1. Review of the spatial proxies used in regional bottom-up NOx emission inventories covering China. 

Inventories Sectors Spatial proxies Data sources 

TRACE-P 

(Streets et al., 

2003) 

Large power plants Location 
RAINS-Asia (Shah et al., 2000) and 

GEIA inventory (Graedel et al., 1993) 

Small power plants Total population LandScan1 

Industrial combustion Total population LandScan 

Residential fossil fuel Total population LandScan 

Residential biofuel Rural population LandScan 

On-road transport Road networks DCW2 

Off-road transport Total population LandScan  

REAS v.1.1 

(Ohara et al., 

2007) 

 

Large power plants Location China State Grid Company 

Small power plants Total population LandScan 

Industrial combustion Total population LandScan 

Residential fossil fuel Total population LandScan 

Residential biofuel Rural population LandScan 

On-road transport Road networks DCW 

Off-road transport Total population LandScan  

REAS v.2 

(Kurokawa et 

al., 2013) 

Large power plants Location CARMA (Wheeler and Ummel, 2008) 

Small power plants Total population GPWv33 

Industrial combustion Total population GPWv3 

Residential fossil fuel Total population GPWv3 

Residential biofuel Rural population GPWv3 and GRUMPv14 

On-road transport Road networks DCW 

Off-road transport Total population GPWv3 

INTEX-B 

(Zhang et al., 

2009) 

Large power plants Location Ministry of Environmental Protection 

Small power plants Total population LandScan 

Industrial combustion Urban/rural population LandScan 

Residential fossil fuel Total population LandScan 

Residential biofuel Rural population LandScan 

On-road transport Road networks DCW 

Off-road transport Total population LandScan  

1LandScan Global Population database (ORNL, 1999, 2001, 2006) 

2DCW, Digital Chart of the World (DMA, 1993) 

3GPWv3, Gridded Population on the World (CIESIN et al., 2005, 2011) 

4GRUMPv1, Global Rural-Urban Mapping Project (CIESIN et al., 2005, 2011) 

  



Table 2. Anthropogenic NOx emissions by sector in China for 2006 from the MEIC inventory. 

Sector Annual Emissions (Tg) 

Power plants 8.31 

Industry 7.34 

On-road transport 4.51 

Off-road transport 1.88 

Residential (biofuel + fossil fuel) 1.00 

Total 23.04 

 

  



Table 3. Spatial proxies used in the gridding process for the six emission scenarios developed in this study. 

Gridding 

process 
Sectors S1 S2 S3 S4 S5 S6 

Province to 

county 

Power Plant TPa NLb N/A N/A N/A N/A 

Industry TP NL TP TP TP IGDPc 

Residential TP NL TP TP TP TP 

On-road transport TP NL TP DCWd VPe VP 

Off-road transport TP NL TP TP TP TP 

County to grid 

Power Plant TP NL PSf PS PS PS 

Industry TP NL TP TP TP TP 

Residential TP NL TP TP TP TP 

On-road transport TP NL TP DCW CDRMg CDRM 

Off-road transport TP NL TP TP TP TP 

aTP: Total population from the Landscan population database (ORNL, 2006); 

bNL: Nighttime light from the DMSP-OSL satellite 

(http://www.ngdc.noaa.gov/dmsp/download_rad_cal_96-97.html); 

cIGDP: Industrial GDP (China Statistical Yearbook, National Bureau of Statistics, 2007); 

dDCW: Road networks from the Digital chart of the world (DMA, 1993); 

eVP: Vehicle population (Zheng et al., 2014); 

fPS: Coordinates of point sources (Liu et al., 2015); 

gCDRM: Road networks from the China Digital Road Map developed by the National Administration of Surveying, 

Mapping and Geoinformation of China. 

  

http://www.ngdc.noaa.gov/dmsp/download_rad_cal_96-97.html


 

Fig. 1. Spatial patterns of (a) the total population density and (b) nighttime lights for eastern China, and (c) 

the distributions of total population density and nighttime lights in China at a resolution of 0.1° × 0.1°. 

  



 

Fig. 2. Comparisons between the total population (left column), DCW road networks (middle column) and 

CDRM road networks (right column). (a-c) Maps of the total population and two road networks in the 

Beijing-Tianjin region as an example. (d-f) Comparison with county-level vehicle populations.  



 

Fig. 3. Correlations between normalized provincial industrial emissions and three types of spatial proxies: (a) 

total population, (b) urban population and (c) IGDP data.  



 

Fig. 4. Spatial distributions of summer averaged tropospheric NO2 vertical columns modeled by 

GEOS-Chem based on S1-S6 emissions and scenario-specific data retrieved from the OMI for 2006.  



 

Fig. 5. Comparisons between county-level model simulations from the six emission cases and OMI NO2 

vertical columns for all counties (first column), urban districts in municipalities (second column), urban 

districts in other cities (third column) and other counties (fourth column). The color of each symbol 

corresponds to the population density in the county specified by that symbol. The dotted line has a slope of 1.  



 

Fig. 6. Distributions of the ratios between the county-level model simulations and satellite observations from 

the six emission inventories. The shaded region indicates a range of 0.9~1.1. 


