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Abstract 14	

We use a series of chemical transport model and chemistry climate model simulations to 15	

investigate the observed negative trends in MOPITT CO over several regions of the 16	

world, and to examine the consistency of time-dependent emission inventories with 17	

observations.  We find that simulations driven by the MACCity inventory, used for the 18	

Chemistry Climate Modeling Initiative (CCMI), reproduce the negative trends in the CO 19	

column observed by MOPITT for 2000-2010 over the eastern United States and Europe.  20	

However, the simulations have positive trends over eastern China, in contrast to the 21	

negative trends observed by MOPITT.  The model bias in CO, after applying MOPITT 22	

averaging kernels, contributes to the model-observation discrepancy in the trend over 23	

eastern China.  This demonstrates that biases in a model’s average concentrations can 24	

influence the interpretation of the temporal trend compared to satellite observations.  The 25	

total ozone column plays a role in determining the simulated tropospheric CO trends.  A 26	

large positive anomaly in the simulated total ozone column in 2010 leads to a negative 27	

anomaly in OH and hence a positive anomaly in CO, contributing to the positive trend in 28	

simulated CO.  These results demonstrate that accurately simulating variability in the 29	

ozone column is important for simulating and interpreting trends in CO. 30	

1. Introduction 31	

 32	
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Carbon monoxide (CO) is an air pollutant that contributes to ozone formation and 33	

affects the oxidizing capacity of the troposphere (Thompson, 1992; Crutzen, 1973).   Its 34	

primary loss is through reaction with OH, which leads to a lifetime of 1-2 months (Bey et 35	

al., 2001) and makes CO an excellent tracer of long-range transport.    Both fossil fuel 36	

combustion and biomass burning are major sources of CO.  The biomass burning source 37	

shows large interannual variability (van der Werf et al., 2010), while fossil fuel emissions 38	

typically change more gradually.  The time-dependent MACCity inventory (Granier et 39	

al., 2011) shows decreases in CO emissions from the United States and Europe from 40	

2000 to 2010 due to increasing pollution controls, but increases in emissions from China.  41	

MACCity emissions for years after 2000 are based on the Representative Concentration 42	

Pathway (RCP) 8.5 (Riahi et al., 2007).  The REAS (Kurokawa et al., 2013) and 43	

EDGAR4.2 (EC-JRC/PBL, 2011) inventories also show increasing CO emissions from 44	

China.  The bottom-up inventory of Zhang et al. (2009) shows an 18% increase in CO 45	

emissions from China from 2001 to 2006, and Zhao et al. (2012) estimate a 6% increase 46	

between 2005 and 2009.  However, there is considerable uncertainty in bottom-up 47	

inventories, and comparison of model hindcast simulations driven by bottom-up 48	

inventories with observations provides an important test of the time-dependent emission 49	

estimates. 50	

Space-based observations of CO are now available for over a decade and show 51	

trends at both hemispheric and regional scales.  Warner et al. (2013) found significant 52	

negative trends in both background CO and recently emitted CO at 500 hPa over southern 53	

hemisphere oceans and northern hemisphere land and ocean in Atmospheric Infrared 54	

Sounder (AIRS) data.  Worden et al. (2013) calculated trends in the CO column from 55	

several thermal infrared (TIR) instruments including MOPITT and AIRS.  They found 56	

statistically significant negative trends over Europe, the eastern United States, and China 57	

for 2002-2012.  He et al. (2013) also report a negative trend in MOPITT near-surface CO 58	

over western Maryland.   59	

Surface concentrations of CO show downward trends over the United States 60	

driven by emission reductions (EPA, 2011), consistent with the space-based trends.  61	

Decreases in the partial column of CO from FTIR stations in Europe also show decreases 62	

from 1996 to 2006, consistent with emissions decreases (Angelbratt et al., 2011).  Yoon 63	
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and Pozzer (2014) found that a model simulation of 2001 to 2010 reproduced negative 64	

trends in surface CO over the eastern U.S. and western Europe, but showed a positive 65	

trend in surface CO over southern Asia.   66	

The cause of the negative trend over China seen in MOPITT and AIRS data is 67	

uncertain.  The trend is consistent with the results of Li and Liu (2011), who found 68	

decreases in surface CO measurements in Beijing, and with decreases in CO emissions in 69	

2008 inferred from the correlation of CO with CO2 measured at Hateruma Island 70	

(Tohjima et al., 2014) and at a rural site in China (Wang et al., 2010).  Yumimoto et al. 71	

(2014) used inverse modeling of MOPITT data to infer a decrease in CO emissions from 72	

China after 2007.  The 2008 Olympic Games and the 2009 global economic slowdown 73	

led to reductions in CO (Li and Liu, 2011; Worden et al., 2012).  However, the negative 74	

trend in MOPITT CO is inconsistent with the rising CO emissions of the MACCity and 75	

REAS inventories.   Inverse modeling of MOPITT version 6 data yields a negative trend 76	

in CO emissions from China and a larger global decline in CO emissions than that found 77	

in the MACCity inventory (Yin et al., 2015). 78	

This study examines whether global hindcast simulations can reproduce the trends 79	

and variability in carbon monoxide seen in the MOPITT record.   We examine the role of 80	

averaging kernels and the contribution of trends at different altitudes to the trends 81	

observed by MOPITT.  We then examine the impact of OH variability on the simulated 82	

trends in CO. 83	

2. Methods 84	

2.1. MOPITT  85	

 The MOPITT instrument onboard the Terra Satellite provides the longest satellite-86	

based record of atmospheric CO, with observations available from March 2000 to 87	

present.  It provides nearly global coverage every three days (Edwards et al., 2004).  We 88	

use the monthly Level 3 daytime column data from the Version 5 TIR product, which has 89	

negligible drift in the bias over time (Deeter et al., 2013).  The level 3 data is a gridded 90	

product and includes the a priori and averaging kernel for each grid box.  Supplemental 91	

Figure S1 shows the MOPITT column averaging kernels averaged over four regions.  The 92	

column averaging kernels depend on the observed scene, and vary year to year as well as 93	
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seasonally.  The dependence of the column averaging kernels on the CO mixing ratio 94	

profile (Deeter, 2009) explains the high values in the lower troposphere over eastern 95	

China in winter. 96	

We calculate trends and de-seasonalized anomalies for the Eastern U.S., Europe, and 97	

eastern China regions described by Worden et al. (2013).  Trends that differ from zero by 98	

more than the two-sigma uncertainty on the trend are considered statistically significant.  99	

We account for autocorrelation of the data for a one-month lag when calculating the 100	

uncertainty on the trends.  We calculate the annual cycle by fitting the data with a series 101	

of sines and cosines as well as the linear trend, and then remove the annual cycle to 102	

obtain the de-seasonalized anomalies.  Months with no MOPITT data or only a few days 103	

of MOPITT data are excluded from the trend analysis.  This includes May-August of 104	

2001 and August-September of 2009.  We report the MOPITT trends for 2000-2010 for 105	

comparison with model simulations, and for 2000-2014 to give a longer-term view of the 106	

observed trends. 107	

 108	

2.2.  Model Simulations 109	

We use a suite of chemistry climate model (CCM) and chemical transport model 110	

(CTM) simulations to interpret the observed trends.  The Global Modeling Initiative 111	

(GMI) CTM includes both tropospheric (Duncan et al., 2007) and stratospheric (Strahan 112	

et al., 2007) chemistry, including over 400 reactions and 124 chemical species.  113	

Meteorology for the GMI simulations comes from the Modern-Era Retrospective 114	

Analysis for Research and Applications  (MERRA) (Rienecker et al., 2011).  The GEOS-115	

5 Chemistry Climate Model (GEOSCCM)(Oman et al., 2011) incorporates the GMI 116	

chemical mechanism into the GEOS-5 atmospheric general circulation model (AGCM).  117	

The GEOSCCM simulations are forced by observed sea surface temperatures (SSTs) 118	

from (Reynolds et al., 2002).   119	

The Community Earth System Model, CESM1 CAM4-chem, includes 191 chemical 120	

tracers and over 400 reactions for both troposphere and stratosphere (Tilmes et al., 2016).  121	

The model can be run fully coupled to a free-running ocean, with prescribed SSTs, or 122	

with nudged meteorology from GEOS-5 or MERRA analysis. CESM1 CAM4-chem is 123	
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further coupled to the land model, providing biogenic emissions from the Model of 124	

Emissions and Aerosols from Nature (MEGAN), version 2.1 (Guenther et al., 2012). 125	

Several simulations were conducted as part of the Chemistry-Climate Model Initiative 126	

(CCMI) project (Eyring et al., 2013).  These include the Ref-C1 simulation of the 127	

GEOSCCM and a Ref-C1 CESM1 CAM4-Chem simulation, hereafter called G-Ref-C1 128	

and C-Ref-C1, respectively, and the Ref-C1-SD simulation of the GMI CTM.  Both the 129	

Ref-C1 and the Ref-C1-SD simulations use time-dependent anthropogenic and biomass 130	

burning emissions from the MACCity inventory (Granier et al., 2011), but the Ref-C1-131	

SD simulations use specified meteorology while the Ref-C1 simulations run with 132	

prescribed SSTs.  The MACCity inventory linearly interpolates the decadal 133	

anthropogenic emissions from the ACCMIP inventory (Lamarque et al., 2010) for 2000, 134	

and the RCP8.5 emissions for 2005 and 2010, to each year in between.  The MACCity 135	

biomass burning emissions have year-to-year variability based on the GFED-v2 (van der 136	

Werf et al., 2006) inventory.  From 2000 to 2010, CO emissions in the MACCity 137	

inventory decreased from 31 to 11 Tg yr-1 over the eastern U.S., from 97 to 59 Tg yr-1 138	

over Europe, and increased from 56 Tg to 72 Tg yr-1 over eastern China. 139	

Given the uncertainty in CO emissions, we conduct a GMI CTM simulation using an 140	

alternative time-dependent emissions scenario, called AltEmis.  This simulation is 141	

described in detail in (Strode et al., 2015b).  Briefly, anthropogenic emissions include 142	

time-dependence based on EPA (http://www.epa.gov/ttn/chief/trends/index.html), the 143	

REAS inventory (Ohara et al., 2007),  and EMEP 144	

(http://www.ceip.at/ms/ceip_home1/ceip_home/webdab_emepdatabase/reported_emissio145	

ndata/), and annual scalings from van Donkelaar et al. (2008).  Biomass burning 146	

emissions are based on the GFED3 inventory (van der Werf et al., 2010).  While the 147	

regional emission trends in this simulation are of the same sign as in the Ref-C1 case, the 148	

magnitude of the negative trends over the U.S. and Europe are smaller and the positive 149	

trend over China is larger, leading to a positive global trend (Fig. 1).  We also conduct a 150	

sensitivity study called EmFix with anthropogenic and biomass burning emissions held 151	

constant at year 2000 levels.  Table 1 summarizes the simulations used in this study. 152	

We regrid the model output to the MOPITT grid and convolve the simulated CO with 153	

the MOPITT averaging kernels and a priori in order to compare the simulated and 154	
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observed CO columns.  The averaging kernels are space and time dependent. We use the 155	

following equation from Deeter et al. (2013): 156	

Csim = C0 + a(xmod – x0)  (1) 157	

where Csim and C0 are the simulated and a priori CO total columns, respectively, a is the 158	

total column averaging kernel, and xmod and x0 are the modeled and a priori CO profiles, 159	

respectively. The column averaging kernel is calculated from the standard averaging 160	

kernel matrix, which is based on the log of the CO concentration profile, following the 161	

method of Deeter (2009): 162	

aj = (K / log10e) ∑ ∆pi vrtv,i Aij  (2) 163	

where ∆pi and vrtv,i are the pressure thickness and retrieved CO concentration, 164	

respectively, of level i, A is the standard averaging kernel matrix, and K = 2.12 * 1013 165	

molec cm-2 hPa-1 ppb-1. 166	

  We deseasonalize the simulated CO columns and calculate their linear trend 167	

following the same procedure that we applied to the MOPITT CO.  Months that do not 168	

have MOPITT data (June-July 2001 and August-September 2009) are excluded from the 169	

analysis of the model trends as well. 170	

The Ref-C1 and Ref-C1-SD simulations requested by CCMI extend until 2010.  171	

However, the MACCity biomass burning emissions extend only until 2008.  CAM4-172	

Chem therefore repeated the biomass burning emissions for 2008 for years 2009-2010.  173	

In contrast, the GEOSCCM Ref-C1 and GMI Ref-C1-SD simulations used emissions 174	

from GFED3 (van der Werf et al., 2010) for years after 2008.  Some simulations were 175	

available through 2011, while others ended in 2010.  We therefore report results for 176	

2000-2010, but note that extending the analysis through 2011 does not alter the 177	

conclusions. 178	

3. Results 179	

3.1. Trends over Europe, the United States, and the Northern Hemisphere 180	

The hindcast simulations driven by MACCity emissions (G-Ref-C1, Ref-C1-SD, and 181	

C-Ref-C1) show negative trends in CO over the U.S. and Europe that agree with the 182	

observed slope from MOPITT within the uncertainty (Fig. 2, Table 2).  The MOPITT 183	
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trends for both regions are statistically significant for both regions, as shown by Worden 184	

et al. (2013).  These results are consistent with the findings of Yin et al. (2015), whose 185	

inversion of MOPITT data showed a posteriori trends in CO emissions over the U.S. and 186	

western Europe that were consistent with but slightly larger than the a priori trends.  The 187	

EmFix hindcast shows a positive, though non-significant, trend for both regions, 188	

indicating that the decrease in CO emissions is necessary for reproducing the downward 189	

trend in the CO column.  The AltEmis simulation fails to produce the negative trends, 190	

despite including negative trends in regional emissions for both the U.S. and Europe.   191	

The impact of these negative regional trends is insufficient to overcome the positive 192	

global emission trend in the AltEmis scenario (Fig. 1), leading to positive trends in CO.   193	

Figure 2 also reveals a negative bias in the simulated CO column between the models 194	

and MOPITT.  A low bias in simulated CO at northern latitudes is often present in global 195	

models (Naik et al., 2013), and may indicate a high bias in northern hemisphere OH 196	

(Strode et al., 2015a) or CO dry deposition (Stein et al., 2014), as well as an 197	

underestimate of CO emissions. 198	

The deseasonalized anomalies in the MOPITT and simulated CO columns are shown 199	

in Fig. 2b,d, and the correlation coefficient between the observed and simulated monthly 200	

anomalies are presented in Table 2b.  The highest correlations are for the AltEmis and 201	

Ref-C1-SD simulations of the GMI CTM.  This result is consistent with the use of year-202	

specific meteorology, which we expect to better match the transport of particular years.  203	

The lowest correlations are for the EmFix simulation.  This is expected since the EmFix 204	

simulation does not include inter-annual variability (IAV) in biomass burning.  The IAV 205	

in biomass burning makes a large contribution to the IAV of CO (Voulgarakis et al., 206	

2015).   207	

The role of biomass burning in driving the CO variability is even more evident at the 208	

hemispheric scale.  Figure 2g,h shows the anomalies in MOPITT and the simulations for 209	

the northern hemisphere (0-60N). The EmFix simulation shows almost no correlation, 210	

while the other simulations have correlation coefficients exceeding 0.6 (Table 2).   The 211	

role of changing anthropogenic emissions is also evident, as the Ref-C1-SD simulation 212	

captures the 2008-2009 dip in the CO column while the EmFix simulation does not.  213	

Gratz et al. (2015) found decreasing CO concentrations at Mount Bachelor Observatory 214	
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in Oregon during spring for 2004-2013, which they attribute to reductions in emissions 215	

leading to a lower hemispheric background.   We also note that Ref-C1-SD and G-Ref-216	

C1 have similar correlations with the observed variability for the northern hemisphere 217	

(Table 2), indicating that transport differences are less important for variability at the 218	

hemispheric scale. 219	

3.2.  Trend over China 220	

Observations from MOPITT show a negative trend in the CO column over eastern 221	

China for 2002-2012 (Worden et al., 2013).  The negative trend for the years 2000-2014 222	

exceeds that for 2000-2010 (Table 2), showing that it is not driven solely by temporary 223	

emission reductions in 2008.  Our simulations do not reproduce this trend, and instead 224	

show increases in the CO column (Fig. 2e), which is expected given that CO emissions 225	

from China increase in four of the five simulations.  The anomalies (Fig. 2f) show that 226	

the discrepancy in the simulated versus observed trends is driven largely by the failure of 227	

the simulations to capture the 2008 dip in the CO column, leading to an overestimate that 228	

continues through 2010.  This suggests emission reductions in China during this time 229	

period are not adequately captured by the emission inventories.  However, the good 230	

agreement between the observed and simulated decreases in CO for the northern 231	

hemisphere as a whole (Fig. 2g,h) suggest that on a global scale, the emission time series 232	

is reasonable.  Consequently, we examine several other factors that may contribute to the 233	

difference in sign between the MOPITT and simulated CO trends. 234	

Regional trends in CO are expected to vary with altitude, with surface concentrations 235	

most heavily influenced by local emissions.  MOPITT TIR retrievals have higher 236	

sensitivity to CO in the mid-troposphere than at the surface (Deeter et al., 2004), so the 237	

trend in the MOPITT CO column will be weighted towards the trends in free tropospheric 238	

CO rather than near-surface CO.  We quantify this impact on our Ref-C1-SD CO column 239	

trends by comparing the trend in the pure-model CO column with that of the simulated 240	

column convolved with the MOPITT averaging kernels.   241	

The simulated CO trend over eastern China for 2000-2010 is positive (but not 242	

significant) both with and without the averaging kernels, but application of the MOPITT 243	

kernels increases the positive trend from 1.3*1016 molec cm-2 yr-1 to 1.4*1016 molec cm-2 244	

yr-1.  This result is initially surprising since we expect trends in the mid-troposphere to be 245	
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more strongly influenced by the decrease in the hemispheric CO background.  Indeed, the 246	

trends in CO concentration over eastern China simulated in Ref-C1-SD switch from 247	

positive in the lower troposphere to negative in the middle and upper troposphere.  248	

However, the application of the kernels results in more positive (or less negative) trends 249	

in all regions.   250	

Yoon et al. (2013) show that since the averaging kernels vary over time, a bias 251	

between the true atmosphere and the a priori assumed by MOPITT can lead to an 252	

artificial trend in the retrieved CO.  Similarly, the bias between the average simulated CO 253	

concentrations and the MOPITT a priori, evident in Figure 2, can lead to an artifact in the 254	

simulated CO trend when the simulation is convolved with the MOPITT averaging 255	

kernels.  This is due to the changing contribution of the a priori when the vertical 256	

sensitivity (averaging kernel) is varying in time. MOPITT vertical sensitivity varies with 257	

time due to instrument degradation as well as the change in CO abundance.   The bias in 258	

CO varies with altitude, so if the vertical sensitivity described by the averaging kernel 259	

changes, this will change the value of the convolved CO column even if there were no 260	

changes in the CO profile.  Furthermore, changes in the averaging kernel result in more 261	

or less weight placed on the a priori versus the CO simulated by the model.  Thus, a 262	

difference between the a priori and the model means that placing more (or less) weight on 263	

the a priori will change the resulting value of Csim.  Since the a priori profiles and 264	

columns are constant in time, taking the time derivative of equation 1 yields: 265	

∂Csim/∂t = a (∂xmod/∂t) + ∂a/∂t (xmod – x0)  (3) 266	

The second term on the right hand side shows that the larger the bias between the 267	

modeled CO and the a priori, the larger the impact of the changing averaging kernel. 268	

We quantify this effect by convolving the simulated CO for each year with the 269	

MOPITT averaging kernels for the year 2008, thus removing the effect of the time-270	

dependence of the averaging kernels.  The resulting trend, 0.56*1016 molec cm-2 yr-1, is 271	

less positive than the pure model trend or the original simulated trend.  Thus, accounting 272	

for the time-dependence of the averaging kernels convolved with model bias reduces but 273	

does not eliminate the discrepancy with the observed trend.  Comparing the trend for the 274	

constant averaging kernel case with the original simulated trend for Ref-C1-SD (1.4*1016 275	

molec cm-2 yr-1) suggests that the changing averaging kernels combined with the model 276	
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bias contribute 0.84*1016 molec cm-2 yr-1 to the simulated trend. Other regions also show 277	

a more negative trend when the same averaging kernel is applied to the model results for 278	

all years.  The large bias in CO at middle and high northern latitudes commonly seen in 279	

modeling studies thus impacts the ability of models to reproduce and attribute observed 280	

trends in satellite data. 281	

Figure 2 and Table 2 also show a positive trend in the GMI EmFix simulation for 282	

eastern China.  This larger trend in the EmFix simulation than the Ref-C1-SD simulation 283	

indicates that the net decrease in emissions contributes to decreasing CO over eastern 284	

China, consistent with the observed negative trend, but other factors in the model cause 285	

an increase in CO over eastern China even when all emissions are constant.  Subtracting 286	

the EmFix trend from the Ref-C1-SD trend shows that the changing emissions contribute 287	

a CO trend of -0.7 molec cm2 yr-1 over eastern China.  The 2.1 molec cm2 yr-1 trend in the 288	

EmFix simulation, which reflects the impacts of the simulated chemistry and transport, 289	

thus contributes to the erroneous sign of the trend in the GMI simulations.  The trends in 290	

the EmFix simulation for the northern hemisphere average and the eastern U.S. and 291	

Europe are positive as well (Table 2).  We examine their cause in the next section. 292	

3.3.  Contribution of OH Interannual Variability 293	

 294	

Since the EmFix simulation shows a positive trend in the northern hemisphere, we 295	

next examine the variability in the CO sink, OH.  We also examine variability in the total 296	

ozone column, since overhead ozone is a major driver of OH variability (Duncan and 297	

Logan, 2008).  Figure 3 shows the variability in CO and OH in the EmFix simulation.  298	

The positive and negative anomalies in CO correspond with the negative and positive 299	

anomalies, respectively, in OH.  The anomalies in OH are in turn inversely related to 300	

anomalies in the total ozone column.  The correlation coefficient between OH and 301	

column ozone is -0.53 for the 15°S-15°N average, -0.72 for the 15°-25°N average, and -302	

0.75 for the 30°-60°N average.  The large NH ozone anomaly in 2010, in particular, leads 303	

to a large anomaly in OH and thus CO.  This OH anomaly extends from the northern 304	

tropics to the midlatitudes.  The large CO anomaly near the end of the time series 305	

contributes to the apparent 11-year trend.  We note that since the lifetime of CO is several 306	
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months, CO anomalies are not expected to have a one-to-one correspondence with the 307	

OH anomalies. 308	

The large anomaly in the simulated total ozone column in 2010 is overestimated 309	

compared to observations.  Figure 4 shows the time-dependence of the total ozone 310	

column from 30°-60°N in EmFix compared to SBUV data (Frith et al., 2014).  While the 311	

observations show an anomaly in 2010, the magnitude is smaller than that produced by 312	

the simulation.  Steinbrecht et al. (2011) attribute the 2010 anomaly in northern 313	

midlatitude ozone observations to a combination of an unusually strong negative Arctic 314	

Oscillation and North Atlantic Oscillation and the easterly phase of the quasi-biennial 315	

oscillation. 316	

While the impact of OH interannual variability on the apparent trend in CO is clear in 317	

the EmFix simulation, this source of variability is partially masked by large interannual 318	

variability in CO emissions in the other simulations.  We examine the correlation 319	

between the de-trended and deseasonalized CO anomalies from 10°S-10°N in the Ref-320	

C1-SD simulation and the CO emissions as well as the simulated OH and column ozone.  321	

Since the CO emitted in a given month can influence concentrations for several 322	

subsequent months, we use a 3-month smoothing of the emission time series.  We find a 323	

high correlation (r=0.88) between the CO anomalies and the CO emissions.  This 324	

correlation is also evident in the MOPITT data, as the MOPITT CO anomalies have a 325	

correlation of r=0.70 with the emissions.  Figure 5 shows the strong relationship between 326	

the simulated CO anomalies and the CO emissions.  However, the colors in Fig. 5 327	

indicate that the scatter for a given level of emissions is often linked to the OH 328	

anomalies, with low/high OH anomalies leading to CO that is higher/lower than would be 329	

predicted just from the CO emissions.  We find that the 10°S-10°N OH in the Ref-C1-SD 330	

simulation is anticorrelated with CO (r=-0.62) and with the total ozone column (r=-0.68).  331	

Consequently, the simulated ozone column plays a role in modulating tropical CO 332	

variability even when variable CO emissions are included, although the emissions still 333	

play the strongest role. 334	
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4. Conclusions 335	

We conducted a series of multi-year simulations to analyze the causes of the negative 336	

trends in MOPITT CO reported by Worden et al. (2013).  Both CTM and CCM 337	

simulations driven by the MACCity emissions reproduce the observed trends over the 338	

eastern U.S. and Europe, providing confidence in the regional emission trends.  339	

None of the simulations reproduce the observed negative trend over eastern China.  340	

This negative trend persists even with the MOPITT data extended out to 2014.  The 341	

MOPITT averaging kernels are weighted towards the free troposphere, where the relative 342	

importance of hemispheric versus local trends is greater.  However, our simulations 343	

indicate that this effect is insufficient to explain the negative trends over China.  Indeed, 344	

the negative trend in MOPITT CO over eastern China (-2.9*1016 molec cm-2 yr-1) is 345	

stronger than that of the northern hemisphere average (-1.4*1016 molec cm-2 yr-1), 346	

indicating that changes in hemispheric CO account for less than half of the trend over 347	

China. While the simulations’ underestimate of the observed trend likely indicates a too 348	

positive emission trend for China, several other factors play a role in the model-349	

observation mismatch. We find that the time-dependent MOPITT averaging kernels, 350	

combined with the low bias in simulated CO, provides a positive component to the 351	

simulated trends.  Large anomalies in the simulated ozone column in the GMI CTM 352	

simulations also contribute a positive component to the northern hemisphere trends due to 353	

their impact on OH.  For the Ref-C1-SD simulation, the trends due to the model bias 354	

combined with changing averaging kernels (0.84*1016 molec cm-2 yr-1) and to the 355	

simulated chemistry and transport (2.1*1016 molec cm-2 yr-1) can together account for 356	

almost 70% of the 4.3*1016 molec cm-2 yr-1 difference between the Ref-C1-SD and 357	

MOPITT trends over eastern China. 358	

Variability in emissions is the primary driver of year-to-year variability in simulated 359	

CO, but OH variability also plays a role.  The simulated OH is anti-correlated with both 360	

CO and the total ozone column, highlighting the importance of realistic overhead ozone 361	

columns for accurately simulating CO variability and trends.  In addition, further work is 362	

needed to understand recent changes in CO emissions from China. 363	
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Table 1: Description of Simulations 

Simulation Model Meteorology Anthropogenic 
Emissions 

Biomass 
Burning 
Emissions 

G-Ref-C1 GEOSCC
MCM 

internally 
derived 

MACCity MACCity, 
GFED3  
(2009-2010) 

C-Ref-C1 CAM4-
Chem 

internally 
derived 

MACCity MACCity, 
then repeat 
2008 

Ref-C1-
SD 

GMI MERRA MACCity Same as 
GEOSCCM 

EmFix GMI MERRA Fixed at 2000 Fixed at 2000 
AltEmis GMI MERRA Strode et al 

[2015] 
GFED3 
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Table 2: Regional Trends and Correlations 

a. Trends1,2 

 Years E. USA Europe E. China N. Hemisphere 
G-Ref-C13 2000-2010 -2.2 (0.38) -1.8 (0.42) 2.2 (1.1) -0.76 (3.0) 
C-Ref-C13 2000-2010 -3.4 (0.54) -2.9 (0.50) 1.4 (1.4) -0.90 (3.0) 
Ref-C1-SD3 2000-2010 -2.4 (0.53) -1.6 (0.59) 1.4 (1.1) -0.76 (3.0) 
EmFix3 2000-2010 1.3 (0.55) 1.5 (0.44) 2.1 (0.87) 0.96 (2.5) 
AltEmis3 2000-2010 0.71 (0.73) 0.74 (0.66) 3.8 (1.4) 1.1 (3.4) 
MOPITT 2000-2010 -2.5 (0.64) -1.8 (0.69) -2.9 (1.8) -1.4 (2.8) 
MOPITT 2000-2014 -2.1 (0.41) -1.7 (0.43) -3.1 (1.1) -1.4 (1.7) 
11016 molec cm-2 yr-1 

21-sigma uncertainty given in parentheses 

3Simulation results convolved with MOPITT averaging kernel and a priori 

b. Correlation coefficient (r) with monthly MOPITT anomalies1,2 

 Years E. USA Europe E. China N. Hemisphere 
G-Ref-C1 2000-2010 0.26 0.39 0.061 0.71 
C-Ref-C1 2000-2010 0.23 0.36 0.18 0.62 
Ref-C1-SD 2000-2010 0.43 0.51 0.39 0.73 
EmFix 2000-2010 0.10 0.21 0.071 0.059 
AltEmis 2000-2010 0.55 0.59 0.48 0.69 
1Correlations are calculated from the de-trended and de-seasonalized time series.  

2Statistically significant correlations at the 95% confidence level are indicated in bold. 
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Figure 1: Trends in the CO emissions used in the Ref-C1 and Ref-C1-SD simulations 
(blue bars) and AltEmis simulation (purple bars) over 2000-2010 for the United States, 
Europe, China, and the world. 
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Figure 2: The time series and trends (left column) and de-seasonalized monthly 
anomalies (right column) of the CO column from MOPITT (black), the MOPITT a priori 
(gray), and simulated by G-Ref-C1 (red), Ref-C1-SD (blue), EmFix (green), C-Ref-C1 
(orange), and AltEmis (purple) for 2000-2010.  The regions shown are (a,b) Europe (0°-
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15°E, 45°-55°N), (c,d) eastern U.S.A. (95°-75°W, 35°-40°N), (e,f) eastern China (110°-
123°E, 30°-40°N), and (g,h) the northern hemisphere (0°-60°N). 

 

 
Figure 3: Deseasonalized monthly anomalies in the total ozone column (left), mean 
tropospheric OH (center), and CO column (right) from the EmFix simulation as a 
function of latitude and month. 
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Figure 4: Monthly ozone column (a) and de-seasonalized ozone column anomaly (b) in 
SBUV data (black) and the EmFix simulation (green) for 30°-60°N. 

 

 
Figure 5: Monthly simulated CO column anomalies from the Ref-C1-SD simulation as a 
function of CO emissions for 10°S-10°N.  Colors indicate the simulated OH column 
anomaly for the given month. 

 


