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Abstract.

Large Eddy simulations (LES) of a radiation fog event occurring during the ParisFog experiment are studied with a view

to analysing the impact of the dynamics of the boundary layer on the microphysics. The LES, performed with the Meso-NH

model at 5 m resolution horizontally and 1 m vertically, and with a 2-moment microphysical scheme, includes the drag effect

of a tree barrier and the deposition of droplets on vegetation. The model shows good agreement with measurements of near5

surface dynamic and thermodynamic parameters, but overestimates the cloud droplet mass and concentration. The blocking

effect of the trees induces elevated fog formation, as actually observed, and horizontal heterogeneities during the formation. It

also limits cooling and cloud water production. Deposition is found to exert the most significant impact on fog prediction as it

not only erodes the fog near the surface but also modifies the fog life cycle and induces vertical heterogeneities. A comparison

with the 2 m horizontal resolution simulation reveals small differences, meaning that grid convergence is achieved. Conversely,10

increasing numerical diffusion through a wind advection operator of lower order leads to an overestimation of the near-surface

microphysical fields and has a very similar effect to removing the tree barrier. This study allows us to establish the major

dynamical ingredients needed to accurately represent the fog life cycle at very high resolution.

1 Introduction

Despite long-standing interest in understanding fog processes, uncertainties still exist in the physical mechanisms driving fog15

variability. Forecasting fog remains a challenge because of the diversity of mechanisms involved during the fog life cycle

and their interactions: local flow, turbulence, radiation, microphysics, aerosols, and surface effects. Several field experiments

have been carried out since the 1970s and have contributed to the important progress made in understanding fog processes.

Noteworthy studies include campaigns at Cardington in the UK (Roach et al., 1976; Price, 2011), Fog-82 in Albany, New York

(Meyer et al., 1986), Lille 91 in France (Guedalia and Bergot, 1994), a campaign in the Po Valley in Italy (Fuzzi et al., 1998)20

and ParisFog in France (Haeffelin et al., 2010). Most of these have included measurements of fog droplet spectra and have

reported liquid water contents (LWC) in the range of 0.01 − 0.4 gm−3 and droplet number concentrations (Nc) of a few

tens to a hundred per cm3. Roach et al. (1976) reported values of LWC between 0.05 and 0.22 gm−3 and Nc between 30 and
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100 cm−3 for winter fog cases at Cardington. More recently, Mazoyer et al. (2016) reported Nc of less than 150 cm−3 for

radiation fog over 3 winters during ParisFog.

Many important features of fog have also been characterized using one-dimensional (1D) modelling (Bergot et al., 2007; Tardif,

2007; Stolaki et al., 2015). However, to study some aspects of the characteristics of a fog layer, it has become necessary to

explicitly simulate turbulence motions in 3D as shown by Nakanishi (2000), who was the first to use a large-eddy simulation5

(LES) for fog. LES is a turbulence modelling technique in which most of the energy-containing eddies are explicitly resolved

while eddies smaller than a certain cutoff size, usually taken equal to the grid spacing, are parametrized by a turbulence

scheme. Since then, Porson et al. (2011) have explored the static stability in a fog layer, and Bergot (2013) has shown the

various organized structures occurring in a fog layer, which cannot be resolved in 1D. Thanks to these studies, the dynamical

characteristics of radiation fog are more clearly identified during the three stages of the fog life cycle defined by Nakanishi10

(2000): the onset, development and dissipation phases. During the formation phase, small banded structures, identified by

Bergot (2013) as Kelvin-Helmholtz (KH) billows, occur in the middle of the fog layer in dynamical and thermodynamical

fields. They are sometimes associated with a burst of turbulent kinetic energy (TKE) (Nakanishi, 2000; Bergot, 2013) but this

is not always the case (Porson et al., 2011). During the development phase, the main dynamical processes relocate to the top of

the fog layer and are associated with the maximum of TKE and horizontal rolls (Bergot, 2013). During the dissipation phase,15

coupled processes between the ground and the top of the fog layer explain the spatial variability of fog (Bergot, 2015b) but the

link between dynamics and microphysics has not been explored specifically in these LES studies.

The quality of the LES depends on the horizontal and vertical resolutions. Beare and MacVean (2004) demonstrate that simu-

lations in stable conditions converge at 2-m horizontal resolution. Very high vertical resolution is also essential for representing

the divergence of the radiative fluxes in the first few metres above the surface and therefore to produce the radiative cooling20

necessary for the formation of fog (Duynkerke, 1999; Tardif, 2007).

So far, most fog LES studies have considered homogeneous canopies. Only Bergot et al. (2015a) have accounted for the effect

of surface heterogeneities such as buildings on radiation fog. Other studies, such as those by Zaïdi et al. (2013) or Dupont and

Brunet (2008), have considered the impact of forests on turbulence structures but not for fog situations. In this study, we will

explore an LES of a fog case that was observed during ParisFog and was strongly influenced by trees.25

Few fog LES studies are based on sophisticated 2-moment microphysical schemes which allow the impact of aerosols on the

radiation fog life cycle to be represented. Maalick et al. (2016) studied the effects of aerosols on radiation fog with an LES

but in a 2D configuration that could present some limitations for the dynamical patterns of the fog layer. Additionally, most

of the studies using one- or two-moment microphysical schemes fail to reproduce realistic liquid water contents as they tend

to overestimate values near the ground. For instance, Zhang et al. (2014b) simulated Nc = 800 cm−3 and LWC = 0.4 gm−330

and Stolaki et al. (2015) simulated Nc = 250 cm−3 and LWC = 0.34 gm−3 near the surface, both in 1D configuration. These

values are outside the range found by Mazoyer et al. (2016) for the same site. So the question of a possible missing mechanism

arises, the inclusion of which might improve the modelling of microphysical fields. Some aspect of deposition that relates to

the interaction with the ground surface is important as already shown by Price and Clark (2014) on measurements and von

Glasow and Bott (1999) or Zhang et al. (2014b) on 1D simulations.35
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The goal of this study is to better understand the physical processes dominating the fog life cycle at a complex site and

impacting the microphysical fields. LES modelling at very high resolution (1 m vertically and 5 m horizontally) is used with

surface heterogeneities (barrier of trees) and a 2-moment microphysical scheme. In order to establish the main ingredients

driving the fog life cycle and the microphysical fields, and to evaluate how dynamics affects the evolution of fog, sensitivity

simulations are conducted. To our knowledge, this is the first time that an LES study of radiation fog has been performed at5

such high resolution with a sophisticated microphysical parameterization scheme while considering the effect of heterogeneities

such as forests on the fog dynamics and microphysics. In a second article, the impact of aerosol activation on microphysical

fields will be explored specifically, allowing the contribution of the different microphysical processes to be characterized.

Section 2 presents the measurement set-up and the observed case, and describes the numerical model. The reference simula-

tion is analysed in Section 3, and Section 4 is devoted to sensitivity tests. Finally, some conclusions are drawn and perspectives10

suggested in Section 5.

2 Experimental design and model description

2.1 Measurements set-up

The selected fog event was observed on 15 November 2011 during the ParisFog field campaign (Haeffelin et al., 2010) at the

Sirta (Site Instrumental de Recherche par Télédétection Atmosphérique) observatory (48.713 °N and 2.208 °E). The objective15

of the ParisFog campaign during three winters from 2010 to 2013 was to better understand the radiative, thermodynamic,

dynamic and microphysical processes occurring during the fog life cycle. The site where the instrument platform was installed

was a semi-urban area with mixed land cover including forest, lake, meadows and shrubs next to a built up area. As shown in

Figure 1a, the instrumented zone was located near a forest area. Zaïdi et al. (2013) demonstrated the impact of the tree barrier

on the observed flow when the wind was blowing from the barrier of trees over the instrument location, as in our case study.20

This fog case has previously been studied by Stolaki et al. (2015) using a 1D model.

Temperature and humidity sensors were located at heights between 1 and 30 m on an instrumented mast, with uncertainties of

0.2 K in temperature and 2% in relative humidity. Wind speed was measured by two ultrasonic anemometers at 10 m and 30 m

above ground level (agl) on the same mast. Radiative fluxes were measured at a height of 10 m with 5 Wm−2 and 4 Wm−2

uncertainties for downward and upward fluxes respectively. Two diffusometers were operated at 3 m and 18 m to measure25

horizontal visibility with an uncertainty of up to 25%. Additionally, radiosondes were launched by Météo-France twice a day

from Trappes (48.7°N, 2 °E), situated 15 km to the northwest of Sirta.

The microphysical instrumentation has been presented in detail by Mazoyer et al. (2016). A Fog-Monitor 100 (FM-100)

provided the size distribution for particles 2 µm to 50 µm in diameter, and the particle diameter distribution was provided

between 0.96 and 10 µm by a WELAS-2000 system.30

Aerosol particle measurements were performed using a Scanning Mobility Particle Sizer (SMPS) measuring dry aerosol

diameters between 10.6 and 496 nm every 5 min, and by a CCN chamber that gave the CCN number concentration at different

supersaturations from 0.1 to 0.5% (Roberts and Nenes, 2005). An RPG-HATPRO water vapour and oxygen multi-channel

3



microwave profiler was used to measure the Liquid Water Path (LWP) with an error of up to 20 gm−2 (Lohnert and Crewell,

2003). Measurements of dewfall and fog-droplet deposition were not taken.

2.2 Presentation of the observed case

2.2.1 Dynamics and thermodynamics

Radiation fog formed at 0200 UTC on 15 November 2011 and dissipated at the ground around 1000 UTC on the following5

morning. Conditions favouring fog were due to a ridge at 500 hPa centred over the North Sea and anticyclonic conditions near

the surface. One of the features of this event was the initial formation of a cloud layer at 150 m agl, followed 30 min later by

fog occurring at the surface. As underlined by Stolaki et al. (2015), this characteristic is very common at Sirta and 88% of the

radiation fog events during the field experiment followed a similar pattern. However, these events are not classified as stratus

lowering as they were followed rapidly by formation of fog at the surface. A delay of 30 min between the formation at 150 m10

height and at the ground seems too short to be a stratus lowering, which is mainly driven by the evaporation of slowly falling

droplets that cool the sub-cloud layer (Dupont et al., 2012). This suggests that this type of radiation fog could be linked with,

and specific to, the configuration of the Sirta site.

The fog case is presented following the three phases of the fog life cycle defined by Nakanishi (2000). Before the fog onset,

between 2200 and 0200 UTC, the surface boundary layer was stable and a near-surface cooling was observed, inducing an15

increase in relative humidity (Fig. 2). Between 0000 and 0130 UTC, the relative humidity (RH) near the ground remained

nearly constant around 97%. Wind at 10 m height was light (speed around 1.8 ms−1) as was TKE, with small variability (Fig.

3). At 0200 UTC, the attenuated backscatter coefficient measured by the lidar increased significantly at 150 m agl (not shown),

revealing the formation of liquid water at this height, while the RH at the surface remained at 97%. The cloud base height

progressively subsided over the next 30 min, at which point it reached the ground. During this time, the near-surface temperature20

decreased by about 1 K in a stable stratification layer. At 0230 UTC, the appearance of fog at the ground was associated with

a temperature homogenization in the first 30 metres, called temperature convergence by Price (2011) and corresponding to

a neutral stratification. The downwelling longwave (LWD) radiation flux increased progressively to 325 Wm−2 during the

development of the fog layer (Fig. 4).

During the fog development and mature phases, between 0200 and 0700 UTC, the near-surface layer remained quasi-neutral25

and potential temperature at the different levels remained constant. The temporal variability of 10 m wind speed and TKE was

greater during this period. Around 0400 UTC, TKE at 10 m height increased significantly, from 0.4 to 0.7 m2 s−2, and then

presented some variability around this value. The vertical gradient of TKE between 30 m and 10 m remained positive. The

sodar indicated that the fog top height reached a maximum of 300 m agl during the mature phase (Stolaki et al., 2015; Dabas

et al., 2012).30

At the beginning of the dissipation phase, starting at 0700 UTC, the surface temperature increased slowly (less than 0.5 K in

2 hours) and then more rapidly after 0900 UTC. At 1000 UTC, the downward SW fluxes exceeded 100 Wm−2, while near-
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surface temperature had increased by 1 K compared to the pre-sunrise values. TKE at 30 m decreased from 0800 UTC to 1000

UTC, while at 10 m, TKE remained approximately constant.

2.2.2 Microphysics

Measurements of microphysical properties near the surface indicated a sharp increase in cloud water mixing ratio (rc) and

droplet concentration (Nc) at the fog onset just after 0230 UTC (Fig. 5 in solid lines), reaching Nc = 53 cm−3 and rc =5

0.02 gkg−1. This corresponded to a drop in the near-surface visibility from 5000 m to less than 500 m (Fig. 6a in black line).

The initial elevated structure of the fog led to an earlier decrease of the visibility at 18 m than at 3 m agl, with a time lag of the

order of 30 min. Until 0730 UTC, rc and Nc decreased slowly, inducing a small increase of the visibility at 3 m and 18 m (not

shown). Between 0730 and 0800 UTC, cloud mixing ratio and droplet concentration at 3 m decreased strongly, allowing the

visibility at 3 m to increase to 2000 m. At 18 m agl, the visibility remained less than 1300 m. The fog at the surface reformed10

just after 0800 UTC, reaching Nc = 30 cm−3 and rc = 0.02 gkg−1, with a visibility of less than 500 m, before definitively

dissipating at 1000 UTC. The particle size distribution (PSD) indicated that 95% of the droplets had a diameter of less than

20 µm, meaning that there was probably a very small impact of the coalescence process. Sampled at 3 stages of the event, the

PSD evolved during the fog life cycle and appeared consistent with the classification of Wendisch et al. (1998) (Fig. 5d). The

“initial phase”(in red, at 0250 UTC) was characterized by a small droplet size but a broadening of the distribution between 815

and 12 µm was already visible, which persisted through the 3 stages. During the mature phase (in blue, at 0500 UTC), also

called the “mass transfer stage”, larger droplets, up to 22 µm, were more numerous. During the dissipation phase (in green, at

0700 UTC), the concentration of larger droplets fell but remained higher than during the initial phase.

The maximum LWP measured by the profiler was reached around 0730 UTC, at the beginning of the fog dissipation phase,

with 70 gm−2 (Fig. 5c). The non-zero values (5 gm−2) before the fog onset were within the error range of the measurement.20

2.3 Model description

2.3.1 Presentation of the model

The non-hydrostatic anelastic research model Meso-NH (Lafore et al., 1998) (see http://mesonh.aero.obs-mip.fr) is used here

in an LES configuration. The LES is based on a 3D turbulent scheme with a prognostic turbulent kinetic energy (TKE) (Cuxart

et al., 2000) and a Deardorff mixing length (Deardorff, 1980).25

The atmospheric model is coupled with the ISBA surface scheme (Interaction between Soil Biosphere and Atmosphere (Noil-

han and Planton, 1989)) through the SURFEX model (Masson et al., 2013). This scheme simulates the exchanges of energy

and water between the land surface (soil, vegetation and snow) and the atmosphere above it. It uses five prognostic equations

for deep temperature, deep soil water content, surface temperature, surface soil water content and water interception storage

by vegetation.30

In order to consider the impact of trees at the instrumented site, we used the drag approach developed by Aumond et al.

(2013) for a vegetation canopy. Both this study and Zaïdi et al. (2013) have shown that the drag approach gives better results
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than the classical roughness law when reproducing the turbulence downstream of a forest area. The drag approach consists of

introducing an additional term into the momentum and TKE equations as follows:

∂α

∂t DRAG
=−CdAf (z)α

√
u2 + v2 (1)

with α= u,v,TKE, where u and v are the horizontal wind components, Cd is the drag coefficient, set to 0.2, and Af (z) is the

canopy area density, representing the surface area of the trees facing the flow per unit volume of canopy. Af (z) is the product5

of the fraction of vegetation in the grid cell by the leaf area index (LAI) and by a weighting function representing the shape

of the trees, as presented in Aumond et al. (2013). The trees introduced in the simulation domain for the land surface scheme

correspond to Atlantic coast broad leaved trees.

The model includes a two-moment bulk warm microphysical scheme (Khairoutdinov and Kogan, 2000; Geoffroy et al., 2008),

that considers droplet concentration Nc and mixing ratio rc as prognostic variables for the fog. An additional prognostic10

variable Nccn is used to account for already activated CCN, following the activation scheme of Cohard et al. (2000c). The

aerosols are assumed to be lognormally distributed and the activation spectrum is prescribed as:

Nccn = CSmax
kF (µ,k/2,k/2 + 1,−βSmax2) (2)

where Nccn is the concentration of activated aerosol, F (a,b;c;x) is the hypergeometric function, C (m−3) is the concentration

of aerosols, and k, µ and β are adjustable shape parameters associated with the characteristics of the aerosol size spectrum15

such as the geometric mean radius (r̄) and the geometric standard deviation (σ), as well as solubility of the aerosols (εm) and

temperature (T ) (see below for the values in our case study). Smax is the maximum of supersaturation for that grid box at a

time step, corresponding to dS
dt = 0. The evolution of the supersaturation S includes three terms accounting for the effects of a

convective ascent of vertical velocity w, the growth of droplets by condensation for the newly activated droplets, and radiative

cooling, as in Zhang et al. (2014b):20

dS

dt
= φ1w−φ2

drc
dt

+φ3
dT

dt
|RAD (3)

where φ1(T ), φ2(T,P ) and φ3(T ) are functions of temperature and pressure. Following Pruppacher et al. (1998) and after

simplification, Smax can be diagnosed by:

Smax
k+2.F (µ,k/2,k/2 + 1,−βSmax2) =

(φ1w+φ3
dT
dt |RAD)

3/2

2kcπρwφ2
3/2B(k/2,3/2)

(4)

with B the Beta function and ρw the density of water. Thus, the aerosols potentially activated are exactly those with a critical25

supersaturation lower than Smax. The number of aerosols actually activated in a time step is the difference between the number

of potentially activated aerosols and the number of aerosols previously activated during the simulation.

The condensation/evaporation rate is derived using the Langlois (1973) saturation adjustment scheme. Cloud droplet sed-

imentation is computed by assuming Stokes law for the cloud droplet sedimentation velocity and assuming that the cloud
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droplet size distribution nc(D) fits a generalized Gamma law:

nc(D) =Nc
α

Γ(ν)
λανDαν−1exp(−(λD)

α
) (5)

where λ is the slope parameter, depending on the prognostic variables rc and Nc:

λ= (
π

6
ρw

Γ(ν+ 3/α)

Γ(ν)

Nc
ρarc

)
1/3

(6)

α and ν are the parameters of the Gamma law, and ρa is the density of dry air. They were adjusted using droplet spectra5

measurements from the FM-100 database of our case study and were set at α= 1 and ν = 8. These parameters are also used

for the radiative transfer.

In addition to droplet sedimentation, fog deposition is also introduced to represent direct droplet interception by the plant

canopies. In the real world, it results from turbulent exchange of fog water between the air and the surface below, leading to

collection (Lovett et al., 1997). In numerical weather prediction models (NWP), this process is not usually included, e.g. in10

the French NWP model AROME (Seity et al., 2011), the physics of which comes from Meso-NH. As fog deposition is a newly

introduced process, only a simple formulation is considered for it here as a first step, in order to perform a sensitivity study.

The fog deposition flux FDEP is predicted at the first level of the atmospheric model (50 cm height) for grassy areas, and over

the 15 m height for trees, in a simplistic way following Zhang et al. (2014b):

FDEP = ρaχVDEP (7)15

where χ= rc,Nc, and VDEP is the deposition velocity. In a review based on measurements and parametrizations, Katata

(2014) showed that VDEP values ranged from 2.1 to 8.0 cms−1 for short vegetation. Here VDEP is assumed to be constant,

equal to 2 cms−1. A test of sensitivity to this value is presented below. Water sedimentation and deposition amounts are input

to the humidity storage of the surface model. A more complete approach in a further study would include a dependance of

VDEP on momentum transport as in von Glasow and Bott (1999) and also on LAI.20

The radiative transfer is computed with the ECMWF radiation code, using the Rapid Radiation Transfer Model (RRTM,

Mlawer et al. (1997)) for longwave radiation and Morcrette (1991) for shortwave radiation. Cloud optical properties for LW

and SW radiation take account of the cloud droplet concentration in addition to the cloud mixing ratio. For SW radiation, the

effective radius of cloud particles is calculated from the 2-moment microphysical scheme, the optical thickness is parametrized

according to Savijärvi et al. (1997), the asymmetry factor is from Fouquart et al. (1991) and the single scattering albedo from25

Slingo (1989). For LW radiation, cloud water optical properties refer to Savijärvi et al. (1997).

2.3.2 Diagnostics of visibility

Visibility can be diagnosed assuming an exponential scattering law:

V IS =− lnε
β

(8)
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with β the extinction coefficient, and using a visual range defined by a liminal contrast ε of 0.02 (Koschmeider, 1924). Clark

et al. (2008) used this equation to predict visibility correctly in an NWP model. The most common parametrizations used to

diagnose the visibility from droplet properties in models employing 1-moment microphysical schemes can be expressed as:

V IS =
a

(ρarc)b
(9)

where a is 0.027 and b is 0.88 for Kunkel (1984) (units of rc and VIS are gkg−1 and km respectively).5

When droplet concentration Nc is taken into account with 2-moment microphysical schemes, the diagnostic becomes:

V IS =
c

(ρarcNc)d
(10)

where c is 1.002 and d is 0.6473 for Gultepe et al. (2006) based on observations made in eastern Canada, and c is 0.187 and d

is 0.34 for Zhang et al. (2014a) from measurements made in the polluted North China Plain.

Measurements of visibility can be employed to estimate the validity of the visibility diagnostics the most often used by models.10

The three formulations were applied to the observed rc and Nc and compared to the observed visibility in order to determine

which formulation fitted the observed values best (Fig. 6a). In our case study, Zhang et al.’s (2014a) parametrization was

the most suitable, as it is more sensitive to low rc and Nc values, even though it tends to underestimate the observed visibility

slightly. Diagnostics from Kunkel (1984) markedly overestimated the 3 m observed visibility and the overestimation was worse

with Gultepe et al.’s (2006) parametrization.15

2.3.3 Simulation set-up

For the reference simulation (noted REF), the horizontal resolution is 5 m over a domain of 200 x 200 grid points. 126 vertical

levels are used between the ground and the top of the model at 1500 m. The vertical resolution is 1 m for the first 50 m and

increases slightly above this height. Momentum is advected with a fourth-order centred scheme (noted CEN4TH), whereas

scalar variables are advected with the PPM (Piecewise Parabolic Method) scheme (Colella and Woodward, 1984). The time20

step is 0.1 s. The domain of simulation is presented in Figure 1b. It has a tree barrier 15 m high and 100 m wide perpendicular

to the wind direction and the rest of the domain is composed of grass. The lateral boundary conditions are cyclic. The radiation

scheme is called every second.

The simulation began at 2320 UTC on 14 November 2011 before the fog formation, and covered 12 h. Temperature, hu-

midity and wind speed vertical profiles were initialized with data from the radiosonde launched from Trappes. Meteorological25

conditions at Trappes can differ slightly from those at the Sirta site. Therefore wind, temperature and humidity were modified

in the nocturnal boundary layer up to 400 m agl to fit the data recorded at the 30 m meteorological mast at the Sirta site, as

illustrated in Fig. A.1. The soil temperature and moisture were given by the soil measurements, corresponding to a surface

temperature of 276 K and a soil moisture of 70%. Following the profiles from soundings, a geostrophic wind of 8 ms−1 was

prescribed, without any other forcing. To generate turbulence, a white noise of 0.5 K was applied in the first 100 m in addition30

to the effect of the trees.

8



It was also necessary to characterize the aerosol size spectrum for Eq. 2. The supersaturations reached in fog were lower than

0.1% meaning that the CCNC measurements were not directly usable, as shown by Hammer et al. (2014) and Mazoyer et al.

(2016). However, by using the Kappa-Köhler theory and the SMPS observations, the aerosol concentrations at supersaturations

under 0.1% can be retrieved if the aerosol hygroscopicity (κ) at these supersaturations is known. This method, proposed

by Mazoyer et al. (2016), was applied to our case study in the hour before fog onset. Thus, above 0.1% supersaturation, the5

activation spectrum was found from observations and below 0.1% it was computed. This computed activation spectrum is fitted

according to Eq. 2 (Fig. A.2a), which corresponds to the size distribution of aerosol particles (C = 2017 cm−3, σ = 0.424,

r̄ = 0.1,εm = 1) in red in Fig. A.2b. This does not match the measured distribution (in black) or the lognormal distribution

fitted on the accumulation mode (in blue), because Cohard et al.’s (2000c) formulation was not developed for fog with low

supersaturation. Deducing the activation spectrum from measurements provides the exact solution.10

The reference simulation will now be presented.

3 The reference simulation

The performance of the REF simulation will first be examined, based on a comparison with observed values of thermohy-

grometric, dynamic, radiative and microphysical parameters near the ground. Considering that the REF simulation reaches

good agreement with observation, the vertical evolution and horizontal variability of the simulated fog will be characterized15

during the different phases of the fog life cycle. It should be emphasized that observations localized at one point will be com-

pared to simulated fields averaged over a horizontal area located downstream of the tree barrier (blue contour area of Fig. 1b),

which is representative of the instrumented area. We will see that the simulation domain is divided into 4 parts with significant

differences between them but with similar characteristics inside each one.

3.1 Parameters near the surface20

3.1.1 Dynamics and thermodynamics

Figure 2a and c shows the time series of near-surface observed and simulated temperature and RH. At the initialization of the

simulation, near-surface temperatures are in agreement with the observations while RH is very slightly underestimated. During

the cooling before fog onset, the model develops a layer that is too stable, especially in the first 5 metres, between 0000 and

0100 UTC. The convergence of temperature is simulated with 30 minutes delay with respect to the observations25

Considering RH near the surface (and the microphysical fields below), the fog starts to appear around 0200 UTC. Between

0430 and 0900 UTC, simulated and observed temperature are in fairly good agreement, with a quasi-neutral near-surface layer.

The fog starts to dissipate from the ground at 0900 UTC, approximately one hour ahead of the local observation. This time

discrepancy induces a slight overestimation of near-surface temperature, which is less than 0.5 K at 1100 UTC. Nevertheless,

the negative temperature gradient near the surface representative of the development of the convective boundary layer is quite30

well reproduced after the beginning of the dissipation.
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Dynamical fields at 10 m and 30 m are fairly well reproduced by the model (Fig. 3 in red): the 10 m wind speed (Fig. 3a) is in

good agreement with observation throughout the simulation. Until 0300 UTC, a quasi linear increase of TKE is produced by

the model with a higher TKE at 10 m agl than at 30 m contrary to observations (Fig. 3b). Around 0300 UTC, a more sudden

increase of TKE occurs, as in the observations but 30 min before and with a lower magnitude. Then the simulated TKE remains

almost constant around 0.7 m2 s−2 from 0400 UTC onwards, with a slightly higher variability than before. The model develops5

similar TKE values at 10 m and 30 m, while observed values are higher at 30 m.

Considering the radiative fluxes (Fig. 4), the increase of the LWD flux associated with fog onset is simulated with a delay

of 30 minutes, meaning that there is a delay in the simulated formation of fog at elevated levels. After that, the LWD flux

of 325 Wm−2 is correctly reproduced, indicating that the temperature and the optical thickness of the fog are fairly well

simulated. Observations develop a difference of 8 Wm−2 between LWU and LWD during the fog life cycle, but the model10

fails to reproduce this difference, leading to a slight underestimation of LWU. If the measurements do not contain any errors,

this probably means that the radiative properties of the simulated surface are not perfectly represented. A test on the emissivity

of the surface (1 instead of 0.96) had no impact on the radiative fluxes, suggesting that the soil temperature was probably

underestimated. After sunrise (0659 UTC), the downward and upward SW fluxes are overestimated up to 15 Wm−2. LWD is

slightly underestimated in a similar way due to the advanced dissipation time.15

3.1.2 Microphysics

Considering the microphysical fields at 3 m agl, the onset of rc higher than 0.001 gkg−1 is modelled 30 min early (Fig.

5a). Cloud droplets appear more than one hour before the observation but correspond to very low concentration (less than 10

per cm3) and negligible cloud mixing ratio. The delay identified on LWD flux increase and on the temperature convergence is

not reproduced on rc. This means that the time of formation of fog at the ground is quite correctly reproduced even with a small20

advance of 30 min but the previous formation at elevated levels is underestimated. This is corroborated by the LWP evolution

(Fig. 5c), also characterized by a 30 min delay compared to the Sirta point observation, in agreement with LWD fluxes.

The increase of rc during the development phase is too strong, leading to an estimated maximum value of 0.2 gkg−1 instead

of the 0.03 gkg−1 observed. Then, during the mature phase, the slow decrease of rc is reproduced, until 0900 UTC. However,

as seen above, in reality this first event of fog dissipation only concerns the levels very close to the surface as observed visibility25

at 18 m remains less than 1300 m. In contrast, the fog does not reform near the surface in the simulation, which induces an

advance of almost one hour on the dissipation time. The discrepancies between simulation and observation are greater on cloud

droplet concentration than on cloud mixing ratio throughout the fog life cycle, as the model strongly overestimates Nc, by a

factor that may be as high as 14 (maximum values of 700 cm−3 simulated against 53 cm−3 observed, Fig. 5b). Maxima of Nc

and rc are reached at the same time, around 0300 UTC, then rc decreases while Nc remains constant, before Nc drops sharply30

at the end of the fog.

The droplet size distribution (DSD) in the model is described by the normalized form of the generalized gamma distribution

which gives a monomodal form (Fig. 5d). During the whole fog life cycle, the model overestimates droplets that have a diameter

larger than 4 µm and underestimates the smaller ones. The cloud water deposition rate at the ground presents a maximum of

10



0.36 mmday−1 while the maximum of droplet sedimentation rate is 0.08 mmday−1. This means that deposition is the main

contributor to the cloud water amount at the ground. A reason that could explain the overestimation of droplet concentration

and that will be developed in Part 2 of this study, is that Eq. 3, which allows the supersaturation peak value to be computed,

does not take the sink term due to pre-existing rc into account, as explained by Thouron et al. (2012).

Due to the overestimation of simulated droplet mass and number, all the diagnostics of visibility applied to simulated micro-5

physical fields underestimate the observed visibility at 3 m and 18 m, especially Zhang et al.’s (2014a) formulation (Fig. 6). As

rc is less severely underestimated thanNc, the Kunkel formulation provides the least bad match for observations. This explains

why a simpler formulation of visibility based solely on rc is usually more adequate given the difficulty of simulating Nc for

the models.

The comparison between the REF simulation and observation for the set of parameters shows fairly good agreement, even10

though there are some discrepancies. The main discrepancies concerning the fog life cycle are an underestimation of the

effect of elevated fog formation, inducing an advance of 30 min in the onset time near the ground and an advance of 1 h

in the dissipation time. These elements are probably partly due to the semi-idealized representation of the Sirta surface in

the simulation, and also to the comparisons with point observations, given the horizontal variability that we will see below.

Considering the microphysical fields, the main discrepancy is an overestimation of the concentration of small droplets near the15

ground and, to a lesser degree, of the cloud mixing ratio. They are felt to be acceptable and we can therefore consider that the

REF simulation can be used to explore the processes driving the fog life cycle and to conduct sensitivity tests to try to reduce

these discrepancies.

3.2 Vertical evolution

First the vertical evolution of the fog is analysed. Figure 7 represents the time variations of vertical profiles of rc and Nc, the20

radiative cooling rate and the vertical velocity in the updrafts, while parts a, c and d of Figure 8 represent the time variation for

total turbulent kinetic energy (resolved plus subgrid, noted TKE), and dynamical and thermal production of TKE for the REF

simulation, all averaged over the horizontal area downstream of the tree barrier. A first feature is that subgrid kinetic energy is

one order of magnitude lower than resolved kinetic energy (not shown). This means that the 5 m horizontal resolution allows

an LES approach as most of the eddies are resolved.25

The evolution of rc serves as a basis for decomposing the fog life cycle into the three phases: formation, between 0200 and

0300 UTC, until the fog becomes optically thick; development, between 0320 and 0820 UTC, until rc at upper levels of the

fog layer begins to decrease, and dissipation from 0820 UTC (Fig. 7a).

Before the fog onset and during the formation phase, the TKE is small and spread over a 30 m layer that deepens slowly

because of the tree barrier (Fig. 8a). TKE mainly occurs by dynamical production, which presents maxima at two levels near30

the surface and at 15 m height due to the trees (Fig. 8c). Thermal production is negative because of the thermal stratification

(Fig. 8d). Radiative cooling near the ground (Fig. 7c) and mixing by the tree drag effect are the ingredients that allow fog to

appear at the same time over a 30 m deep layer (Fig. 7a). Then the mixing by the tree barrier causes the fog layer to develop

vertically at greater heights (Fig. 7a). Hence, the effect of elevated formation is reproduced, even though the height of fog
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onset is underestimated (150 m given by the ceilometer and 30 m in the simulation), and the fog subsides to reach the ground

almost instantly. During this first phase, mean updraft vertical velocities are small, up to 0.15 ms−1 (Fig. 7d), in agreement

with Ye et al. (2015), who observed a vertical velocity of 0.1− 0.2 ms−1 in a fog layer between 40 m and 220 m deep in

China. Considering Eq. 3 for supersaturation evolution with the two source terms depending on vertical velocity and radiative

cooling, activation of fog droplets during the fog formation is mainly produced by radiative cooling at the top of the fog layer5

(Fig. 7b and c).

At the beginning of the development phase (around 0300 UTC), when the fog depth reaches approximately 80 m, it becomes

optically thick to longwave radiation. At that time, TKE increases significantly by dynamical production (Fig. 8a and c), in

agreement with Nakanishi’s (2000) findings, which indicates a dynamical change. The optical thickness of the fog layer causes

strong radiative cooling at the top of the layer, greater than 5.5 Kh−1 (in absolute value, Fig. 7c), and rc values become10

stronger in the upper part of the fog layer. Hence, the fog top becomes the location of the dominant processes. Radiative

cooling induces small downdrafts and buoyancy reversal. In addition to the vertical velocity of the updrafts, now higher than

0.2 ms−1 throughout the fog layer, a second maximum of droplet concentration of 1100 cm−3 occurs in the upper part of the

fog layer around 0320 UTC. The sudden optical thickening corresponds to the increase of surface LWD to 320 Wm−2 (Fig. 4)

and to maximum cooling at the ground (Fig. 2a). At the same time, temperatures converge in the vertical levels near the ground,15

showing the effect of fog on the stratification as analysed by Price (2011).

During the development phase, the top of the fog layer is characterized by vertical wind shear inducing positive dynamical

production of TKE, while small values of positive thermal production appear at the top due to buoyancy reversal. In the lowest

40 m of the fog layer, the drag effect of the trees induces values of kinetic energy higher than 0.6 m2 s2. The maximum of rc

continues to increase in the upper part of the fog layer until 0500 UTC, reaching 0.37 gkg−1 at 120 m (Fig. 7a). At the same20

time, LWD surface fluxes remain constant while the fog layer continues to deepen and the LWP continues to increase until

0500 UTC (Fig. 5c).

Around 0500 UTC, a change occurs in the development of the fog layer: it continues to thicken, but at a slower rate, while the

LWP begins to decrease in the simulation. This change of growth at the top of the fog layer is associated with a warming in

the fog layer (not shown) and a decrease of the maximum radiative cooling near the top which spreads over a greater depth25

(Fig. 7c). This also corresponds to an increased number of resolved updraughts and downdraughts near the top (Fig. 7d). The

variability of the fog depth also becomes stronger, in connection with fog-top waves as we will see below. This change of

growth seems to be linked to the fact that the fog layer reaches the top of the nocturnal boundary layer, meeting stronger

temperature, humidity and wind gradients. This increases the top entrainment process, limiting the deepening of the fog layer.

With the decrease of top radiative cooling, cloud droplet concentration becomes more homogeneous in the fog layer, except30

near the ground where it decreases by deposition. The cloud mixing ratio also begins to decrease near the ground (Fig. 7b).

The beginning of the dissipation phase in the simulation (around 0820 UTC) is preceded by the beginning of solar radiation,

and a divergence between surface LWU, which starts to increase, and surface LWD, which starts to decrease (Fig. 4). The

dissipation of the fog begins at the surface, and the fog lifts into a stratus layer. The radiative heating of the surface induces

the convective structure of the fog as vertical velocity in the updrafts increases (Fig. 7c and d) and thermal production of35
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TKE becomes significantly positive (Fig. 8d). Additionally, after sunset, downdraughts at the top of the fog layer increase the

amount of solar radiation reaching the ground and feeding the heating at the base of the fog layer. Hence, near the ground, both

thermal and dynamical effects contribute to the production of TKE, and to a deepening of the TKE layer to 60 m. The height

of the fog top continues to increase as it is driven by radiative and evaporative cooling, which induces vertical motions and top

entrainment. Although mixing ratio decreases at all levels, droplet concentration increases sharply when the fog layer lift from5

the surface (Fig. 7b). As the cloud evolves into a stratus layer, droplet activation is no longer induced by radiative cooling at

the top of the fog layer but by updraft vertical velocity at all cloud depths, and especially near the stratus base. The stronger

vertical velocity activates more droplets for the same water content. Droplets become smaller and more numerous, preventing

the droplet sedimentation process and limiting the decrease of LWP. Moreover, the deposition process is no longer active as

there are no cloud droplets at the surface. We will now consider the horizontal heterogeneity of the fog layer.10

3.3 Horizontal variability

To better characterize turbulent structures and the impact of trees on the fog layer, the horizontal variability of the fog layer is

examined. Figure 9 presents horizontal and vertical cross-sections of wind speed, cloud mixing ratio, potential temperature and

TKE at 0210 UTC during the formation phase. The tree barrier tends to block the flow upstream. It enhances the turbulence by

wind shear downstream, accelerating the flow near the ground and creating longitudinal structures in the direction of the wind.15

Ascents occur upstream and small subsidences downstream, up to 2 cms−1 (not shown). The subsidences bring warmer and

dryer air from above to the ground. Therefore structures of stronger wind near the ground downstream of the trees coincide

with structures of warmer, clear air as they delay fog formation. The fog forms at the surface upstream of the trees, and 500 m

downstream, while it appears first at elevated levels over the intermediate area between the trees and downstream (Fig. 9d).

The fog takes about 1 hour to cover the entire domain at ground level. Thus, heterogeneity of the surface vegetation explains20

heterogeneities in fog onset over the Sirta site, as well as the fog property of developing first at elevated levels. After the

formation phase, the base of the fog layer is at the ground over the whole domain. These results are in agreement with the

effects of buildings on fog studied by Bergot et al. (2015a) who found a 1.5 hour period of heterogeneity of fog formation over

the airport area.

During the development phase, as shown on the vertical cross-sections of Fig. 10 at 0620 UTC, horizontal rolls appear at the top25

of the fog layer and are associated with dynamical production of TKE by shear. They are aligned almost perpendicularly to the

mean wind direction (not shown). These structures correspond to Kelvin-Helmholtz (KH) instability, previously observed by

Uematsu et al. (2005) and modelled by Nakanishi (2000) and Bergot (2013). They have depths corresponding to about one third

of the fog layer height, as in Bergot (2013), and a horizontal wavelength of the order of 500 m. These horizontal rolls explain

the oscillations at the top of the fog layer visible in Fig. 7 and Fig. 8. They become well marked from 0500 UTC when the30

increase in depth of the fog layer begins to slow down, as the fog layer reaches the top of the nocturnal boundary layer, meeting

stronger wind gradients. The horizontal rolls induce strong horizontal variability of cloud mixing ratio near the top of the fog,

with larger values in the ridges of the fog-top rolls, and smaller ones in the troughs (Fig. 10a). Local updraughts occur upstream

of the crest of the wave, and downdraughts downstream, both up to 1.2 ms−1 (Fig. 10d). Maximum of droplet concentration
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occurs near the top of the fog layer (Fig. 10b) in the radiative cooling layer (Fig. 10c), and preferentially upstream of the crest

of the wave rather than downstream, in the ascent area, where the droplets are preferentially activated and transported. These

extrema of droplet concentration do not appear in Fig. 7 as they are hidden by the spatio-temporal average.

Inside the fog layer, the radiative cooling is negligible while vertical velocity presents strong spatial heterogeneities. Max-

ima of supersaturation appear to be strongly correlated with vertical velocity (Fig. 10e), with values up to 0.25% which are5

probably overestimated, although this cannot be confirmed as measurements of supersaturation peaks are not available beyond

the surface. However droplet concentration variations are smooth, and do not show a strong correlation with the maximum

supersaturation, because of the pre-existing droplets.

Near the ground, maximum simulated values of supersaturation lie around 0.1% while Hammer et al. (2014) and Mazoyer

et al. (2016) reported observed supersaturation peaks lower than 0.1%. The presence of trees and the deposition process induce10

a smaller droplet mixing ratio and concentration near the surface.

During the dissipation phase, heterogeneities remain at the top of the fog layer, but the signature of KH waves disappears (not

shown). The dissipation of fog at ground level takes about 20 minutes, and, as noted in Bergot et al. (2015a), does not reveal a

clear effect of surface heterogeneity.

Having characterized vertical and horizontal heterogeneities of the fog during its life cycle, sensitivity tests are now presented15

to identify the sources of variability and their impact on the microphysical fields.

4 Sensitivity study

In order to better characterize the physical processes dominating the fog life cycle and driving the microphysical properties,

sensitivity tests were conducted in a second step. The resulting simulations and their differences relative to the REF simulation

are summarized in Tab.1.20

4.1 Impact of trees

To evaluate the impact of trees on the dynamics and on the microphysics of the fog, a simulation called NTR was run, in

which the tree barrier was replaced by grass. So, deposition on the grass was considered over the whole domain. Fig. 3a shows

that, without trees, the 10 m wind speed is overestimated over the instrumented area. As in REF but 30 min earlier, the model

develops a sudden increase of TKE around 0230 UTC at the beginning of the development phase. This change is linked to the25

increase of the optical thickness and not to the turbulence induced by the trees (Fig. 3b and Fig. 8b). After this period, TKE

is underestimated and remains stronger at 10 m height than at 30 m, contrary to observation. This means that the drag effect

of trees is responsible for the observed stronger TKE at 30 m height. The fact that the REF simulation develops very similar

TKE at 10 m and 30 m agl probably means that the representation of surface heterogeneities is still underestimated. This can

be explained by the broad range of surface covers present in reality, in addition to the trees (lake, small buildings, etc.) but not30

included in the simulation.

14



The main differences in dynamics between NTR and REF appear first on total TKE, with a thinner layer of TKE values greater

than 0.5 m2 s−2 and smaller maxima (Fig. 8b). Before the fog formation, the too thin layer of turbulence near the ground in

NTR limits the supply of warmer air from above. This induces an overestimation of the vertical temperature gradient before

the fog, and emphasizes the cooling in the low levels, with 2 K less than in REF (Fig. 2b). Figure 11a presents the temporal

evolution of cloud mixing ratio vertical profiles during the NTR simulation, to be compared to Fig. 7a for REF. Figure 12a and5

b show instantaneous vertical cross sections of potential temperature at the fog formation with REF and NTR. The stronger

cooling with NTR homogenizes the fog formation at the ground and prevents elevated fog formation. The consequence is that

the onset of fog with NTR occurs almost 2 hours earlier than actually observed and than in the REF simulation (Fig. 2d).

Fig. 13 summarizes the impact of sensitivity tests on the microphysical fields and NTR (purple lines) can be compared to REF

(red lines) in Fig. 13a b and c. During the formation and development phases, the fog layer is thinner in NTR than in REF.10

This is due to the formation at the ground and the absence of mixing without trees, thus limiting the vertical development.

The maximum of cloud mixing ratio with NTR is increased compared to REF, due to the absence of warming by entrainment.

It leads to largely overestimated cooling near the ground in comparaison to observations (Fig. 13a). Therefore the Kunkel

diagnostic underestimates the visibility much more than REF, as do the other diagnostics (Fig. 6d). Inside the fog layer, despite

the increase of rc, the positive temporal evolution of Nc, called the production of Nc is not higher than in REF (Fig. 11b),15

as smaller vertical velocities and higher cloud mixing ratio production compensate for the stronger cooling in the activation

process.

Additionally, near the ground, droplet concentration is even smaller than in REF: deposition, acting only at the first vertical

level in NTR, is active from the onset of the fog, due to the absence of elevated formation and to the thinner fog layer.

Consequently, the DSD at 3 m shifts towards larger droplets in NTR (Fig. 13c), consistently with the reduction of droplet20

concentration.

Also, during the development phase, 500 m wavelengths of KH waves are more smooth and regular without trees and this is

noted during the whole phase. This is shown on kinetic energy spectra applied to vertical velocity over the whole fog depth,

computed according to Ricard et al. (2013) and presented in Fig. 14. The spectra of REF and NTR present two main differences:

firstly the TKE variance is smaller with NTR at wavelengths shorter than 200 m. This means that the flow presents fewer fine25

scale structures without the tree drag effect. Secondly, the peak of variance at 500 m wavelength, corresponding to the KH

waves, is more pronounced in NTR.

To summarize, the absence of tree barrier produces an unrealistic simulation, as it causes the fog onset to occur too early

(almost 2 hours in advance). It also induces cooling that is too strong in the low levels, and a large overestimation of the

near-surface cloud mixing ratio throughout the fog life cycle, damaging the visibility. On the other hand, droplet activation is30

reduced near the ground due to smaller vertical velocities and to a stronger impact of surface deposition, shifting the DSD to

larger droplets. The absence of trees also modifies the signature of the KH waves at the top of the fog layer, with a more regular

pattern and fewer small scale heterogeneities. The impact of the deposition process will now be examined more precisely.
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4.2 Impact of deposition

Three simulations were carried out to better characterize the role of the deposition process, all keeping the tree barrier. The first

one, called NDT, removed only deposition over trees compared to REF, considering that trees acted as grass for deposition.

This was done by activating deposition only at the first level of the model. The second one, called NDG, removed deposition

altogether. The third one, noted DE8, considered a deposition velocity VDEP of 8 cms−1 over grass and trees, which is the5

upper bound given by Katata (2014) instead of 2 cms−1 as in REF. Figure 13a, b and c compare 3 m microphysical fields, and

Figure 15a the LWP.

NDT very slightly increases droplet mass and number downstream of the tree barrier, and the LWP during the fog life cycle

(Fig. 15). Conversely, removing deposition everywhere with NDG has a considerable impact as it increases the near-surface

cloud mixing ratio and concentration by a factor between 2 and 3. With NDG, the onset of fog occurs at the surface and not on10

a 30 m deep layer, almost 2 hours earlier than in observations and in the REF simulation (Fig. 11c). During the development

phase, there is no longer a vertical gradient of rc andNc (Fig. 11c and d). The temporal evolution of cloud droplet concentration

in the fog layer shows constant vertical profiles, without maxima during the formation and the dissipation phases, as in REF.

Hence, cloud droplet concentration is constant during the fog life cycle near the ground, while observations report a decrease

during the development phase (Fig. 13b). NDG also develops a broader DSD, with more droplets having a diameter larger than15

4 µm.

The fog layer is deeper throughout the life cycle, and therefore the LWP is largely overestimated with a maximum between

0500 and 0600 UTC, of about twice the observed value (Fig. 15). Due to the larger amount of cloud water near the ground, the

dissipation at the ground is delayed by more than one hour. Moreover, NDG reports a 12 hours surface maximum cumulated

cloud water amount of 0.053 mm produced by droplet sedimentation, while the REF simulation gives a maximum of 0.074 mm20

by deposition and sedimentation. Even if NDG produces higher LWP over a longer period and higher concentration of large

droplets than REF, the cloud water amount reaching the ground is lower. This means that a deposition velocity of 2 cms−1 is

more efficient than the sedimentation process to collect cloud water at the ground.

In contrast, DE8 induces a significant reduction of the near-surface rc, Nc and LWP, and the onset of fog near the ground

coincides relatively well with observation. The formation of fog at elevated levels is more pronounced, and rc over the whole25

fog depth is reduced during the development phase compared to REF (Fig. 11d and e). With DE8, the cloud water deposition

rate at the ground presents a maximum of 0.48 mmday−1 during the period while the maximum of droplet sedimentation rate

is 0.02 mmday−1. Among the different simulations conducted in this study, DE8 performs best to reproduce the microphysical

fields. This means that the deposition process is highly sensitive to the deposition velocity.

Zhang et al. (2014b) have already shown that including a deposition term in simulations seems to have some effect on the30

droplet concentration in the layer near the ground and consequently on visibility. However, the effect they found was less

pronounced than the one seen here. A possible explanation is that both u∗, the friction velocity, and the mean volumetric

diameter of droplets used in their parametrization, were underestimated. In our case, the deposition process, even with a simple

parametrization, appears to be essential to correctly simulate the fog life cycle and to approach the observed microphysical
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values near the ground more closely. It impacts the microphysical fields significantly. Hence, neglecting this process increases

droplet sedimentation but in insufficient quantity to avoid unrealistic droplet concentration and cloud mixing ratio in the fog

layer and near the surface. It also modifies the fog life cycle in terms of onset and dissipation times, LWP and microphysical

characteristics inside the fog layer. The elevated fog formation, which is a climatological characteristic of the Sirta site, is

the result of two effects: the tree drag effect, which mixes the lowest levels, and the deposition process, which erodes the5

near-surface water content. We will now examine the impact of the horizontal resolution on the simulated fog life cycle.

4.3 Sensitivity to effective resolution

In order to assess the impact of spatial resolution on the fog life cycle, a 2 m horizontal resolution simulation (called DX2)

was carried out using the same momentum advection scheme as in REF (CEN4TH). According to Skamarock (2004), kinetic

energy (KE) spectra deduced from simulations allow the effective resolution to be set up as the scale at which the model starts10

to depart from the theoretical slope, which is −3 for vertical velocity spectra applied to stable turbulence. Mean KE spectra

applied to the vertical wind component reveal effective resolution of the order of 4−5 ∆x for simulations with CEN4TH (DX2

and REF), in agreement with Ricard et al. (2013), namely 8 m and 20 m respectively (Fig. 14).

With DX2, top entrainment is more active as updrafts and downdrafts are represented at finer resolution, limiting the cooling

near the surface (Fig. 12d) and the vertical development of the fog. The cloud mixing ratio near the ground is slightly reduced,15

but the droplet concentration is almost unchanged, inducing a shift of the mode of the DSD to 7 µm instead of 8 µm (Fig. 13d,

e and f).

The fog onset time occurs slightly later and the dissipation time sooner (Fig. 13e), and the LWP is slightly reduced compared

to REF (Fig. 15b). But the differences between DX2 and REF remain quite small in agreement with the convergence around

2 m resolution in stable conditions shown by Beare and MacVean (2004).20

In two other tests performed on the wind transport scheme, keeping the 5 m horizontal resolution, the CEN4TH scheme

was replaced by the WENO (Weighted Non-Oscillatory, Shu (1998)) scheme at 3rd order (called WE3) or 5th order (called

WE5). These spatial schemes, associated with an Explicit Runge-Kutta temporal scheme, allow time steps 10 times larger

than CEN4TH associated with a Leap-Frog temporal scheme, but they were run here with the same small time step (0.1 s) for

comparison. Due to the upstream spatial discretization, WENO schemes are implicitly diffusive and are therefore characterized25

by a coarser effective resolution, especially WENO3 because of its lower order. Fig. 14 shows that the effective resolutions are

35 m (i.e. 7 ∆x) and 70 m (i.e. 14 ∆x) for WE5 and WE3 respectively.

WE3 significantly reduces the top entrainment and the supply of warmer, dryer air from above. This emphasizes the cooling

near the surface (Fig. 12c) as the diffusive contribution of the advection operator dissipates small updrafts and suppresses part

of the resolved kinetic energy variance, in particular that present at the top of the fog layer. This induces an overestimation of30

the thermal gradient near the surface before the fog, and leads to cooling that is too strong by 1 K during the fog (not shown).

The consequences of the increased cooling are that the onset of fog at the surface occurs 1.5 h earlier than actually observed,

the rc is largely overestimated throughout the fog life cycle, and the dissipation is delayed (Fig. 13e). The DSD is characterized
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by higher concentrations of larger droplets (Fig. 13f). Considering the microphysical fields, WE3 tends to be closer to NTR

simulation, meaning that a diffusive transport scheme significantly diminishes the tree drag effect.

In contrast, the differences between WE5 and REF are very small: only the LWP is higher with WE5 during the dissipation

phase due to a slightly deeper fog layer. This underlines the less diffusive behaviour of WENO5 and its higher accuracy

compared to WENO3.5

Thus the jump in the effective resolution with the diffusive WENO3 scheme affects the fog life cycle significantly, while the

smaller deviation with WENO5 has almost no impact. Increasing numerical implicit diffusion seems to have almost the same

effect as removing the drag effect of trees. This also underlines the importance of the numerical schemes for correct handling

of the cloud edge problem (Baba and Takahashi, 2013).

5 Conclusion10

Large eddy simulations of a radiation fog event observed during the ParisFog campaign were performed, with the aim of

studying the impact of dynamics on microphysics. In order to study the local structures of the fog depth, simulations were

performed at 5 m resolution on the horizontal scale and 1 m on the vertical scale near the ground, and included a tree barrier

present near the instrumented site, taken into account in the model by means of a drag approach. The model included a 2-

moment microphysical scheme, and a deposition term was added to the droplet sedimentation, representing the interception of15

droplets by the plant canopies and acting only at the first vertical level above grass, and above the height of the trees.

The performance of the reference simulation was satisfactory as it gave fairly good agreement with the classical near-surface

measurements. The main discrepancies were an overestimation of the concentration of small droplets near the ground, an

overestimation of liquid water content, and an advance of one hour in the dissipation time. This good performance allowed the

processes driving the fog life cycle to be explored.20

The formation of the fog at elevated levels and the fact that it subsided to the ground in a very short time, a frequently observed

characteristic of radiation fog events at the Sirta site, has been explained. It is a consequence of the tree drag effect when the

wind meets this obstacle and the deposition effect, which reduces the formation of droplets near the surface. In contrast, the

fog formed at the surface first upstream and 500 m downstream of the trees, leading to a duration of about one hour for fog

formation at the surface over the whole domain.25

At the beginning of the development phase, the fog became optically thick to longwave radiation, inducing a significant increase

of kinetic energy by dynamical production, which was also associated with temperature convergence at low levels. The radiative

cooling near the top of the fog layer was the main source of droplet activation so the droplet concentration was maximum in

the upper levels of the cloud.

During the development phase, the fog layer depth grew more slowly when the fog reached the top of the nocturnal boundary30

layer, encountering stronger thermodynamical gradients and wind shear. Horizontal rolls at the top of the fog layer, associated

with Kelvin-Helmholtz instabilities, became prominent. The cloud droplet concentration became quasi homogeneous in the fog

layer when averaged over time but extremes of droplet concentration occurred locally near the top of the fog in the radiative

18



cooling layer, with maxima preferentially upstream of the crests of the waves rather than downstream, in the ascent area. This

indicates that vertical velocity makes the main contribution to droplet activation at the top of the fog layer, followed by the

contribution of radiative cooling. Inside the cloud layer, maxima of supersaturation were directly linked to the local updrafts,

while variations of droplet concentration were smoother.

During the dissipation phase, as the fog evolved into a stratus layer, the cloud mixing ratio decreased at all levels. However, a5

sharp increase in the droplet concentration occurred over the whole depth of the cloud because droplets were now only activated

by the convective ascents.

Various sensitivity tests allowed the main processes affecting the evolution of fog to be identified. The tree drag effect and

the deposition process were considered as essential to correctly reproduce the main characteristics of the fog. The absence

of the tree barrier produced an unrealistic fog simulation, with too early an onset, excessively strong cooling and a large10

overestimation of the near-surface rc, worsening visibility diagnosis.

Neglecting the deposition process over the whole vegetation canopy exerted the most significant impact on the fog prediction.

It produced more unrealistic near-surface water content, prevented elevated fog formation, and also modified the fog life cycle

and suppressed vertical and temporal heterogeneities of the microphysical fields. Conversely, increasing the droplet deposition

velocity from 2 cms−1 to 8 cms−1 significantly reduced the cloud mixing ratio near the surface and the droplet concentration.15

Increasing the horizontal resolution to 2 m did not change the fog prediction significantly, which means that grid convergence

seems to be achieved at these resolutions. Conversely, increasing the numerical diffusion with a momentum transport scheme

of lower order, involving a coarser effective resolution, drastically limited the top entrainment, and tended strongly towards

the solution where the tree drag effect was ignored. This underlined the importance of the properties of numerical schemes in

LES, particularly at cloud edges.20

Other tests, not presented here, modifying the initial conditions in terms of humidity or wind profiles, impacted the fog life

cycle but failed to reduce the overestimated droplet number concentration. This means that taking away some humidity in the

initial state did not reduce the droplet concentration. The overestimation of the droplet concentration could not be explained

by an inadequate initial humidity profile.

This study demonstrates the feasibility and the interest of LES including surface heterogeneities to improve our understand-25

ing of fog processes. At these fine resolutions, surface heterogeneities have a strong impact, explaining part of the variability

in the fog layer and making these simulations very challenging. Therefore, horizontal and vertical variabilities of the fog layer

also need to be more thoroughly explored in future field experiments. The horizontal variability, especially at the onset of

the fog, also stresses that one point observation may not be very representative of what happens over a coarser grid box of a

numerical weather prediction model.30

One of the main points of this study is that fog water deposition should not be neglected in 3D fog forecast models, as still

often occurs. It influences not only microphysical fields near the ground but also the whole fog life cycle. It seemed to be more

important than droplet sedimentation in our case, bearing in mind that this observed case was characterized by small droplet

concentrations and cloud mixing ratio. In this study, the deposition term was introduced quite crudely and this would need some

refinements in further studies. It would need to take account of the wind speed and the turbulence, and it could also consider the35
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hygroscopic nature of canopies. By analogy with dry deposition, it would also be better to take droplet diameter into account,

assuming that this field is correctly reproduced. Other studies have also shown that fog water deposition is strongly enhanced at

the forest edge, becoming up to 1.5-4 times larger than that in closed forest canopies (Katata, 2014), so it could be interesting

to simulate the edge effect of fog water deposition. It is also crucial to perform measurements of fog water deposition and

dewfall during field experiments (Price and Clark, 2014).5

This study has shown the great importance of some dynamical effects operating at first order for correct predictions of the fog

life cycle. Despite the number of tests carried out, none succeeded in correctly reproducing the droplet concentration, which

is always overestimated. Now that the fog life cycle has been correctly reproduced on this case, trying to correct this defect

appears to be the main priority. Thouron et al. (2012) have developed a new scheme based on a supersaturation prognostic

variable to avoid excessive droplet concentration in 2-moment microphysical schemes, as they have demonstrated that some10

assumptions of the adjustment process are no longer valid with LES. One of the main points is that the pre-existing cloud water

should be taken into account as a sink of supersaturation, in order to limit the activation of cloud droplets. The relevance of

this scheme, applied in Thouron et al. (2012) to cumulus and stratocumulus clouds, needs to be demonstrated for fog clouds,

and this will be the subject of the second part of this study.
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Name ofsimulation Difference of configuration with REF

NTR No TRee: homogeneous surface

NDT No Deposition on Trees

NDG No Deposition (on Grass or trees)

DE8 Deposition velocity equal to 8 cms−1

DX2 Horizontal resolution = 2m

WE3 3rd order WENO advection for momentum

WE5 5th order WENO advection for momentum
Table 1. Simulation configurations for sentivity tests

(a) (b)

Figure 1. View of the measurement site (a) and modelling domain (b) with the tree barrier. All the simulated averaged results are presented

in the blue contour area.
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Figure 2. Observed (solid lines) and simulated (dashed lines) temporal evolution of temperature (a and b) and relative humidity (c and d) at

1m, 5m and 30m for the REF (a and c) and the NTR (without trees) (b and d) simulations. Simulated fields are averaged over the horizontal

area located downstream of the tree barrier (blue contour area of Fig. 1b).
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Figure 3. Observed (black lines) and simulated (coloured lines) temporal evolution of 10m wind speed (a), 10m TKE (solid line) and 30m

TKE (dotted line) (b) for the REF (red line) and the NTR (without trees) (blue line) simulations. Simulated fields are averaged over the

horizontal area located downstream of the tree barrier (blue contour area of Fig. 1b).
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Figure 4. Observed (solid lines) and simulated (dotted lines, with the REF simulation) temporal evolution of downward and upward (at 1m)

shortwave (a) and longwave (b) radiation fluxes (in W/m2). Simulated fields are averaged over the horizontal area located downstream of

the tree barrier (blue contour area of Fig. 1b).
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Figure 5. Time series of cloud mixing ratio (a, in gkg−1), droplet concentration (b, in cm−3), LWP (c, in gm−2), and particle size distribu-

tion (d, in cm−3) at 0250 UTC (in red), 0500 UTC (in blue) and 0700 UTC (in green) at 3 m agl observed ( solid line), and simulated by REF

( dotted line). Simulated fields are averaged over the horizontal area located downstream of the tree barrier (blue contour area of Fig. 1b).
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(a) (b)

(c) (d)

Figure 6. (a) 3 m observed (in black) and diagnosed (in colour) visibility with the observed microphysical fields according to Kunkel (1984);

Gultepe et al. (2006); Zhang et al. (2014a) (in m). (b) and (c) 3 m and 18m visibility diagnosed with the microphysical fields from the REF

simulation. (d) 3 m visibility diagnosed with the microphysical fields from the NTR simulation (in m). Diagnosed visibility from simulations

uses averaged microphysical fields over the horizontal area located downstream of the tree barrier (blue contour area of Fig. 1b).
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Figure 7. Temporal evolution of simulated vertical profiles of cloud mixing ratio (a, in gkg−1), droplet concentration (b, in cm−3), radiative

tendency (c, in Kh−1) and updraft vertical velocity (d, in ms−1) for the REF simulation. Fields are averaged over the horizontal area located

downstream of the tree barrier (blue contour area of Fig. 1b). The three phases of the fog life cycle are delimited by dotted lines.
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Figure 8. Temporal evolution of mean vertical profiles of total (resolved+subgrid) turbulent kinetic energy (in m2 s−2) for REF (a) and NTR

(b) simulations, and dynamical (c) and thermal (d) production of total turbulent kinetic energy (in m2 s−3) for the REF simulation. Fields are

averaged over the horizontal area located downstream of the tree barrier (blue contour area of Fig. 1b). The three phases of the fog life cycle

are delimited by dotted lines.
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Figure 9. REF simulation at 0210 UTC: (a), (b) and (c): Horizontal cross-section at 10 m height of wind speed (a, in ms−1), potential

temperature (b, in K) and cloud mixing ratio (c, in gkg−1). (d): Vertical cross-section at Y=500m of cloud mixing ratio (in gkg−1) with area

of TKE higher than 0.1 m2 s−2 shaded. The barrier of trees is marked with a rectangle.
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Figure 10. Vertical cross-section at Y=500m at 0620 UTC for the REF simulation: (a) cloud mixing ratio (in gkg−1), (b) droplet concen-

tration (in cm−3), (c) radiative tendency ( in Kh−1), (d) vertical velocity (in ms−1) and (e) maximum of supersaturation (in %) with the

isoline of rc = 0.01 gkg−1 superimposed.
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Figure 11. Temporal evolution of simulated vertical profiles of cloud mixing ratio (a, c and e, in gkg−1) and droplet concentration (b, d and

f, in cm−3) for NTR, NDG and DE8 simulations. Fields are averaged over the horizontal area located downstream of the tree barrier (blue

contour area of Fig. 1b).
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Figure 12. Vertical cross-sections at Y=500m and 0220 UTC of potential temperature (in K) for the REF (a), NTR (b), WE3 (c) and DX2 (d)

simulations, with area of cloud mixing ratio higher than 0.1gkg−1 superimposed with dots and the barrier of trees marked with a rectangle..
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Figure 13. Time series of cloud mixing ratio (a and d, in gkg−1), droplet concentration (b and e, in cm−3), and droplet size distribution (c

and f, in cm−3) at 0520 UTC and 3 m agl observed (in black), and simulated (in colour). Simulated fields are averaged over the horizontal

area located downstream of the tree barrier (blue contour area of Fig. 1b).
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Figure 14. Mean kinetic energy spectra for vertical wind computed over the whole fog layer and horizontal domain at 0620 UTC for the

REF, WE3, WE5, DX2 and NTR simulations.
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Figure 15. Time series of LWP (in gm−2) observed (in black), and simulated (in colour), for the different simulations. Simulated fields are

averaged over the horizontal area located downstream of the tree barrier (blue contour area of Fig. 1b).
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[A] Appendix: Supporting material

Figure A.1. Relative humidity (in %) and temperature (in C) vertical profiles at 2320 UTC on 14 November 2011 observed at the Sirta

mast (in black) and by the Trappes radiosounding (in blue) and used for the REF initialization.

5

Figure A.2. (a) Activation spectrum: from CCNC measurement before the fog onset (between 0130 and 0230 UTC) for supersaturations

higher than 0.1% in black dots, from calculation for supersaturations lower than 0.1% in grey dots, and fitted using Cohard et al.’s (2000c)

parametrization in red. (b) Particle size distribution (PSD) from the aerosol measurements (in black), the lognormal distribution fitted on the

accumulation mode (in blue) and according to Cohard et al. (2000c) (in red).
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