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Abstract. Developing predictive capability for future atmospheric oxidation capability requires a detailed analysis of model

uncertainties and sensitivity of the modeled oxidation capacity to model input variables. Using oxidant mixing ratios modeled

by the GEOS-Chem chemical transport model and measured on the NASA DC8 aircraft, uncertainty and global sensitivity

analyses were performed on the GEOS-Chem chemical transport model for the modeled oxidants hydroxyl (OH), hydroperoxyl

(HO2), and ozone (O3). The sensitivity of modeled OH, HO2, and ozone to modeled inputs perturbed simultaneously within5

their respective uncertainties were found for the period of NASA’s Arctic Research of the Composition of the Troposphere

from Aircraft and Satellites (ARCTAS) A & B campaigns (2008) in the North American Arctic. For the spring deployment

(ARCTAS-A), ozone is most sensitive to the photolysis rate of NO2, the NO2 + OH reaction rate, and various emissions,

including methyl bromoform (CHBr3). OH and HO2 were overwhelmingly sensitive to aerosol particle uptake of HO2 with

this one factor contributing upwards of 75 % of the uncertainty in HO2. For the summer deployment (ARCTAS-B), ozone was10

most sensitive to emissions factors, such as soil NOx and isoprene. OH and HO2 were most sensitive to biomass emissions

and aerosol particle uptake of HO2. With modeled HO2 showing a factor of 2 underestimation compared to measurements in

the lowest 2 kilometers of the troposphere, lower uptake rates (γHO2 < 0.04), regardless of whether or not the product of the

uptake is H2O or H2O2, produced better agreement between modeled and measured HO2.

1 Introduction15

With rising temperatures, shrinking sea ice, and expanding emissions into the atmosphere from increased human development

and biomass burning, the Arctic is experiencing rapid changes felt nowhere else on the globe. While the region is largely unde-

veloped, anthropogenic air pollution from Northern Hemisphere population centers in East Asia, Europe, and North America

is regularly advected into the Arctic atmosphere, contributing to the "Arctic haze", (e.g., Barrie et al., 1981). Increasing oil and

gas exploration and extraction, coupled with summertime shipping lanes through the region will make air pollution worse. A20

better understanding of atmospheric oxidation chemistry is needed in order to provide a scientific basis for a sound mitigation

strategy to combat this likely deteriorating air quality.

Atmospheric oxidants are at the forefront of any air chemistry study because the lifetimes of most gaseous and particulate

species are determined through oxidant reactions. The primary atmospheric oxidizers of interest are the hydroxyl radical (OH),
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the hydroperoxyl radical (HO2), collectively referred to as HOx (HOx ≡ OH + HO2), and ozone (O3) (Levy, 1971) . Ozone,

OH, and HO2 are coupled in a cycle in which ozone photolysis leads to the creation of OH, which then cycles with volatile

organic compounds to create HO2, which then can react with nitric oxide (NO) to ultimately produce ozone and recycle OH.

While this cycle appears to be well known and documented, models still fail in describing atmospheric composition (e.g., Wu

et al., 2007). These model shortcomings are usually attributed to errors in the chemical reaction rates, emissions, or meteorology5

(e.g., Wild and Prather, 2006).

A useful tool for examining and attributing sources to these model shortcomings is sensitivity and uncertainty analyses. In

performing sensitivity analyses, there are two basic approaches: local and global. Local sensitivity analysis involves varying

model inputs one at a time around a given point in input space while holding all other model inputs constant. This method as-

sumes at least locally linear input–output relationships. Global sensitivity analyses; on the other hand, involve the simultaneous10

perturbation of all the model inputs allowing for the interactions between inputs to be analyzed as well (Rabitz and Aliş, 1999).

Global sensitivity analysis does not assume that the input and output have a linear local relationship and in fact can test the

sensitivity of the output factors to the co-variation of two more input factors. Global sensitivity analysis is preferred over local

sensitivity analysis for complex models (Saltelli et al., 2008) and applies well to global chemical transport models (CTMs),

such as the GEOS-Chem (Goddard Earth Observing System-Chemistry) model used in this study, that can have non-linear15

interactions in the chemical kinetics, emissions, and meteorology.

Previous sensitivity studies using GEOS-Chem tended to use local sensitivity methods despite the known non-linearity of

the underlying chemical processes and subsequent interactions with meteorological and emissions factors. To combat these

non-linearities, a common strategy in sensitivity studies involves the perturbation of model factors across a smaller sample

of the input space (e.g., Fiore et al., 2009; Wu et al., 2009). While useful in ascertaining sensitivities for individual factors,20

this method cannot provide a complete picture of the modeled uncertainty as the entire input space is not sampled. In other

sensitivity studies GEOS-Chem has been analyzed for its sensitivity to meteorological models and factors (e.g., Wu et al.,

2007; Heald et al., 2010) and both biogenic (Fiore et al., 2005; Mao et al., 2013b) and anthropogenic emissions (e.g., Fiore

et al., 2002; Martin et al., 2003; Auvray and Bey, 2005; Jaeglé et al., 2005; Guerova et al., 2006). While helpful, these local

sensitivity studies were limited to perturbing a small set of similar input factors so it is possible that some important input25

factors or interactions may have been missed.

This study covers National Aeronautics and Space Administration’s (USA) (NASA’s) Arctic Research of the Composition

of the Troposphere from Aircraft and Satellites (ARCTAS) campaign (2008) (Jacob et al., 2010). The impetus of the campaign

was to better understand the complex interactions between atmospheric composition, the environment, and climate in the North

American Arctic and was split into three sub-campaigns, ARCTAS-A (spring), ARCTAS-CARB (California—not included in30

this study), and ARCTAS-B (summer). ARCTAS-A sought to better understand the chemical processes during the polar sunrise

when anthropogenic pollution is at its annual maximum and halogen chemistry is active and was based in Fairbanks, Alaska

(USA), Iqaluit, Nunavut (Canada), and Thule, Greenland. A point of emphasis of ARCTAS-B was characterizing the effects

of biomass burning emissions from the forest fires ubiquitous during the Arctic summer and examining the chemistry within

smoke plumes of varying age (Jacob et al., 2010). ARCTAS-B was based in Cold Lake, Alberta (Canada) and Thule, Greenland.35
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This study is different from previous sensitivity studies involving CTMs, specifically GEOS-Chem, because the quantity

and diversity of perturbed inputs are greater. Through a global sensitivity analysis, we identify and quantify the sources of

uncertainty for atmospheric oxidants and explore how these factors explain model–measurement differences. Presented here is a

global sensitivity analysis of a global CTM allowing for the assessment of model uncertainties and determining the sensitivities

of model outputs to chemistry, emissions, and meteorology input factors.5

2 Methods

2.1 GEOS-Chem

The chemical transport model used for this study is GEOS-Chem. GEOS-Chem has been a valuable tool in understanding

global air chemistry since its introduction into the literature (Bey et al., 2001) and is currently used by scores of institutions

around the world for a wide ranging set of air chemical applications. This study uses the standard GEOS-Chem CTM (v9-02).10

For computational expediency, the model runs use a regridded horizontal resolution of 4◦ x 5◦ and 47 hybrid vertical layers.

While previous CTM studies have shown that coarse resolution elevates OH concentrations and ozone production rates, the

error from resolution typically pales in comparison to those errors arising from chemistry, meteorology, and emissions (Wild

and Prather, 2006). In our case, we found small differences (usually < 10 %) for ARCTAS-A and B between mean vertical

profiles of ozone, OH, and HO2 using either 4◦ x 5◦ or 2◦ x 2.5◦ resolutions and thus using the coarser resolution is adequate15

for this study. The following sections briefly describe the meteorology, emissions, and chemistry components of the model.

2.1.1 Meteorology

GEOS-Chem is driven by the Global Modeling and Assimilation Office’s (GMAO) GEOS-5 (Goddard Earth Observing Sys-

tem) meteorological model. GEOS-5 has a native resolution of 0.5◦ x 0.666◦ with 72 hybrid eta levels but is regridded to 4◦

x 5◦ with 47 hybrid vertical levels for input into GEOS-Chem. There are about 60 GEOS-5 meteorological fields handled by20

GEOS-Chem. Mixing depths and surface meteorological fields, such as soil wetness, heat fluxes, and albedo have a 3 hour

temporal resolution. In contrast, 3D fields, such as u and v wind components and temperature, have 6 hour temporal resolution

(Bey et al., 2001). Transport is handled by the semi-Lagrangian TPCORE algorithm (Lin and Rood, 1996).

Due to the lack of published uncertainties associated with the GEOS-5 meteorological data, we defined our meteorological

uncertainties as the average monthly standard deviation of the difference between GEOS-5 and GEOS-4 meteorological fields25

for 2005, a year of overlap between the models. For relative and specific humidity, an uncertainty of 5 %, similar to Heald et al.

(2010) was assumed. Cloud mass flux uncertainty was inferred from differences between GEOS-5, a single column model, and

a cloud resolving model and set at a factor of 1.5 (Ott et al., 2009).

3

Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2016-863, 2016
Manuscript under review for journal Atmos. Chem. Phys.
Published: 11 October 2016
c© Author(s) 2016. CC-BY 3.0 License.



2.1.2 Emissions

GEOS-Chem includes emissions from a variety of anthropogenic, biogenic, and other emissions sources. For this study, the

default emissions were generally used. We note in the following section these exceptions and a more detailed description of

the various emissions inventories.

For biogenic emissions, this study used the default MEGAN 2.1 (Model of Emissions and Gases and Aerosols from Nature).5

Out of the 9 species provided by MEGAN, isoprene emissions are dominant, accounting for about half of the biogenic volatile

organic compound (VOC) emissions in GEOS-Chem. We assume a factor of 2 uncertainty for isoprene emissions (Guenther

et al., 2012). Biomass emissions, a point of emphasis in the ARCTAS-B campaign, were supplied via the Global Fire Emissions

Database 3 (GFED-3) (van der Werf et al., 2010). GFED-3 emissions were calculated every three hours. For both biomass and

soil NOx emissions we assume a factor of 3 uncertainty (Jaeglé et al., 2005).10

For anthropogenic volatile organic compound (VOC) emissions, the model uses a combination of REanalysis of the TRO-

pospheric chemical composition (RETRO), Emission Database for Global Atmospheric Research (EDGAR), and regional

emissions inventories. RETRO was developed by The Netherlands Organization for Applied Research (TNO). GEOS-Chem

9-02 uses 12 VOC species from RETRO (Reinhart and Millet, 2011). EDGAR v4.1 emissions (Olivier et al., 1996) are the

default model for NOx (NOx ≡ NO + NO2), CO, and SOx (SOx ≡ SO2 + SO4
2−) in GEOS-Chem. It has a resolution of 1◦x15

1◦and is available on a yearly basis. For many parts of the world, especially the developed world, this study used the default

regional emissions datasets that overwrote the RETRO or EDGAR fields.

Lightning NOx is emitted through the scheme developed by Price and Rind (1992) in which lightning frequency is parame-

terized based on cloud height and land cover type. In this scheme, continental flash frequencies are higher than marine storms

due to stronger storm updrafts observed over land. GEOS-Chem assumes a global total of 6 Tg N yr−1 as per Martin et al.20

(2007) and Sauvage et al. (2007). For this study, the lightning NOx emissions were rescaled to 6.3 Tg N yr−1 with an assumed

uncertainty of ∼25 % consistent with more recent literature (Miyazaki et al., 2014). This uncertainty may be higher (Liaskos

et al., 2015) but is not a major consideration in this domain given the low lightning frequency in the Arctic.

An important factor for any study of ozone is the stratospheric–tropospheric exchange (STE) of ozone. In GEOS-Chem, it

is typically parameterized by the Linoz scheme (McLinden et al., 2000). To allow constant scaling of STE ozone, this study25

used instead the Synoz algorithm, which exchanges 500 TG yr−1 of ozone through the tropopause (McLinden et al., 2000).

The assumed uncertainty for this STE ozone is a factor of 2.

2.1.3 Chemistry

The standard chemical scheme in GEOS-Chem has more than 230 kinetic reactions. This study uses the Sparse-Matrix Vec-

torized Gear Code (SMVGEAR) chemical solver (Jacobson and Turco, 1994). These rates are updated periodically and are30

generally supplied by the Jet Propulsion Laboratory (JPL) (Sander et al., 2011), the International Union of Pure and Applied

Chemistry (IUPAC) (Atkinson et al., 2007), or other recent literature. Uncertainties for chemical rate coefficients came from

JPL (Sander et al., 2011). The standard photolysis scheme has 55 different reactions and uses the FAST-J algorithm (Wild et al.,
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2000) to calculate photolysis rates throughout the troposphere. Uncertainties for photolysis rates came from JPL’s combined

cross sectional and quantum yield uncertainties (Sander et al., 2011).

2.1.4 Heterogeneous chemistry

A major point of emphasis in this study is the effect of the treatment of heterogeneous chemistry in the model, especially the

aerosol particle uptake of HO2 (referred to as gamma HO2). Gamma HO2 is defined as the fraction of HO2 consumed per5

collision with aerosol particles. Until recent work by Mao et al. (2013a) that proposed catalytic reactions involving copper

and iron ions in aqueous aerosols, it was assumed aerosol uptake of HO2 would eventually lead to H2O2 production (e.g.,

Jacob, 1986). While H2O formation is a terminal sink for HOx, H2O2 can be photolyzed and return HOx radicals back into the

atmosphere. GEOS-Chem has had an inconsistent history in the treatment of HO2 aerosol uptake with both the rate and product

of this reaction. Originally GEOS-Chem set γHO2 = 0.1 producing H2O2 (Jacob, 2000) then HO2 uptake was eliminated from10

the model to better match tropical results (Sauvage et al., 2007) before the later implementation of Thornton et al.’s 2008

mechanism. In the version of the model used in this study, HO2 heterogeneous aerosol uptake is parameterized by γHO2 = 0.2

(Jacob, 2000) yielding H2O, a terminal reaction for HO2 (Mao et al., 2013a) . Uncertainties for heterogeneous chemical factors

came from JPL (Sander et al., 2011).

2.2 Global sensitivity analysis15

The global sensitivity analysis method used in this study is the Random Sampling-High Dimensional Model Representation

(RS-HDMR) (Li et al., 2001; Rabitz and Aliş, 1999). RS-HDMR is an approach to the HDMR method in which the inputs

are randomly sampled from their uncertainty distributions. This study employed a slight variation of the RS-HDMR method

in which, in lieu of randomly sampling the input space, it is sampled using a Sobol Sequence (Sobol, 1976), a quasi–random

number sequence. Using this sequence allows for more efficient sampling of the input space and quicker convergence of the20

RS-HDMR metamodel solution (Feil et al., 2009), an important advantage with the high computational costs associated with

chemical transport models. The HDMR method describes the model output as an expansion in terms of the input factors.

f(x) = f0 +
n∑

i=1

fi(xj) +
∑

1≤i≤n
fij(xi,xj) + ...+ f12...n(x1, ...,xn) (1)

Here f0 is the zeroth order component, a constant equivalent to the mean (Eq. 2), fi is the first order effect corresponding to

the independent effect of the input xi on the output (Eq. 3), fij corresponding to the second order effect on the output of inputs25

xi and xj working cooperatively (Eq. 4), on down to the nth order effect on the output by all the inputs working cooperatively

(Rabitz and Aliş, 1999).

f0 ≈
1
N

N∑

s=1

f(xs) (2)

fi ≈
ki∑

r=1

αirϕ
i
r(xi) (3)30
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fij(xi,xj)≈
li∑

p=1

lj∑

q=1

βijpqϕ
i
p(xi)ϕ

j
q(xj) (4)

Here ϕ represents orthonormal polynomials, ki, li, and lj represent the orders of the polynomials, α and β are constant

coefficients.

When using the RS-HDMR approach, the component functions representing the different ordered effects are orthogonal to5

one another. Because of this property, the total variance can be decomposed into a sum of variances of each component function

(e.g., Li et al., 2010; Chen and Brune, 2012). For example:

V (f(x)) =
n∑

i=1

V (fi(xi)) +
∑

1≤i≤n
V (fij(xi,xj)) + ...+V (f12...n(x1, ...,xn)) (5)

Where V(fi(xi)) represents the variance of the first order effect due to the input xi and so forth. It is important to note that

fi(xi) (Eq. 3) is not necessarily best described by a first order polynomial. From this expansion of the variance, the sensitivity10

indices of each component can be found by normalizing Eq. (5) by the total variance. Should ΣSi ≈ 1, first order effects

dominate and individual second order effects do not need to be calculated.

Si =
V (fi(xi))
V (f(x)))

(6)

Sij =
(V (fij(xi,xj))

(V (f(x)))
(7)15

Due to the relatively long run time and the large number of inputs that go into the GEOS-Chem model, a Morris Method

sensitivity test (Morris, 1991) for the Arctic domain was completed before starting the RS-HDMR study. The Morris Method,

also known as the Elementary Effects method, is a computationally inexpensive method to qualitatively determine which

model factors have effects that are negligible, linear, or non-linear and has been used in conjunction with many previous

HDMR studies (e.g., Ziehn et al., 2009; Chen et al., 2012; Lu et al., 2013). As suggested by Saltelli et al. (2008), we employed20

10 trajectories and 4 discrete levels within the uncertainty distributions for sampling. Initially, 465 different model inputs were

perturbed. In the name of computational expediency, the number of perturbed inputs was reduced to approximately the 25 %

most important factors for the remaining 8 trajectories. As the Morris Method tests were used to prescreen factors for inclusion

into the RS-HDMR tests, this initial cull after two trajectories did not influence the factors chosen at the conclusion of the

Morris Method test.25

After the Morris Method tests were completed, we selected the 50 most influential factors for HO2, OH, and ozone concen-

trations for the spatial domain corresponding to the ARCTAS mission. This limiting the analysis to 50 factors is in line with

(Ziehn and Tomlin, 2008b); however, they note that this pre-screening process may not be necessary if thresholds are imple-

mented in constructing the HDMR metamodel to exclude unimportant factors. In addition to the 50 most influential factors,

regional Canadian NOx emissions from the Criteria Air Contaminant (CAC) inventory, and methyl bromoform emissions were30
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also included in our HDMR analysis. Methyl bromoform emissions were included in the HDMR tests due to the importance of

halogen chemistry in Arctic (e.g., Simpson et al., 2007). All the factors included in the RS-HDMR analysis are listed in Table

1.

2.2.1 Uncertainties

After determining the factors to include in the HDMR test, the next step was to create the distributions from which to sample.5

Uncertainties for all the factors are listed in Table 1. Lognormal distributions were used for all distributions, except those for

temperature, soil wetness, relative humidity, and cloud fraction for which normal distributions were used. Standard deviations

for the lognormal uncertainty distributions were determined by σ = f - 1, where f is the published uncertainty factor and σ is

the standard deviation of the distribution to be sampled, similar to Stewart and Thompson (1996). To ensure ∼95 % of the

quasi-random samples would be within the published uncertainty bounds and reflecting the 2σ range JPL uses to incorporate10

chemical kinetic data and inferred from emissions uncertainties, these standard deviations were then halved before creating the

distributions.

With the uncertainty distributions created, a Sobol Sequence (discarding the first 512 sets of values as spin up) was created

to quasi-randomly sample these distributions and perturb the model. To ensure model perturbations had time to spread and

reach a new global equilibrium, a 9 month spin-up period was employed before the first flights in April 2008. The ensemble15

was limited to 512 model runs. While previous implementations of the RS-HDMR to box models used thousands of runs (e.g.,

Chen and Brune, 2012), recent use of the method with a land surface model shows reliable results with as few as 256 runs (Lu

et al., 2013). Likewise, we found little difference in results between 512 and 256 model runs, but have included all 512 in this

study.

2.2.2 Calculation of sensitivity indices20

Graphical User Interface-HDMR (GUI-HDMR) was used to calculate all the sensitivity measures and analyze the input–output

behavior of the model (Ziehn and Tomlin, 2009). This MATLAB software package is freely available through http://www.gui-

hdmr.de. For use within the software, the values of the inputs were rescaled according to their respective percentiles within

the uncertainty distributions. We employed the correlation method provided in the GUI-HDMR software (Kalos and Whitlock,

1986; Li et al., 2003), a variance reduction method. In using the correlation method, the construction of the RS-HDMR ex-25

pansion becomes an iterative process using an analytical reference function. With this method, as noted in (Li et al., 2003),

the accuracy of the RS-HDMR expansion increases without a corresponding increase in ensemble size, a valuable advantage

considering the expensive nature of running CTMs.

2.3 Measurements

For comparison to the model, we also used measurements collected aboard the NASA DC8 airplane. OH and HO2 measure-30

ments came from Pennsylvania State University’s Airborne Tropospheric Hydrogen Oxides Sensor (ATHOS) (Faloona et al.,
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2004). ATHOS uses Laser Induced Fluorescence (LIF) to measure HOx mixing ratios. The National Center for Atmospheric

Research’s (USA) (NCAR) Selected-Ion Chemical Ionization Mass Specrometer (SI-CIMS) and Peroxy Radical Chemical

Ionization Mass Spectrometer (PeRCIMS) also measured OH and HO2 respectively aboard the DC8. Comparisons between

the methods showed good agreement during the campaign (Ren et al., 2012). For the purposes of our analysis, only ATHOS

measurements are considered. Ozone observations aboard the DC8 were measured by NCAR using the chemiluminescence5

method (Weinheimer et al., 1994).

Since ARCTAS, interferences have been found in the measurements of both OH (Mao et al., 2012) and HO2 (Fuchs et al.,

2011). The OH interference can be anywhere from 20 % to 300 % of the actual ambient OH, while the HO2 interference is

typically less than a factor of two. Both interferences require the presence of alkenes or aromatics and so are limited to planetary

boundary layer environments in which these volatile organic compounds are common. Interferences in the free troposphere10

and over much of the Arctic will be negligible.

2.4 Data manipulation

To compare aircraft observations to the model ensemble, the Planeflight option within GEOS-Chem was used. The Planeflight

option allows for modeled values to be output at one minute intervals along the DC8 flight track. To match the modeled flight

track, we averaged the aircraft observation data over one minute intervals and excluded observations from the stratosphere. For15

our flight-by-flight HDMR analyses, average mixing ratios along the flight track as the output of interest in GUI-HDMR were

used. For vertical profiles, modeled and measured flight track data were binned and averaged in one kilometer increments,

excluding the transit flights (flights 3, 11, 16, and 24). While it is a concern that the modeled representation of the flight tracks

may misrepresent spatially or temporally synoptic or mesoscale features important to the abundances of the studied species,

these differences likely are small when averaged over each flight, and especially when averaged across all modeled flights. At20

this time, Planeflight offers the most consistent method for model–measurement comparison.

3 Results

Given the seasonal differences between Arctic spring and summer in both meteorology and emissions, and the differences

between the mission objectives between ARCTAS-A and ARCTAS-B, the results are separated by their respective season.

During both ARCTAS-A and ARCTAS-B, the NASA DC8 sampled the troposphere at a variety of heights ranging from near25

surface to the lower reaches of the stratosphere providing a representative view of the Arctic troposphere as seen in the bar

graphs in Figs. 2 and 6.
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3.1 ARCTAS-A (Spring 2008)

3.1.1 Uncertainty analysis

Across the modeled ensemble, ozone has relatively low uncertainty (6.8 %, 1σ confidence) reflecting the low ozone production

rates within the domain during ARCTAS-A (Fig. 1). In contrast to ozone, we found both OH and HO2 to have much higher

uncertainty across the model ensemble with OH and HO2 both having 1σ uncertainties of around 27 %. Figure 2 shows this5

uncertainty spread vertically. For ARCTAS-A, uncertainties and sensitivities were generally uniform with altitude across the

model ensemble for ozone and HOx.

3.1.2 Vertical profiles

Figure 2 shows mean vertical profiles binned per kilometer for the spring deployment (Fig. 1). Ozone was consistently un-

derpredicted by the model at all altitudes except near the surface and showed little variation across the ensemble in modeled10

ozone. The lack of significant in situ ozone production in April over the domain could partially explain the small variation in

modeled mixing ratios among ensemble members. Similar to Mao et al. (2010), OH mixing ratios were low, in the tenths of

one ppb and showed a consistent model underestimation for the lower and middle troposphere with better agreement above

∼6 km, although the limit of detection for the OH measurement is ∼105 cm−3. Across the model ensemble there is general

agreement between measured and modeled HO2 within the vertical column as measured values are mostly within the first15

standard deviation of modeled results. This is different from Mao et al. (2010) in which GEOS-Chem showed a consistent

overestimation of HO2. Above 7 km, modeled HO2 is higher than measured, by upwards of a factor of 2, similar to Mao et al.

(2010). These results are consistent with improvement in modeled characterization of HO2 aerosol particle uptake as aerosol

concentrations are highest in the lowest few kilometers of the atmosphere and very low in the upper reaches of the troposphere.

3.1.3 Sensitivity analysis20

Figure 3 shows the first order results of the HDMR analysis for the average tropospheric mixing ratios along selected flight

tracks for ozone, OH, and HO2. For HOx and ozone, the sensitivities are, with a minor few exceptions, altitude independent.

The first order sensitivity index for all factors are represented and are color coded by their respective category as defined in

Table 1. In this sense, first order effects describe each factor’s individual contribution to the ensemble variance. The RS-HDMR

component functions for each factor are not necessarily linear, and are in fact often best represented by 2nd degree and higher25

polynomials. GUI-HDMR calculates the optimal order for each HDMR polynomial using a least squares method (Ziehn and

Tomlin, 2008a). The missing portion of the pie graph represents second and higher order sensitivities. While all flights are not

presented here, the three flights in Fig. 3 cover the geographic spread of the domain and are representative of the results seen

among other spring flights.

Ozone: Overall, the sum of all the first order effects was usually below 0.90 meaning that first order effects explain close to30

90 % of the observed variance. To calculate meaningful second order terms will require substantially more model runs.
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For each spring flight the photolysis of NO2 was the most influential factor for modeled ozone with sensitivity indices ranging

from around 0.09 to 0.11 (mean 0.10). It is not surprising NO2 photolysis is a sensitive factor considering the photolysis of

NO2 leads directly to ozone production; however, it is somewhat surprising given its rather low uncertainty (20 %) and the

limited ozone production in the Arctic spring. Other most influential factors are the NO2 + OH reaction (mean Si = 0.083),

soil NOx emissions (0.047), temperature (0.056), and methyl bromoform emissions (0.072). Sensitivity of ozone to methyl5

bromoform emissions is expected due to bromine compounds’ ability to catalytically destroy ozone, especially early in the

Arctic spring when sunlight returns allowing for halogen photochemistry to commence (e.g., Barrie et al., 1988). Tropospheric

ozone depletion events arising via catalytically destructive halogen reactions were observed during the ARCTAS-A campaign,

mainly below 1 km (Koo et al., 2012).

OH: OH mixing ratios were very low, in the tenths of one ppb. These low mixing ratios are expected considering the low10

sun angles in April over the Arctic and was noted in prior ARCTAS studies (Mao et al., 2010). Unlike ozone,
∑

Si ≈ 0.90

for most modeled flights meaning first order effects describe the vast majority of the model uncertainty. For all the flights,

aerosol particle uptake of HO2 (gamma HO2) was the most influential factor having Si values ranging from 0.37 and 0.58

(mean Si = 0.49). Temperature (0.071), biomass CO (0.058) also routinely had Si values above 0.05. Among emissions, Asian

and biomass NOx and CO contributed the most to the uncertainty. The influence of Asian emissions during ARCTAS-A has15

been noted previously (Jacob et al., 2010) and highlights the sensitivity of the Arctic region to the advection of anthropogenic

pollution.

HO2: As with OH, HO2 mixing ratios were also low, and first order effects dominated in the RS-HDMR metamodel with
∑

Si values ranging from 0.94 to 0.98. Of the first order effects, gamma HO2 was dominant, with Si values ranging from 0.60

to 0.76 (mean Si = 0.71). This suggests that around 71 % of the uncertainty associated with modeled HO2 is due to uncertainties20

in gamma HO2. Temperature was the only other factor regularly having a sensitivity index greater than 0.05 (mean Si = 0.10).

Aerosol particle uptake of HO2 has been found in previous studies to be of particular importance in the Arctic (Martin et al.,

2003; Mao et al., 2010). With low NOx concentrations and temperatures, the HO2 lifetime in the Arctic spring is especially

long when compared to the midlatitudes or tropics. Without terminating reactions with other NOx or HOx radicals, uptake by

aerosols becomes a dominant loss of HO2.25

Providing a broad view of the sensitivity results from ARCTAS-A, Fig. 4 shows the same analysis as Fig. 3 but averaged

across all flights and summed by factor category as defined in Table 1. While ozone is most sensitive to emissions, chemical

factors from kinetics and photolysis rates also contribute a large portion to the uncertainty. OH and HO2 are overwhelmingly

sensitive to heterogeneous chemistry, particularly gamma HO2 as seen in Fig. 3.

3.2 ARCTAS-B (Summer 2008)30

3.2.1 Uncertainty analysis

Compared to ARCTAS-A, ozone in ARCTAS-B (Fig. 5) saw much higher uncertainty across the model ensemble (12 %, 1σ

confidence) compared to the spring (6.8 %). This is reflective of the more photochemically active summertime in contrast to
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the spring. Like the spring, OH and HO2 uncertainties were similar to the spring with OH and HO2 uncertainties being 25 %

and 24 % (1σ confidence) respectively across the model ensemble.

3.2.2 Vertical profiles

Figure 6 shows the vertical profiles observed in ARCTAS-B for ozone, OH, and HO2. As also reported by Alvarado et al.

(2010), we found GEOS-Chem to under-predict ozone for the middle troposphere by 10–20 ppb. OH mixing ratios, as in5

ARCTAS-A, were low. Although well predicted by the model above 3 km, OH was over-predicted below 3 km by around a

factor of 2. HO2 saw the greatest model–measurement disagreement with the model under-predicting HO2 by over a factor of

2 below 2 km. This modeled underestimation of HO2 is noteworthy considering HO2 overestimation is much more common

in air chemistry models (e.g., Mao et al., 2013a). Even when excluding measurements taken within smoke plumes as defined

by HCN > 1000 pptv, this underestimation decreases only by about 1 pptv for the lower 2 km and remains about a factor of10

2. The simultaneous overestimate of OH and underestimate HO2 suggests the model is partitioning HOx incorrectly and may

be missing or underrepresenting OH reactions that would cycle OH to HO2. Another possible explanation for a portion of this

overestimation of HO2 could be organic peroxy radical (RO2) interference artificially elevating HO2 measurements (Fuchs

et al., 2011), but this would likely not account for the factor of 2 underestimation.

3.2.3 Sensitivity analysis15

First order RS-HDMR sensitivity indices for tropospheric average ozone, OH, and HO2 for along the path of flights 17, 19,

and 22 (Fig. 5) is shown in Figure 7. Figure 8 provides a broad view of the sensitivities calculated across all the ARCTAS-B

flights binned by category as shown in Table 1. With a few exceptions,
∑

Si ≈ 0.90 for all flight averaged ozone, OH, and HO2

meaning first order effects explain around 90 % of the model uncertainty with higher order input interactions responsible for

the remaining uncertainty. Compared to ARCTAS-A, emissions are more influential across the board, especially from soils,20

biomass, and isoprene. Like ARCTAS-A, ARCTAS-B sensitivities were largely altitude independent.

Ozone: For modeled ozone, mixing ratios were most sensitive to soil NOx emissions with average Si across the flights

around 0.181, isoprene emissions (mean Si = 0.081), biomass CO and NOx emissions (mean Si = 0.069, 0.089 respectively),

the NO2 + OH reaction rate (mean Si = 0.075), and NO2 photolysis (mean Si = 0.054). The greater sensitivity to emissions

in the summer compared to spring is almost certainly a result of biomass, soil, and isoprene emissions being much greater25

in Arctic summer than spring. These higher emissions coupled with higher sun angles allows for ozone production in the

Arctic summer, unlike the very slow production in spring. Also, there is relatively low sensitivity to anthropogenic emissions,

reflecting the remoteness of this domain and its relative pristine condition.

OH: Soil and biomass NOx emissions (mean Si across flights is 0.095 and 0.105 respectively), biomass CO emissions (mean

Si = 0.220), and gamma HO2 (mean Si = 0.137) are most influential for OH. As normal OH production requires the photolysis30

of ozone, OH being sensitive to the same emissions as ozone is expected. OH is sensitive to gamma HO2 as it represents a net

sink of HOx radicals.
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HO2: For HO2, the modeled mixing ratios were most sensitive to gamma HO2 and biomass CO and organic carbon emissions

with mean Si across the flights of 0.405, 0.167, and 0.094 respectively. This is qualitatively similar to the results from the spring,

only the dominance of gamma HO2 on the total variance in modeled HO2 is lessened, but still prominent (mean Si = 0.405 in

summer as opposed to 0.712 in spring). It is noteworthy that even with reduced HO2 lifetimes in the Arctic summer compared

to spring, HO2 still had such high sensitivity to gamma HO2.5

Fig. 8 shows an overview of the sensitivity results from ARCTAS-B averaged among all flights and summed by factor

category as defined in Table 1. As found during ARCTAS-A (Fig. 4), ozone is most sensitive to emissions with chemical

factors from kinetics and photolysis rates also contributing a large portion of the uncertainty. In contrast to the spring, OH

and HO2 are most sensitive to emissions factors in the summer; however, heterogeneous chemistry, especially gamma HO2,

provides a large slice of the uncertainty as also noted in the spring (Fig. 4). In the case of summer HO2, gamma HO2 contributes10

individually almost as much as the sum of all emissions factors to the model uncertainty.

To probe this disagreement between modeled and measured HO2 at lower altitudes seen in Fig. 6, we examined ensemble

members with the best agreement between modeled and measured HO2 profiles. The ensemble members that matched the

measured profile best had especially low gamma HO2 values. Figure 9 shows a comparison between the entire ensemble and

ensemble members with gamma HO2 values in the lowest 10 percentile of the uncertainty distribution (γHO2 < 0.04). This15

model–measurement disagreement was not observed among all flights in the ARCTAS-B campaign. In fact, areas with lower

aerosol abundances such as the northernmost flights, 22 and 23, showed general agreement between modeled and measured

HO2 profiles (Fig. 10). Likewise, above 4 km, the model performs very well in replicating the observed HO2 profile. Given its

overwhelming importance in the RS-HDMR analysis, mischaracterization of gamma HO2 is a likely cause.

One possible cause of this disagreement is that HO2 aerosol particle uptake is leading to the formation of H2O2 instead of20

H2O. Figure 11 shows the modeled and measured H2O2 profile for the ARCTAS-A and B flights. When altering the model

for gamma HO2 to produce H2O2 instead of H2O (γHO2 ⇒ 0.5 H2O2) (blue lines in vertical profiles in Figs. 2, 6, and 11),

modeled HO2 increased throughout the vertical column by between 0.25 and 0.75 ppt in the summer (Fig. 6) and between 0.5

and 1 ppt in the spring (Fig. 2). In this same model run, H2O2 increased upwards of a factor of 3, especially in the lowest 2 km

taking modeled values a factor of 2 or greater higher than measurements (Fig. 11). It is noted that there was a large spread in25

H2O2 within the ensemble and a large uncertainty in the measured values (50 % + 150 ppbv). While the difference in modeled

HO2 between model runs having gamma HO2’s product being either H2O or H2O2 is important during the spring when HO2

mixing ratios are lower, as Mao et al. (2010) and Figure 2 show, this difference is less significant during the summer when

HO2 concentrations are higher (Fig. 6). The difference between these model scenarios cannot be responsible for the difference

between the observed and modeled mixing ratios in the lowest 2 km (∼7 to 8 ppt). This small effect suggests that, especially in30

the Arctic summer, concentrating on better characterization of the rate may be more important than the product for improving

the agreement between measured and modeled HOx.
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4 Conclusions

We have applied a RS-HDMR sensitivity analysis to a 3D chemical transport model. First order sensitivity indices for the 52

perturbed model inputs have been calculated and shown in Figs. 3, 4, 7, and 8. For OH and HO2, we find general agreement

between modeled and measured values when uncertainties in the measurements and uncertainties in model input factors are

taken into account as evidenced by the overlap between the vertical model and measurement profiles (Figs. 2 and 6) with5

the notable exception of summertime HO2. In contrast, vertically binned modeled and measured ozone mixing ratios do not

show as much overlap, especially in spring. Mischaracterization of advection from the midlatitudes as posited by Alvarado

et al. (2010) is a possible source of this error, especially given the importance of isoprene and Asian and North American

anthropogenic emissions in the Arctic spring. Other possible sources of error may come from mischaracterized chemistry or

under-represented stratospheric transport. Modeled ozone was most sensitive to various emissions sources, especially soil NOx10

and isoprene, and chemical factors, such as j[NO2] and k[NO2]+[OH]. Model sensitivities for OH and HO2 were dominated

by aerosol particle uptake of HO2, especially in the spring with a combination of biomass and soil emissions being also

important, particularly in summer. While the sensitivity of oxidants to emissions is expected considering the high uncertainty

in emissions inventories (factors of 2 to 3), it is noteworthy that chemical kinetic and photolysis rates also were responsible

for a considerable portion of uncertainty even with their much lower published uncertainties, 20 % and 30 % for j[NO2] and15

k[NO2]+[OH] respectively for example. This highlights the value in not only more certain emissions inventories but also more

certain chemical kinetics rates.

HO2 aerosol particle uptake remains the dominant source of uncertainty in our analysis for HOx. From our ensemble,

the best model–measurement agreement came with lower gamma HO2 values (γHO2 < 0.04) than currently implemented in

GEOS-Chem regardless of the uptake product. Much attention has been given to determining the product of the aerosol particle20

uptake of HO2, and whether or not or in which instances H2O2 or H2O is produced. We find there is not a large difference in

modeled HO2 between these two possibilities, especially in Arctic summer. In contrast, H2O2 is very sensitive to the product

of the aerosol particle uptake of HO2 with H2O2 increasing upwards of a factor of 3 when the product is H2O2 instead of

H2O (Fig. 11). Recent studies have expanded this question of HO2 uptake products from aqueous aerosols to smaller cloud

droplets (Whalley et al., 2015). In particular, the analysis of Whalley et al. showed the Arctic region being especially sensitive25

to changes in HO2 uptake compared to the midlatitudes and tropics due to longer HO2 lifetimes in the Arctic. As shown in our

results, this study also finds the Arctic region particularly sensitive to gamma HO2. Because the Arctic is unique in its relatively

low HOx mixing ratios and long HOx lifetimes compared to the midlatitudes and tropics, future research will be needed to

determine whether or not gamma HO2 is as important globally as it is in the Arctic and whether or not aerosol particle uptake

rates need to be reduced in GEOS-Chem.30
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Table 1. Factors included in RS-HDMR analysis and their respective uncertainties. OC is organic carbon, ALK4 is lumped ≥4C alkanes,

MP is methylhydroperoxide, and MO2 is methylperoxy radical. Uncertainties are expressed as multiplicative factors, except as noted in

meteorological factors.

Factor Uncertainty# Factor Uncertainty#

Emissions Photolysis

Biomass CO, NH3, NOx, OC
3.0a

j [BrNO3] 1.4d

Soil NOx j [BrO] 1.4d

CAC (Canada) NOx

2.0

j [H2O2] 1.3d

Methyl Bromoform (CHBr3) j [HNO3] 1.3d

EDGAR NOx j [HOBr] 2.0d

EMEP (European) NOx j [MP] 1.5d

EPA (USA) ALK4, CO, NOx j [NO2] 1.2d

Streets (E. Asian) CO, NH3, NOx, SO2 j [O3] 1.2d

Ship NOx Meteorology

Strat-Trop Exchange O3 Cloud fraction 8.5 %e

Isoprene 2.0b Cloud mass flux 1.5f

Lightning NOx 1.25c Relative Humidity 5 %g

Kinetics Soil Wetness 8.8 %e

k [BrO] [HO2] 1.15 / 1.2∗d Specific Humidity 5 %g

k [BrO] [NO2] 1.2d Temperature 1.8Ke

k [HNO3] [OH] 1.2d Heterogeneous

k [HO2] [HO2] 1.15 / 1.2∗d Gamma HO2 3.0d

k [HO2] [NO] 1.15d Gamma HOBr 3.0d

k [MO2] [HO2] 1.3d Gamma N2O5 1.4d

k [MP] [OH] 1.4d Gamma NO2 3.0d

k [NO2] [OH] 1.3d Henry’s Law HOBr 10.0d

k [O3] [HO2] 1.15d

k [O3] [NO] 1.1d

k [O3] [NO2] 1.15d

k [OH] [CH4] 1.1d

# at 1σ uncertainty confidence; ∗high pressure limit / low pressure limit uncertainties; aJaeglé et al. (2005); bGuenther et al. (2012);
cMiyazaki et al. (2014); dSander et al. (2011); eGEOS5-GEOS4; f Ott et al. (2009); gHeald et al. (2010)
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Figure 1. Map of ARCTAS-A flights over the North American Arctic. Highlighted flights correspond to flight data results analyzed in Fig. 3

Figure 2. Vertical profiles of mean modeled (red) and measured (black) ozone, OH, and HO2 for ARCTAS-A flight data binned by kilo-

meter. Gray bar graph shows percent of flight data within each vertical bin. Shaded regions represent 1σ of model ensemble; error bars on

measurements are uncertainty at 1σ confidence. Blue line represents gamma HO2 producing H2O2 rather than H2O.
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Figure 3. First order sensitivity indices for average flight track O3, OH, and HO2 for ARCTAS-A flights. Legend categories are defined in

Table 1.

Figure 4. First order sensitivity indices for modeled O3, OH, and HO2 during ARCTAS-A averaged across all flights and binned by categories

defined in Table 1.
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Figure 5. Map of ARCTAS-B deployment over the North American Arctic. Colored flights correspond to flight data results analyzed in Figs.

7 and 10.

Figure 6. Vertical profiles of mean modeled (red) and measured (black) ozone, OH, and HO2 for ARCTAS-B flight data binned by kilo-

meter. Gray bar graph shows percent of flight data within each vertical bin. Shaded regions represent 1σ of model ensemble; error bars on

measurements are uncertainty at 1σ confidence. Blue line represents gamma HO2 producing H2O2 rather than H2O.
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Figure 7. First order sensitivity indices for average modeled O3, OH, and HO2 along selected ARCTAS-B flights. Legend categories are

defined in Table 1.

Figure 8. First order sensitivity indices for modeled O3, OH, and HO2 during ARCTAS-B averaged across all flights and binned by categories

defined in Table 1.
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Figure 9. Vertical HO2 profile for ARCTAS-B flights. Shaded region represents 1σ of the model ensemble. Blue line and region represents

model runs with gamma HO2 values in the lowest 10 % of the uncertainty distribution.

Figure 10. Modeled and measured HO2 profiles for ARCTAS-B flights. Shaded region represents 1σ of model ensemble. Left represents

flights 17, 18, 19, 20, 21. Right represents flights 22 and 23.
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Figure 11. Vertical profile for H2O2 for flights during ARCTAS-A (left) and ARCTAS-B (right). Shaded region represents 1σ of model

ensemble. Error bars represent measurement uncertainty. Blue lines show gamma HO2 producing H2O2 rather than H2O in the model.
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