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Abstract

From 15 March to 8 April 2011 and from 4 to 5 Magfi 3, the atmosphere above Dome
C (Concordia station, Antarctica, 75°06'S, 123°213233 m amsl) has been probed by
several instruments and model to study episodethiock cloud and diamond dust (cloud
constituted of suspended ice crystals). 1) A grebasked microwave radiometer
(HAMSTRAD, H,O Antarctica Microwave Stratospheric and Troposgh&adiometers)
installed at Dome C that provided vertical profilestropospheric temperature and absolute
humidity to calculate Integrated Water Vapour (IW) Daily radiosoundings launched at
12:00 UTC at Dome C. 3) A tropospheric aerosol Litfeat provides aerosol depolarization
ratio along the vertical at Dome C. 4) Down- andvap short- and longwave radiations as
provided by the Baseline Surface Radiation Netw(BSRN) facilities. 5) Space-borne
aerosol depolarization ratio from the Cloud-Aerosadar with Orthogonal Polarization
(CALIOP) Lidar aboard the Cloud-Aerosol Lidar anchfrared Pathfinder Satellite
Observation (CALIPSO) platform along orbits close the Dome C station. The time
evolution of the atmosphere has also been evaluajedonsidering the outputs from the
meso-scale AROME and the global-scale ARPEGE mefegical models. Two distinct
periods are highlighted by all the datasets: thewand wet periods (24-26 March 2011 and
4 March 2013) and the cold and dry periods (5 Ap@il1 and 5 March 2013). Combining
radiation and active measurements of aerosols méthulosity calculations, a thick cloud is
detected during the warm and wet periods with liigholarization ratios (greater than 30%)
from the surface to 5-7 km altitude associated vpitbcipitation of ice particles and the
presence of a supercooled liquid water (depoladmadf about 10%) cloud. During the cold
and dry periods, high depolarization ratios (gretitan 30%) to a maximum altitude of 100-
500 m are measured suggesting that the cloud istitaied of ice crystals with no trace of

precipitation. These ice crystals in suspensiaénair are named diamond dust. Considering
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5-day back trajectories from Dome C and globalritistions of IWV over the Antarctic show
that the thick-cloud episode is attributed to aiasses with an oceanic origin whilst the
diamond dust episode is attributed to air massés edntinental origins. This is consistent
with ARPEGE temperature and water vapour tendeagguring predominantly advection

processes including microphysical processes foematpour.
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1. Introduction

The impact of global warming has become obviousigh latitude regions, particularly in
the Arctic region, where melting ice and softeningdra are causing profound changes. The
environmental response of the Arctic is charadiegBy different from that of the Antarctic
because of differences in planetary geography aedyg circulation. Over the past 50 years,
the west coast of the Antarctic Peninsula has loeenof the most rapidly warming parts of
the planet. This warming is not only restrictedthe land but can also be noted in the
Southern Ocean. For example, the warming of theawstit winter troposphere is more
important than anywhere on Earth with a rate oft6.5.7°C per decade measured over the
last thirty years (Turner et al., 2006). In Antarat the polar vortex is more intense, is colder
and lasts longer than in Arctic. The role of thetakatic ice is important because it is one of
the key parameters in the regulation of air tentpeeanear the surface. During the austral
winter, in the absence of solar radiation, the aaefcools via infrared radiation emitted
towards a very cold and very dry atmosphere. Inatltral summer, the absorption of solar
radiation at shorter wavelength produces a diurgelle and warms the surface while heating
is limited by a high albedo (Pirazzini, 2004; Hudst al., 2006).

Changes in the abundance of water vapouOJHnfluence directly (and indirectly via
clouds) the Earth's radiation budget and theredffiext climate change (Brasseur et al., 1999)
because LD is the main greenhouse gas that emits and absoths infrared domain. With
an average altitude of 2500 m above sea level Atttarctic Plateau is one of the coldest and
driest places of the planet, for instance with terafure less than -80 °C and integrated water
vapor amount less than 0.5 mm in winter at the D@r&ation (e.g., Tomasi et al., 2012).
For these reasons, numerous studies focused omteliohange (e.g., Hines et al., 2004),

processes in the atmospheric boundary layer (Argentini et al, 2005), reactive species
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interacting with the snow (e.g., Davis et al., 20@hd astronomical site quality (e.g.,
Tremblin et al, 2011).

Clouds also play an important role in the radiatioriget of the Earth. Since they have
large spatial, seasonal and diurnal variability dhey are poorly represented in climate
models, large differences are obtained by climatelets when assessing the strength and the
direction of the cloud feedback on the Earth ragimbalance (Dufresne and Bony, 2008).
The interconnections between the Antarctic, thedteidatitudes and the tropics show that
Antarctic clouds are an important part of the glathanate system (Lubin et al., 1998). Based
on observations from CloudSat and Cloud-Aerosolatidnd Infrared Pathfinder Satellite
Observation (CALIPSO) satellites over the perio®@@010 (Adhikari et al., 2012), it is
found that the Antarctic Plateau has the lowestidloccurrence of the Antarctic continent
(<30%). The continental region of the Antarctic tBéa experiences cloud occurrence of
about 30% at low levels (less than 3 km) and lkas 110% above 5 km whilst the western
continental region records cloud occurrence of 8B6&6 at low levels and of about 30% up
to 8 km above the surface. Furthermore, whateversétmson considered, it is shown that
multilayer clouds occur over Antarctica.

The Dome C station (Concordia) in Antarctica (75306.23°21'E, 3233 m above mean
sea level) is operated jointly by the French Patatitute Paul-Emile Victor (IPEV) and the
Italian Institute Programma Nazionale Ricerche imaktide (PNRA). The site is located on
the Antarctic plateau with 24 hours a day in summed 24 hours of night in winter, a
climatological temperature between -40 °C and -0rf summer and -80° C and -60 °C in
winter (Tomasi et al., 2006). Situated on top afaene, there is no katabatic wind as in the
case of the costal station of Dumont d'Urville 86140°E, 0 m above sea level) since the
average wind rarely exceeds 5 ththroughout the year. When the temperature dropsemw

may precipitate and light ice crystals may be sodpd in the air producing a phenomenon
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referred to as diamond dust. At the Dome C statiomerous studies already focused on the
diurnal and seasonal variations of the atmospheimdary layer (e.g., Ricaud et al., 2012).

The main motivation of the present analysis ismi@stigate the presence of two different
clouds (thick cloud and diamond dust) that appeat®xe the Dome C station by combining
measurements from several instruments installethetstation, together with space-borne
measurements and model outputs. We intend to stuelynature of the clouds and the
meteorological processes that favored their foromatby using parameters such as
tropospheric temperature and absolute humiditggirstted water vapour, nebulosity, long-
and shortwave up- and downward radiations, togetliterthe vertical distribution of aerosol
depolarization ratios.

We concentrate our efforts investigating two epésodrom 15 March to 8 April 2011 and
from 4 to 5 March 2013. Several instruments hawenhesed. 1) A ground-based microwave
radiometer (HAMSTRAD, HO Antarctica Microwave Stratospheric and Troposjgher
Radiometers) installed at Dome C that providediearprofiles of tropospheric temperature
and absolute humidity to calculate Integrated Watgpour (IWV) with a 7-min integration
time. 2) Daily radiosoundings launched at 12:00 UAt@Mome C. 3) A tropospheric aerosol
Lidar that provides aerosol depolarization rationgl the vertical at Dome C. 4) Down- and
upward short- and longwave radiations as obtaimeoh fsecondary standard pyranometers
and pyrgeometer installed at Dome C and belongindhe Baseline Surface Radiation
Network (BSRN). 5) Space-borne aerosol depolaopatatio from the Cloud-Aerosol Lidar
with Orthogonal Polarization (CALIOP) Lidar aboatfie CALIPSO platform along orbits
close to the Dome C station. The time evolutiothefatmosphere over the 1-month period in
2011 has also been evaluated by considering thitsufrom the meso-scale model AROME
in 3 configurations. 1) “Operational”, operating deowith a snow albedo of 0.80. 2)

“Operational with ice tuning”, as in “Operationdt with a setting of snow albedo that can
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reach up to 0.85. And finally 3) “ARPEGE micro-pfogs, as in “Operational with ice
tuning” but includes the physics of ARPEGE and aesbf-the-art scheme to represent the
snow pattern taking into account the roughnessttter@nd finally, we will use the global-
scale ARPEGE meteorological analyses in 2013 salemter the Dome C station.

The manuscript is structured as follow. Sectionr@sents all the data sets used in our
study. Section 3 investigates the episode 1, nammelythick cloud and the diamond dust
episodes during the 1-month period in 2011 coniidethe temporal evolution of the
different parameters above and in the surroundaighie Dome C station. Section 4 deals
with the episode 2 in 2013. The genesis of the &bion of the thick cloud and the diamond

dust episodes is discussed in Section 5. Finadlgti& 6 concludes the study.

2. Datasets

2.1. The HAM STRAD Radiometer

The HAMSTRAD (HO Antarctica Microwave Stratospheric and Troposjgher
Radiometers) instrument is a state-of-the-art mvene radiometer to probe the troposphere
in very cold and very dry environments in orderatrieve temperature and absolute humidity
vertical profiles, and IWV. Temperature profilee abtained from the 51-59 GHz spectral
range, centered on the oxygen line. Absolute hugnofiles are retrieved from the 169-197
GHz spectral range, centred on the water vapow. IWV is calculated from the water
vapour profile integrated along the vertical. Imtdgpn time is 7 min. The radiometer is
presented in Ricaud et al. (2010).

The instrument was sent to Dome C in January 2[(d%as been running automatically
since January 2010. Science and validation stutiesy HAMSTRAD data are detailed in
Ricaud et al., 2012; 2013; 2014a-c; and 2015.IHAMSTRAD data measured since 2009

are freely available at the following address:
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http://lwww.cnrm.meteo.fr/spip.php?article961&lang=€erhe radiometer sensitivity is very
high in the planetary boundary layer, high in treeftroposphere and very weak in the upper
troposphere-lower stratosphere (Ricaud et al., R0Tee HO and temperature vertical
resolutions are ~20-50 m, ~100 m and ~500 m inptheetary boundary layer, in the free
troposphere and in the upper troposphere-lowertosiphere, respectively. Against
radiosondes, there is a 1-5 K cold bias below 4d&mad,a 5-10 K warm bias above. There is a
wet bias of 0.1-0.3 g thbelow about 2 km and a dry bias of ~0.1 § above. Integrated

water vapour is of a high quality, 1-2% wetter thadiosondes.

2.2. Radiosondes

The programme of radiosoundings developed at Donie @esented in Ricaud et al.
(2014a). Temperature and humidity biases againd&5FRAD are shown in the previous
section. In the present study, the vertical prefitd temperature and humidity were taken
from RS92 radiosondes using the standard Vaisakuation routines without any correction
of sensor heating or time lag effect. We recallt ttee corrections performed on the
radiosonde data measured in 2009 according to Nilish et al. (2006) shown a weak
impact (with a maximum of +4% on IWV) on the veatigrofiles (Ricaud et al., 2013).
Furthermore, considering the updated tools develapéiloshevich et al. (2009), Tomasi et
al. (2011 and 2012) found that, between 630 andhP&) the correction factor for humidity
estimated by the radiosonde varied within 1.10-¥dr5daytime and within 0.98-1.00 for
nighttime. It is important to note that the 630-4i®a layer is located between the ground and
an altitude of ~2 km which maximizes the calculatiof IWV. A 1.2 K cold bias is also
observed in the RS92 from the surface up to atud#iof ~4 km (Tomasi et al., 2011 and

2012).
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2.3. The Aerosol Lidar

The aerosol lidar is a backscatter and depolaozagiystem in operation at Dome C in
relation with different scientific projects (httfidarmax.altervista.org/lidar/ Antarctic
LIDAR.php). Vertical profiles of aerosol and clowtructures are continuously measured
together with the characterization of the physja@se of particles. Automated daily images
are produced and sent to Italy to monitor the statihe atmosphere above Dome C and to
check the instrument operations.

The Lidar system uses a Laser Quantel (Brio) at ®@rand operates at 532 nm to get
backscattering and depolarization ratio from 3@@60 m above ground with a 7.5-m vertical
resolution. The line of sight is zenith lookingabgh a window enabling measurements in
all-weather conditions. The telescope has a 10iameter, with 30-cm refractive optics and
0.15-nm interference filter. It has already beeedum several scientific studies, e.g. the ra-

diative properties of kD and clouds in the far infrared over Antarctical¢Betti et al., 2015).

2.4. CALIOP onboard CALIPSO

The CALIPSO satellite has been launched to studydle clouds and aerosols play in the
Earth system that includes air quality, weather elimdate. CALIPSO was launched on 28
April 2006 with the cloud profiling radar system ¢me CloudSat satellite. The CALIPSO
satellite comprises three instruments, the CALIQ&at, the Imaging Infrared Radiometer
(IIR), and the Wide Field Camera (WFC) (Winker ket 2009).

CALIOP is a two-wavelength (532 nm and 1064 nm)agehtion-sensitive lidar that
provides high-resolution vertical profiles of aalss and clouds
(https://calipso.cnes.fr/len/CALIPSO/lidar.htm). CI&IP uses three receiver channels: one
measures the 1064 nm backscatter intensity anaaonels measure orthogonally polarized

components of the 532 nm backscattered signalrdwver telescope is 1 metre in diameter.



Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2016-815, 2016 Atmospheric
Manuscript under review for journal Atmos. Chem. Phys. Chemistry
Published: 15 September 2016 and Physics

(© Author(s) 2016. CC-BY 3.0 License.

199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222

223

Discussions

The full-angle field of view of the telescope isOl3rad resulting in a footprint at the Earth's
surface of about 90 metres. Algorithms have beemldped to retrieve aerosols and cloud
layers together with optical and microphysical mntigs (Young and Vaughan, 2009).

Depolarization ratio estimated with version V3.8iresented in our study.

2.5. The BSRN Network

The objective of the World Climate Research Prognem(WCRP) Baseline Surface
Radiation Network (BSRN) is to provide, using athgampling rate, observations of the best
possible quality, for short- and longwave surfaaéiation fluxes. These readings are taken
from a small number of selected stations, includdwgne C, in contrasting climatic zones,
together with collocated surface and upper air oretegical data and other supporting
observations. The incoming longwave and shortwadkation components of the surface
radiative balance were taken from the Dome C BSthNos, and measured with two Kipp &
Zonen CM22 secondary standard pyranometers anKipm & Zonen CG4 Pyrgeometers,

all operated according to BSRN guidelines (Landoeréhl., 2011).

2.6. The AROME Model

AROME (Seity et al., 2011) is a small-scale nunarjarediction model, operational at
Meteo-France since December 2008. It was desigaedhprove short-range forecasts of
severe events such as intense Mediterranean peditips (Cévenole events), severe storms,
fog, urban heat during heat waves. The physicamaterizations of the model come mostly
from the MESO-NH model whereas the dynamic cotbésALADIN model. The size of the
mesh is 2.5 km against 10 km for ARPEGE over Franc2014. The model is initialized
from a 3D-var data assimilation system using rad#ectivity and Doppler wind. Five daily

forecasts are made with AROME, thus helping todbattedict meteorological events of the

10
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day and of the morrow (30 h forecast range). ARONMES used within the project GEWEX
Atmospheric Boundary Layer Study 4 (GABLS4) whose of the motivations was the study
of the meteorological evolution over the Dome Gigta(Bosveld et al., 2014).

For the study, three experiments at 2.5 km werel.ub&o based on the AROME con-
figurations: 1) "Operational”, operating mode wilte default snow scheme (Douville et al.,
1995) (labeled as 79HA). 2) “Operational with taaing”, as in “Operational” but with a set-
ting of a minimum snow albedo of 0.8 (labeled a¥@¥ In the third one “ARPEGE micro-
physics”, the AROME physics was replaced by the BERE one used in the global model
with the state-of-the-art scheme to represent #engnent snow with a minimum snow

albedo of 0.8 valid over Dome C and a more accumtghness length (labeled as 79Z6).

2.7. The ARPEGE Mod€

The ARPEGE model is the global model used for thenerical weather prediction
(NWP) at Météo-France. In the present study, theraional configuration has been used
with a stretched grid at high resolution over FeaitO km) and a coarser grid over Australia
of 60 km. At the South Pole, the horizontal resoluis about 50 km and the vertical grid has
70 levels with a first level at around 16 m abdwve ground. The assimilation tool is based on
an incremental 4-dimensional variational (4D-Vagthod. The physical package used in the
ARPEGE model is at the state-of-the-art, with abllent Kinetic Energy scheme associated
with a mass flux scheme for the boundary layer {{Bagt al., 2011). The clouds and the
micro-physics use 4 prognostic variables such asdclwater, cloud ice, rain and snow
(Lopez, 2002; Bouteloup et al., 2005). The radatiransfer in the atmosphere is computed
with the Rapid Radiative Transfer Model (RRTM) stiee (Mlawer et al., 1997) for the
longwave and the shortwave with the Fouquart-Mdrerecheme (Fouquart and Bonnel,

1980; Morcrette et al., 2001).

11
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3. Episode 1 on 15 March-8 April 2011

3.1. Temperature

Figure 1 shows the time evolution of temperatucenfrl5 March to 8 April 2011 in the
planetary boundary layer at 4, 50 and 100 m ableeegtound as measured by HAMSTRAD,
the radiosondes and as calculated by AROME acapridirthe 3 configurations detailed in
the previous section, namely a) operational, byatpmal with ice tuning and c) considering
ARPEGE micro-physics. Unless explicitly specifiétym now, all the heights refer to height
above the ground. The time evolution of temperaprodiles as measured by HAMSTRAD
from 0 to 5 km is shown Fig. 2.

In the planetary boundary layer (Fig. 1), tempeegufrom HAMSTRAD and the
radiosondes are rather stable from 15 to 24 Maédi1 2210-220 K at 4 m), rapidly increase
to ~240 K on 25 March and start decreasing on 26cM#o 31 March (~210 K). After a
slight increase on 4 April (~220 K), a minimum entperature is reached on 5 April (210 K
at 50 and 100 m) with stable temperature at 4 ntewhcreasing at 50 and 100 m reinforcing
the inversion. The sharp increase in temperaturasored at 4 m (~30 K) on 25 March is
much less intense above, at 50 and 100 m (~5 K)thHeusharp decrease in temperature on 5
April is much more intense at 50 and 100 m (~20H&n at 4 m (~10 K maximum). At 50
and 100 m, measurements from HAMSTRAD and radiossrade very consistent with the
outputs from AROME whatever the configuration cdesed. But there are some differences
at 4 m. The biggest differences are detected duhiegeriod 20-25 March, prior to the warm
period 25-26 March, during which AROME outputs aystematically greater than the
measurements by 10-15 K whatever the configuratamsidered. During the other periods,
although the operational AROME outputs (79HA) arrmwer than the outputs from the two

other configurations by 2-3 K on average at 06:00CU(14:00 LT), the outputs from

12
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AROME version ARPEGE micro-physics (7926) around0D6UTC (local midnight) is
warmer than the two other configurations on fewiquey (16-25 March and 2, 4, 7 and 9
April). At 12:00 UTC (20:00 LT), the outputs fron®Z6 are the closest to the radiosonde and
the HAMSTRAD measurements. We note a diurnal ciyckemperature of3 K observed in
the AROME outputs from the operational configuratithat is not present in the
HAMSTRAD data set. Above, at 50 and 100 m, all theta sets considered are very
consistent to each other withi2 K.

From 0 to 5 km (Fig. 2), the two episodes of abrhinges in temperature are clearly
detected on 25 March and on 5 April 2011, with samgal increase and decrease in
temperature, respectively. Along the vertical, &heso episodes cover a wide domain from
the ground to more than 3 km. The warm episods &gt days although the cold episode is

of a short duration, namely 1 day.

3.2. Integrated Water Vapour

If we now consider the evolution of IWV over thereaperiod (Fig. 3), we note a slight
positive change from 15 to 22 March 2011 (from @3.6 kg nf), followed by an abrupt
increase on 25 March of 1.0 kg’nin less than 24 hours. After a 2-day plateau 4itkg. ni
in HAMSTRAD and radiosonde data, IWV decreases klamtil the end of the period.
Neverthless, on 5 April, the atmosphere is thestiiié the period reaching 0.1 kg’mithin
few hours. All the data sets (HAMSTRAD, radiosoratedl AROME) behave consistently
during this period. HAMSTRAD and the radiosondeaddb not exhibit any bias, whilst
AROME outputs tend to show a much wetter atmospbenepared to HAMSTRAD and the
radiosondes of about 0.2 kg“mexcept during the warm and wet period (25-26 Mpmhen

the bias is even greater reaching 0.4-0.5 Kg m

13
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3.3. Absolute Humidity

Figure 4 shows the time evolution of absolute hutyidertical profiles from 15 March to
8 April 2011 in the planetary boundary layer (4,80 100 m) as measured by HAMSTRAD,
the radiosondes and as calculated by AROME acagrttinthe 3 configurations. The time
evolution of absolute humidity as measured by HAMR3D from the ground to 5 km is
shown Fig. 5.

Consistently with the time evolution of IWV, thedadution of absolute humidity in the
planetary boundary layer (Fig. 4) and in the freposphere (Fig. 5) shows an abrupt increase
on 25 March and a net decrease on 5 April, but ieith of differences within all the datasets
and the altitude layers considered. Prior to thenwand wet episode of 25-26 March,
HAMSTRAD measurements from 4 to 100 m (Fig. 5) systematically much wetter than
both the radiosondes and the AROME outputs by @14 m® and 0.4-0.5 g m
respectively. It is a very well documented biagadly presented in several works (e.g. Ricaud
et al., 2014a and 2015) that HAMSTRAD measures tiewatmosphere below 2 km and
drier above, than any other data sets (radiosoindsitu, space-borne, and meteorological
analyses). After the warm and wet period, the t#dsices to 0.1 g thoetween HAMSTRAD
and the radiosondes. We note some difference®ifii® time evolution within the AROME
outputs according to the 3 configurations. The apenal outputs (79HA) are usually much
wetter than the two other configurations, partidylaround local noon and in the lowermost
layer at 4 m. The biases within the outputs of3le®nfigurations decrease with height.

Along the vertical (Fig. 5), the time evolution thie HO field obviously shows the two
episodes of abrupt changes detected on 25 MarcbraBdApril 2011, with a net increase and
a net decrease in,B, respectively. These two episodes cover a wideailo from the ground

up to 2.5-3 km. Consistently with the conclusiomaveh with temperature evolution in the
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section 3.1, the wet and warm episode (see Fi¢pas®} 2-3 days although the cold and dry

episode is of a short duration, namely less thdayl

3.4. Radiation

The time evolution of the downward and upward sharid longwave radiations as
measured by the BSRN international network is diggdl in Figure 6, together with the net
irradiance (difference between the downward andugward fluxes) from 15 March to 8
April 2011. The diurnal cycle of solar irradiandexes is clearly evidenced with the obvious
maximum at local noon ranging between 350 V¥ at the beginning of the period) and 150
W m? (at the end of the period). Albedo over the whieiod is found to range between 0.8
and 0.95 with daily minimum at local noon (not simwThe upward longwave radiation
emitted by the surface is generally greater tham dbwnward irradiance in clear sky
conditions, while they became similar under ovdrcaken thick cloudiness prevents
radiative cooling. Consequently, alternating dagt aight periods in March and April, the net
irradiance is negative except around local noonnahean be either positive or close to zero.
But for the two periods considered so far, namel\26-26 March (warm and wet) and on 5
April (cold and dry), the radiation budget is sfigantly different from the average situation.

On 25 March, the longwave radiations (both downwand upward) are much greater
than the shortwave radiations (both downward andang) even at local noon. The resulting
effect is that the net irradiance is positive oosel to zero over the whole period. This
obviously indicates that a thick cloud is shieldthg downward shortwave radiation (coming
from the Sun) and increases the downward longwadation (coming from the cloud).
Furthermore, there is a great probability a thithud is present over the Dome C station

during the warm and wet period.
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On 5 April during the cold and dry period, the atian is radically different. There is not
an abrupt increase of longwave downward radiat®it a/as the case during the warm and
wet period, so we can rule out the presence ofck ttloud above the station. Nevertheless,
the situation is atypical since, at local noon,dbenward shortwave radiation is only slightly
greater than the upward shortwave radiation, amd bt irradiance does not exhibit an
obvious diurnal cycle maximizing at local noon. Gequently, even if the presence of a thick
cloud has been ruled out from the longwave radiatinalysis, both the shortwave and the
total irradiance analyses tend to suggest the pcesef a cloud, probably thin and/or close to
the surface, in order to 1) slightly affect the dwovard longwave irradiance, and 2) strongly
affect the diurnal cycle of the net irradiance. Tiext section investigates the presence and
the nature of the clouds during the two periodseura@bnsideration: a) the warm and wet

period (25-26 March 2011) and b) the cold and @nmyqal (5 April 2011).

3.5. Clouds

The time evolution of the nebulosity vs. heightakulated by AROME according to the
3 configurations over the period 25 March-8 AprD12 is displayed Figure 7. In two
configurations (operational and operational witlke itining), clouds (traced by values of
nebulosity greater than 0.25) are calculated maimlgr two single periods: 1) on 22 March
from 1 to 5 km, and 2) on 25-29 March from the gmduo 6 km. Considering the third
configuration (ARPEGE microphysics), the period whelouds (traced by values of
nebulosity greater than 0.25) are present is moiechdr than the two first configurations since
it almost covers the entire time interval undersideration. There are indeed the two periods
previously cited, namely on 22 March, and 25-29 dlabut they extend both in time (22-24
March and 25-30 March, respectively) and altitugerface to 7 km). Other periods show

some moderate values of nebulosity (0.10-0.25)®147, 20 March, and 2, 3, 4, 6-7 April.
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These calculated clouds can be close to the grouhih in the free troposphere (4-6 km). In
the three configurations, high nebulosity valuesdter than 0.8) are calculated close to the
surface (0-200 m). The AROME model tends to prodacsort of cloud residual in the
planetary boundary layer in the three configuratianalyzed.

The warm and wet period (25-26 March 2011) highkghin the previous sections is
indeed characterized by high values of nebulosigyedter than 0.8) whatever the
configurations of AROME considered, from the suefdc 6-7 km. This is another indicator
of the presence of a thick cloud over the Domedfiast during that period. The cold and dry
period (5 April 2011) is nevertheless not charazéer by such a high value of nebulosity
extending in the free troposphere but rather byesbigh nebulosity being confined below
100 m. But this is probably an artifact of all thens performed by ARPEGE within the 3
configurations, producing a residual cloud in thvdrmost planetary boundary layer.

In order to check whether clouds are present oowet the station during the two periods
studied in detail, we consider now the time evolutiof the aerosol depolarization as
measured by the Lidar installed at Dome C on 2426ch and on 4-6 April 2011 (Fig. 8).
For the warm and wet period (Fig. 8 top), high depmation ratios (greater than 30%),
signature of ice particles, start increasing byeahd of 24 March (22:00 UTC), reaching an
altitude of 1.2-1.5 km, all over 25 March, and stigcreasing on 26 March by 12:00 UTC.
The vertical structures in the depolarization rdigdds are a signature of precipitation of ice
particles (Mishchenko et al., 2000). On 26 Mard¢hglzout 2 km altitude from 07:00 to 13:00
UTC, a layer of low depolarization ratio (less tHat?o) appears, that is a signature of liquid
water cloud. In general, over this period, the dlidaiso opaque that the Lidar signal cannot
penetrate the structure beyond ~1.2 km altitude.

We may have a better insight in the vertical stitetof the cloud covering the Dome C

station on that warm and wet period by considetirgspace-borne CALIOP Lidar nighttime
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measurements performed on 25 March 2011 in thaitycof the station. Figure 9 top left
shows the Spaceborne Lidar CALIOP measurementemdldrization ratio along one orbit in
the vicinity of the Dome C station on 25 March 20We note that, at the location of the
Dome C station (75°06’S, 123°21’E), the depolaitatatio is greater than 0.4 (ice particles)
from the ground (3233 m above mean sea level, amsipout 10 km amsl, namely ~7 km
above the ground. If we now combine the downward @pward Lidar information, we can
state that on the warm and wet period (24-26 Mafi), a 7-km thick ice cloud passed over
the Dome C station and precipitated ice particlédlsty by the end of the period, a low-
altitude (~2 km) liquid water cloud was also prdsen

For the cold and dry period (centered on 5 April20 high depolarization ratios (greater
than 30%) from the Lidar operating at Dome C (Bidpottom) start increasing by the middle
of 4 April (12:00 UTC), reaching a maximum altitude100 m, increasing up to 200 m on 5
April at 09:00 UTC, to finish decreasing on 6 Adsiy 12:00 UTC. The high depolarization
ratio suggests that the cloud is constituted oftigstals and, since there is no vertical layers
(as during the warm and wet period), there is @aerof precipitation. Considering the
CALIOP space-borne Lidar measurements of depoléwizaatio (Fig. 9 top right) performed
on 5 April 2011 in the vicinity of the Dome C staii they also suggest a much thinner cloud
from the ground to about 4 km amsl, namely less th&m above the ground, with values
ranging 0.1-0.2 (ice particles). Since there ispnecipitation and no presence of standard
thick clouds above the station, the thin cloud eghésis traditionally attributed to a diamond
dust episode, rather frequent at the Dome C station

Diamond dust is usually made of ice crystals inpsasion in the air located in the
lowermost troposphere. At the South Pole stationerwsorted by number, Lawson et al.
(2006) attributed 45% of the ice crystals recorttediamond dust (columns, thick plates and

plates), 30% are rosette shaped (mixed-habit essefilate-like polycrystals and rosette
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shapes with side planes) whilst 25% are irregufathe Eastern Antarctic Plateau over all the
seasons except summer, a strong surface-based regompeinversion persists in which
vertical mixing causes the boundary-layer air todmee supersaturated with respect to ice.
Consequently, small ice crystals referred to asdied dust form in this layer (Walden et al.,
2003). Nevertheless, even in the absence of miximgwave cooling of the near-surface air
can also lead to supersaturation with respecta@inc form ice crystals. Classification of ice-
cloud particles is important to retrieve the shapéndividual crystals and to estimate the
radiative impact of the clouds (Bailey and Hall@®09; Lindqvist et al., 2012). It is beyond

the scope of the present analysis to classifyligstals measured over the Dome C station.

4. Episode 2 on 4-5 March 2013

The second episode is much shorter than the fiestsince it lasts only two days from 4 to
5 March 2013. It relies on the same datasets aepied in section 3 except that the analyses
are from the meteorological operational model AREBE@at routinely delivers since
December 2011 every 6 hours (00:00, 06:00, 12100,18:00 UTC) meteorological fields at

the vicinity of the Dome C station.

4.1. Temperature

The temperature anomaly over the 2-day period fgesented in the Figure 10 as
measured by HAMSTRAD and as calculated by ARPEGEmRhe surface to about 2 km
altitude, they both show a warm period on 4 Mamltoived by a cold period on 5 March,
with a transition propagating in the HAMSTRAD data to 4 km altitude, probably due to
the vertical resolution of the microwave radiometerasurements. Above this altitude, a cold
period is followed by a warm period in the two da&tis. Although the HAMSTRAD data are

noisier than the ARPEGE data, the maxima and minare consistently observed and
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calculated in the lowermost troposphere around 2800 UTC on 4 March and around

18:00-22:00 UTC on 5 March, respectively.

4.2. Water Vapour

The water vapour anomaly over the 2-day periodejgrasented in the Figure 11 as
measured by HAMSTRAD and as calculated by ARPEG&mRhe surface to about 4-5 km
altitude, they both show a wet period on 4 Mardlofeed by a dry period on 5 March. As for
temperature, the HAMSTRAD 4@ data are noisier than the ARPEGE data, but thémesa
and minima are consistently observed and calculitettie lowermost troposphere around

12:00-18:00 UTC on 4 March and around 18:00-22:0CWn 5 March, respectively.

4.3. Radiation

The time evolution of the downward and upward shartid longwave radiations as
measured by the BSRN international network is digpdl in Figure 12, together with the net
irradiance (difference between the downward andugiveard fluxes) from 1 to 9 March 2013.
As already presented in section 3.4, the diurnelecygf solar irradiance fluxes mainly shows
a clear-sky period over the Dome C station, excegr the period from 4 March at 00:00
UTC to 6 March at 00:00 UTC. Indeed, on 4 Marchdaly long, there is a net increase in the
longwave downward radiation from 80 to 120 W mompared to the values from 1 to 3
March and from 7 to 9 March when we can expectsthdon is under clear sky conditions.
Furthermore, from 12:00 to 24:00 UTC, the net imade is about —20 W fhon 4 March,
whilst it is usually about =30 W ‘fnin clear sky conditions. Consequently, there ireat
probability a thick cloud is present over the Dofhstation on 4 March during 24 h.

On 5 March, between 12:00 and 24:00 UTC, the madliance is very low (about —50 W

m) compared to values of about —30 W in clear sky conditions. There is a slight inceeas
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of the longwave downward (90 Whand upward (140 W 1) fluxes on 5 March compared
to the fluxes in clear sky conditions (70 and 120nV¥, respectively), but much less than
fluxes in cloudy conditions (150 and 160 W?ntespectively). Consequently, this period of

12 hours on 5 March cannot be attributed to neithesar sky nor thick cloud episodes.

4.4. Clouds

Now we consider the presence of clouds and/oridgged particles over the 2-day period
either from active and passive remote-sensing meamnts or from ARPEGE analyses. The
time evolution of ice water mixing ratio calculated ARPEGE over Dome C is represented
in the Figure 13 top together with the total préeijon flux over the 2-day period (Fig. 13
bottom). ARPEGE analyses obviously calculate icadlfrom the surface to an altitude of
about 4 km on 4 March, with a top altitude decreggiown to the surface on 5 March at
12:00 UTC. Between 18:00 and 24:00 UTC on 5 Mattoére is also a trace of ice cloud from
0 to 1 km altitude. The main thick cloud calculated 4 March is associated with ice
precipitation from the altitude of ~3 km at 06:00@ down to ~2 km on 20:00 UTC (Fig. 13
bottom). There is no longer trace of local preeiitn after 03:00 UTC on 5 March.

The depolarization ratio measured by the aerostérlinstalled at Dome C from 4 to 5
March is shown on Figure 14. For the warm and vesiod (4 March), high depolarization
ratios (greater than 30%) are present all over AccMaeaching an altitude of 1.5-2.0 km, and
start decreasing on 5 March by 00:00 UTC. The e&rtructures in the depolarization ratio
fields are a signature of precipitation of ice des. Between 13:00 and 14:00 UTC on 4
March and from 00:00 to 10:00 UTC on 5 March, degehtion ratios are much lower,
reaching values of less than 10%. This is cledméydignature of the presence of supercooled
liquid water. From 10:00 to 24:00 UTC on 5 Marckepdlarization ratios are very high

(>40%), indicative of ice crystals, but confinedrfr the surface to 100-200 m altitude. There
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is no vertical structures, it means there is ncipiation associated to the presence of the
cloud. Furthermore, this ice crystals can be carsidl as in suspension in the air and labeled
as “diamond dust”. This is confirmed by the BSRNiation measurements (see section 4.3).

Over this 2-day period, only one CALIOP/CALIPSO itrbas been analyzed in the
vicinity of the Dome C station (Fig. 9 bottom) onMarch (08:15 UTC) during the thick-
cloud episode. On that day, the depolarizatioro rigtiranging 0.1-0.3 from the ground (3233
m amsl) to about 8 km amsl, namely ~5 km abovegtband. Note that there is no CALIPSO
orbit in the vicinity of the Dome C station in coidence with the diamond dust episode.

If we synthesize our findings relative to the egis® 1 and 2, we can state the following.
The time evolution of temperature, absolute humjdie and aerosol fields obviously shows
two episodes of abrupt changes. Firstly, a warm aatlperiod is associated with a thick
cloud that develops from the surface to 5-8 km @ndonstituted of ice crystals that
precipitate. Secondly, a cold and dry period i®eisted with a thin cloud that develops close
to the surface (100-200 m) and is constituted @fciystals in suspension in the air. This later

episode is known as “diamond dust” episode.

5. Discussions

In this section, we investigate the processes dbatributed to the presence of a thick-
cloud and a diamond-dust episode above the Domttirs considering the origin of air
masses, the integrated water vapour fields ovemrtita and the temperature and water

vapour budgets calculated by ARPEGE.

5.1. Origin of Air Masses
The impact of the origin of air masses on the stesrh variability of HO and temperature

and the high correlation coefficient (greater t8a®0) between water vapour and temperature
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at Dome C over the entire year 2010 were presént&icaud et al. (2012 and 2014c) based
on 5-day back-trajectory calculations. We propdaethe present study, to use the same
methodology to interpret the time evolution of themosphere during the two above-
mentioned episodes. We have thus considered a bataytrajectory study based upon the
European Centre for Medium-Range Weather Fore(R&EMWF) analyses starting from the
Dome C location at five different pressure levetf the planetary boundary layer (650 and
600 hPa), to the free troposphere (500, 400 anchBa).

For episode 1, Figure 15 (top left) shows the 5-Hagk-trajectories at the 5 selected
pressure levels during the warm and wet period tfsesection 3) on 25 March 2011 at 12:00
UTC corresponding to the time of maximum temperatand absolute humidity of an air
parcel issued from Dome C. In the lowermost layé&0 and 600 hPa), the air parcels are
mainly issued from the Antarctic continent. But treég up, at 500, 400 and 300 hPa, air
masses are coming from the oceanic middle latitublesveen Australia and New Zealand,
imprint of warm and wet air masses. When air magsethe free troposphere reach the
Antarctic continent, they are uplifted and tempematdecreases by more than 50 K (not
shown). Note the air parcel at 400 hPa that iglfigriginated from oceanic high latitudes in
the vicinity of the Antarctic continent but movesviards the middle oceanic latitudes with a
net subsidence and an increase of temperature I§f 30

Regarding the diamond-dust period, Figure 15 (igipty shows the 5-day back-trajectories
at the 5 selected pressure levels on 5 April 2@11280 UTC corresponding to the time of
minimum temperature and absolute humidity of anpaircel issued from Dome C. We can
note that all the calculated air masses are ottigihfrom the Antarctic plateau whatever the
pressure level considered. Consequently, as alrgadjed in Ricaud et al. (2012 and 2014c),

we thus expect that both temperature an® kends to decrease on 5 April at 12:00 UTC
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compared to the surrounding periods because aisemasith continental origins produce a
cold and dry atmosphere above Dome C (as on 5 2ptil).

For episode 2, Figure 15 bottom left shows the Ypokack-trajectories at the 4 selected
pressure levels of 650, 600, 500 and 400 hPa dthmgvarm and wet period (see section 4)
on 4 March 2013 at 08:00 UTC corresponding to thee tof maximum temperature and
absolute humidity of an air parcel issued from DoBieAt 650 hPa, the air parcel has a
continental origin but migrates very close to tlmast 2 days before reaching Dome C.
Above, at 600, 500 and 400 hPa, all the air maasesoming from the oceanic middle-high
latitudes ranging from 47°S to 63°S and from thdame to ~680 hPa, namely imprint of
warm and wet air masses. As for episode 1, whepaagels in the free troposphere reach the
Antarctic continent, they are uplifted and tempamatdecreases by 20-30 K (not shown). On
5 March at 18:00 UTC (Fig. 15 bottom right) duritige cold and dry period of episode 2
corresponding to the time of minimum temperatureé amsolute humidity, the meteorological
situation is radically different. Whatever the ma® level considered, the air parcels are all
confined to the Antarctic plateau in the vicinitithe Dome C station, explaining again, as

for episode 1, the cold and dry atmosphere obseaiuddg episode 2.

5.2. Integrated Water Vapour over Antarctica

If we consider the IWV fields as calculated by tH€EP/NCAR operational analyses
(Kalnay et al., 1996) on 25 March 2011 and 5 Ap@L1 for the episode 1 over the Antarctic
continent (Figure 16 top left and right, respedtiyyewe obviously remark that the Eastern
Antarctic plateau is much wetter on 25 March tharboApril. The IWV calculated over the
Dome C station is ~1.4 kgfron 25 March 2011 and ~0.6 kgon 5 April 2011 in excellent
agreement with the HAMSTRAD measurements (seeme8ti2). This is indeed induced by

the oceanic-origin flux bringing warm and wet aiasses over the Dome C station on 25
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March and by the continent-origin flux bringing dand dry air masses over the station on 5
April. The same exercise can be performed for hieogle 2 (Figure 16 bottom left and right,
respectively) considering the IWV fields as caltedh by the NCEP/NCAR operational
analyses on 4 and 5 March 2013. There, the IW\ddiabove Dome C show a similar pattern
between 4 and 5 March but with a slight wet infl@ecton 4 March compared to 5 March with
daily averaged values of ~0.6 and ~0.4 k§ mespectively consistent with the daily-averaged
values obtained at Dome C with HAMSTRAD (~0.55 ar@30 kg rif, respectively).
Consequently, considering episodes 1 and 2, thek-tioud episode observed during the
warm and wet period above Dome C is attributedntonasses with an oceanic origin whilst
the diamond dust episode occurring during the eold dry period is attributed to air masses

with continental origins.

5.3. Temperature and Water Vapour Budgets

We now intend to assess the tendency of temperatloelated by ARPEGE during
episode 2 into radiation, turbulence, microphysars] total advection and the tendency of
water vapour into turbulence, microphysics, andaltadvection. Figure 17 shows the
temperature budget calculated on 4 March 2013 theewarm and wet 12-h period 00:00-
12:00 UTC and on 5 March 2013 over the dry and &@kh period 06:00-18:00 UTC whilst
Figure 18 focuses on the water vapour budget.

For altitudes greater than ~100 m (3333 m amslyaltioe ground on 4 March and greater
than ~200 m on 5 March, the temperature tendentlyeoivarm (Fig. 17 left) and of the cold
(Fig. 17 right) periods is mainly dominated by thdvection processes (red lines). This is
fully consistent with the interpretation of the gin of air masses (previous subsection).
Nevertheless, in the planetary boundary layer bedpproximately 100 m on Mlarch and

below 200 m on 5 March, the temperature tendenctheofwo periods is also governed by the
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vertical mixing done by the turbulent processegégrline). Indeed, turbulence always tends
to stabilize the atmosphere impacted by radiativelymamical forcing. The effect of the
radiative cooling on the surface temperature asdnipact on the boundary layer is clearly
shown on 5 March (Fig. 17 right).

As for temperature, the water vapour tendency ef o periods also needs to be
separated at ~100 and ~200 m above the groundaod & March, respectively. Above these
two limits, the water vapour tendency of the warenigd (Fig. 18 left) and of the cold (Fig.
18 right) periods is governed by both the advectiad the microphysical processes. On 4
March, a warmer and more humid air is advecte@l(twater vapour tendency on Fig. 18 left
and total temperature advection on Fig. 17 left gositive), so the microphysics tend to
create some clouds by condensation (negative niigsigs tendency, blue line on Fig. 18
left) with small precipitations close to the suda@-18 mm in 12 hours, not shown). On 5
March (Fig. 18 right), the water vapour advectioad(line) is negative so a drier air is
advected toward the Dome C station. Below ~200dweetion, turbulence and microphysical
(precipitation) processes compete to dehydrateldreetary boundary layer.

In general, this reinforces our conclusions ofkhiloud episodes driven by warm and wet
air masses of oceanic origin and of diamond duisbéeps driven by cold and dry air masses
of continental origin. Nevertheless, in the plangthoundary layer below approximately
~100-200 m, the water vapour tendency of the twings is competing between advection,

microphysical and turbulence processes.

6. Conclusions

The present study takes the opportunity of combirsaveral measurements and model
outputs to study the short-term evolution of thetaketic atmosphere above the Dome C

station focusing on episodes of thick cloud andndiad dust. From 15 March to 8 April 2011
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and from 4 to 5 March 2013, the atmosphere has pedred by several instruments. 1) A
ground-based microwave radiometer (HAMSTRAD) irsthlat Dome C that provided

vertical profiles of tropospheric temperature amdaute humidity to calculate Integrated
Water Vapour (IWV) with a 7-min integration time) Paily radiosoundings launched at
12:00 UTC at Dome C. 3) A tropospheric aerosol Litfeat provides aerosol depolarization
ratio along the vertical at Dome C. 4) Down- angvapl short- and longwave radiations from
an instrument installed at Dome C belonging toBISRN network. 5) Space-borne aerosol
depolarization ratio from the CALIOP Lidar aboahe tCALIPSO platform along orbits close
to the Dome C station.

The time evolution of the atmosphere over the l#mgeriod in 2011 has also been
evaluated by considering the outputs from the medesnodel AROME in 3 configurations.
1) “Operational”, operating mode with a snow albeafo0.80. 2) “Operational with ice
tuning”, as in “Operational” but with a setting sfiow albedo that can reach up to 0.85. And
finally 3) “ARPEGE micro-physics”, as in “Operatianwith ice tuning” but includes the
physics of ARPEGE and a state-of-the-art schemepcesent the snow pattern taking into
account the roughness length. The ARPEGE glob#d scateorological model analyses gave
the state of the atmosphere and relevant progiso§tie precipitation, temperature and water
vapour budget) on 4 and 5 March 2013.

Two distinct periods are highlighted by all theadsts: the warm and wet periods (24-26
March 2011 and 4 March 2013) and the cold and émnods (5 April 2011 and 5 March
2013). Although the time evolution of temperaturdtie planetary boundary layer and in the
free troposphere is consistent within all the dsgés, AROME in 2011 tends to model a
warmer atmosphere during these two specific evainsm. The time evolution of absolute
humidity is also consistent within all the datasssith some known wet bias in HAMSTRAD

compared to radiosondes in the planetary boundgmsr| and with some systematic wet bias
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of AROME compare to radiosondes. In general, IWMTrHAMSTRAD and radiosondes are
consistent with each other although AROME tendsb&® much wetter than the two
measurements. ARPEGE analyses in 2013, consisteittyHAMSTRAD data, reproduce
the warm and wet period, and the cold and dry gerio

Since the longwave radiations (both downward angdau@) are much greater than the
shortwave radiations (both downward and upwardjnduthe warm and wet period of 2011,
the effect is that the net irradiance is positivelose to zero. This obviously indicates that a
thick cloud is shielding the downward shortwaveiatidn (coming from the Sun) and
increases the downward longwave radiation (comiogfthe cloud). During the cold and dry
periods, there is not an abrupt increase of longw@swnward radiation but the downward
shortwave radiation is only slightly greater thae tipward shortwave radiation, and the net
irradiance does not exhibit an obvious diurnal eyolaximizing at local noon. Consequently,
both the shortwave and the total irradiance analiesed to suggest the presence of a cloud.

Considering upward and downward active measuremaneerosols from two Lidars
installed at Dome C and aboard a spaceborne piati@spectively, the signature of a thick
cloud with high depolarization ratios (greater tt#96) is detected during the warm and wet
periods from the surface to ~5-7 km with precipitatof ice particles and the presence of a
supercooled liquid water cloud with low depolariaatratios (~10%). During the cold and
dry periods, high depolarization ratios (great@ntB80%) to a maximum height of 100-500 m
is measured suggesting that the cloud is conditaie ice crystals with no trace of
precipitation. This means ice crystals are in sosjoa in the air. This case is usually referred
to as “diamond dust”.

The presence of a thick cloud during the warm aatiperiod of 2011 is calculated by the
2D nebulosity fields from AROME extending from tgeound to ~6 km altitude with values

greater in the micro-physics run than in the twdeot configurations. In the three
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configurations, high nebulosity values (greatentBa) are calculated close to the surface (0-
200 m), almost systematically in the two first dgofations (operational and operational with
ice tuning). The AROME model tends to produce a sbrcloud residual in the planetary
boundary layer in the three configurations analyzedhe presence of a thin cloud close to
the surface cannot be ruled out. The thick-cloudagfe during the warm and wet period of
2013 is well reproduced by ARPEGE together withitleeprecipitation but the diamond dust
episode cannot be calculated during the cold aydegisode. No liquid water clouds are
estimated by the ARPEGE analyses.

Considering 5-day back trajectories from Dome C gluthal distributions of IWV over
the Antarctic in 2011 and 2013 tends to show thatthick-cloud episodes observed during
the warm and wet periods above Dome C can be @idbto air masses with an oceanic
origin whilst the diamond dust episode occurringimy the cold and dry periods can be
attributed to air masses with continental origifi$is is confirmed by the ARPEGE
temperature tendencies calculated during the warchthe cold periods of 2013 that are
mainly dominated by the advection components whitgt water vapour tendencies are
governed by both the advection and the microphipitaesses.

The analysis of these two periods is going to Hargad towards a climatological survey
of the presence of clouds and of their types alloeddome C station during the period 2009-
2016. We will combine measurements from the sarslments and outputs from the same
model together with new instruments installechat tation providing the microphysical and

optical properties of the ice crystals that depatstihe surface.
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HAMSTRAD Absolute Humidity at Dome C in 2011
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883 Fig. 5: Time evolution of absolute humidity from 15 Martcth8 April 2011 above Dome C as
884 measured by the HAMSTRAD radiometer from 0 to 5 km.
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Fig. 6: (Top) Time evolution of downward shortwave radiatiSWD, green line), upward
shortwave radiation (SWU, blue line), downward blaage radiation (LWD, orange line),
and upward longwave radiation (LWU, red line) fra® March to 8 April 2011 above Dome
C as measured by the BSRN instruments. (Bottont) iMadiance (SWD+LWD-SWU-

LWU) as measured by the BSRN instruments.
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AROME at Dome C in 2011
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895 Fig. 7: (From top to bottom) Time evolution of nebulositgm 15 March to 8 April 2011

896 above Dome C as calculated by the mesoscale md@€IME according to different runs:
897 operational (top), operational with ice tuning (Eeh and considering ARPEGE micro-
898 physics (bottom). See the text for further inforimatregarding the AROME runs.
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Aerosol Lidar Depolarization (%) in 2011
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901 Fig. 8: (Top, from left to right) Aerosol depolarizatios eneasured by the Lidar installed at
902 the Dome C station over the period 24-26 March 2@Bdttom, from left to right) Aerosol
903 depolarization as measured by the Lidar instalteth@ Dome C station over the period 4-6
904  April 2011.
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908 Fig. 9: Spaceborne Lidar CALIOP measurements of depot&izaatio along one orbit in
909 the vicinity of the Dome C station on 25 March 2@fop left), 5 April 2011 (top right) and 4
910 March 2013 (bottom). The red square representsottation of the Dome C station. The red
911 vertical arrow represents the approximate locatiothe Dome C station.
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ARPEGE Temperature Anomaly at Dome C in 2013
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915 Fig. 10: Temperature anomaly from 4 to 5 March 2013 abdwe Dome C station as

916 calculated by the ARPEGE model (top) and as medshyethe HAMSTRAD radiometer
917 (bottom).
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ARPEGE Absolute Humidity Anomaly in 2013
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HAMSTRAD Absolute Humidity Anomaly at Dome C in 2013
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921 Fig. 11: Absolute Humidity anomaly from 4 to 5 March 201t%we the Dome C station as
922 calculated by the ARPEGE model (top) and as medshyethe HAMSTRAD radiometer
923 (bottom).
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Dome C in 2013 o
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925
926 Fig. 12: (Top) Time evolution of downward shortwave radiatiSWD, green line), upward

927 shortwave radiation (SWU, blue line), downward hlvage radiation (LWD, orange line),
928 and upward longwave radiation (LWU, red line) frdnto 9 March 2013 above Dome C as
929 measured by the BSRN instruments. (Bottom) Nediemce (SWD+LWD-SWU-LWU) as
930 measured by the BSRN instruments.
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ARPEGE Ice Mixing Ratio at Dome C in 2013
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935 Fig. 13: Time evolution of the Ice Water Mixing ratio (tophd of the Total Precipitation
936 Flux (bottom) from 4 to 5 March 2013 above the DofDestation as calculated by the
937 ARPEGE model.
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Aerosol Lidar Depolarization at Dome C in 2013
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940 Fig. 14: Time evolution of the Depolarization ratio (%) frofnto 5 March 2013 above the
941 Dome C station as measured by the aerosol Lidtalied at Dome C.
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947 Fig. 15: (Top) Five-day back-trajectories of air masseginated from Dome C on 25 March
948 2011 at 12:00 UTC (left) and on 5 April 2011 at@2UTC (right) at 650 (pink line), 600
949 (red line), 500 (green line), 400 (light blue lire@)d 300 hPa (dark blue line). (Bottom) Same
950 as top but on 4 March 2013 at 08:00 UTC (left) and March 2013 at 18:00 UTC (right).
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Fig. 17: (Left) Temperature budget calculated by ARPEGEIdlarch 2013 over the 12-h
period 00:00-12:00 UTC induced by radiation (browtyrbulence (green), microphysics
(blue), total advection (red) showing the totaldemncy (black). (Right) Same as Left but on 5

March 2013 over the 12-h period 06:00-18:00 UTC.
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Fig. 18: (Left) Water vapour budget calculated by ARPEGE4darch 2013 over the 12-h
period 00:00-12:00 UTC induced by turbulence (gyesricrophysics (blue), total advection
(red) showing the total tendency (black). (Righ&)jr#& as Left but on 5 March 2013 over the

12-h period 06:00-18:00 UTC.
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