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Abstract 1 

Organic aerosol (OA) is a major constituent of ultrafine particulate matter (PM0.1). 2 

Recent epidemiological studies have identified associations between PM0.1 OA and premature 3 

mortality and low birth weight. In this study, the source-oriented UCD/CIT model was used to 4 

simulate the concentrations and sources of primary organic aerosols (POA) and secondary 5 

organic aerosols (SOA) in PM0.1 in California for a 9-year (2000 - 2008) modeling period with 4 6 

km horizontal resolution to provide more insights about PM0.1 OA for health effects studies. As a 7 

related quality control, predicted monthly average concentrations of fine particulate matter 8 

(PM2.5) total organic carbon at six major urban sites had mean fractional bias of -0.31 to 0.19 and 9 

mean fractional errors of 0.4 to 0.59. The predicted ratio of PM2.5 SOA/OA was lower than 10 

estimates derived from chemical mass balance (CMB) calculations by a factor of 2~3, which 11 

suggests the potential effects of processes such as POA volatility, additional SOA formation 12 

mechanism, and missing sources. OA in PM0.1, the focus size fraction of this study, is dominated 13 

by POA. Wood smoke is found to be the single biggest source of PM0.1 OA in winter in 14 

California, while meat cooking, mobile emissions (gasoline and diesel engines), and other 15 

anthropogenic sources (mainly solvent usage and waste disposal) are the most important sources 16 

in summer. Biogenic emissions are predicted to be the largest PM0.1 SOA source, followed by 17 

mobile sources and other anthropogenic sources, but these rankings are sensitive to the SOA 18 

model used in the calculation. Air pollution control programs aiming to reduce the PM0.1 OA 19 

concentrations should consider controlling solvent usage, waste disposal, and mobile emissions 20 

in California, but these findings should be revisited after the latest science is incorporated into 21 

the SOA exposure calculations. The spatial distributions of SOA associated with different 22 

sources are not sensitive to the choice of SOA model, although the absolute amount of SOA can 23 
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change significantly. Therefore, the spatial distributions of PM0.1 POA and SOA over the 9-year 24 

study period provide useful information for epidemiological studies to further investigate the 25 

associations with health outcomes.  26 

 27 

Key Words: Primary organic aerosols, secondary organic aerosols, California, sources, 28 

UCD/CIT model. 29 
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1. Introduction 31 

Organic aerosol (OA) is a significant constituent of fine particulate matter (PM2.5) (Zhang 32 

et al., 2007) and a dominant constituent of ultrafine particulate matter (PM0.1) (Kleeman et al., 33 

2009; Sardar et al., 2005a). Epidemiology studies carried out over the past 20 years link PM2.5 to 34 

severe short-term and long-term health effects such as asthma, cardio-respiratory disease, and 35 

lung cancer (Dockery, 2001; Dockery and Pope, 1994; Dockery et al., 1993; Franklin et al., 2007; 36 

Le Tertre et al., 2002; Pope et al., 2002; Pope and Dockery, 2006). Epidemiological studies for 37 

PM0.1 mass are in the early stages of development but preliminary results show associations with 38 

premature mortality (Ostro et al., 2015) and low birth weight (Laurent et al., 2014). OA is an 39 

important species due to its contribution to PM2.5 and PM0.1 mass, and the toxicity of some 40 

compounds within OA has motivated even greater scrutiny in health studies (Mauderly and 41 

Chow, 2008). A few PM2.5 epidemiology studies have investigated the associations between 42 

exposure to OA and health effects with mixed results (Cao et al., 2012; Krall et al., 2013; Levy et 43 

al., 2012; Mar et al., 2000; Ostro et al., 2006; Ostro et al., 2010). The early epidemiological 44 

studies conducted for PM0.1 have identified subcategories of OA that are highly associated with 45 

negative health effects (Laurent et al., 2016a; Laurent et al., 2014; Laurent et al., 2016b; Ostro et 46 

al., 2015) and these results merit further investigation to identify the exact sources and 47 

compound classes that may be related to PM0.1 OA toxicity.  48 

The exposure fields used in the published PM0.1 epidemiology studies to date have been 49 

generated with chemical transport models (CTMs) because PM0.1 measurements with sufficient 50 

spatial or temporal resolution are not widely available. In these studies, predictions using the 51 

UCD/CIT (University of California Davis/California Institute of Technology) model were 52 

evaluated against PM2.5 and PM0.1 point measurements as a confidence building exercise and the 53 
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model predictions were then used to estimate exposure fields with ~4km and ~24hr resolution 54 

over the state of California (Hu et al., 2014a; Hu et al., 2014b; Hu et al., 2015). The OA exposure 55 

fields generated through this approach reflect the state-of-the-science predictions from CTMs at 56 

the time they were done, but they may not capture the full complexity of atmospheric OA.  OA 57 

consists of primary organic aerosol (POA) and secondary organic aerosol (SOA). POA is directly 58 

emitted to the atmosphere in the particle phase and SOA is formed in the atmosphere from the 59 

oxidation of volatile or semi-volatile organic compounds (Seinfeld and Pankow, 2003). Both 60 

POA and the precursors of SOA can be emitted from anthropogenic and biogenic sources 61 

(Mauderly and Chow, 2008). Numerous theories have been put forward about the volatility of 62 

POA (Robinson et al., 2007), the conversion of intermediate volatility compounds to SOA 63 

(Jathar et al., 2014; Zhao et al., 2014), and the role of water in SOA formation (Jathar et al., 2016; 64 

Pankow et al., 2015). A comprehensive model for OA that has been fully constrained by 65 

measurements has not been demonstrated to date, which makes it difficult to estimate PM2.5 OA 66 

exposure using CTMs. However, measurements indicate the OA in the PM0.1 size fraction is 67 

more heavily influenced by POA (Ham and Kleeman, 2011; Kleeman et al., 2009), which makes 68 

estimating exposure to PM0.1 using CTMs more feasible.  69 

The current paper, as the fourth in the series (Hu et al., 2014a; Hu et al., 2014b; Hu et al., 70 

2015), investigates the UCD/CIT model capability in predicting the concentrations and sources 71 

of POA and SOA in PM0.1. The objective of this study is to identify the features of the CTM 72 

POA and SOA results that could add skill to the exposure assessment for epidemiological studies 73 

and to discuss the potential problems in modeling POA and SOA for use in health effects studies. 74 

 75 
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2. Methods 76 

2.1 Model Description 77 

The source-oriented University of California-Davis/California Institute of Technology 78 

(UCD/CIT) air quality model was used to predict OA concentrations in the current study. The 79 

UCD/CIT model tracks primary particles and SOA formation from different sources separately 80 

through the calculation of all major aerosol processes such as emissions, transport, deposition, 81 

gas-to-particle conversion, and coagulation. The standard algorithms of these processes used in 82 

the current study are provided in a companion paper (Hu et al., 2015) and references therein, 83 

therefore only the details of the algorithms for POA and SOA source apportionment calculation 84 

are described here. 85 

The UCD/CIT source-oriented air quality model tracks primary particles emitted from 86 

different sources by adding artificial tracers to represent total primary mass contributions from 87 

different sources in each particle size bin (Ying et al., 2008). The emissions of tracers are 88 

empirically set to be 1% of the total mass of primary particles emitted from each source category, 89 

thus the particle radius and the dry deposition rate are not significantly changed. The primary PM 90 

total mass concentrations from a given source then are directly correlated with the simulated 91 

artificial tracer concentrations from that source. Source specific emission profiles are used to 92 

estimate the POA concentrations in the primary PM total mass using the equation (1): 93 

POAi,j = Ci,j × Ai,j         (eq. 1) 94 

where POAi,j and Ci,j represent POA concentration and primary PM total mass concentration in 95 

size bin i from jth source, respectively. Ai,j represents OA fraction per unit mass of PM emitted 96 

from the jth emission source in size bin i. More details describing the POA source apportionment 97 
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technique and the emission profiles are provided in the previous studies (Ying and Kleeman, 98 

2004; Ying et al., 2008). 99 

The SOA module used in the current study follows the two-product method described by 100 

Carlton et al. (2010). SOA formation is considered from seven precursors: isoprene, 101 

monoterpenes, sesquiterpenes, long-chain alkanes, high-yield aromatics, low-yield aromatics, 102 

and benzene. The seven precursors form twelve semi-volatile products and seven nonvolatile 103 

products. The calculations consider dynamic gas-particle conversion of the semi-volatile and 104 

nonvolatile products. A more detailed description of the SOA module and parameters used in 105 

gas-to-particle transfer calculation is provided in the part I paper (Hu et al., 2015) and references 106 

therein.  107 

The original SOA module described above was modified to have the source 108 

apportionment capability inherent in the UCD/CIT model. SOA source apportionment is 109 

predicted by tracking the SOA precursor emissions from different sources individually through 110 

all atmospheric processes as they react to form low-volatility products that can partition to the 111 

particle phase based on the SOA module described above. This approach was initially developed 112 

for source apportionment of secondary inorganic aerosols, such as nitrate, sulfate, and 113 

ammonium (Mysliwiec and Kleeman, 2002; Ying and Kleeman, 2006). Later, this approach was 114 

applied for SOA source apportionment in California using the Caltech Atmospheric Chemistry 115 

Mechanism (Chen et al., 2010; Kleeman et al., 2007) and in Texas using the SAPRC99 116 

mechanism (Zhang and Ying, 2011; Zhang and Ying, 2012). In the current study, the SAPRC11 117 

mechanism was used and expanded to track the reactions of SOA precursors emitted from 118 

different sources. Chemical reaction products leading to SOA formation are labeled with the 119 
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source-identity of the reactant so that source attribution information is preserved. For the 120 

example of benzene (BENZ) reaction with OH forming benzene derived SOA,  121 

BENZ + OH  SV.BNZ1 + SV.BNZ2    (rx. 1) 122 

SV.BNZ1 ↔ ABNZ1       (rx. 2) 123 

SV.BNZ2 ↔ ABNZ2       (rx. 3) 124 

where SV.BNZ1 and SV.BNZ2 represents the two semi-volatile products that partition between 125 

gas and particle phase, and ABNZ1 and ABNZ2 represent the particle phase SOA products from 126 

SV.BNZ1 and SV.BNZ2, respectively. If there are two sources for BENZ, then BENZ is 127 

expanded into two species BENZ_X1 and BENZ_X2 in the model. The above pathways (rx1 –128 

rx3) are then expanded as: 129 

BENZ_X1 + OH  SV.BNZ1_X1 + SV.BNZ2_X1   (rx. 4) 130 

SV.BNZ1_X1 ↔ ABNZ1_X1     (rx. 5) 131 

SV.BNZ2_X1 ↔ ABNZ2_X1     (rx. 6) 132 

BENZ_X2 + OH  SV.BNZ1_X2 + SV.BNZ2_X2   (rx. 7) 133 

SV.BNZ1_X2 ↔ ABNZ1_X2     (rx. 8) 134 

SV.BNZ2_X2 ↔ ABNZ2_X2     (rx. 9) 135 

Thus, the SOA products from BENZ ABNZ1_X1, ABNZ1_X2, ABNZ2_X1 and 136 

ABNZ2_X2 contain the information needed to calculate source contributions to the SOA 137 

concentrations. 138 

2.2 Model Application 139 

The UCD/CIT model was applied to simulate the concentrations and sources of POA and 140 

SOA during ~ a decadal period (9 years from 2000 January 1st to 2008 December 31st) over 141 
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California using a one-way nesting technique added to the UCD/CIT model (Zhang and Ying, 142 

2010). The parent domain covers the entire state of California using a 24km horizontal grid 143 

resolution and two nested domains cover the most populated areas (> 92% of California total 144 

population) using a 4km horizontal grid resolution. Emissions of the seven SOA precursors were 145 

grouped into nine source categories: on-road gasoline engines, off-road gasoline engines, on-146 

road diesel engines, off-road diesel engines, wood smoke, meat cooking, high sulfur fuel 147 

combustion, other anthropogenic sources (including solvent usage, waste disposal emissions etc.), 148 

and the biogenic sources. Primary PM emissions were also grouped into these 9 source 149 

categories. Particulate composition, number and mass concentrations in the range between 0.01 150 

and 10 μm in diameter were represented in 15 size bins with the first 5 bins for PM0.1 (0.01 to 0.1 151 

μm) in the model. Biogenic emissions were generated using the U.S. EPA’s biogenic emission 152 

inventory system (BEIS3.14). The Weather Research and Forecasting model (WRF) v3.1.1 153 

(William C. Skamarock, June 2008) was used to simulate the 24 km and 4 km hourly 154 

meteorology fields (wind, temperature, humidity, precipitation, radiation, air density, and mixing 155 

layer height) that drove the UCD/CIT model simulations. WRF simulations were initialized and 156 

bounded by the North American Regional Reanalysis (NARR) data with 32 km resolution and 3-157 

hour time resolution. The four-dimensional data assimilation (FDDA) (Liu et al., 2005) 158 

technique was used and the surface friction velocity (u*) in the WRF model was increased by 50% 159 

to improve the surface wind predictions as suggested by previous studies (Hu et al., 2012; Hu et 160 

al., 2010; Mass, 2010). Details of the modeling domains, vertical cell spacing, preparation of 161 

emissions and meteorological inputs are provided in the first paper in the series (Hu et al., 2015). 162 
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3. Results  163 

3.1 Concentrations of POA and SOA 164 

Hourly POA and SOA concentrations in multiple size fractions were calculated 165 

throughout the 9-year simulation period, and then averaged to daily and monthly average 166 

concentrations. Although the focus of the current study is PM0.1 POA and SOA, the predicted 167 

PM2.5 OA concentrations were also calculated and compared to measurements as a confidence 168 

building exercise (since PM0.1 measurements are not routinely available).  Model calculations 169 

predict organic matter (OM) concentrations while ambient measurements quantify organic 170 

carbon (OC) concentrations. Simulated OM concentrations are converted to OC concentrations 171 

using an OM/OC ratio of 1.6 for POA (Turpin and Lim, 2010) and species-specific OM/OC 172 

ratios for SOA species taken from Table 1 in Carlton et al. (2010). Detailed evaluation of the 173 

model performance for PM2.5 OC (and other PM / gaseous species) has been presented in the first 174 

paper in the series (Hu et al., 2015).  In summary, predicted monthly average PM2.5 OC has a 175 

mean fractional bias of -0.32 and a mean fractional error of 0.43. Monthly mean fractional bias 176 

(MFB) and mean fractional errors (MFE) calculated using daily average OC generally meet the 177 

model performance criteria proposed by Boylan and Russell (2006).  178 

Figure 1 illustrates the time series of the predicted and measured monthly-average total 179 

PM2.5 OC concentrations at six major urban locations (a) Sacramento, (b) San Jose, (c) Fresno, (d) 180 

Bakersfield, (e) Los Angeles, and (f) Riverside. Measured PM2.5 OC concentrations at all sites 181 

show strong seasonal variation with higher concentrations in winter months and lower 182 

concentrations in summer months. OC concentrations predicted by the UCD/CIT model 183 

generally capture the monthly average concentrations and seasonal variations with MFB ranging 184 
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from -0.31 to 0.19 and MFE ranging from 0.4 to 0.59. However, the model predicts much weaker 185 

trends of PM2.5 OC over the 9 years at Los Angeles and Riverside, indicating that the declining 186 

emission trends might not be well represented in the inventory. At Sacramento and Fresno, the 187 

measured monthly average OC concentrations frequently exceeded 10 µg/m3 in winter and the 188 

maximum monthly OC concentrations reached or exceeded ~25 µg/m3. Wood smoke is predicted 189 

to be the dominant OC source at the two locations, contributing over 70% of the total OC 190 

concentrations on average. Wood smoke is also predicted to be the dominant OC source in 191 

winter at San Jose and Bakersfield. Model calculations tend to over-predict the winter OC 192 

concentrations at San Jose, indicating the wood smoke emissions are likely over-estimated in this 193 

area. Model calculations generally under-predict OC in summer when concentrations are lower. 194 

Meat cooking and other anthropogenic sources are predicted to be the largest sources in summer 195 

at Sacramento, San Jose, Fresno, and Bakersfield. Together these two categories contribute over 196 

86% of the total predicted OC in summer. Both measured and predicted seasonal variation is 197 

weaker at Los Angeles and Riverside than in Northern California due to smaller wood smoke 198 

contributions. Meat cooking and other anthropogenic sources make the largest predicted 199 

contributions to OA at these two Southern California locations. Mobile sources (gasoline and 200 

diesel engines) also contribute approximately 30% of the total PM2.5 OC at Los Angeles. Model 201 

calculations tend to under-predict PM2.5 OC concentrations in all seasons in 2000-2006 at 202 

Riverside (approximately 80 km downwind of the Los Angeles urban center). Intense emissions 203 

transported from the upwind Los Angeles areas along with the meteorology and topography 204 

enhances photo-oxidation of volatile organic compounds (VOCs) and formation of SOA at this 205 

location. A measurement study of organic aerosols at Riverside in summer indicated high SOA 206 

fraction of the total OA with an average SOA/OA ratio of 0.74 (Docherty et al., 2008). The 207 
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PM2.5 OC under-prediction at Riverside during summer and the general under-prediction in 208 

summer at other sites may indicate that some important precursors and pathways of PM2.5 SOA 209 

are missing or only partially included in the current SOA module, such as SOA formation from 210 

glyoxal and methylglyoxal (Ervens and Volkamer, 2010; Fu et al., 2008; Ying et al., 2015) and 211 

from aerosol aqueous phase chemistry (Volkamer et al., 2009), the conversion of intermediate 212 

volatility compounds to SOA (Jathar et al., 2014; Zhao et al., 2014), or SOA forming with higher 213 

yields than included in the module (Zhang et al., 2014; Cappa et al., 2016).  214 

Figure 2a compares the average PM2.5 OC/mass ratios estimated from ambient 215 

measurements and the values predicted by the UCD/CIT model over the 9-year study period at 216 

seven representative urban locations. At each site, daily average measured concentrations of the 217 

PM2.5 total mass and OC were obtained from California Air Resources Board (CARB) (CARB, 218 

2011) “1 in 3” sampling network and averaged over the 9 year period. Predicted concentrations 219 

on the corresponding days were extracted and averaged for the comparison.  The average 220 

OC/mass ratios were then calculated. The observed average OC/mass ratios vary in the range of 221 

0.24 (at Riverside) to 0.45 (at Sacramento). The predicted average OC/mass ratios are in 222 

relatively good agreement with measured values at Los Angeles, Riverside, and Bakersfield 223 

(difference < 20%), but not at Sacramento, San Jose, Fresno, and El Cajon (difference > 35%). 224 

The predicted average OC/mass ratios are consistently lower than observed ratios, by 0.01 (3% at 225 

Los Angeles) to 0.22 (48% at Sacramento). This under-prediction is partly attributed to the 226 

under-prediction of OC concentrations, especially the SOA concentrations, but also to the over-227 

prediction of total mass concentrations due to over-estimated dust emissions (Hu et al., 2014a; 228 

Hu et al., 2015). A sensitivity analysis was conducted by removing the dust concentrations from 229 

the predicted PM2.5 mass (Figure 2a). The average predicted OC/mass ratio increased from 0.22 230 
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to 0.29 (average across the seven sites), compared to the observed ratio of 0.33. Omission of dust 231 

from the model predictions improves agreement with OC/mass measurements at all sites except 232 

central Los Angeles, although OC/mass without dust is still lower than measurements at four 233 

sites (Sacramento, San Jose, Fresno, and El Cajon) indicating OC predictions are likely biased 234 

low at these locations.  235 

Figure 2b compares the predicted and observed OC/mass ratios in the ultrafine (PM0.1) or 236 

quasi-ultrafine (PM0.18, PM0.25) particles. The ultrafine/quasi-ultrafine measurement data were 237 

compiled in a previous study (Hu et al., 2014a) from published literature (Herner et al., 2005; 238 

Kim et al., 2002; Krudysz et al., 2008; Sardar et al., 2005a; Sardar et al., 2005b). The ultrafine or 239 

quasi-ultrafine data are more sparse than the PM2.5 data, but still cover a sufficient total number 240 

of days to allow for robust comparison. The observed OC/mass ratios in ultrafine/quasi-ultrafine 241 

sizes vary from 0.43 (at Modesto) to 0.71 (at USC). The predicted ultrafine/quasi-ultrafine 242 

OC/mass ratios generally agree well with observed values at all sites. The generally better 243 

agreement of OC/mass ratios in the ultrafine/quasi-ultrafine size range compared to the PM2.5 244 

size range reflects the fact that SOA formation and dust emissions make limited contributions to 245 

ultrafine/quasi-ultrafine concentrations. Condensation of SOA mostly takes place in the particle 246 

accumulation mode, and is generally not dominant in the ultrafine size range due to the increase 247 

in the saturation vapor pressure above small particles (Kelvin effect). Dust components mainly 248 

contribute to coarse and fine particles, but make little contribution to the ultrafine particles.   249 

The primary and secondary fraction of total OA cannot be directly measured in ambient 250 

OA samples. A few indirect methods have been developed to estimate the POA and SOA 251 

concentrations, such as molecular marker-based method (Daher et al., 2011; Daher et al., 2012; 252 

Ham and Kleeman, 2011; Kleindienst et al., 2007), elemental carbon (EC) tracer method 253 
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(Cabada et al., 2004; Lim et al., 2003; Polidori et al., 2007; Polidori et al., 2006; Turpin and 254 

Huntzicker, 1995), water soluble organic carbon content method (Weber et al., 2007), aerosol 255 

mass spectrometry factorization method (Aiken et al., 2008; Lanz et al., 2007; Ulbrich et al., 256 

2009), and the un-explained fraction of OA by tracers for major POA categories (Chen et al., 257 

2010; Schauer and Cass, 2000). In the current study, PM2.5 SOA concentrations were estimated 258 

by the molecular marker Chemical Mass Balance (CMB) method  (Daher et al., 2012) during 259 

sampling periods in 2005-2007 at four locations. PM2.5 POA concentrations were then estimated 260 

by subtracting PM2.5 SOA concentrations estimated by the CMB method from the total measured 261 

OA concentrations. Figure 3 shows the PM2.5 POA and SOA concentrations predicted by the 262 

UCD/CIT model (right dark columns) compared to the PM2.5 POA and SOA concentrations 263 

estimated using the CMB method (left gray columns). Error bars represent the standard deviation 264 

of concentrations estimated during the sampling periods. The total PM2.5 OA (i.e., POA + SOA) 265 

concentrations predicted by the UCD/CIT model generally agree with measured values (with 266 

fractional bias within ±35%) except at the Riverside site (with a fraction bias of -63%). But the 267 

PM2.5 SOA concentrations predicted by the UCD/CIT model appear to be a factor of 2~3 lower 268 

than the SOA concentrations estimated by the CMB method (ratio ranging from 2.2 at Riverside 269 

to 2.8 at WSanG). The PM2.5 POA concentrations predicted by the UCD/CIT model are higher 270 

than those estimated by the CMB method at WSanG and ESanG1.  This may reflect the effects 271 

of POA volatility. Studies have indicated that some fraction of POA emissions will evaporate, 272 

and this material may undergo photo-oxidation and condense back to particle phase (Robinson et 273 

al., 2007). In the current model, POA is treated as non-volatile. Thus, no such evaporation occurs. 274 

However, the substantial under-prediction of PM2.5 SOA at all sites suggests that some SOA 275 

precursors and pathways are likely missing from the current SOA mechanism. Both PM2.5 POA 276 
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and SOA are under-predicted at Riverside, indicating that some important sources are likely 277 

missing in that area. 278 

Figure 4 illustrates the predicted total PM0.1 OA concentrations (Figure 4a) and the 279 

predicted ratios of SOA to total OA averaged over the 9 year modeling period (Figure 4b). High 280 

total PM0.1 OA concentrations with maximum concentrations > 2 µg/m3 are located in urban 281 

areas where the POA emissions are large due to human activities. Predicted PM0.1 SOA generally 282 

accounts for less than 10% of total PM2.5 OA at urban areas, but predicted SOA contribute to 283 

10~20% of total OA in suburban areas, and contribute to 20~50% in rural areas. The spatial 284 

distribution of PM2.5 SOA concentrations and the SOA to total OA ratios (shown in Figure S1) 285 

are generally similar to those of PM0.1, but PM0.1 OA has sharper spatial gradients and the PM0.1 286 

SOA fraction is lower than PM2.5, indicating POA contributes more in the ultrafine size range. 287 

Figure 5 shows the contributions from the 9 precursor species to the PM0.1 SOA 288 

concentrations (results of PM2.5 SOA are shown in Figure S2). Maximum SOA concentrations 289 

are located in southern part of the SJV. Monoterpenes, sesquiterpenes, oligomers, and long 290 

alkanes are the most important precursors, contributing over 90% of the total SOA in most areas, 291 

while other precursors (xylene, toluene, and benzene) in total contribute less than 10 ng/m3 to 292 

SOA concentrations.  These finding are very dependent on the treatment of vapor wall losses 293 

during the formulation of the SOA model. The contributions from different precursors to SOA 294 

concentrations have very different spatial distributions. Long chain alkanes form SOA mainly in 295 

the urban areas of Southern California and in the middle-southern portion of the SJV. Isoprene, 296 

monoterpenes, and sesquiterpenes form SOA at coastal and foothill locations where the biogenic 297 

emissions are greatest. The longer lifetime of long chain alkanes than isoprene leads to a broader 298 

spatial distribution for the SOA derived from alkanes. The spatial distribution of oligomers of 299 
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anthropogenic SOA (Oligomer_A) and biogenic SOA (Oligomer_B) reflects the patterns of SOA 300 

derived from long chain alkanes and the total biogenic species.  The relative spatial patterns 301 

associated with each precursor are generally not sensitive to the exact formulation of the SOA 302 

model (see section 3.3). 303 

3.2 Sources of POA and SOA 304 

Figure 6 displays the time series of monthly average PM0.1 SOA source contributions at 305 

the six major urban locations. PM0.1 SOA concentrations are high in summer (100~300 ng/m3) 306 

and low (20~50 ng/m3) in winter, reflecting the seasonal variation in photochemistry. PM0.1 SOA 307 

concentrations are higher at Fresno and Bakersfield than other sites due to larger biogenic source 308 

contributions. Biogenic emissions are the largest source of PM0.1 SOA across all sites, followed 309 

by the other anthropogenic sources (mainly solvent usage and waste disposal emissions, see 310 

Figure S5). On-road gasoline engines are an important source of SOA at Los Angeles and 311 

Riverside. Similar source contributions to PM2.5 SOA are found and shown in Figure S3 in the 312 

Supplemental Materials. 313 

Figure 7 shows the predicted regional source contributions of PM0.1 POA averaged over 314 

the 9 year modeling period. The dominant regional sources of PM0.1 POA are predicted to be 315 

wood smoke, meat cooking, other anthropogenic sources, on-road gasoline and off-road diesel. 316 

Wood smoke is the dominant POA source especially in Northern California, with the maximum 317 

PM0.1 POA contribution exceeding 1 µg/m3. Meat cooking and mobile (on-road and off-road) 318 

sources are the major sources in urban areas, especially in metropolitan areas such as Greater Los 319 

Angeles Area and the San Francisco Bay Area. Other anthropogenic sources is another major 320 

category in the urban centers in the SJV and also the Los Angeles areas. High sulfur content fuel 321 
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sources are mainly located around the ports in the Los Angeles and San Francisco Bay areas. The 322 

regional source contributions of PM0.1 POA are quite different from those of PM2.5 POA (shown 323 

in Figure S4). The PM2.5 POA source contributions are much more widespread than the PM0.1 324 

POA sources contributions because PM2.5 has a longer lifetime due to slower deposition and 325 

coagulation compared to PM0.1. For example, the mobile sources and the other anthropogenic 326 

sources contribute greatly to PM2.5 POA throughout the entire SJV, but only contribute to PM0.1 327 

POA in urban centers. 328 

Figure 8 shows the predicted regional source contributions of PM0.1 SOA averaged over 329 

the 9 year modeling period (and Figure S6 shows the PM2.5 SOA results). Biogenic emission is 330 

predicted to be the single largest PM0.1 SOA source in the present study. The maximum biogenic 331 

PM0.1 SOA concentration is up to 0.1 µg/m3 around Bakersfield in the southern SJV. Other 332 

anthropogenic sources, on-road gasoline engines, and off-road gasoline engines are predicted to 333 

be the dominant anthropogenic sources of PM0.1 SOA in California. The spatial distribution of 334 

PM0.1 SOA concentrations from these anthropogenic sources are similar (but different from the 335 

spatial distribution of SOA from biogenic sources) with high concentrations in Southern 336 

California. PM0.1 SOA formation from on-road diesel engines, off-road diesel engines, wood 337 

smoke, meat cooking and high sulfur fuel combustion are small, with PM0.1 SOA contributions 338 

generally less than a few ng/m3. A recent epidemiological study has revealed that anthropogenic 339 

PM0.1 SOA is highly associated with ischemic heart disease mortality (Ostro et al., 2015). 340 

Therefore, the results in this study suggest that control of solvent usage, waste disposal, and 341 

mobile emissions should be considered to protect public health in California, but the exact 342 

determination of source controls will need to be evaluated after the SOA formation mechanism is 343 

updated. 344 
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3.3 Influence of vapor wall losses on SOA exposure in California 345 

The SOA concentrations predicted in the current study are based on the SOA yield data 346 

measured in chamber experiments. A recent study has demonstrated that organic vapors can be 347 

lost to chamber walls during SOA formation experiments resulting in SOA yields that are biased 348 

low (Zhang et al., 2014). Efforts have been carried out to parameterize the effect of vapor wall 349 

losses on SOA formation in the UCD/CIT air quality model to account for this effect when 350 

predicting ambient SOA concentrations in Southern California (Cappa et al., 2015). SOA 351 

concentrations are predicted to increases by factors of 2-5 with low vapor wall loss rates, and by 352 

factors of 5-10 with high vapor wall loss rates, compared to the concentrations in the simulations 353 

with no consideration of vapor wall losses. Here we further analyzed the changes in the 354 

population weighted concentrations (PWCs) of SOA when vapor wall losses are accounted for.  355 

Two sets of simulations (scenarios) conducted by Cappa et al (2015) are considered, one with the 356 

low-NOx, high-yield parameters (denoted as “highyield”) and the other with high-NOx, low-yield 357 

parameters (denoted as “lowyield”).  Each set of simulations included three vapor wall loss cases, 358 

i.e., no consideration of vapor wall losses (denoted as “base”), low vapor wall loss rates (denoted 359 

as “lowwallloss”), and high vapor wall loss rates (denoted as “highwallloss”). PWCs of SOA are 360 

calculated for six counties in the Southern California for the six scenarios, respectively. Spatial 361 

difference in exposure is important in cohort studies, therefore the relative changes of PWCs 362 

among counties are examined. Figure 9 shows the PWCs of SOA and their relative changes in 363 

different scenarios in the six counties. The results indicate that PWCs of SOA increase 364 

substantially by accounting for vapor wall losses in all counties (panel a). However, the spatial 365 

pattern of SOA PWC, as characterized by normalizing the PWC for each location by the PWC in 366 

Orange County, is very similar in all scenarios (panel b).  Consequently, accounting for vapor 367 
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wall losses changes the SOA exposure ratio in different counties by only a small extent of < 15% 368 

for most scenarios/counties (panel c). These results suggest that future simulations that account 369 

for vapor wall losses in SOA simulations will yield increased absolute values of concentrations 370 

but will have spatial patterns that are similar to the basecase results in the current paper when 371 

used for epidemiology studies.  372 

Figure 9 suggests that associations between anthropogenic SOA and health effects identified in 373 

previous epidemiological studies will prove robust to future updates in SOA models.  This 374 

finding also extends to the spatial pattern of individual SOA precursors. The influence of vapor 375 

wall losses on exposure to SOA formed from different precursors (i.e., long alkanes, aromatics, 376 

isoprene, sesquiterpenes, and monoterpenes) is shown in Figures S7-S11. In all cases, the spatial 377 

pattern of PWC for SOA derived from each precursor is similar under all treatments of wall 378 

losses.  Long alkanes and aromatics are mainly from anthropogenic sources, and isoprene, 379 

sesquiterpenes, and monoterpenes are mostly from biogenic sources. Further detailed 380 

interpretation of source contributions to SOA and associated health effects should only be carried 381 

out after new exposure fields are calculated using the latest SOA models.   382 

4. Conclusions 383 

The source-oriented UCD/CIT model was applied to predict the concentrations and 384 

sources of PM0.1 POA and SOA in California for a 9 year (2000 - 2008) modeling period with 4 385 

km horizontal resolution to provide data for health effects studies. As a confidence building 386 

measure, predicted total PM2.5 OC concentrations (primary + secondary) and the PM2.5 and PM0.1 387 

OC/mass ratios generally agree with measured values at fixed point locations. Compared to the 388 

POA and SOA concentrations estimated from measurements at 4 sites using the CMB method, 389 
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the PM2.5 total OA concentrations predicted by the UCD/CIT model have a fractional bias within 390 

±35% except at the Riverside site. The CMB model estimated PM2.5 SOA concentrations 391 

accounted for 13-37% of total OA while the UCD/CIT SOA concentrations accounted for 4-11% 392 

of total OA.  POA volatility, incomplete SOA formation mechanism, and/or missing sources may 393 

account for the discrepancy. For these reasons, the current study focuses on the PM0.1 size 394 

fraction. 395 

PM0.1 OA has larger contributions from primary sources than the PM2.5 size fraction. 396 

Wood smoke is found to be the single biggest source of PM0.1 OA in winter in California, and 397 

meat cooking, mobile sources and other anthropogenic sources (mainly solvent usage, and waste 398 

disposal) are the most important sources in summer, but these rankings are sensitive to the SOA 399 

model used in the calculation. Biogenic emissions are predicted to be the largest PM0.1 SOA 400 

source, followed by the other anthropogenic sources, and mobile sources. A recent 401 

epidemiological study has revealed that anthropogenic PM0.1 SOA is highly associated with 402 

ischemic heart disease mortality (Ostro et al., 2015). Therefore, the results in the present study 403 

suggest that control of solvent usage, waste disposal, and mobile emissions should be considered 404 

to protect public health in California, but detailed source control programs can only be carried 405 

out after revised calculations are performed using updated SOA models. The predicted spatial 406 

distributions of the concentrations and sources of POA and SOA in PM0.1 over the 9-year periods 407 

provide detailed information for epidemiological studies to further investigate the associations 408 

with other health outcomes, and these spatial patterns are generally not sensitive to the treatment 409 

of wall losses in the SOA model formulation. All model results included in the current 410 

manuscript can be downloaded free of charge at http://faculty.engineering.ucdavis.edu/kleeman/. 411 
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Figures and Tables 646 

 647 

Figure 1. Monthly source contributions to PM2.5 total OC at 6 urban sites. Observed total OC 648 
concentrations are indicated by the dot-circles, and predicted OC concentrations from different 649 
sources are indicated by the colored areas.  650 

Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2016-903, 2016
Manuscript under review for journal Atmos. Chem. Phys.
Published: 12 December 2016
c© Author(s) 2016. CC-BY 3.0 License.



29 

 

 651 

Figure 2. Observed (obs) and predicted (model) OC/Mass ratios in (a) PM2.5 and (b) ultrafine and 652 
quasi-ultrafine PM. In (a), a sensitivity analysis is conducted by removing the dust concentration 653 
from the PM2.5 total mass (model_no_dust).The ultrafine and quasi-ultrafine data in (b) are 654 
extracted from published literature as indicated in the figure. 655 
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 657 

Figure 3. POA and SOA concentrations estimated by the CMB method (left gray columns) and 658 
predicted by the UCD/CIT model (right dark columns). Error bars represent the standard 659 
deviation of concentrations estimated during the sampling periods by both methods. The data are 660 
for sampling periods in 2005-2007 at four sites in Southern California. 661 
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 663 

Figure 4. Predicted 9-year average (a) PM0.1 Total OA (TOA) concentration and (b) PM0.1 664 
SOA/TOA ratio in California.  665 
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 667 

Figure 5. The 9-year average PM0.1 SOA concentrations derived from (a) AALK, b) AXYL, c) 668 
ATOL, d) ABNZ, e) AISO, f) ATRP, g) ASQT, h) AOLGA, and i) AOLGB. Note AXYL and 669 
ATOL are actually derived from lumped aromatics species ARO2 (groups of aromatics with 670 
kOH > 2×104 ppm-1 min-1, including xylenes and other di- and polyalkylbenzenes) and ARO1 671 
(groups of aromatics with kOH < ×104 ppm-1 min-1, including toluene and monoalkylbenzenes). 672 
The color scales (shown in the last panel in unit of %) indicate the ratios of the concentrations to 673 
the maximum values, which are shown in the panels under species names with a unit of ng/m3. 674 
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 676 

Figure 6. Monthly source contributions to PM0.1 SOA at 6 urban sites. Predicted PM0.1 SOA 677 
concentrations from different sources are indicated by the colored areas.  678 
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 679 

Figure 7. Predicted source contributions to 9-year average PM0.1 POA concentrations. The color 680 
scales (shown in the last panel in unit of %) indicate the ratio of the concentrations to the 681 
maximum concentration values, which are shown in the panels under source names with a unit of 682 
ng/m3. 683 
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 685 

Figure 8. Predicted source contributions to 9-year average PM0.1 SOA concentrations. The 686 
definition of the color scales are the same as in Figure 7. 687 

  688 

Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2016-903, 2016
Manuscript under review for journal Atmos. Chem. Phys.
Published: 12 December 2016
c© Author(s) 2016. CC-BY 3.0 License.



36 
 

 689 

Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2016-903, 2016
Manuscript under review for journal Atmos. Chem. Phys.
Published: 12 December 2016
c© Author(s) 2016. CC-BY 3.0 License.



37 

 

Figure 9. (a) Predicted population weighted concentrations (PWCs) of SOA in six counties in 690 
Southern California. Two sets of simulations (scenarios) conducted by Cappa et al (2015) were 691 
used, one with the low-NOx, high-yield parameters (denoted as “highyield”) and the other with 692 
high-NOx, low-yield parameters (denoted as “lowyield”), and each set of simulations included 693 
three vapor wall loss cases, i.e., no considering of vapor wall losses (denoted as “base”), low 694 
vapor wall loss rates (denoted as “lowwallloss”), and high vapor wall loss rates (denoted as 695 
“highwallloss”). (b) Normalized PWCs of SOA in all counties to the PWC of SOA in Orange 696 
County. (c) Changes in the normalized PWCs of SOA in all counties by accounting for vapor 697 
wall losses.   698 
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