
Final author response to referee comments on “Arctic Regional Methane Fluxes by Ecotope as 
Derived Using Eddy Covariance from a Low Flying Aircraft” by David S. Sayres et al.

1. Comment from Referee 1: The chosen flux fragment method disregards a fundamental 
micrometeorological underpinning that permits relaxing what is formally a continuity equation to a 
single “eddy covariance” term: Atmospheric turbulence needs to be sampled from the high-
frequency dissipation range to the first low-frequency spectral gap (e.g., Foken, 2008). As mentioned
by the authors, the latter would necessitate the analysis of several kilometres of flight data at once. 
Nevertheless, the authors revert to the use of 60 meters at a time, thus disembodying a few numbers 
at a time from their theoretical foundation (here: discarding the spatially varying “base state”).
Comment from Referee 2: The authors used a method called flux fragment method to explore the 
heterogeneity of the fluxes. But this method is questionable, as each flux calculation only consider 
data points in a very short period (1 s) and low frequency parts of the fluxes are totally ignored in 
the calculation.

1.1. Author response: A common misconception about the Flux-Fragment Method (FFM) is that the
fragments contain no information on scales larger than their length (FOCAL used 60 m). To be 
sure, fragments formed using departures from local 60-m averages would jettison all larger-scale 
contributions, but these fragments use departures from the 3-km base state not local averages. 
Sections 2.2 and 2.3 as written described the method correctly, but insufficiently emphasized this
point.  The scale of the base state is determined by ogive analysis (Foken, 2008) to be an upper 
limit for the turbulence present at the time of measurement. The fragments therefore contain 
information on all scales from the Nyquist wavelength of the sample rate up to the 3-km scale of 
the spectral gap determined from the ogive analysis. Yet, the air packets quantified by the 
fragments are also short enough to have likely interacted with a single class of surface. All fluxes
defined in the paper are formed from sums of at least 50 fragments, enough to have a cumulative
length of at least 3 km, usually more.

1.2. Changes to manuscript: A statement about how the base state for the fragment is made will be 
added to Page 6, Line 28. “Departure quantities used to form the fragments are relative to a base-
state of 3-km scale or more, a scale determined by ogive analysis (Foken, 2008) to be an upper 
limit for the turbulence present at the time of measurement. The fragments therefore contain 
information on all scales from the Nyquist wavelength of the sample rate up to the 3-km scale of 
the spectral gap determined from the ogive analysis. Yet, the air packets quantified by the 
fragments are also short enough to have likely interacted with a single class of surface.” 
Add Page 7, Line 4. “Fluxes are calculated only for those surface class groups whose total length
is greater than 3 km.”

2. Comment from Referee 1: Superior space-frequency decomposition techniques are widely available
and in use (e.g., Barnhart et al., 2012; Strunin and Hiyama, 2004; Thomas and Foken, 2005; van 
den Kroonenberg and Bange, 2007). These are not only theoretically sound, but provide better 
spatial resolution down to meters and do not suffer from the loss of low-frequency contributions.
Comment from Referee 2: As pointed by the other reviewer, other promising methods are available 
for investigate heterogeneous fluxes, such as wavelet analysis.

2.1. Author response: The space-frequency decomposition techniques mentioned by  reviewer 1 are
based in well-developed mathematical theory. Such work as Farge (1993) and Torrence and 
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Compo (1999) have made multi-resolution continuous-wavelet transforms highly useful to the 
treatment of turbulence in general and atmospheric turbulence in particular. However, eddy 
covariance is also theoretically sound and has long been treated successfully (Foken (2008)). The
eddy covariance approach remains useful in providing a different, more directly intuitive, 
physical perspective in the space/time domain. The FFM is a modification of the canonical eddy-
covariance. It is unorthodox in its use of conditional sampling to pluck individual fragments 
from the data stream at will to be combined into a mean covariance. This produces gaps not 
normally tolerated in space/time eddy-covariance work. The traditional analysis takes advantage 
of the autocorrelation of the data stream. This advantage is to some extent sacrificed in the FFM, 
but a large-enough random sample of departure quantities, defined as in response 1.1 above, will 
produce a meaningful estimate of the flux on all scales of turbulence present in the boundary 
layer. 

Procedures exist to estimate the uncertainty in averages computed over a serially correlated, 
unevenly spaced data stream (eg. Mudelsee, 2010, Chapter 3). 

So long as any significant secondary circulations are accounted in the base-state, the turbulent 
atmosphere on all its scales can be postulated to repeat over the landscape in a fairly random 
fashion. A contiguous sample (i.e, without gaps) should not therefore be required. The sample 
only need be sufficiently large to include multiple instances of boundary-layer structures at each 
scale. An aircraft moving at airspeed 60 m s-1 covers 216 km in an hour encountering 72 
instances of 3-km turbulence structure. A sufficiently prevalent class of land surface, whether 
found in large or small patches is very likely to provide a sufficient sample. Samples which are 
too short can be discovered in confidence intervals developed by bootstrap resampling as was 
done by Kirby et al (2008). A more sophisticated bootstrap procedure developed in conjunction 
with analysis of these 2013 data follows Mudelsee (2010, Chapter 3). A manuscript describing 
the approach in detail has been submitted to the Journal of Atmospheric and Oceanic Technology
and is in review. 

In drawing randomly spaced samples from an autocorrelated data series the FFM does sacrifice 
some efficiency. A contiguous series (or a multi-scale wavelet reconstruction thereof) can take 
advantage of whatever coherency is contained in the feature it is sampling, though it still must 
sample several such features to provide an adequate estimator of the mean turbulence and flux 
found in the study area.

The FFM in the space/time domain is a statistical approach as opposed to decomposition 
approaches like the wavelet and Empirical-Mode decompositions. Also, being totally in the 
space/time domain FFM can in principle provide spatial resolution down to whatever scale is 
required so long as the small-scale features are repeated sufficiently often. Of course, the range 
of practically realizable scales will depend on the instrumentation used to make the 
measurements which is the same for wavelet analysis.

Therefore, we see no justification for the referee's conclusion that wavelet analysis is superior to 
eddy covariance/FFM.  The FFM provides the same spatial resolution, and it does not suffer 
from the loss of low-frequency contributions suggested by the reviewer. 

2.2. Changes to manuscript: We do not agree with the reviewers that a change in methodology is 
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needed. While it might be interesting for a future paper to compare the various approaches and 
their results, that is not the intent of our present manuscript. 

3. Comment from Referee 1: Next, relating atmospheric fluxes to discrete land cover classes alone 
neglects intra-class variability (e.g., Beyrich et al., 2006; Ogunjemiyo et al., 2003). This is better 
expressed with continuous land cover properties such as temperature, vegetation indices etc. (e.g., 
Glenn et al.,2008; Ogunjemiyo et al., 1997).

3.1. Author response: “Better expressed” is a relative assessment, dependent on the question being 
asked. One may in fact want to determine the intra-class variability to assess the 
representativeness  of a surface site located in a particular land-use or land-cover class 
identifiable by remote sensing. Intra-class variability is expressed in our results by the 
confidence intervals, which as long as the number of fragments is large, mostly represents the 
variability within that class. One of the goals of the paper is to compare with towers and other 
published measurements which classify methane flux based on surface classes similar to those 
used in this paper. 

Specifically, the reviewers’ suggestion to use NDVI would be inappropriate for methane 
measurements. It works somewhat well for CO2 flux because CO2 has a known causal 
relationship with photosynthesis and plant respiration. Methane is  not primarily controlled by 
the physiology of the vegetation. Vegetation type may, however, serve as a proxy reflecting 
different soil moisture and other properties. Also  the roots of sedge are known to act as a passive
transport for methane bypassing any oxidation that might otherwise occur in the surface soil. 
Perhaps a different interval quantity can provide a meaningful correlation to methane flux, e.g. 
soil moisture, water-table height, or (sub-canopy) soil temperature. These are hard to measure 
remotely, especially with the accuracy needed. They were not available during the mission, nor 
do the authors know of a way to do this remotely at the spatial scale necessary. Failing that, we 
are using surface cover as a proxy for subsurface hydrology. Ignoring any assumptions about 
subsurface features, our results still show what sort of surface cover is associated with the 
strongest methane flux. We found wet sedge to dominate CH4 emission when the soil was warm.
In particular, it was much more important than open water such as thermokarst lakes, which have
garnered much attention based on the work of Walters-Anthony and others.

3.2. Changes to manuscript: modify sentence Page 7, Line 26. “These classifications, assigned 
based on remotely sensed data, are plausible proxies for properties that have been shown to be 
primary drivers of methane production and emission such as water table height, soil temperature,
and emission pathways such as sedge roots. Interval quantities sensible remotely such as NDVI, 
air temperature, or other vegetative indexes which correlate with carbon dioxide do not correlate 
with methane (Olefeldt, 2013). Vegetation classifications such as these have been shown to be 
useful for estimating regional methane emissions from other regions (eg. Schneider, 2009) 
though those were based on upscaling from ground measurements.”

Page 6, line 23. “The Flux Fragment Method (FFM) was conceived to answer questions 
concerning the homogeneity of land classes defined by some remotely sensible measurement in 
areas where the land classes vary on lengths short compared to what would be needed for a 
traditional running flux calculation. “
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Page 3, line 14. “How representative were towers’ footprints of the class of land cover, as 
identified by remote sensing, in which they were placed? In principle a stationary site can 
measure all manner of properties and state variables in the soil, the vegetation, and the air within 
and above the canopy. Much can be learned about the bacteria, soil chemistry, canopy storage, 
and other quantities relevant to the exchange of mass, momentum, and energy with the surface. 
But all of this is known only at the one site. How representative is that site of other locations that
to remote sensors appear similar? Are there land-cover types that are particularly indicative of 
emission of a given trace gas? Can the class so identified be used as a quantitative predictor of a 
particular type of soil chemistry. This is relevant in assessing the regional methane emission 
from remote sensing. Methane in particular has a fairly complex chemistry in the soil involving 
state quantities such as the (sub-canopy) soil temperature and the height of the water table. These
are measurable only in situ so that having a proxy indicator such as vegetation cover would be 
valuable. 

Aircraft, though more limited in what they can measure than fixed sites, are very mobile 
providing the opportunity to sample many instances of the same remotely sensed class over the 
landscape. From this multi-instance sample one can assess how representative the single fixed 
site is. One can also assess the strength of the variability within the given land-surface class for 
later investigation from the surface. In remote parts of the earth, in particular, a determination of 
near homogeneity of emission properties from many instances of a recognizably similar surface 
class can save considerable effort over a surface-based survey. Alternatively, large variation 
within a class that is not well predicted by some practically measurable interval quantity will be 
seen as requiring additional effort for in-situ measurements to find an effective monitoring 
program for methane emission from that surface class.”

Page 7, Line 21 “The questions to be answered by the FFM, using a fuzzy-logic approach 
(Nguyen and Walker, 2000) to assign surface classes to fragments and then to conditionally 
sample them based on those classes include:
a) What is the mean flux over all measured instances of each surface class?
b) What surface classes dominate the methane emission, and by how much?
c) How much does the flux over each class vary? Is there a spatial pattern to the variation. The 

variability will come both from the prevailing atmospheric environment and the heterogeneity 
of the emission within the same class. 

d) How representative is a particular instance of all similar instances over the landscape?” 

4. Comment from Referee 1: In addition, FFM results for individual land covers are not comparable 
across flight days, as day-to-day synoptic variations and different flight times within the diurnal 
cycle are not taken into account.

4.1. Author response: This comment has nothing to do specifically with FFM because the same 
question could be asked about eddy covariance in general from a tower or aircraft. Again, FFM 
is a specific implementation of eddy covariance. Synoptic variations are ideally removed by the 
base state, except as they affect the turbulence. Unlike CO2, methane has a weak to non-existent 
diurnal cycle. Our tower data do show a weak cycle, most likely caused by near surface soil 
temperature changes through the day. However,  this diurnal cycle is an order of magnitude less 
than the variation due to other causes including deeper-soil temperature. It is also smaller than 
the difference observed between surface classes and therefore comparing flights even though 
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they were at different times of day is justified. 

4.2. Changes to manuscript: Page 10, Line 4 add “Though some of the flights were in the evening 
(1800 – 1900 local time) and some in the morning, these data are still comparable. Unlike CO2, 
methane has a weak to non-existent diurnal cycle (Figure 4). Based on our tower data we do 
show a very weak cycle, most likely caused by near-surface soil-temperature changes through 
the day. However,  this diurnal cycle is much weaker (<0.2 ug m-2 s-1) than the class to class 
variations, seasonal variations, or variations due to other factors. Therefore, comparing flights 
even though they were at different times of day is justified.  The sharp feature in the tower trace 
on August 13 (DOY 225) probably has a diurnal component, The important comparison, 
however, is between the strong methane flux in the summer regime of first half of August and the
much weaker flux in the autumn regime of later August after the major reduction in soil 
temperature.”

Figure 7 has been altered to give better evidence of which flights occurred in the daytime and 
which in the evening. 

5. Comment from Referee 1: Moreover, FFM acts as a filter reducing the use of available data by 
order 50%, i.e. it is wasteful with respect to data use efficiency.

5.1. Author response: The FFM retains all data suitable for flux calculation. The data are simply 

Page 5



stored and used as 60-s sums of cross products, a convenient form flexible enough to allow many
different treatments. The particular approach used in this paper selects a subset of these 
fragments to address the question being asked, which is to identify discrete land-cover classes 
that stand out in their contribution to landscape-wide emission of methane. The focus of the 
current analysis is to examine the spatially dominant land classes in their “pure” form, so rather 
stringent criteria were applied which, it is true, removed about half of the fragments from the 
analysis. The FFM was conceived to answer this question: how representative is a single fixed 
site of other locations on a heterogeneous surface that to remote sensors appear similar? How 
good is the land-cover class occupied by that site as a proxy for methane flux? The more 
representative of a single land class the fragment is, the more significant the differences between 
land classes becomes. 

The FFM, however, is not limited to addressing this question alone. Fragments could just as well
be associated with values of some interval quantity such as a carbon-isotope ratio, NDVI, or the 
fraction of footprint occupied by each of several land classes. For this study we wanted to 
compare to other published measurements and assess the intra-class variability. Limiting the 
results to a few well sampled classes was better suited to that purpose. 

5.2. Changes to manuscript: No change.

6. Comment from Referee 1: Figures 4, 7 show that at a 5% significance level the FFM-derived fluxes 
do not actually differ between land cover classes, i.e. there is more unexplained variation in the 
error bars than there is explained variation in the land cover means. Also here, techniques 
overcoming these systemic deficiencies are available and in use (Jung et al., 2011; Yang et al., 2007)

6.1. Author response: 1. Not all land-surface types emit significantly different amount of methane. 
This is not a problem given the questions we are asking. And while many land classes have 
similar methane emissions, others have significant difference, e.g. mesic sedge and wet sedge on 
August 13, or lakes and wet sedge on August 13. For the most part, after the soil cooling, the 
various land classes are not distinguished in their methane release. Keep in mind the goal is not 
to come up with a criterion that distinguishes land class by its methane emission (or to predict 
land class based on methane emissions), but to measure regionally aggregated methane 
emissions from each of a limited number of land classes. It is reasonable that some land classes 
will have similar methane emissions, especially for land classes that emit little methane.

2. Broader confidence intervals reveal lower statistical power. Typically for our data set, the 
broader confidence intervals are associated with the shorter samples (which reduces the power). 
A statistical sample, to the extent that it is independent and identically distributed is a repeated 
drawing from the population. If a particular outcome happens only 5% of the time, then at each 
drawing it has a 5% chance of being realized. But with repeated drawing, the chance increases of
getting at least once some outcome having a 5% chance or less. In a very large sample, each 
outcome having a 5% chance will occur 5% of the time. But more than 5% of a small sample 
will comprise some outcomes individually having a 5% chance. If one uses a bootstrap method, 
which assumes the realized sample to be the entire population, a disproportionate number of 
population members will be outcomes that in the full population would be much less likely to 
occur. Of course, a new measurement set will contain a comparable number of unlikely 
outcomes, but they will be different from those in the earlier set of measurements. Adding new 
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data thus reduces the overall likelihood of all low-probability events and increases the power. 
Unfortunately, getting a new set of measurements is expensive. So the tails of the distribution 
developed using a relatively short sample of actual measurements will be biased toward greater 
probability than the true population. It will therefore have wider confidence intervals (which 
depend on the weakness of the tails) than would the true population. Techniques have been 
developed to address this issue, but their implementation is not trivial. They belong to the next 
generation of the FFM.

3. Our measurement of wet sedge has the greatest power, Second greatest is often lakes, but may 
be another land-cover type. Sedge is a strong emitter, but its confidence interval is shorter in part
because we have a longer sample from it. 

6.2. Changes to manuscript: Page 10, Line 23 add “Wet sedge, followed by the Sag river, had the 
largest observed flux of any of the land classes sampled during the first half of August. The other
land classes have smaller, more variable fluxes on most flights so that surface class alone does 
not distinguish them. Most likely the true variability, contributing to the large confidence 
intervals, is caused by heterogeneity within the surface class in sub-surface soil temperature and 
water table height. However, within that we can still derive a mean flux based on a large regional
sample. Once the soil cools, wet sedge shows reduced, though still positive, flux of methane 
consistent with the other surface classes measured such as mesic sedge and lakes. The Sag river 
shows close to zero methane flux.

Page 11, Line 9 add “The mean methane flux from lakes sampled on a flight by flight basis 
shows little flux on average, except for the lakes sampled on 130828.3, which are in a different 
area 250 km west of the tower. Those lakes show an aggregate mean of 0.36 ug m-2 s-1 (Figure 
7)”

7. Comment from Referee 1: I suggest the authors to consider a combination of above methodologies. 
In fact in their introduction the authors cite Metzger et al. (2013), who demonstrate such 
combination specifically for the use case of airborne flux measurements.
Comment from Referee 2: A few recent papers have used the wavelet analysis method to determine 
fluxes of air pollutants in urban and oil/gas regions (Karl et al., 2009;Vaughan et al., 2015;Yuan et 
al., 2015). The authors are encouraged to try this method.

7.1. Author response: These papers look promising as discussions of how one can operate in urban 
and fracking regions. As explained in the first few responses, the FFM is a reasonable and sound 
method for analyzing these data. Its value derives from its position as an alternate approach from
a different perspective (space/time domain). A comparison of the different methodologies is an 
activity we hope to pursue,  but that is outside the scope of this present paper. 

7.2. Changes to manuscript: No change. 

8. Comment from Referee 1: This hemispherical model requires calibration, in the case of very low-
level flight in particular to offset dynamic upwash and ground effect which otherwise affect the 
covariance calculation (e.g., Crawford et al., 1996; Garman et al., 2008). Have these calibrations 
and corrections been performed, and if so to within which residual error?
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8.1. Author response: We flew multiple calibration maneuvers both in preparing for and during the 
Alaska campaign. Before assembling the FOCAL system, we characterized the BAT (gust) probe
in a wind tunnel (Dobosy et al., 2013). We also tested a similar BAT probe in flight on a different
aircraft (Vellinga et al., 2013, hereafter V2013). After calibration derived from a flight taken on 
the evening of August 27 in Alaska, we performed the yaw maneuver described by V2013 and 
obtained a residual contamination within 10%, as described there. A pitch maneuver described 
by V2013 was performed resulting in contamination of 10% for the high-frequency pitching (1.6 
s period), which was the best executed of the pitch test’s three parts and is the severest test.

8.2. Changes to manuscript: Page 4, Line 9  insert new paragraph  “Before assembling the FOCAL
system, we characterized the BAT probe in a wind tunnel (Dobosy et al., 2013). We also tested a 
similar BAT probe in flight on a different aircraft (Vellinga et al., 2013, hereafter V2013). After 
the FOCAL system was assembled, similar calibration maneuvers were flown in preparation for 
and during the Alaska campaign. As part of a calibration flight on the evening of August 27 in 
Alaska, we performed the yaw maneuver described by V2013 and obtained a residual 
contamination within 10%, as described there. A pitch maneuver described by V2013 was 
performed resulting in contamination of 10% for the high-frequency pitching (1.6 s period), 
which was the best executed of the pitch test’s three parts and is the severest test.

9. Comment from Referee 1: Please confirm that you use CH4 dry mole fraction for the covariance / 
flux calculation. •In case your calculation is based on partial density, how do you correct for density 
variations due to temperature and humidity fluctuations (WPL), as well as variations in pressure-
altitude and corresponding changes in temperature and pressure, and thus partial density (Poisson 
equation)?

9.1. Author response: We had provided this confirmation in the manuscript, page 4, line 25, and 
also on page 5, line 13 citing both Webb et al. (1980) and its update, Gu et al., (2012). We will 
move this citation back to the first mention of the gas measurements.

9.2. Changes to manuscript: Page 4, Line 25, add (Webb et al., 1980; Gu et al., 2012). 

10. Comment from Referee 1: At 5 m above ground this is approximately the eddy wavelength 
contributing most to the turbulent vertical transport. •Using the power law of spectral decay, for this
platform the need for high-frequency spectral correction of the vertical turbulent flux would be 
minimal only at measurement heights of 50 m above ground and higher. •As you are focusing on 
measurements below 25 m above ground, which high-frequency spectral correction did you use, and 
how large was the correction?

10.1. Author response: Plots of the spectra and cospectra of the data streams of vertical air motion 
and the dry-air mixing ratios of the trace gases were prepared and presented in a paper that was 
submitted to J. Ocean. Atmos. Tech. We have not used high-frequency spectral corrections as 
long as the highest wavenumber for vertical wind was clearly in the inertial subrange, i.e. 
following the -5/3 power of the wavenumber, and clearly above the wavenumber of the 
maximum spectral density. A data-starvation test using the flux runs from the evening of August 
25 yielded an estimated loss of about 10% in fluxes computed with a coarser sample rate. 
Presenting a long discussion of the the spectra and cospectra seemed out of scope for the current 
paper. A discussion is included in a separate paper submitted to the Journal of Atmospheric and 
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Oceanic Technology (JTECH).

A regression of 3-km running flux (see Section 2.3.1) against the height above ground for flight 
13.09:30 was run to assess the correlation of flux with altitude. A quadratic regression was 
required yielding significant positive slope but significant negative curvature. The regression line
reached a maximum at an intermediate point before the maximum height above ground. 
Furthermore, the regression explained only 10% of the variance.

10.2. Changes to manuscript: add above to Page 4, line 9 and after additions from 8.2 above. 

11. Comment from Referee 1: Correct, this method neglects low-frequency contributions to the 
vertical turbulent flux. •As mentioned above, Ogive analysis typically saturates at 100 - 1000 x 
measurement height. •How did you correct low-frequency loss and how large were the contributions 
to the flux

11.1. Author response: This comment was addressed in the response the reviewers’ objection 1 
above.

11.2. Changes to manuscript: See changes from comment one above.

12. Comment from Referee 1: How was the turbulence statistics for a robust application of the flux 
footprint model calculated? A 1 s flux fragment has far too large random error to assume upstream 
isotropy of the wind field.

12.1. Author response: The turbulent statistics required to parameterize the model of Kljun et al. 
(2004) were computed from averages taken over the length of each flight leg, where the flight 
leg was defined as the straight segment between turns over which the collected data were used. 
The detrending (subtracting the base state from the original series) was done over each flight leg.
Typically the flight legs were 15 km to 20 km.

12.2. Changes to manuscript: Page 7, Line 17  [Start in 13.2] “We use the parameterization scheme
described in Kljun et al. (2004) which uses a backward Lagrangian model (Kljun et al., 2002) for
a range of heights, stability measures and other turbulence quantities that are measured from the 
aircraft. The turbulence quantities  are computed from averages taken over the length of each 
flight leg, where the flight leg is defined as the straight segment, between turns, over which the 
collected data were used. [continue at 13.2, second part]

13. Comment from Referee 1: This model is 1-D and does not resolve the cross-wind distribution of 
the influence area – how did you take this into account? •An updated 2-D version of this model is 
available (Kljun et al., 2015). Why was this model not used?

13.1. Author response: 
Since we use the surface class as a categorical quantity the crosswind-integrated form of the 
footprint model of Kljun et al. (2004, KCRS04) was considered appropriate for our use as a 
membership function for the fuzzy set (Nguyen and Walker, 2000) of a particular surface class. 
The selected 85% membership criterion is strict so as to admit only particularly representative 
instances of the surfaces encountered.
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The more recent work of Kljun & Co. (2015, KCRS15) became known to us late in our 
investigation. In providing an explicit crosswind distribution to the footprint it represents 
significant advance over KCRS04. However, the crosswind-integrated footprint of KCRS04, 
fundamentally unchanged, provides the backbone for the two-dimensional footprint of KCRS15. 
The crosswind spread may be important, for example, where an interval quantity, such as NDVI 
is to be calculated from the footprint of each unit of flux in order to train a regression or 
machine-learning model, such as done by Metzger & Co, (2013), or Ogunjemiyo & Co (2003). 

The present study was not intended to produce a regression scheme. It is about the role of each 
surface class (as a category) in the emission of methane. Since the footprint is computed every 
60 m the procedure will identify all instances of the surface classes present except for the very 
smallest.  Expanding the footprints to two dimensions does not appear to add sufficient value to 
justify recalculation. The results would be unlikely to produce any changes in the results. 

13.2. Changes to manuscript: Page 7, Line 14 “Finally, a footprint model is applied to estimate the 
level of influence of each surface type on each fragment. This provides a measure of 
membership of that fragment in the fuzzy set (Nguyen and Walker, 2000) associated with each 
surface type, treated as a categorical variable. Fragments having a sufficient level of membership
for a particular surface class are assigned to that class. A membership level above 0.5 restricts all
fragments to no more than one class. Fragments can thus be grouped into sets all members of 
which have a measure greater than a prespecified level of the probability that they came from the
same surface type (see sec. 3.2 for examples of how FFM is used to interpret these data)” 
[continue at 12.2]

[second part, continued from 12.2] The more recent two-dimensional version (Kljun et al., 2015)
was not considered necessary because of the footprint’s restricted use as a membership criterion 
to assign a selected subset of fragments to the surface categories. 

14. Comment from Referee 1: There is no such website. Where can the data (incl. raw data) be 
accessed?

14.1. Author response: The URL was missing an 's'. Should have been https://. Thanks for pointing 
this out. 

14.2. Changes to manuscript: Page 12, Line 2 “https://arcticdata.io”

15. Comment from Referee 1: There are more intuitive ways to visualize the footprint influence area. I 
am wondering why the authors did not use standard contour plots. Also, it is not apparent from the 
display whether cross-wind dispersion has been taken into consideration – the individual sequences 
of dots simply extend in the along-wind direction, which is only half the truth.

15.1. Author response: With crosswind integrated footprints, it makes sense to plot them as lines, 
rather than as 2-D contour plots.  However, to show the full footprint area along the flight track 
we have modified figure 4 to show a ribbon of footprint probabilities for one leg of each flight 
track for each day. Arrows have been added to show the dominate wind direction, which was 
observable before from the individual footprints. Hopefully this will be clearer for the reader. 
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15.2. Changes to manuscript: Figure 5 has been modified as described above. 

Figure 5. Map of area surrounding the flux tower (yellow triangle) with false color map representing 
different land classes defined as in Fig. 2. Bottom three plots show three days when data was taken near 
the tower. The flight track for each flight is shown as black points, where each point is the start position 
of a flux fragment. Colored ribbon shows the flux footprints along the flight track. The darker and redder 
color of the ribbon represents larger probability of contribution to the total flux as described in the text. 
Red arrows indicate the mean direction of the wind. 
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16. Comment from Referee 2: The authors spent some time to introduce the fast measurement system 
of wind and CH4. Could you add some spectral analysis for measured data.

16.1. Author response: See 10.1

16.2. Changes to manuscript: See 10.1

17. Comment from Referee 2: Figure 4. Can you show the graph as 2*2 layout? The inserts are 
somewhat misleading and are hard to follow at present layout.

17.1. Author response: We have modified Figure 4 by breaking it into four panels. One long panel 
displays the tower data, locating the three near-tower flights as before. Temporal resolution was 
improved by displaying only the periods when the aircraft was operating. The three insets have 
been relocated as individual panels underneath the tower data and are labeled by flight day 
instead of a,b,c. The abscissa of each is now given as (local) time of day to show the actual time 
of flight. 

17.2. Changes to manuscript: 

Figure 4. Comparison of methane flux measured by the flux tower with fluxes measured by the FOCAL system. 
Tower methane fluxes (top plot) are 30-minute means plotted versus day of year. Three flights (Aug. 13, 25, and 
27) made repeated flight transects near the tower. A running mean flux, using the nearest 3 km of flight track to 
the tower for each leg, was calculated and the mean of these fluxes is plotted for each day as an orange circle. 
Fluxes for wet sedge, marsh, lakes, and the Sag river were calculated using FFM using data from the whole 
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flight and are plotted for each day, color coded according to the legend, with the length of the line along the time 
axis representing the time over which the data were taken. Bottom plots show details for each flight day, labeled 
by day of year (DOY), with bars showing the 95% confidence interval based on bootstrap analysis. Bars are 
offset along the x-axis for clarity.

18. Comment from Referee 2: Figure 2 and Figure 7: Could you use a consistent way to indicate flight
numbers conducted at the same days. Please include this information in the figure caption.

18.1. Author response: It is consistent, Figure 7 just leaves off the common 1308 part, but we can 
add that back into the figure legend. The information is already included in the captions of fig 2 
and 7 and table 1. 

18.2. Changes to manuscript: We have modified the date convention to include the flight time and 
changed, Table 1 and Figures 2 and 7. The new convention uses DD.HH:MM. 

References added: 
Dobosy, R., E.J. Dumas, D.L. Senn, B. Baker, D.S. Sayres, M.F. Witinski, C.E. Healy, J. Munster. and 
J.G. Anderson, 2013: Calibration and quality assurance of an airborne turbulence probe in an 
aeronautical wind tunnel. Journal of Atmospheric and Oceanic Technology, 30 (2), 182–196.

Gioli, B., Miglietta, F., De Martino, B., Hutjes, R. W. A., Dolman, H. A. J., Lindroth, A., Schumacher, 
M., Sanz, M. J., Manca, G., Peressotti, A., and Dumas, E. J., 2004: Comparison between tower and 
aircraft-based eddy covariance fluxes in five European regions, Agricultural and Forest Meteorology, 
127, 1–16.

Kljun, N., P. Calanca, M.W. Rotach, H.P Schmid, 2015: A simple two-dimensional parameterisation for
Flux Footprint Prediction (FFP),  Geoscientific Model Development, 8(11), 3695-3713

LeMone, M., R. Grossman, F. Chen, K. Ikeda, and D. Yates, 2003: Choosing the averaging interval for 
comparison of observed and modeled fluxes along aircraft transects over a heterogeneous surface. 
Journal of Hydrometeorology, 4, 179–195.

Metzger, S., Junkermann, W., Mauder, M., Butterbach-Bahl, K., Trancón y Widemann, B., Neidl, F., 
Schäfer, K., Wieneke, S., Zheng, X. H., Schmid, H. P., and Foken, T. 2013: Spatially explicit 
regionalization of airborne flux measurements using environmental response functions, 
Biogeosciences, 10, 2193-2217, doi:10.5194/bg-10-2193-2013. 

Mudelsee, M., 2002: TAUEST: A computer program for estimating persistence in unevenly spaced 
weather/climate time series. Computers& Geosciences, 28 (1), 69–72. 

Mudelsee, M., 2010: Climate time series analysis. Springer, 474 pp.

Nguyen, H.T., and E. A. Walker, 2000: A First Course In Fuzzy Logic, Chapman & Hall/CRC, ISBN 0-
8493-1659-6, 373 pg.

Ogunjemiyo, S. O., Kaharabata, S. K., Schuepp, P. H., MacPherson, I. J., Desjardins, R. L., and 
Roberts, D.A. 2003: Methods of estimating CO2, latent heat and sensible heat fluxes from estimates of
land cover fractions in the flux footprint, Agric. For. Meteorol., 117, 125-144, doi:10.1016/S0168-
1923(03)00061-3. 

Page 13



Schneider, J., G. Grosse, D. Wagner Land cover classification of tundra environments in the Arctic 
Lena Delta based on Landsat 7 ETM+ data and its application for upscaling of methane emissions, 
Remote Sensing of Environment, 113, 380-391, 2009.

Torrence, C., and G. P. Compo, 1998: A practical guide to wavelet analysis. Bulletin of the American 
Meteorological Society, 79 (1), 61–78.

Vellinga, O. S., R. J. Dobosy, E. J. Dumas, B. Gioli, J. A. Elgers, and R. W. A. Hutjes, 2013: 
Calibration and quality assurance of flux observations from a small research aircraft. Journal of 
Atmospheric and Oceanic Technology, 30 (2), 161–181.

Page 14


