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Abstract 29 

Long-term measurements from satellites and surface stations have demonstrated a 30 

decreasing trend of tropospheric carbon monoxide (CO) in the Northern Hemisphere over the past 31 

decade. Likely explanations for this decrease include changes in anthropogenic, fires, and/or 32 

biogenic emissions or changes in the primary chemical sink hydroxyl radical (OH). Using 33 

remotely sensed CO measurements from the Measurement of Pollution in the Troposphere 34 

(MOPITT) satellite instrument, in-situ methyl chloroform (MCF) measurements from World Data 35 

Centre for Greenhouse Gases (WDCGG), and the adjoint of the GEOS-Chem model, we estimate 36 

the change in global CO emissions from 2001-2015. We show that the loss rate of MCF varies by 37 

0.2% in the past 15 years, indicating that changes in global OH distributions do not explain the 38 

recent decrease in CO. Our two-step inversion approach for estimating CO emissions is intended 39 

to mitigate the effect of bias errors in the MOPITT data as well as model errors in transport and 40 

chemistry, which are the primary uncertainties when quantifying CO emissions using these 41 

remotely sensed data. Our results confirm that the decreasing trend of tropospheric CO in the 42 

Northern Hemisphere is due to decreasing CO emissions from anthropogenic and biomass burning 43 

sources. In particular, we find decreasing CO emissions from the United States and China in the 44 

past 15 years, unchanged anthropogenic CO emissions from Europe since 2008, and likely a 45 

positive trend from India and southeast Asia, in contrast to recently reported results. We find 46 

decreasing trends of biomass burning CO emissions from boreal North America, boreal Asia and 47 

South America, but little change over Africa. The inconsistency between our analysis with recent 48 

study suggests more efforts are needed for robust conclusion about the variation of anthropogenic 49 

CO emissions for India and Southeast Asia. 50 

 51 
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1. Introduction 52 

Tropospheric CO is a product of incomplete combustion and a byproduct of the oxidation 53 

of hydrocarbons. It plays a key role in atmospheric chemistry because it is the main sink for OH, 54 

and an important precursor for tropospheric ozone (O3). Recent studies demonstrated significant 55 

change in tropospheric CO abundance in the past decade. Using Atmospheric Infrared Sounder 56 

(AIRS) CO measurements, Warner et al. (2013) indicated that Northern Hemispheric CO mixing 57 

ratio decreased by 1.28 ppb/year in the period of 2003-2012. Worden et al. (2013) demonstrated 58 

Northern Hemispheric CO column measurements from MOPITT show a decrease of ~0.92%/year 59 

in the period of 2000-2011. Using observations from Mt. Bachelor Observatory, Gratz et al. (2015) 60 

also show a negative trend of CO concentration by 1.9%/year in the period of 2004-2013. 61 

However, the reason for the large variation of tropospheric CO abundance is still unclear; for 62 

example, Strode et al. (2016) found decreases in modeled CO abundance over North America and 63 

Europe, but increases over China, based on bottom-up emissions.  64 

The budget of tropospheric CO is determined by its sources and sinks. There is currently 65 

much effort focused on accurately quantifying emissions of CO. For fossil fuels and biofuels, 66 

energy consumption statistics and emission factors are usually used to construct the emission 67 

inventories (e.g. Streets et al. 2006; Ohara et al. 2007; Zhang et al. 2009; Zhao et al. 2012). 68 

Biomass burning emissions are commonly calculated as the product of burned area, fuel loads, 69 

combustion completeness and emission factors (e.g. van der Werf et al. 2006, 2010; van Leeuwen 70 

and van der Werf 2011). Because of the large uncertainties in the emission inventories, space-71 

based remotely sensed measurements and surface/aircraft in-situ observations have been 72 

assimilated to provide “top-down” constraints on CO emissions (e.g., Arellano et al., 2006; 73 

Chevallier et al. 2009; Jones et al., 2009; Kopacz et al., 2010; Jiang et al., 2011; Fortems-Cheiney 74 
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et al. 2011; Hooghiemstra et al. 2012; Miyazaki et al. 2015). In a recent study, Yin et al. (2015) 75 

constrained global CO emissions for the period 2002-2011 to investigate the possible reasons for 76 

the decreasing CO abundance in the Northern Hemisphere. Using MOPITT column data (version 77 

6J) over the whole globe, Yin et al. (2015) indicate that the negative trend in the Northern 78 

Hemisphere is driven by decreasing anthropogenic emissions from North America, Europe and 79 

China, similar to our result.  80 

The major sink of tropospheric CO is OH. Because of its high variability and short lifetime 81 

(about one second), it is difficult to assess the spatial and temporal variation of global OH through 82 

direct measurements (Spivakovsky et al. 2000; Lelieveld et al. 2004). Alternatively, Montzka et 83 

al. (2011) demonstrated small interannual variability of global OH for the period 1997-2007 by 84 

using the loss rate of MCF as a proxy. The measurements of MCF are assimilated in recent CO 85 

inversion studies to provide updated OH (e.g. Fortems-Cheiney et al. 2011, 2012; Yin et al. 2015), 86 

but the estimates are adversely affected by the sparse distribution of measurements.  87 

The objective of this work is to investigate the dominant reasons for the decreasing CO 88 

trend in the Northern Hemisphere, and to provide updated CO emission estimates for model studies. 89 

Our approach for estimating emissions is intended to reduce the effects of model errors of transport 90 

and chemistry, as well as bias errors in the data, on our conclusions about CO emissions; these are 91 

the primary uncertainties that affect CO emissions estimates. For example, bias errors as a function 92 

of latitude in MOPITT data can have a substantial impact on emissions estimates (Deeter et al., 93 

2014). Model errors of transport and chemistry will have variable and substantial effects on CO 94 

emissions in different parts of the globe due to seasonal and latitudinal variations in convection, 95 

advection, and boundary layer height (Jiang et al., 2013, 2015a, 2015b).  96 

 In order to suppress the influences from these systematic measurement and model 97 
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transport systematic biases, we performed a two-step inversion by combining sequential Kalman 98 

Filter (Jiang et al. 2013, 2015a, 2015b) with four-dimensional variational (4D-Var) assimilation 99 

(Henze et al. 2007) in this work, using the GEOS-Chem model. Instead of optimizing the CO 100 

concentrations and emissions simultaneously (e.g. Fortems-Cheiney et al. 2011, 2012; Yin et al. 101 

2015), our first step, the sequential Kalman Filter, modifies the atmospheric CO concentration 102 

directly to provide low bias initial (monthly) and boundary (hourly) conditions, whereas the second 103 

step (4D-Var) constrains CO emissions assuming perfect initial and boundary conditions. We also 104 

apply bias corrections to MOPITT and compare the surface CO concentrations obtained by 105 

constraining the model with either MOPITT profile, total column, or lower troposphere data to test 106 

which data type provides the most accurate comparison with independent surface in-situ 107 

measurements. 108 

This paper is organized as follows: in Section 2 we describe the MOPITT instruments and 109 

the GEOS-Chem model used in this work. In Section 3 we outline the inverse method. We then 110 

investigate the long-term variations of global tropospheric OH and CO emissions in Section 4, and 111 

we discuss the changes in tropospheric CO, and the contributions from emissions and 112 

meteorological conditions. Our conclusions follow in Section 5. 113 

2. Observations and Model 114 

2.1. MOPITT 115 

The MOPITT instrument was launched on December 18, 1999 on the NASA/Terra 116 

spacecraft. The satellite is in a sun-synchronous polar orbit of 705 km and crosses the equator at 117 

10:30 local time. The instrument makes measurements in a 612 km cross-track scan with a 118 

footprint of 22 km x 22 km, and provides global coverage every three days. The MOPITT data 119 

used here were obtained from the joint (J) retrieval (V6J) of CO from TIR (4.7µm) and NIR (2.3µm) 120 
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radiances using an optimal estimation approach (Worden et al., 2010; Deeter et al., 2011). The 121 

retrieved volume mixing ratios (VMR) are reported as layer averages of 10 pressure levels (surface, 122 

900, 800, 700, 600, 500, 400, 300, 200 and 100 hPa). The relationship between the retrieved CO 123 

profile and the true atmospheric state can be described as: 124 

𝑧 = 𝑧# + 𝐴 𝑧 − 𝑧# + 𝐺𝜖                                                       (1) 125 

where 𝑧#  is the MOPITT a priori CO profile, 𝑧 is the true atmospheric state, 𝐺𝜀 describes the 126 

retrieval error, and 𝐴 = 𝜕𝑧 𝜕𝑧 is the MOPITT averaging kernel matrix, which gives the sensitivity 127 

of the retrieval to the actual CO in the atmosphere. The MOPITT V6 data have been evaluated by 128 

Deeter et al. (2014) using aircraft measurements from HIAPER Pole-to-Pole Observations (HIPPO) 129 

and the National Oceanic and Atmospheric Administration (NOAA). For the TIR/NIR multi-130 

spectral retrievals, they found negative bias drift (-1.27%/year) at lower troposphere (800 hPa), 131 

and positive bias drift (1.64%/year) at upper troposphere (200 hPa). The bias drift in the total 132 

column is negligible (0.003%/year).  133 

Figure 1 shows the comparison between MOPITT CO retrievals and HIPPO aircraft 134 

measurements. The aircraft measurements are smoothed with MOPITT averaging kernels. The 135 

comparison demonstrates a negative bias of MOPITT CO retrievals in the tropics and a positive 136 

bias at the middle latitudes in the lower troposphere. Opposite bias is observed in the upper 137 

troposphere. Similar latitude dependent biases in remote sensing retrievals have been revealed for 138 

methane (CH4) observations from Scanning Imaging Absorption Spectrometer for Atmospheric 139 

Chartography (SCIAMACHY, Bergamaschi et al. 2007, 2009; Meirink et al. 2008), Greenhouse 140 

Gases Observing Satellite (GOSAT, Turner et al. 2015), and CO observation from MOPITT 141 

(version 4, Hooghiemstra et al. 2012). Similar to previous studies, we reduce the adverse effect of 142 

the latitude dependent bias by applying latitude dependent correction factors to MOPITT CO 143 
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retrievals, based on the black solid line in Figure 1, which represents a 4-order polynomial curve 144 

fitting (in a least-squares sense) for all data points. 145 

2.2. GEOS-Chem 146 

The GEOS-Chem global chemical transport model (CTM) [www.geos-chem.org] is driven 147 

by assimilated meteorological fields from the NASA Goddard Earth Observing System (GEOS-5) 148 

at the Global Modeling and data Assimilation Office. For the simulations in this work, various 149 

versions of GEOS meteorological fields are used, including GEOS-4 (2000-2003), GEOS-5 (2004-150 

2012) and GEOS-FP (2013-2015). We use version v35j of the GEOS-Chem adjoint, which is based 151 

on v8-02-01 of the forward GEOS-Chem model, with relevant updates through v9-02-01. Our 152 

analysis is conducted at a horizontal resolution of 4°x5° with 47 vertical levels and employs the 153 

CO-only simulation in GEOS-Chem, which uses archived monthly OH fields from the full 154 

chemistry simulation. The OH fields used in this work are from GEOS-Chem version v5-07-08, 155 

with a global annual mean OH concentration of 0.99x106 molec/cm3 (Evans et al. 2005). The 156 

potential long-term variation of global tropospheric OH is evaluated in section 4.  157 

The global anthropogenic emission inventory is from EDGAR 3.2FT2000 (Olivier et al., 158 

2001), but are replaced by the following regional emission inventories: the US Environmental 159 

Protection Agency National Emission Inventory (NEI) for 2008 in North America, the Criteria Air 160 

Contaminants (CAC) inventory for Canada, the Big Bend Regional Aerosol and Visibility 161 

Observational (BRAVO) Study Emissions Inventory for Mexico (Kuhns et al. 2003), the 162 

Cooperative Program for Monitoring and Evaluation of the Long-range Transmission of Air 163 

Pollutants in Europe (EMEP) inventory for Europe in 2000 (Vestreng et al. 2002) and the INTEX-164 

B Asia emissions inventory for 2006 (Zhang et al. 2009). Biomass burning emissions are based on 165 

the Global Fire Emission Database (GFED3, van der Werf et al. 2010). The a priori biomass 166 
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burning emissions in Sep-Nov 2006 were applied to Sep-Nov 2015 over Indonesia. Additional CO 167 

sources come from oxidation of methane and biogenic volatile organic compounds (VOCs) as 168 

described in previous studies (Kopacz et al. 2010; Jiang et al. 2013). The biogenic emissions are 169 

simulated using the Model of Emissions of Gases and Aerosols from Nature, version 2.0 170 

(MEGANv2.0, Guenther et al. 2006). The distribution of the annual mean CO emissions for 2001-171 

2015 is shown in Figure 2. The annual global sources are 892 Tg CO from fossil fuel, biofuel and 172 

biomass burning, 623 Tg CO from the oxidation of biogenic VOCs, and 876 Tg CO from the 173 

oxidation of CH4.  174 

3. Inversion Approach 175 

We use the 4D-var data assimilation system in GEOS-Chem (Henze et al. 2007) to 176 

constrain the CO sources. In this approach, we minimize the cost function defined as:   177 

𝐽 𝑥 = 𝐹- 𝑥 − 𝑧- .𝑆012 𝐹- 𝑥 − 𝑧- + 𝑥 − 𝑥# .
3

-42

𝑆512(𝑥 − 𝑥#) 178 

where 𝑥 is the state vector of CO emissions, N is the number of MOPITT observations that are 179 

distributed in time over the assimilation period, 𝑧-	is a given MOPITT measurement, and 𝐹(𝑥) is 180 

the forward model. The error estimates are assumed to be Gaussian, and are given by 𝑆0, the 181 

observational error covariance matrix, and 𝑆#, the a priori error covariance matrix, respectively. 182 

The Gaussian assumption excludes important systematic errors, such as biases in OH distribution, 183 

long-range transport and satellite retrievals in the cost function. Due to lack of meaningful 184 

information about the systematic errors, we assume a uniform observation error of 20% without 185 

spatial correlation. The combustion CO sources (fossil fuel, biofuel and biomass burning) and the 186 

oxidation source from biogenic VOCs are combined together, assuming a 50% uniform a priori 187 

error. We optimize the source of CO from the oxidation of CH4 separately as an aggregated global 188 
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source, assuming an a priori uncertainty of 25%.  189 

Because the 4D-var optimization scheme does not store the full Hessian matrix, we do not 190 

construct the a posteriori error covariance matrix, which is the inverse of the Hessian. As opposed 191 

to earlier studies using surface measurements, the high spatial density of measurements from 192 

satellite instruments can effectively suppress the contribution from random errors in the cost 193 

function, leaving systematic errors as the critical factor in the uncertainty. As shown by Heald et 194 

al. (2004), different assumptions about the inversion configuration can produce differences in the 195 

source estimates that are significantly larger than the a posteriori errors. 196 

Removing the bias in initial conditions is essential for inverse analysis, and can be 197 

performed with various data assimilation techniques. Model simulations driven by optimized 198 

emissions can provide good initial conditions (e.g. Gonzi et al. 2011; Bruhwiler et al. 2014; Deng 199 

et al. 2014; Houweling et al. 2014). Alternatively, tracer concentrations can be modified directly 200 

to avoid the effect from long-range transport error (e.g. Kopacz et al. 2009; Jiang et al. 2013, 201 

2015a). There are also efforts to optimize emissions and concentrations simultaneously (e.g. 202 

Fortems-Cheiney et al. 2011, 2012; Bergamaschi et al. 2013; Yin et al. 2015), however, the 203 

contributions from emissions and concentrations to model bias may be hard to be distinguished. 204 

Figure 3 shows the methodology of our assimilation system. Following our previous studies (Jiang 205 

et al. 2013, 2015a, 2015b), we produce initial conditions at the beginning of each monthly 206 

assimilation window by assimilating MOPITT data using a sequential Kalman filter. For the results 207 

presented here, the Kalman filter assimilation was carried out from March 1, 2000 to December 208 

31, 2015. 209 

Systematic errors have critical influences on inverse analysis. Jiang et al. (2013) found that 210 

the modeled CO concentration from a 10-day forecast simulation have large discrepancy with 211 
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assimilated CO fields, because of bias in model convective transport. Jiang et al. (2015a) 212 

demonstrated that free tropospheric CO is more susceptible to the influences of OH bias than lower 213 

tropospheric CO due to the process of long-range transport. On the other hand, Jiang et al. (2015b) 214 

indicated that regional inversions have more advantages than global inversions because the 215 

boundary conditions can be better controlled. They demonstrated that the systematic bias 216 

associated with North American CO emissions due to OH distribution can be reduced by up to 50% 217 

with optimized boundary conditions. Similar optimization on the boundary condition can also be 218 

employed in global model, for example, Pifster et al. (2005) constrained biomass burning CO 219 

emissions from boreal North America with optimized CO fields outside the impacted region.  220 

In order to reduce the effects of systematic errors, we designed a two-step inversion to 221 

enhance the contributions from local emissions to the discrepancy between model and data, while 222 

keeping the influence from long-range transport as low as possible due to sources of uncertainties 223 

(e.g. emission uncertainty in the upstream continent, uncertainties in the chemical sink and 224 

convective transport in the transport pathway), that are difficult to quantify. As shown in Figure 3, 225 

we define the ocean scene (red grids) as boundary conditions. In the first step of our inverse 226 

analysis, sequential Kalman filter assimilation, we directly modify CO concentrations without any 227 

change to emissions in order to provide an optimized CO fields as consistent as possible with 228 

MOPITT. In the second step, the optimized CO fields are used to rewrite CO concentrations over 229 

the ocean every hour, while 4D-var inversion is employed to constrain CO emissions, without any 230 

change on CO distribution over ocean. Only MOPITT data over land (white grids) were 231 

assimilated to constrain CO emissions in the second step. With the fixed/optimized boundary 232 

conditions, the global inversion system has been converted to a combination of several regional 233 

inversions. Consequently, the emission and transport errors from one continent (e.g. North 234 
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America) will not affect the emission estimation of another continent (e.g. Europe). 235 

4. Results and Discussion 236 

4.1. Long-term variation of global tropospheric OH 237 

The distribution of tropospheric OH has significant influence on the inverse analysis of CO 238 

emissions (Jiang et al. 2011). Various approaches have been employed to improve the OH 239 

distribution in previous studies. Jiang et al. (2013) assimilated MOPITT CO retrievals in full 240 

chemistry model simulation to provide updated OH fields. Miyazaki et al. (2015) demonstrated 241 

that assimilation of Tropospheric Emission Spectrometer (TES) O3, Ozone Monitoring Instrument 242 

(OMI) NO2, and MOPITT CO can provide a better description of tropospheric OH. There are also 243 

recent efforts that have assimilated surface in-situ MCF measurements (Fortems-Cheiney et al. 244 

2011, 2012; Yin et al. 2015). However, because of the uncertainties in model chemistry schemes, 245 

potential bias drifts in satellite remotely sensed observation, and sparse distribution of surface in-246 

situ measurements, OH abundances provided by these approaches may not be ideal for the 247 

estimation of long-term CO variation. 248 

Emissions of MCF are regulated by the Montreal Protocol agreement. The loss rate of MCF 249 

has become a good tool to evaluate the variation of tropospheric OH (e.g. Bousquet et al. 2005; 250 

Prinn et al. 2005; Montzka et al. 2011). Using the same approach as Montzka et al. (2011), we 251 

assess the variation of tropospheric OH in the period of 2001-2015. Figure 4a shows the locations 252 

of WDCGG sites with MCF measurements, and  Figure 4b shows the global mean MCF 253 

concentration in the past 15 years. Similar as Montzka et al. (2011), our result shows a exponential 254 

decrease of MCF concentration. The loss rate of MCF, derived from 12-month apart of monthly 255 

means [e.g., ln(MCFJan2007/MCFJan2006)] varies by 0.2% in the past 15 years (Figure 4c). The 256 

interannual variation is more likely due to the sparsity and discontinuity of measurements. 257 
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The small variation of loss rate of MCF demonstrates that the long-term variation of global 258 

mean OH distributions is negligible in the past 15 years. Consequently, the decreasing trend of 259 

tropospheric CO in North Hemisphere is driven by decreasing CO sources, rather than sinks. For 260 

this reason, the default monthly OH fields of GEOS-Chem model (Evans et al. 2005), without 261 

interannual variability, are used in this work to constrain the long-term variation of CO emissions. 262 

Because the abundances of tropospheric OH have large regional discrepancies (e.g. Jiang et al. 263 

2015a), it is possible that the actual OH is more variable at regions lacking MCF measurements 264 

(e.g. India and southeast Asia). Futhermore, the magnitude and seasonality of the default monthly 265 

OH fields could also have uncertainty. Consequently, the magnitude of CO emissions in our 266 

analysis may still be affected by biases in OH, although the two-step assimilation system is 267 

designed to suppress their influence. 268 

4.2. Long-term variation of global CO emissions 269 

In this work, we performed monthly inversions for the period of 2001-2015, using 270 

MOPITT column, profile and lower tropospheric profile (lowest three retrieval levels) data to 271 

investigate the influences associated with vertical sensitivity of satellite instrument and model 272 

transport error. Figure 5 shows the CO emission trends for 2001-2015 constrained by these 273 

different datasets. For anthropogenic sources, all three analysis show significant emission 274 

reduction from North America, Europe and China. The emission estimates constrained with 275 

MOPITT column and profile data demonstrate increasing CO emissions from India and Southeast 276 

Asia. Conversely, the emission estimate constrained with MOPITT lower tropospheric profile data 277 

shows a decreasing trend in this region, and this decreasing trend is also obtained by Yin et al. 278 

(2015). As shown in Jiang et al., (2013), errors in model convection in this region have a large 279 

effect on CO emissions estimates, and information about the vertical profile of CO has a stronger 280 
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influence on the results. 281 

For biomass burning sources, we found a negative trend over boreal North America, boreal 282 

Asia and South America, and a positive trend over Indonesia that is primarily due to the strong 283 

impacts of El Nino in 2006 and 2015 on biomass burning in this region (e.g. Field et al., 2016). 284 

Our results for biogenic VOCs are inconclusive; the emission estimates constrained with MOPITT 285 

column and profile data show moderate positive trends in the tropics, and slight negative trends in 286 

mid-latitude regions, whereas the emission estimate constrained with MOPITT lower tropospheric 287 

profile data shows a negative trend globally. 288 

Figure 6a shows the regional variation of anthropogenic emissions from the United States 289 

(US). The emission estimates constrained with MOPITT column and profile data match very well 290 

with the a priori emissions, whereas the emission estimate constrained with MOPITT lower 291 

tropospheric profile data is much higher. All three analyses demonstrate a significant emission 292 

reduction over our study period. As shown in Table 1, the total anthropogenic CO emission 293 

(constrained with MOPITT profile data) from US is 56.8 Tg in 2015, which is 35% lower than that 294 

in 2001 (87.7 Tg). Figure 7a shows the monthly mean CO concentrations from WDCGG stations 295 

in US, which demonstrates a similar decreasing trend as our analysis. The decreasing trend is 296 

consistent with the US Environmental Protection Agency (EPA) Emissions Trends Data 297 

(https://www.epa.gov/air-emissions-inventories/air-pollutant-emissions-trends-data), and other 298 

observation records for western US (Gratz et al. 2015), southeast US (Hidy et al. 2014) and North 299 

Atlantic (Kumar et al. 2013).  300 

Figure 6b shows the regional variation of anthropogenic emissions from Europe. All three 301 

analyses show an underestimation of a priori emissions, suggesting the CO emissions in the EMEP 302 

inventory are too low. Our results show that anthropogenic emissions decrease during the period 303 
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of 2001-2007, but are almost unchanged in the following years, which is consistent with the 304 

observations from WDCGG stations (Figure 7b). Recent studies (Hilboll et al. 2013; Schneider et 305 

al. 2015) showed that NO2 over Europe from SCIAMACHY is decreasing in the period of 2002-306 

2008, and almost unchanged in the period of 2008-2011. Henschel et al. (2015) indicated that the 307 

unchanged NO2 over Europe could be caused by European emissions that are failing to achieve 308 

the expected reduction standards. Because anthropogenic CO and NO2 share some of the same 309 

combustion sources, it is possible that the unchanged CO emission in our analysis is also due to a 310 

failure of emission controls.   311 

Figure 6c shows the regional variation of anthropogenic emissions from east China. We 312 

found Chinese anthropogenic emissions are increasing in the period of 2001-2004. Accompanied 313 

with the global economy recession, the total anthropogenic CO emission (constrained with 314 

MOPITT profile data) from east China decreases to 175.4 Tg in 2008, which is 15% lower than 315 

that in 2004 (205.6 Tg). Our analysis shows a temporary increase of Chinese emissions in 2009 316 

(185.9 Tg), followed by continuous decrease. The total Chinese anthropogenic CO emission is 317 

159.0 Tg in 2015, which is 7% lower than that in 2001 (170.4 Tg). Using surface in-situ 318 

measurements at Hateruma Island, Tohjima et al. (2014) constrained CO emissions from China 319 

for the period 1999-2010. They found Chinese CO emission increases from 1999-2004, and 320 

decreases since 2005. Using a “bottom-up” approach, recent studies (Zhao et al. 2012; Xia et al. 321 

2016) indicated that the growth trend of Chinese CO emissions has been changed since 2005 322 

because of improvements in energy efficiency and emission control regulations (e.g. Liu et al. 323 

2015). Figure 7c shows the observation records from 2 stations in the East China outflow region, 324 

which demonstrate similar variations. 325 

Figures 6d-6e show the regional variation of anthropogenic emissions from India and 326 
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Southeast Asia. The emission estimates constrained with MOPITT column and profile data 327 

demonstrate significant positive trend in our study period, whereas the emission estimate 328 

constrained with MOPITT lower tropospheric profile data shows a decreasing trend. Schneider et 329 

al. (2015) showed that NO2 over south Asia from SCIAMACHY is increasing in the period of 330 

2003-2011. Using OMI NO2 measurements, recent studies (e.g., Duncan et al. 2016) demonstrated 331 

that NO2 over India has a positive trend during 2005-2015. Observations from Cape Rama (CRI) 332 

station (Figure 7d) demonstrate that CO concentration in 2010-2013 is significantly higher than 333 

that in 2001-2002. For these reasons, we have more confidence in our results that indicate 334 

increasing anthropogenic CO emissions from India and Southeast Asia in the past 15 years. The 335 

trend based on the MOPITT lower-tropospheric data is incorrect because of model error in 336 

convection and boundary layer height in this dynamically varying region, and the negative bias 337 

drift in MOPITT lower tropospheric retrievals (Deeter et al., 2014). The total anthropogenic CO 338 

emission (constrained with MOPITT profile data) from India and Southeast Asia is 130.4 Tg in 339 

2015, which is 34% higher than that in 2001 (97.5 Tg). It should be noted that the inconsistency 340 

between our analysis with Yin et al. (2015) suggests more studies are needed for robust conclusion 341 

about the variation of anthropogenic CO emissions for this region. 342 

Although our inverse analysis (constrained with MOPITT profile data) suggests similar 343 

anthropogenic CO emissions from East China in 2008 and 2014, Figure 7c demonstrates that mean 344 

CO concentrations over the outflow region of East China are 6 ppb higher in 2014 compared to 345 

2008. Our previous study (Jiang et al. 2015c) indicated that anthropogenic emissions from India 346 

and southeast Asia have an important influence on pollutant concentrations in the east China 347 

outflow region. It is possible that the increase of CO concentration observed by WDCGG stations 348 

in this region is caused by the significant increase of anthropogenic CO emission from India and 349 
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southeast Asia. In the most recent 5 years (2011-2015), our results (constrained with MOPITT 350 

profile data) suggested a 20.5 Tg emission reduction from East China, and a 10.1 Tg emission 351 

increase from India and Southeast Asia. Assuming a fixed emission growth rate, projected 352 

anthropogenic CO emissions from India and Southeast Asia will overtake Chinese emissions in 353 

2020, resulting in  serious socioeconomic issues on both local and global scales. 354 

Figure 8 shows the regional variation of biomass burning emissions. There are significant 355 

decreasing trends in three regions (i.e. boreal North America, boreal Asia, and South America). 356 

Our results show high biomass burning emissions from boreal North America (mainly Alaska and 357 

western Canada) in 2004 (Figure 8a), which have been reported by previous studies (e.g. Pfister et 358 

al. 2005; Turquety et al. 2007), and also from  boreal Asia during 2001-2003 (Figure 8b) due to 359 

significant fire activity in Siberia (e.g., Yurganov et al., 2005,  Stroppiana et al., 2010). For South 360 

America (Figure 8c), we found higher biomass burning emissions in the periods of 2004-2007 and 361 

2010, consistent with fire activity reported in previous studies (e.g. Hooghiemstra et al. 2012; 362 

Bloom et al. 2015). 363 

Figure 8d shows the regional variation of biomass burning emissions from Africa. The fire 364 

activities in Africa demonstrates obvious seasonality: peak in boreal winter for Northern 365 

Hemispheric Africa, and in austral winter for Southern Hemispheric Africa. Similar to previous 366 

studies (e.g. Chevallier et al. 2009; Tosca et al. 2015), there is no obvious emission trend in Africa 367 

in the past 15 years. This is also consistent with the burned area trends described by Andela et al. 368 

(2014) which show opposite  directions for Northern Africa (decreasing) versus Southern Africa 369 

(increasing) and would have cancelling effects in the trend for the continent as a whole.   370 

Our results exhibit two strong biomass burning events in Indonesia, 2006 and 2015, 371 

individually (Figure 8e). Previous studies (e.g. Logan et al. 2008; Zhang et al. 2011; Worden et al. 372 
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2013b, 2013c, Field et al., 2016) demonstrate the direct relationship between strong Indonesian 373 

fires and El Niño. More recent studies (Huang et al. 2014; Inness et al. 2015) confirm low biomass 374 

burning activities in Indonesia in the period of 2007-2012. CO emissions from the Indonesian fires 375 

associated with the 2015 El Niño were 92 Tg, (for October, 2015, as constrained with MOPITT 376 

profile data), and were about three times higher than the October 2006 El Nino driven fire 377 

emissions (32 Tg). Not including the 2015 El Niño driven fires,  our analysis indicates a negative 378 

trend of global biomass burning emissions in the past 15 years, as shown in Figure11f. 379 

4.3. Changes in tropospheric CO during 2001-2015 380 

In this section, we evaluate our inversion results using independent long-term surface in-381 

situ measurements from WDCGG stations. Figure 9a shows the annual trend of surface CO 382 

concentration for 2001 – 2015 from WDCGG sites, and from model simulations driven with a 383 

priori emissions. Most WDCGG sites exhibit negative trends in the past 15 years, confirming the 384 

decreasing trend of global tropospheric CO, which is consistent with satellite observations (e.g. 385 

Warner et al. 2013; Worden et al. 2013). There are also stations with positive trends, for example, 386 

Tae-ahn Peninsula (TAP, Korea), Ascension Island (ASC, equtorial Atlantic Ocean), Cape Rama 387 

(CRI, India),  Bukit Koto Tabang (BKT, Indonesia) and Cape Grim (CGO, Australia). Globally, 388 

the a priori model simulation is in reasonable agreement with WDCGG measurements: both show 389 

negative trends in middle/high latitude, and positive trends in some tropical regions. However, 390 

there are noticable discrepancies, for example, the surface observation from Yonagunijima (YON, 391 

east China sea) shows a negative trend in our study period, suggesting decreasing trend from 392 

Chinese CO emission, whereas the a priori simulation demonstrates significant positive trend. 393 

Figure 9b-9d show the model simulations driven with a posteriori emissions. The a 394 

posteriori emissions constrained with MOPITT lower tropospheric profile data (Figure 9d) results 395 
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in unrealistic large CO reduction, which could be caused by the negative bias drift of MOPITT 396 

retrievals at lower troposphere (Deeter et al. 2014) and the influence from possible variability in 397 

model convective transport. The a posteriori emissions constrained with MOPITT column and 398 

profile data have similar comparisons. For example, both of them suggest a negative trend over 399 

east China, consistent with observations from YON, and positive trend over northeast Asia, 400 

consistent with observations from TAP. 401 

In order to better compare the discrepancy between model simulation and surface 402 

observations, Figure 9e-9g show the improvement due to a posteriori emissions, derived by 403 

abs(Trendaposteriori – TrendWDCGG) - abs(Trendapriori - TrendWDCGG). Blue (red) means the a posteriori 404 

emissions improves (degrades) the agreement with WDCGG measurements compared to the 405 

simulated surface CO using a priori emissions, while white indicates no change from the prior. As 406 

shown in Figure 9f, the CO emissions constrained with MOPITT profile data improved the model 407 

simulation for most WDCGG sites in the Northern Hemisphere. The a posteriori emissions 408 

constrained with MOPITT column data are somewhat worse, particularly over Europe, while CO 409 

emissions constrained with MOPITT profile data over Europe give improved comparisons to 410 

WDCGG surface CO measurements. Worden et al. (2010) demonstrated that the degrees of 411 

freedom for signal (DFS) of MOPITT multi-spectral profile retrievals (TIR+NIR) is about 1.5-2.0 412 

over land, which is reduced to about 1 DFS when converted to a total column.  This reduction in 413 

vertical information in MOPITT column data can affect the the reliability of inverse analysis 414 

results (Jiang et al., 2015a). It should be noticed that the vertical correlation in model simulation 415 

is not considered in our assimilation, which could be another possible reason for this discrepancy. 416 

Figure 10a-10d show the long-term mean value of surface CO concentration for 2001 – 417 

2015 from WDCGG sites, and model simulations driven with a priori and a posteriori emissions. 418 
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All simulations provide similar results for long-term mean value. Figure 10e-10g show the 419 

improvement due to a posteriori emissions, derived by abs(COaposteriori – COWDCGG) - abs(COapriori 420 

- COWDCGG). Figure 10f demonstrates that CO emissions constrained with MOPITT profile data 421 

improved the model simulation in about half of the sites in the Northern Hemisphere, whereas the 422 

a posteriori emissions constrained with MOPITT column data are somewhat worse (Figure 10e). 423 

Evaluating modeled tracer concentrations using surface in-situ measurements is more challenging 424 

than evaluating long-term trends. In a recent study, Schnell et al. (2015) evaluate surface O3 425 

concentrations simulated by multi-models for North America and Europe. They found most 426 

models can provide good simulations for the patterns of O3 but cannot reproduce the magnitude. 427 

Important sources of uncertainty include the representation error (e.g. Chang et al. 2015; Kharol 428 

et al. 2015) and vertical mixing of boundary layer (e.g. Castellanos et al. 2011; Cuchiara et al. 429 

2014).  430 

Because our a posteriori simulation, particularly using emissions constrained with 431 

MOPITT profile data, results in significant improvement in the long-term trend, and moderate 432 

improvement in the mean value, we believe these a posteriori estimates provide a better description 433 

for the long-term variation of global CO emissions. A remaining question is to explore how 434 

changes in meterological conditions affect the long-term variation. By fixing CO emissions to 435 

2001 levels, Figure 11a-11b show the long-term trend of modeled surface and column CO during 436 

2001-2015, due only to changes in meterological conditions. At the surface level (Figure 11a), we 437 

found changes in meterology result in a moderate positive trend in the Northern Hemisphere, 438 

particularly, over northeast Asia, consistent with observation records from the TAP station; and 439 

significant positive trend in tropics, consistent with observation record from ASC station. On the 440 

other hand, the influence of meterological conditions on column CO (Figure 11b) is much weaker. 441 
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The discrepancy between surface and column CO suggests the possible contribution from variable 442 

convective transport, which could be associated with changes in the frequency of deep convection 443 

(Tan et al. 2015) or the change from El Niño to La Niña in our study period (Andela et al. 2014). 444 

In order to assess the influence of various versions of the meterological fields (i.e. GEOS-4, GEOS-445 

5 and GEOS-FP) on the trend analysis, we reploted (not shown) Figure 11a-11b for the period 446 

2004-2012 with GEOS-5 meterological fields, and obtained similar significant positive trend in 447 

tropics, which suggests limited influence from meterological field version differences on the trend 448 

analysis.  449 

Figure 11c-11h show the variation of global tropospheric CO due to changes in emissions. 450 

Yin et al. (2015) indicated that the negative trend of tropospheric CO in the Northern Hemisphere 451 

is driven by decreasing anthropogenic emissions from North America, Europe and China. Along 452 

with reductions in anthropogenic emissions (Figure 11c, 11d), we found the decrease of biomass 453 

burning emissions from boreal North America and boreal Asia (Figure 11e, 11f) to be an important 454 

factor for this negative trend. In constrast to the emission reduction from North America, Europe 455 

and China, we found increasing anthropogenic emissions from India and southeast Asia, which 456 

result in a pronounced positive trend of tropospheric CO, while Yin et al. (2015) obtain a negative 457 

trend for this region. This discrepancy requires further study and we will need to test the relative 458 

importance of the primary differences in our methods, i.e., models and inversion approaches, 459 

climatological OH (this study) vs. assimilated surface measurements of CH4 and MCF to update 460 

OH (Yin et al.) and the use of MOPITT profile vs. column CO retrievals (Yin et al., assimilate 461 

only column CO). 462 

5. Summary 463 

The objective of this work is to investigate the dominant reasons for the observed variation 464 
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of global tropospheric CO over the past 15 years, and to provide updated CO emission estimates 465 

for model studies. In particular, we use a combination of MOPITT CO measurements and surface 466 

measurements of MCF to evaluate changes in the sources and sinks of atmospheric CO, with the 467 

goal of explaining the observed decrease in CO concentrations. Our two-step approach for 468 

estimating global CO emissions mitigates the effects of model errors from transport and chemistry, 469 

as well as measurement bias error.  470 

Using the same approach as Montzka et al. (2011), we assess the variation of tropospheric 471 

OH (the primary CO sink) in the period of 2001-2015 using MCF measurements from WDCGG 472 

stations. Our result demonstrates negligible variation of global tropospheric OH in the past 15 473 

years, and consequently we suggest that the global sink of CO due to chemical loss through OH 474 

has not likely changed during this time period. We therefore expect the decreasing trend of 475 

tropospheric CO in North hemisphere (e.g. Warner et al. 2013; Worden et al. 2013; Gratz et al. 476 

2015) to be driven by decreasing CO sources. Total anthropogenic CO emissions from the US 477 

were 56.8 Tg in 2015, which are 35% lower than emissions in 2001 (87.7 Tg). Total anthropogenic 478 

CO emissions from East China were 159.0 Tg in 2015, which are 7% lower than 2001 emissions 479 

(170.4 Tg) and 23% lower than 2004 emissions (205.6 Tg). This pronounced decrease of emissions 480 

from US and China is an indication of progress for fuel efficiency and emission control regulations. 481 

Conversely, our results demonstrate that anthropogenic emissions from Europe decreased from 482 

2001 to 2007 but are almost unchanged during 2008-2015. We also found a significant increase of 483 

anthropogenic emissions for India and Southeast Asia. The total anthropogenic CO emission from 484 

India and southeast Asia is 130.4 Tg in 2015, which is 34% higher than that in 2001 (97.5 Tg). 485 

Assuming the same emission growth rate as 2011-2015, we expect that anthropogenic CO 486 

emissions from India and Southeast Asia will be larger than Chinese emissions by 2020. 487 
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In a recent study, Yin et al. (2015) indicated that the decreasing tropospheric CO in the 488 

Northern Hemisphere is caused by the decrease of anthropogenic emissions from North America, 489 

Europe and China. We find that a decrease of biomass burning emissions from boreal North 490 

America and boreal Asia is also an important contributor for the negative trend. Globally, our 491 

analysis indicates a negative trend of biomass burning emissions in the past 15 years, except in 492 

Indonesia due to the strong biomass burning event in 2015 associated with El Niño. Our results 493 

demonstrate a significant decrease of biomass burning emissions from South America, which 494 

could be associated with the reduction of deforestation in Brazil (Reddington et al. 2015), and the 495 

predominant change from El Nino to La Nina in our study period (Andela et al. 2014). For Africa, 496 

there is no obvious CO emission trend in the past 15 years, consistent with previous results 497 

(Chevallier et al. 2009; Tosca et al. 2015; Andela et al., 2014). Our results are inconclusive in 498 

characterizing the CO sources from oxidation of biogenic VOCs. More efforts are needed in the 499 

future to better understand the mechanism for tropical CO emissions. 500 

Our analysis highlights the importance of space-based instruments for monitoring changes 501 

in global pollutant emissions. Our results demonstrate successful emission controls in US and 502 

China over the past 15 years, and suggest that emission controls in Europe may need re-evaluation. 503 

We also recommend more efforts in the future to better understand the regional and global effects 504 

of increasing pollutant emissions from India and Southeast Asia. 505 
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Table 1. Annual total anthropogenic CO emission in different regions, from 2001 to 2015, 810 
constrained with MOPITT column, profile and lower tropospheric data. The region definition is 811 
shown in Figure 2e. 812 
 813 
Figure 1. Difference between MOPITT CO retrievals and HIPPO aircraft measurements. The 814 
aircraft measurements are smoothed with MOPITT averaging kernels. The black solid line shows 815 
the 4-order polynomial curve fitting, which is used to correct MOPITT data in this work. 816 
 817 
Figure 2. (a-d) Mean a priori CO emissions from combustion sources and the oxidation of biogenic 818 
VOCs and CH4 from 2001 to 2015. The unit is 1012 molec/cm2/sec. (e-f) Region definitions for (e) 819 
anthropogenic and (f) biomass burning sources. 820 
 821 
Figure 3. Schematic diagram for methodology of the assimilation system. Sequential Kalman 822 
Filter was run from March 1 2000 to December 31 2015 to produce the optimized initial conditions 823 
(monthly) and boundary conditions (hourly). Monthly 4-DVAR inversions were performed with 824 
the optimized initial conditions. Only MOPITT data over land (white grids) were assimilated in 825 
the 4-DVAR inversions, while the CO abundances over ocean (red grids) were defined as 826 
boundaries and rewritten using the optimized hourly CO fields from Kalman Filter. 827 
 828 
Figure 4. (a) Locations of WDCGG sites with MCF measurements. (b) Global mean MCF 829 
concentration. (c) Exponential loss rate of MCF, derived from 12-month apart of monthly means 830 
[e.g., ln(MCFJan2007/MCFJan2006)]. The black solid line shows the 12-month mean value. 831 
 832 
Figure 5. CO emission trends for 2001 – 2015, constrained with MOPITT column, profile and 833 
lower tropospheric profile data. The months dominated by biomass burning emissions are excluded 834 
from the trend calculation for anthropogenic and biogenic VOC emissions. 835 
 836 
Figure 6. 12-month mean value of anthropogenic CO emissions (with unit Tg/month) for 2001 – 837 
2015: a priori emission (green) and a posteriori emissions constrained with MOPITT column data 838 
(black), MOPITT profile data (blue) and MOPITT lower tropospheric profile data (red). The green 839 
dash line shows the monthly a priori anthropogenic CO emissions. The region definition is shown 840 
in Figure 2e. 841 
 842 
Figure 7. Monthly mean CO concentrations (green) and 12-month mean value (black) from 843 
WDCGG stations for 2001 – 2015. (a) 15-station average in United States (b) 20-station average 844 
in Europe (c) 2-station (YON and JMA) average in east China outflow (4) Cape Rama (CRI) in 845 
India. 846 
 847 
Figure 8. Monthly biomass burning CO emissions (with unit Tg/month) for 2001 – 2015: a priori 848 
emission (green) and a posteriori emissions constrained with MOPITT column data (black), 849 
MOPITT profile data (blue) and MOPITT lower tropospheric profile data (red). The region 850 
definition is shown in Figure 2f. 851 
 852 
Figure 9. Panels (a-d): long-term trend (annual) of surface CO concentration for 2001 – 2015 from 853 
WDCGG sites, and model simulations driven with a priori and a posteriori emissions. Panels (e-854 
g): effect of a posteriori emissions, derived by abs(Trendaposteriori – TrendWDCGG) - abs(Trendapriori - 855 
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TrendWDCGG); blue (red) means the a posteriori emissions improves (degrades) the agreement with 856 
WDCGG measurements compared to the a priori emissions, while white indicates no change from 857 
the priori. Only stations with more than 10 year observations (the time range between the first and 858 
last observations) during 2001-2015 are included. 859 
 860 
Figure 10. Panels (a-d): long-term mean value of surface CO concentration for 2001 – 2015 from 861 
WDCGG sites, and model simulations driven with a priori and a posteriori emissions. Panels (e-862 
g): effect of a posteriori emissions, derived by abs(COaposteriori – COWDCGG) - abs(COapriori - 863 
COWDCGG); blue (red) means the a posteriori emissions improves (degrades) the agreement with 864 
WDCGG measurements compared to the a priori emissions, while white indicates no change from 865 
the priori. Only stations with more than 10 year observations (the time range between the first and 866 
last observations) during 2001-2015 are included. 867 
 868 
Figure 11. Long-term trend (annual) of modeled surface and column CO for 2001 – 2015 with (a-869 
b) all emission sources are fixed at 2001 level. (c-d) variable anthropogenic emissions; (e-f) 870 
variable biomass burning emissions; (g-h) variable biogenic VOCs emissions; The variable 871 
emissions are constrained with MOPITT profile data.  872 
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 873 

Table 1. Annual total anthropogenic CO emission in different regions, from 2001 to 2015, 874 
constrained with MOPITT column, profile and lower tropospheric data. The region definition 875 
is shown in Figure 2e. 876 
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 907 

 908 
Figure 1. Difference between MOPITT CO retrievals and HIPPO aircraft measurements. The 909 
aircraft measurements are smoothed with MOPITT averaging kernels. The black solid line 910 
shows the 4-order polynomial curve fitting, which is used to correct MOPITT data in this work. 911 
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 919 
Figure 2. (a-d) Mean a priori CO emissions from combustion sources and the oxidation of 920 
biogenic VOCs and CH4 from 2001 to 2015. The unit is 1012 molec/cm2/sec. (e-f) Region 921 
definitions for (e) anthropogenic and (f) biomass burning sources. 922 

 923 

Figure 3. Schematic diagram for methodology of the assimilation system. Sequential Kalman 924 
Filter was run from March 1 2000 to December 31 2015 to produce the optimized initial 925 
conditions (monthly) and boundary conditions (hourly). Monthly 4-DVAR inversions were 926 
performed with the optimized initial conditions. Only MOPITT data over land (white grids) 927 
were assimilated in the 4-DVAR inversions, while the CO abundances over ocean (red grids) 928 
were defined as boundaries and rewritten using the optimized hourly CO fields from Kalman 929 
Filter. 930 
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 931 

Figure 4. (a) Locations of WDCGG sites with MCF measurements. (b) Global mean MCF 932 
concentration. (c) Exponential loss rate of MCF, derived from 12-month apart of monthly 933 
means [e.g., ln(MCFJan2007/MCFJan2006)]. The black solid line shows the 12-month mean value. 934 
 935 

 936 

Figure 5. CO emission trends for 2001 – 2015, constrained with MOPITT column, profile and 937 
lower tropospheric profile data. The months dominated by biomass burning emissions are 938 
excluded from the trend calculation for anthropogenic and biogenic VOC emissions. 939 
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 940 

 941 
Figure 6. 12-month mean value of anthropogenic CO emissions (with unit Tg/month) for 2001 942 
– 2015: a priori emission (green) and a posteriori emissions constrained with MOPITT column 943 
data (black), MOPITT profile data (blue) and MOPITT lower tropospheric profile data (red). 944 
The green dash line shows the monthly a priori anthropogenic CO emissions. The region 945 
definition is shown in Figure 2e. 946 
 947 
 948 

 949 
Figure 7. Monthly mean CO concentrations (green) and 12-month mean value (black) from 950 
WDCGG stations for 2001 – 2015. (a) 15-station average in United States (b) 20-station 951 
average in Europe (c) 2-station (YON and JMA) average in east China outflow (4) Cape Rama 952 
(CRI) in India. 953 
 954 
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 968 
Figure 8. Monthly biomass burning CO emissions (with unit Tg/month) for 2001 – 2015: a 969 
priori emission (green) and a posteriori emissions constrained with MOPITT column data 970 
(black), MOPITT profile data (blue) and MOPITT lower tropospheric profile data (red). The 971 
region definition is shown in Figure 2f. 972 
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 984 
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 987 
 988 

 989 

Figure 9. Panels (a-d): long-term trend (annual) of surface CO concentration for 2001 – 2015 990 
from WDCGG sites, and model simulations driven with a priori and a posteriori emissions. 991 
Panels (e-g): effect of a posteriori emissions, derived by abs(Trendaposteriori – TrendWDCGG) - 992 
abs(Trendapriori - TrendWDCGG); blue (red) means the a posteriori emissions improves (degrades) 993 
the agreement with WDCGG measurements compared to the a priori emissions, while white 994 
indicates no change from the priori. Only stations with more than 10 year observations (the 995 
time range between the first and last observations) during 2001-2015 are included. 996 
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 1009 

Figure 10. Panels (a-d): long-term mean value of surface CO concentration for 2001 – 2015 1010 
from WDCGG sites, and model simulations driven with a priori and a posteriori emissions. 1011 
Panels (e-g): effect of a posteriori emissions, derived by abs(COaposteriori – COWDCGG) - 1012 
abs(COapriori - COWDCGG); blue (red) means the a posteriori emissions improves (degrades) the 1013 
agreement with WDCGG measurements compared to the a priori emissions, while white 1014 
indicates no change from the priori. Only stations with more than 10 year observations (the 1015 
time range between the first and last observations) during 2001-2015 are included. 1016 
 1017 
 1018 
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 1033 
Figure 11. Long-term trend (annual) of modeled surface and column CO for 2001 – 2015 with 1034 
(a-b) all emission sources are fixed at 2001 level. (c-d) variable anthropogenic emissions; (e-f) 1035 
variable biomass burning emissions; (g-h) variable biogenic VOCs emissions; The variable 1036 
emissions are constrained with MOPITT profile data.  1037 
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