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Abstract 29 

Long-term measurements from satellites and surface stations have demonstrated a 30 

decreasing trend of tropospheric carbon monoxide (CO) in the Northern Hemisphere over the past 31 

decade. Likely explanations for this decrease include changes in anthropogenic, fires, and/or 32 

biogenic emissions or changes in the primary chemical sink hydroxyl radical (OH). Using 33 

remotely sensed CO measurements from the Measurement of Pollution in the Troposphere 34 

(MOPITT) satellite instrument, in-situ methyl chloroform (MCF) measurements from World Data 35 

Centre for Greenhouse Gases (WDCGG), and the adjoint of the GEOS-Chem model, we estimate 36 

the change in global CO emissions from 2001-2015. We show that the loss rate of MCF varies by 37 

0.2% in the past 15 years, indicating that changes in global OH distributions do not explain the 38 

recent decrease in CO. Our two-step inversion approach for estimating CO emissions is intended 39 

to mitigate the effect of bias errors in the MOPITT data as well as model errors in transport and 40 

chemistry, which are the primary uncertainties when quantifying CO emissions using these 41 

remotely sensed data. Our results confirm that the decreasing trend of tropospheric CO in the 42 

Northern Hemisphere is due to decreasing CO emissions from anthropogenic and biomass burning 43 

sources. In particular, we find decreasing CO emissions from the United States and China in the 44 

past 15 years, unchanged anthropogenic CO emissions from Europe since 2008. We find 45 

decreasing trends of biomass burning CO emissions from boreal North America, boreal Asia and 46 

South America, but little change over Africa. In contrast to prior results we find positive trend in 47 

CO emissions is likely for India and southeast Asia. 48 

 49 

1. Introduction 50 

Tropospheric CO is a product of incomplete combustion and a byproduct of the oxidation 51 
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of hydrocarbons. It plays a key role in atmospheric chemistry because it is the main sink for OH, 52 

and an important precursor for tropospheric ozone (O3). Recent studies demonstrated significant 53 

change in tropospheric CO abundance in the past decade. Using Atmospheric Infrared Sounder 54 

(AIRS) CO measurements, Warner et al. (2013) indicated that Northern Hemispheric CO mixing 55 

ratio decreased by 1.28 ppb/year in the period of 2003-2012. Worden et al. (2013) demonstrated 56 

Northern Hemispheric CO column measurements from MOPITT show a decrease of ~0.92%/year 57 

in the period of 2000-2011. Using observations from Mt. Bachelor Observatory, Gratz et al. (2015) 58 

also show a negative trend of CO concentration by 1.9%/year in the period of 2004-2013. 59 

However, the reason for the large variation of tropospheric CO abundance is still unclear; for 60 

example, Strode et al. (2016) found decreases in modeled CO abundance over North America and 61 

Europe, but increases over China, based on bottom-up emissions.  62 

There is currently much effort focused on accurately quantifying emissions of CO. For 63 

fossil fuels and biofuels, energy consumption statistics and emission factors are usually used to 64 

construct the emission inventories (e.g. Streets et al. 2006; Ohara et al. 2007; Zhang et al. 2009; 65 

Zhao et al. 2012). Biomass burning emissions are commonly calculated as the product of burned 66 

area, fuel loads, combustion completeness and emission factors (e.g. van der Werf et al. 2006, 67 

2010; van Leeuwen and van der Werf 2011). Because of the large uncertainties in the emission 68 

inventories, space-based remotely sensed measurements and surface/aircraft in-situ observations 69 

have been assimilated to provide “top-down” constraints on CO emissions (e.g., Arellano et al., 70 

2006; Chevallier et al. 2009; Jones et al., 2009; Kopacz et al., 2010; Jiang et al., 2011; Fortems-71 

Cheiney et al. 2011; Hooghiemstra et al. 2012; Miyazaki et al. 2015). In a recent study, Yin et al. 72 

(2015) constrained global CO emissions for the period 2002-2011 to investigate the possible 73 

reasons for the decreasing CO abundance in the Northern Hemisphere. Using MOPITT column 74 
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data (version 6J) over the whole globe, Yin et al. (2015) indicate that the negative trend in the 75 

Northern Hemisphere is driven by decreasing anthropogenic emissions from North America, 76 

Europe and China.  77 

The major sink of tropospheric CO is OH. Because of its high variability and short lifetime 78 

(about one second), it is difficult to assess the spatial and temporal variation of global OH through 79 

direct measurements (Spivakovsky et al. 2000; Lelieveld et al. 2004). Alternatively, Montzka et 80 

al. (2011) demonstrated small interannual variability of global OH for the period 1997-2007 by 81 

using the loss rate of MCF as a proxy. The measurements of MCF are assimilated in recent CO 82 

inversion studies to provide updated OH (e.g. Fortems-Cheiney et al. 2011, 2012; Yin et al. 2015), 83 

but the estimates are adversely affected by the sparse distribution of measurements.  84 

The objective of this work is to investigate the dominant reasons for the decreasing CO 85 

trend in the Northern Hemisphere, and to provide updated CO emission estimates for model studies. 86 

Using methods and results from our prior work, our approach for estimating emissions is intended 87 

to reduce the effects of model errors of transport and chemistry, as well as bias errors in the data, 88 

on our conclusions about CO emissions; these are the primary uncertainties that affect CO 89 

emissions estimates. For example, bias errors as a function of latitude in MOPITT data can have a 90 

substantial impact on emissions estimates (Deeter et al., 2014). Model errors of transport and 91 

chemistry will have variable and substantial effects on CO emissions in different parts of the globe 92 

due to seasonal and latitudinal variations in convection, advection, and boundary layer height 93 

(Jiang et al., 2013, 2015a, 2015b).  94 

 In order to reduce the influences from these measurement and model transport systematic 95 

errors, we performed a two-step inversion by combining sequential Kalman Filter (Jiang et al. 96 

2013, 2015a, 2015b) with four-dimensional variational (4D-Var) assimilation (Henze et al. 2007) 97 
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in this work, using the GEOS-Chem model. Instead of optimizing the CO concentrations and 98 

emissions simultaneously (e.g. Fortems-Cheiney et al. 2011, 2012; Yin et al. 2015), our first step, 99 

the sequential Kalman Filter, modifies the atmospheric CO concentration directly to provide low 100 

bias initial (monthly) and boundary (hourly) conditions, whereas the second step (4D-Var) 101 

constrains CO emissions assuming perfect initial and boundary conditions. We also apply bias 102 

corrections to MOPITT and compare the surface CO concentrations obtained by constraining the 103 

model with either MOPITT profile, total column, or lower troposphere data to test which data type 104 

provides the most accurate comparison with independent surface in-situ measurements. 105 

This paper is organized as follows: in Section 2 we describe the MOPITT instruments and 106 

the GEOS-Chem model used in this work. In Section 3 we outline the inverse method. We then 107 

investigate the long-term variations of global tropospheric OH and CO emissions in Section 4, and 108 

we discuss the changes in tropospheric CO, and the contributions from emissions and 109 

meteorological conditions. Our conclusions follow in Section 5. 110 

2. Observations and Model 111 

2.1. MOPITT 112 

The MOPITT instrument was launched on December 18, 1999 on the NASA/Terra 113 

spacecraft. The satellite is in a sun-synchronous polar orbit of 705 km and crosses the equator at 114 

10:30 local time. The instrument makes measurements in a 612 km cross-track scan with a 115 

footprint of 22 km x 22 km, and provides global coverage every three days. The MOPITT data 116 

used here were obtained from the joint (J) retrieval (V6J) of CO from TIR (4.7µm) and NIR (2.3µm) 117 

radiances using an optimal estimation approach (Worden et al., 2010; Deeter et al., 2011). The 118 

retrieved volume mixing ratios (VMR) are reported as layer averages of 10 pressure levels (surface, 119 

900, 800, 700, 600, 500, 400, 300, 200 and 100 hPa). The relationship between the retrieved CO 120 
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profile and the true atmospheric state can be described as: 121 

𝑧 = 𝑧# + 𝐴 𝑧 − 𝑧# + 𝐺𝜖                                                       (1) 122 

where 𝑧#  is the MOPITT a priori CO profile, 𝑧 is the true atmospheric state, 𝐺𝜀 describes the 123 

retrieval error, and 𝐴 = 𝜕𝑧 𝜕𝑧 is the MOPITT averaging kernel matrix, which gives the sensitivity 124 

of the retrieval to the actual CO in the atmosphere. The MOPITT V6 data have been evaluated by 125 

Deeter et al. (2014) using aircraft measurements from HIAPER Pole-to-Pole Observations (HIPPO) 126 

and the National Oceanic and Atmospheric Administration (NOAA). For the TIR/NIR multi-127 

spectral retrievals, they found negative bias drift (-1.27%/year) at lower troposphere (800 hPa), 128 

and positive bias drift (1.64%/year) at upper troposphere (200 hPa). The bias drift in the total 129 

column is negligible (0.003%/year). Following our previous studies (Jiang et al. 2013; 2015a; 130 

2015b), we reject MOPITT data with CO column amounts less than 5x1017 molec/cm2 and with 131 

low cloud observations. The threshold of 5x1017 molec/cm2 was selected to prevent unrealistically 132 

low CO columns from adversely impacting the inversion analyses. Since the NIR radiances 133 

measure reflected solar radiation, only daytime data are considered here. 134 

Figure 1 shows the comparison between MOPITT CO retrievals and HIPPO aircraft 135 

measurements. The aircraft measurements are smoothed with MOPITT averaging kernels. The 136 

comparison demonstrates a negative bias of MOPITT CO retrievals in the tropics and a positive 137 

bias at the middle latitudes in the lower troposphere. Opposite bias is observed in the upper 138 

troposphere. Similar latitude dependent biases in remote sensing retrievals have been revealed for 139 

methane (CH4) observations from Scanning Imaging Absorption Spectrometer for Atmospheric 140 

Chartography (SCIAMACHY, Bergamaschi et al. 2007, 2009; Meirink et al. 2008), Greenhouse 141 

Gases Observing Satellite (GOSAT, Turner et al. 2015), and CO observation from MOPITT 142 

(version 4, Hooghiemstra et al. 2012). Similar to previous studies, we reduce the adverse effect of 143 
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the latitude dependent bias by applying latitude dependent correction factors to MOPITT CO 144 

retrievals, based on the black solid line in Figure 1, which represents a 4-order polynomial curve 145 

fitting (in a least-squares sense) for all data points. It should be noted that the possible seasonal 146 

variations of MOPITT retrieval biases are not included in our analysis because we are focusing on 147 

the interannual variation of CO emissions. 148 

2.2. GEOS-Chem 149 

The GEOS-Chem global chemical transport model (CTM) [www.geos-chem.org] is driven 150 

by assimilated meteorological fields from the NASA Goddard Earth Observing System (GEOS-5) 151 

at the Global Modeling and data Assimilation Office. For the simulations in this work, various 152 

versions of GEOS meteorological fields are used, including GEOS-4 (2000-2003), GEOS-5 (2004-153 

2012) and GEOS-FP (2013-2015). We use version v35j of the GEOS-Chem adjoint, which is based 154 

on v8-02-01 of the forward GEOS-Chem model, with relevant updates through v9-02-01. Our 155 

analysis is conducted at a horizontal resolution of 4°x5° with 47 vertical levels and employs the 156 

CO-only simulation in GEOS-Chem, which uses archived monthly OH fields from the full 157 

chemistry simulation. The OH fields used in this work are from GEOS-Chem version v5-07-08, 158 

with a global annual mean OH concentration of 0.99x106 molec/cm3 (Evans et al. 2005). The 159 

potential long-term variation of global tropospheric OH is evaluated in section 4.  160 

The global anthropogenic emission inventory is from EDGAR 3.2FT2000 (Olivier et al., 161 

2001), but are replaced by the following regional emission inventories: the US Environmental 162 

Protection Agency National Emission Inventory (NEI) for 2008 in North America, the Criteria Air 163 

Contaminants (CAC) inventory for Canada, the Big Bend Regional Aerosol and Visibility 164 

Observational (BRAVO) Study Emissions Inventory for Mexico (Kuhns et al. 2003), the 165 

Cooperative Program for Monitoring and Evaluation of the Long-range Transmission of Air 166 
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Pollutants in Europe (EMEP) inventory for Europe in 2000 (Vestreng et al. 2002) and the INTEX-167 

B Asia emissions inventory for 2006 (Zhang et al. 2009). Biomass burning emissions are based on 168 

the Global Fire Emission Database (GFED3, van der Werf et al. 2010). The a priori biomass 169 

burning emissions in Sep-Nov 2006 were applied to Sep-Nov 2015 over Indonesia. Additional CO 170 

sources come from oxidation of methane and biogenic volatile organic compounds (VOCs) as 171 

described in previous studies (Kopacz et al. 2010; Jiang et al. 2013). The biogenic emissions are 172 

simulated using the Model of Emissions of Gases and Aerosols from Nature, version 2.0 173 

(MEGANv2.0, Guenther et al. 2006). The distribution of the annual mean CO emissions for 2001-174 

2015 is shown in Figure 2. The annual global sources are 892 Tg CO from fossil fuel, biofuel and 175 

biomass burning, 623 Tg CO from the oxidation of biogenic VOCs, and 876 Tg CO from the 176 

oxidation of CH4.  177 

3. Inversion Approach 178 

We use the 4D-var data assimilation system in GEOS-Chem (Henze et al. 2007) to 179 

constrain the CO sources. In this approach, we minimize the cost function defined as:   180 

𝐽 𝑥 = 𝐹- 𝑥 − 𝑧- .𝑆012 𝐹- 𝑥 − 𝑧- + 𝑥 − 𝑥# .3
-42 𝑆512(𝑥 − 𝑥#)              (2) 181 

where 𝑥 is the state vector of CO emissions, N is the number of MOPITT observations that are 182 

distributed in time over the assimilation period, 𝑧-	is a given MOPITT measurement, and 𝐹(𝑥) is 183 

the forward model. The temporal resolution of forward model output (𝐹(𝑥)) is one hour, and 184 

consequently, the high resolution MOPITT measurements are averaged temporally (one-hour 185 

resolution) and spatially (4°x5° resolution) to produce grid mean observations. The number (N) of 186 

grid mean observations in our assimilation window (one month) is around 10000.  187 

The error estimates are assumed to be Gaussian, and are given by 𝑆0, the observational 188 

error covariance matrix, and 𝑆#, the a priori error covariance matrix, respectively. The Gaussian 189 
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assumption excludes important systematic errors, such as biases in OH distribution, long-range 190 

transport and satellite retrievals in the cost function. Due to lack of meaningful information about 191 

the systematic errors, we assume a uniform observation error of 20% without spatial correlation. 192 

The combustion CO sources (fossil fuel, biofuel and biomass burning) and the oxidation source 193 

from biogenic VOCs are combined together, assuming a 50% uniform a priori error. We optimize 194 

the source of CO from the oxidation of CH4 separately as an aggregated global source, assuming 195 

an a priori uncertainty of 25%.  196 

Without consideration of systematic errors, the a posteriori error covariance matrix is the 197 

inverse of the Hessian matrix, which is not stored in the 4D-var optimization scheme. Bousserez 198 

et al. (2015) presented an approach to construct the a posteriori error covariance matrix using the 199 

approximation of Hessian matrix. As opposed to earlier studies using surface measurements, the 200 

high spatial density of measurements from satellite instruments can effectively suppress the 201 

contribution from random errors in the cost function, leaving systematic errors as the critical factor 202 

in the uncertainty. As shown by Heald et al. (2004), different assumptions about the inversion 203 

configuration (systematic errors) can produce differences in the source estimates that are 204 

significantly larger than the a posteriori errors calculated based on random errors. Consequently, 205 

estimates of a posteriori uncertainties are not provided in this work (e.g. Table 1 and Table 2). 206 

Removing the bias in initial conditions is essential for inverse analysis (Jiang et al. 2013), 207 

and can be performed with various data assimilation techniques. Model simulations driven by 208 

optimized emissions can provide good initial conditions (e.g. Gonzi et al. 2011; Bruhwiler et al. 209 

2014; Deng et al. 2014; Houweling et al. 2014). Alternatively, tracer concentrations can be 210 

modified directly to avoid the effect from long-range transport error (e.g. Kopacz et al. 2009; Jiang 211 

et al. 2013, 2015a). There are also efforts to optimize emissions and concentrations simultaneously 212 
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(e.g. Fortems-Cheiney et al. 2011, 2012; Bergamaschi et al. 2013; Yin et al. 2015), however, the 213 

contributions from emissions and concentrations to model bias may be hard to be distinguished. 214 

Figure 3 shows the methodology of our assimilation system. Following our previous studies (Jiang 215 

et al. 2013, 2015a, 2015b), we produce initial conditions at the beginning of each monthly 216 

assimilation window by assimilating MOPITT data using a sequential Kalman filter. For the results 217 

presented here, the Kalman filter assimilation was carried out from March 1, 2000 to December 218 

31, 2015. 219 

Systematic errors have critical influences on inverse analysis. Jiang et al. (2013) found that 220 

the modeled CO concentration from a 10-day forecast simulation have large discrepancy with 221 

assimilated CO fields, because of bias in model convective transport. Jiang et al. (2015a) 222 

demonstrated that free tropospheric CO is more susceptible to the influences of OH bias than lower 223 

tropospheric CO due to the process of long-range transport. Previous studies suggest the influences 224 

of systematic errors can be mitigated by enhancing the contributions from local emissions to the 225 

discrepancy between model and data, while keeping the influence from long-range transport as 226 

low as possible due to sources of uncertainties that are difficult to quantify. For example, Pifster 227 

et al. (2005) constrained biomass burning CO emissions from boreal North America with 228 

optimized CO fields outside the impacted region; Jiang et al. (2015b) indicated that the results of 229 

regional inversions are more reliable when the boundary conditions are optimized. 230 

In this work, we designed a two-step inversion to reduce the effects of these systematic 231 

errors. As shown in Figure 3, we define the ocean scene (red grids) as boundary conditions. In the 232 

first step of our inverse analysis, sequential Kalman filter assimilation, we directly modify CO 233 

concentrations without any change to emissions in order to provide an optimized CO fields as 234 

consistent as possible with MOPITT. In the second step, the optimized CO fields are used to 235 
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rewrite CO concentrations over the ocean every hour, while 4D-var inversion is employed to 236 

constrain CO emissions, without any change on CO distribution over ocean. Only MOPITT data 237 

over land (white grids) were assimilated to constrain CO emissions in the second step. With the 238 

fixed/optimized boundary conditions, the global inversion system has been converted to a 239 

combination of several regional inversions. Consequently, the emission and transport errors from 240 

one continent (e.g. North America) will not affect the emission estimation of another continent 241 

(e.g. Europe). 242 

4. Results and Discussion 243 

4.1. Long-term variation of global tropospheric OH 244 

The distribution of tropospheric OH has significant influence on the inverse analysis of CO 245 

emissions (Jiang et al. 2011). Various approaches have been employed to improve the OH 246 

distribution in previous studies. Jiang et al. (2013) assimilated MOPITT CO retrievals in full 247 

chemistry model simulation to provide updated OH fields. Miyazaki et al. (2015) demonstrated 248 

that assimilation of Tropospheric Emission Spectrometer (TES) O3, Ozone Monitoring Instrument 249 

(OMI) NO2, and MOPITT CO can provide a better description of tropospheric OH. There are also 250 

recent efforts that have assimilated surface in-situ MCF measurements (Fortems-Cheiney et al. 251 

2011, 2012; Yin et al. 2015). However, because of the uncertainties in model chemistry schemes, 252 

potential bias drifts in satellite remotely sensed observation, and sparse distribution of surface in-253 

situ measurements, OH abundances provided by these approaches may not be ideal for the 254 

estimation of long-term CO variation. 255 

Emissions of MCF are regulated by the Montreal Protocol agreement. The loss rate of MCF 256 

has become a good tool to evaluate the variation of tropospheric OH (e.g. Krol et al. 1998; 257 

Bousquet et al. 2005; Prinn et al. 2005; Montzka et al. 2011). Using the same approach as Montzka 258 
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et al. (2011), we assess the variation of tropospheric OH in the period of 2001-2015. Figure 4a 259 

shows the locations of WDCGG sites with MCF measurements, and  Figure 4b shows the global 260 

mean MCF concentration in the past 15 years. Similar as Montzka et al. (2011), our result shows 261 

a exponential decrease of MCF concentration. The loss rate of MCF, derived from 12-month apart 262 

of monthly means [e.g., ln(MCFJan2007/MCFJan2006)] varies by 0.2% in the past 15 years (Figure 263 

4c). The interannual variation is more likely due to the sparsity and discontinuity of measurements. 264 

The small variation of loss rate of MCF demonstrates that the long-term variation of global 265 

mean OH distributions is negligible in the past 15 years. Consequently, the decreasing trend of 266 

tropospheric CO in North Hemisphere is driven by decreasing CO sources, rather than sinks. For 267 

this reason, the default monthly OH fields of GEOS-Chem model (Evans et al. 2005), without 268 

interannual variability, are used in this work to constrain the long-term variation of CO emissions. 269 

Because the abundances of tropospheric OH have large regional discrepancies (e.g. Jiang et al. 270 

2015a), it is possible that the actual OH is more variable at regions lacking MCF measurements 271 

(e.g. India and southeast Asia). Futhermore, the magnitude and seasonality of the default monthly 272 

OH fields could also have uncertainty. Consequently, the magnitude of CO emissions in our 273 

analysis may still be affected by biases in OH, although the two-step assimilation system is 274 

designed to suppress their influence. 275 

4.2. Long-term variation of global CO emissions 276 

In this work, we performed monthly inversions for the period of 2001-2015, using 277 

MOPITT column, profile and lower tropospheric profile (lowest three retrieval levels) data to 278 

investigate the influences associated with vertical sensitivity of satellite instrument and model 279 

transport error. Figure 5 shows the CO emission trends for 2001-2015 constrained by these 280 

different datasets. Because of the combination of various emission categories (i.e. anthropogenic, 281 
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biomass burning and VOC oxidation) in our methodology, we cannot completely separate the a 282 

posteriori emission estimates from different sources. However, the various spatial and temporal 283 

distribution of emissions sources (e.g. anthropogenic vs. biomass burning) provides valuable 284 

information to distinguish the contribution from each category. In order to further isolate the 285 

influences of biomass burning, the months dominated by biomass burning (biomass burning CO > 286 

50% of total CO emission in an individual grid) are excluded in the trend analysis for 287 

anthropogenic and VOC sources (Figure 5). 288 

For anthropogenic sources, all three analysis show significant emission reduction from 289 

North America, Europe and China. The emission estimates constrained with MOPITT column and 290 

profile data suggest increasing CO emissions from India and Southeast Asia. Conversely, the 291 

emission estimate constrained with MOPITT lower tropospheric profile data shows a decreasing 292 

trend in this region, and this decreasing trend is also obtained by Yin et al. (2015). As shown in 293 

Jiang et al., (2013), errors in model convection in this region have a large effect on CO emissions 294 

estimates, and information about the vertical profile of CO has a stronger influence on the results. 295 

For biomass burning sources, we found a negative trend over boreal North America, boreal 296 

Asia and South America, and a positive trend over Indonesia that is primarily due to the strong 297 

impacts of El Nino in 2006 and 2015 on biomass burning in this region (e.g. Field et al., 2016). 298 

Our results for biogenic VOCs are inconclusive; the emission estimates constrained with MOPITT 299 

column and profile data show moderate positive trends in the tropics, and slight negative trends in 300 

mid-latitude regions, whereas the emission estimate constrained with MOPITT lower tropospheric 301 

profile data shows a negative trend globally. 302 

4.2.1. Regional analysis for anthropogenic emissions 303 

Figure 6a shows the regional variation of anthropogenic emissions from the United States 304 
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(US). The emission estimates constrained with MOPITT column and profile data match very well 305 

with the a priori emissions, whereas the emission estimate constrained with MOPITT lower 306 

tropospheric profile data is much higher. All three analyses demonstrate a significant emission 307 

reduction over our study period. As shown in Table 1, the total anthropogenic CO emission 308 

(constrained with MOPITT profile data) from US is 56.8 Tg in 2015, which is 35% lower than that 309 

in 2001 (87.7 Tg). Figure 7a shows the monthly mean CO concentrations from WDCGG stations 310 

in US, which demonstrates a similar decreasing trend as our analysis. The initial increase at 2001-311 

2002 could be caused by uncertainties in the data. The decreasing trend is consistent with the US 312 

Environmental Protection Agency (EPA) Emissions Trends Data (https://www.epa.gov/air-313 

emissions-inventories/air-pollutant-emissions-trends-data), and other observation records for 314 

western US (Gratz et al. 2015), southeast US (Hidy et al. 2014) and North Atlantic (Kumar et al. 315 

2013).  316 

Figure 6b shows the regional variation of anthropogenic emissions from Europe. All three 317 

analyses show an underestimation of a priori emissions, suggesting the CO emissions in the EMEP 318 

inventory are too low. Our results show that anthropogenic emissions decrease during the period 319 

of 2001-2007, but are almost unchanged in the following years, which is consistent with the 320 

observations from WDCGG stations (Figure 7b). Recent studies (Hilboll et al. 2013; Schneider et 321 

al. 2015) showed that NO2 over Europe from SCIAMACHY is decreasing in the period of 2002-322 

2008, and almost unchanged in the period of 2008-2011. Henschel et al. (2015) indicated that the 323 

unchanged NO2 over Europe could be caused by European emissions that are failing to achieve 324 

the expected reduction standards. Because anthropogenic CO and NO2 share some of the same 325 

combustion sources, it is possible that the unchanged CO emission in our analysis is also due to a 326 

failure of emission controls.   327 
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Figure 6c shows the regional variation of anthropogenic emissions from east China. We 328 

found Chinese anthropogenic emissions are increasing in the period of 2001-2004. Accompanied 329 

with the global economy recession, the total anthropogenic CO emission (constrained with 330 

MOPITT profile data) from east China decreases to 175.4 Tg in 2008, which is 15% lower than 331 

that in 2004 (205.6 Tg). Our analysis shows a temporary increase of Chinese emissions in 2009 332 

(185.9 Tg), followed by continuous decrease. The total Chinese anthropogenic CO emission is 333 

159.0 Tg in 2015, which is 7% lower than that in 2001 (170.4 Tg). Using surface in-situ 334 

measurements at Hateruma Island, Tohjima et al. (2014) constrained CO emissions from China 335 

for the period 1999-2010. They found Chinese CO emission increases from 1999-2004, and 336 

decreases since 2005. Using a “bottom-up” approach, recent studies (Zhao et al. 2012; Xia et al. 337 

2016) indicated that the growth trend of Chinese CO emissions has been changed since 2005 338 

because of improvements in energy efficiency and emission control regulations (e.g. Liu et al. 339 

2015). Figure 7c shows the observation records from 2 stations in the East China outflow region, 340 

which demonstrate similar variations. 341 

Figures 6d-6e show the regional variation of anthropogenic emissions from India and 342 

Southeast Asia. The emission estimates constrained with MOPITT column and profile data 343 

demonstrate significant positive trend in our study period, whereas the emission estimate 344 

constrained with MOPITT lower tropospheric profile data shows a decreasing trend. Schneider et 345 

al. (2015) showed that NO2 over south Asia from SCIAMACHY is increasing in the period of 346 

2003-2011. Using OMI NO2 measurements, recent studies (e.g., Duncan et al. 2016) demonstrated 347 

that NO2 over India has a positive trend during 2005-2015. Observations from Cape Rama (CRI) 348 

station (Figure 7d) demonstrate that CO concentration in 2010-2013 is significantly higher than 349 

that in 2001-2002. For these reasons, we have more confidence in our results that indicate 350 
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increasing anthropogenic CO emissions from India and Southeast Asia in the past 15 years. The 351 

trend based on the MOPITT lower-tropospheric data is incorrect because of model error in 352 

convection in this dynamically varying region, and the negative bias drift in MOPITT lower 353 

tropospheric retrievals (Deeter et al., 2014). The total anthropogenic CO emission (constrained 354 

with MOPITT profile data) from India and Southeast Asia is 130.4 Tg in 2015, which is 34% 355 

higher than that in 2001 (97.5 Tg). It should be noted that the inconsistency between our analysis 356 

with Yin et al. (2015) suggests more studies are needed for robust conclusion about the variation 357 

of anthropogenic CO emissions for this region. 358 

Although our inverse analysis (constrained with MOPITT profile data) suggests similar 359 

anthropogenic CO emissions from East China in 2008 and 2014, Figure 7c demonstrates that mean 360 

CO concentrations over the outflow region of East China are 6 ppb higher in 2014 compared to 361 

2008. Our previous study (Jiang et al. 2015c) indicated that anthropogenic emissions from India 362 

and southeast Asia have an important influence on pollutant concentrations in the east China 363 

outflow region. It is possible that the increase of CO concentration observed by WDCGG stations 364 

in this region is caused by the significant increase of anthropogenic CO emission from India and 365 

southeast Asia. In the most recent 5 years (2011-2015), our results (constrained with MOPITT 366 

profile data) suggested a 20.5 Tg emission reduction from East China, and a 10.1 Tg emission 367 

increase from India and Southeast Asia. Assuming a fixed emission growth rate, projected 368 

anthropogenic CO emissions from India and Southeast Asia will overtake Chinese emissions in 369 

2020, resulting in  serious socioeconomic issues on both local and global scales. 370 

4.2.2. Regional analysis for biomass burning emissions 371 

Figure 8 and Table 2 show the regional variation of biomass burning emissions. There are 372 

significant decreasing trends in three regions (i.e. boreal North America, boreal Asia, and South 373 
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America). Our results show high biomass burning emissions from boreal North America (mainly 374 

Alaska and western Canada) in 2004 (Figure 8a), which have been reported by previous studies 375 

(e.g. Pfister et al. 2005; Turquety et al. 2007), and also from  boreal Asia during 2001-2003 (Figure 376 

8b) due to significant fire activity in Siberia (e.g., Yurganov et al., 2005,  Stroppiana et al., 2010). 377 

For South America (Figure 8c), we found higher biomass burning emissions in the periods of 2004-378 

2007 and 2010, consistent with fire activity reported in previous studies (e.g. Hooghiemstra et al. 379 

2012; Bloom et al. 2015). 380 

Figure 8d shows the regional variation of biomass burning emissions from Africa. The fire 381 

activities in Africa demonstrates obvious seasonality: peak in boreal winter for Northern 382 

Hemispheric Africa, and in austral winter for Southern Hemispheric Africa. Similar to previous 383 

studies (e.g. Chevallier et al. 2009; Tosca et al. 2015), there is no obvious emission trend in Africa 384 

in the past 15 years. This is also consistent with the burned area trends described by Andela et al. 385 

(2014) which show opposite directions for Northern Africa (decreasing) versus Southern Africa 386 

(increasing) and would have cancelling effects in the trend for the continent as a whole.   387 

Our results exhibit two strong biomass burning events in Indonesia, 2006 and 2015, 388 

individually (Figure 8e). Previous studies (e.g. Logan et al. 2008; Zhang et al. 2011; Worden et al. 389 

2013b, 2013c, Field et al., 2016) demonstrate the direct relationship between strong Indonesian 390 

fires and El Niño. Recent studies (Huang et al. 2014; Inness et al. 2015) confirm low biomass 391 

burning activities in Indonesia in the period of 2007-2012. CO emissions from the Indonesian fires 392 

associated with the 2015 El Niño were 92 Tg (for October, 2015, as constrained with MOPITT 393 

profile data), and were about three times higher than the October 2006 El Nino driven fire 394 

emissions (32 Tg). Not including the 2015 El Niño driven fires, our analysis indicates a negative 395 

trend of global biomass burning emissions in the past 15 years, as shown in Figure11f. 396 
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4.3. Changes in tropospheric CO during 2001-2015 397 

In this section, we evaluate our inversion results using independent long-term surface in-398 

situ measurements from WDCGG stations. Figure 9a shows the annual trend of surface CO 399 

concentration for 2001 – 2015 from WDCGG sites, and from model simulations driven with a 400 

priori emissions. Most WDCGG sites exhibit negative trends in the past 15 years, confirming the 401 

decreasing trend of global tropospheric CO, which is consistent with satellite observations (e.g. 402 

Warner et al. 2013; Worden et al. 2013). There are also stations with positive trends, for example, 403 

Tae-ahn Peninsula (TAP, Korea), Ascension Island (ASC, equtorial Atlantic Ocean), Cape Rama 404 

(CRI, India),  Bukit Koto Tabang (BKT, Indonesia) and Cape Grim (CGO, Australia). Globally, 405 

the a priori model simulation is in reasonable agreement with WDCGG measurements: both show 406 

negative trends in middle/high latitude, and positive trends in some tropical regions. However, 407 

there are noticable discrepancies, for example, the surface observation from Yonagunijima (YON, 408 

east China sea) shows a negative trend in our study period, suggesting decreasing trend from 409 

Chinese CO emission, whereas the a priori simulation demonstrates significant positive trend. 410 

Figure 9b-9d show the model simulations driven with a posteriori emissions. The a 411 

posteriori emissions constrained with MOPITT lower tropospheric profile data (Figure 9d) results 412 

in unrealistic large CO reduction, which could be caused by the negative bias drift of MOPITT 413 

retrievals at lower troposphere (Deeter et al. 2014) and the influence from possible variability in 414 

model convective transport. The a posteriori emissions constrained with MOPITT column and 415 

profile data have similar comparisons. For example, both of them suggest a negative trend over 416 

east China, consistent with observations from YON, and positive trend over northeast Asia, 417 

consistent with observations from TAP. 418 

In order to better compare the discrepancy between model simulation and surface 419 
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observations, Figure 9e-9g show the improvement due to a posteriori emissions, derived by 420 

abs(Trendaposteriori – TrendWDCGG) - abs(Trendapriori - TrendWDCGG). Blue (red) means the a posteriori 421 

emissions improves (degrades) the agreement with WDCGG measurements compared to the 422 

simulated surface CO using a priori emissions, while white indicates no change from the prior. As 423 

shown in Figure 9f, the CO emissions constrained with MOPITT profile data improved the model 424 

simulation for most WDCGG sites in the Northern Hemisphere. The a posteriori emissions 425 

constrained with MOPITT column data are somewhat worse, particularly over Europe, while CO 426 

emissions constrained with MOPITT profile data over Europe give improved comparisons to 427 

WDCGG surface CO measurements. Worden et al. (2010) demonstrated that the degrees of 428 

freedom for signal (DFS) of MOPITT multi-spectral profile retrievals (TIR+NIR) is about 1.5-2.0 429 

over land, which is reduced to about 1 DFS when converted to a total column.  This reduction in 430 

vertical information in MOPITT column data can affect the the reliability of inverse analysis 431 

results (Jiang et al., 2015a). It should be noticed that the vertical correlation in model simulation 432 

is not considered in our assimilation, which could be another possible reason for this discrepancy. 433 

Figure 10a-10d show the long-term mean value of surface CO concentration for 2001 – 434 

2015 from WDCGG sites, and model simulations driven with a priori and a posteriori emissions. 435 

All simulations provide similar results for long-term mean value. Figure 10e-10g show the 436 

improvement due to a posteriori emissions, derived by abs(COaposteriori – COWDCGG) - abs(COapriori 437 

- COWDCGG). Figure 10f demonstrates that CO emissions constrained with MOPITT profile data 438 

improved the model simulation in about half of the sites in the Northern Hemisphere, whereas the 439 

a posteriori emissions constrained with MOPITT column data are somewhat worse (Figure 10e). 440 

Evaluating modeled tracer concentrations using surface in-situ measurements is more challenging 441 

than evaluating long-term trends. Important sources of uncertainty include the representation error 442 
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(e.g. Chang et al. 2015; Kharol et al. 2015) and vertical mixing of boundary layer (e.g. Castellanos 443 

et al. 2011; Cuchiara et al. 2014).  444 

Because our a posteriori simulation, particularly using emissions constrained with 445 

MOPITT profile data, results in significant improvement in the long-term trend, and moderate 446 

improvement in the mean value, we believe these a posteriori estimates provide a better description 447 

for the long-term variation of global CO emissions. A remaining question is to explore how 448 

changes in meterological conditions affect the long-term variation. By fixing CO emissions to 449 

2001 levels, Figure 11a-11b show the long-term trend of modeled surface and column CO during 450 

2001-2015, due only to changes in meterological conditions. At the surface level (Figure 11a), we 451 

found changes in meterology result in a moderate positive trend in the Northern Hemisphere, 452 

particularly, over northeast Asia, consistent with observation records from the TAP station; and 453 

significant positive trend in tropics, consistent with observation record from ASC station. On the 454 

other hand, the influence of meterological conditions on column CO (Figure 11b) is much weaker. 455 

The discrepancy between surface and column CO suggests the possible contribution from variable 456 

convective transport. It should be noted that our analysis for the contributions from meterological 457 

conditions could be affected by the discrepancies among various versions of the meterological 458 

fields (i.e. GEOS-4, GEOS-5 and GEOS-FP), and the lack of consistency in model physics of 459 

GEOS-5 (e.g. the transition from GEOS 5.1.0 to GEOS 5.2.0 in late 2008). 460 

Figure 11c-11h show the variation of global tropospheric CO due to changes in emissions. 461 

Yin et al. (2015) indicated that the negative trend of tropospheric CO in the Northern Hemisphere 462 

is driven by decreasing anthropogenic emissions from North America, Europe and China. Along 463 

with reductions in anthropogenic emissions (Figure 11c, 11d), we found the decrease of biomass 464 

burning emissions from boreal North America and boreal Asia (Figure 11e, 11f) to be an important 465 
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factor for this negative trend. In constrast to the emission reduction from North America, Europe 466 

and China, we found increasing anthropogenic emissions from India and southeast Asia, which 467 

result in a pronounced positive trend of tropospheric CO, while Yin et al. (2015) obtain a negative 468 

trend for this region. This discrepancy requires further study and we will need to test the relative 469 

importance of the primary differences in our methods, i.e., models and inversion approaches, 470 

climatological OH (this study) vs. assimilated surface measurements of CH4 and MCF to update 471 

OH (Yin et al.) and the use of MOPITT profile vs. column CO retrievals (Yin et al., assimilate 472 

only column CO). 473 

5. Summary 474 

The objective of this work is to investigate the dominant reasons for the observed variation 475 

of global tropospheric CO over the past 15 years. We provide an update for this critical question 476 

and also an updated CO emission estimates for model studies. In particular, we use surface 477 

measurements of MCF to evaluate changes in the sinks of atmospheric CO, and constrain the 478 

sources using MOPITT CO measurements to explain the observed decrease in CO concentrations. 479 

Our two-step approach for estimating global CO emissions mitigates the effects of model errors 480 

from transport and chemistry, as well as measurement bias error.  481 

Using the same approach as Montzka et al. (2011), we assess the variation of tropospheric 482 

OH (the primary CO sink) in the period of 2001-2015 using MCF measurements from WDCGG 483 

stations. Our result demonstrates negligible variation of global tropospheric OH in the past 15 484 

years, and consequently we suggest that the global sink of CO due to chemical loss through OH 485 

has not likely changed during this time period. We therefore expect the decreasing trend of 486 

tropospheric CO in North hemisphere (e.g. Warner et al. 2013; Worden et al. 2013; Gratz et al. 487 

2015) to be driven by decreasing CO sources. Total anthropogenic CO emissions from the US 488 
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were 56.8 Tg in 2015, which are 35% lower than emissions in 2001 (87.7 Tg). Total anthropogenic 489 

CO emissions from East China were 159.0 Tg in 2015, which are 7% lower than 2001 emissions 490 

(170.4 Tg) and 23% lower than 2004 emissions (205.6 Tg). This pronounced decrease of emissions 491 

from US and China is an indication of progress for fuel efficiency and emission control regulations. 492 

Conversely, our results demonstrate that anthropogenic emissions from Europe decreased from 493 

2001 to 2007 but are almost unchanged during 2008-2015. We also found a significant increase of 494 

anthropogenic emissions for India and Southeast Asia. The total anthropogenic CO emission from 495 

India and southeast Asia is 130.4 Tg in 2015, which is 34% higher than that in 2001 (97.5 Tg). 496 

Assuming the same emission growth rate as 2011-2015, we expect that anthropogenic CO 497 

emissions from India and Southeast Asia will be larger than Chinese emissions by 2020. 498 

In a recent study, Yin et al. (2015) indicated that the decreasing tropospheric CO in the 499 

Northern Hemisphere is caused by the decrease of anthropogenic emissions from North America, 500 

Europe and China. We find that a decrease of biomass burning emissions from boreal North 501 

America and boreal Asia is also an important contributor for the negative trend. Globally, our 502 

analysis indicates a negative trend of biomass burning emissions in the past 15 years, except in 503 

Indonesia due to the strong biomass burning event in 2015 associated with El Niño. Our results 504 

demonstrate a significant decrease of biomass burning emissions from South America, which 505 

could be associated with the reduction of deforestation in Brazil (Reddington et al. 2015), and the 506 

predominant change from El Nino to La Nina in our study period (Andela et al. 2014). For Africa, 507 

there is no obvious CO emission trend in the past 15 years, consistent with previous results 508 

(Chevallier et al. 2009; Tosca et al. 2015; Andela et al., 2014). Our results are inconclusive in 509 

characterizing the CO sources from oxidation of biogenic VOCs. More efforts are needed in the 510 

future to better understand the mechanism for tropical CO emissions. 511 
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Our analysis highlights the importance of space-based instruments for monitoring changes 512 

in global pollutant emissions. Our results demonstrate successful emission controls in US and 513 

China over the past 15 years, and suggest that emission controls in Europe may need re-evaluation. 514 

We also recommend more efforts in the future to better understand the regional and global effects 515 

of increasing pollutant emissions from India and Southeast Asia. 516 
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 817 

Tables and Figures 818 

Table 1. Annual total anthropogenic CO emission in different regions, from 2001 to 2015, 819 
constrained with MOPITT column, profile and lower tropospheric data. The region definition is 820 
shown in Figure 2e. 821 
 822 
Table 2. Annual total biomass burning CO emission in different regions, from 2001 to 2015, 823 
constrained with MOPITT column, profile and lower tropospheric data. The region definition is 824 
shown in Figure 2f. 825 
 826 
Figure 1. Difference between MOPITT CO retrievals and HIPPO aircraft measurements. The 827 
aircraft measurements are smoothed with MOPITT averaging kernels. The black solid line shows 828 
the 4-order polynomial curve fitting, which is used to correct MOPITT data in this work. 829 
 830 
Figure 2. (a-d) Mean a priori CO emissions from combustion sources and the oxidation of biogenic 831 
VOCs and CH4 from 2001 to 2015. The unit is 1012 molec/cm2/sec. (e-f) Region definitions for (e) 832 
anthropogenic and (f) biomass burning sources. 833 
 834 
Figure 3. Schematic diagram for methodology of the assimilation system. Sequential Kalman 835 
Filter was run from March 1 2000 to December 31 2015 to produce the optimized initial conditions 836 
(monthly) and boundary conditions (hourly). Monthly 4-DVAR inversions were performed with 837 
the optimized initial conditions. Only MOPITT data over land (white grids) were assimilated in 838 
the 4-DVAR inversions, while the CO abundances over ocean (red grids) were defined as 839 
boundaries and rewritten using the optimized hourly CO fields from Kalman Filter. The Kalman 840 
filter run is completely independent of the 4-DVAR inversions. There is no feedback of the 4-841 
DVAR inversion results to the boundary conditions. 842 
 843 
Figure 4. (a) Locations of WDCGG sites with MCF measurements. (b) Global mean MCF 844 
concentration. (c) Exponential loss rate of MCF, derived from 12-month apart of monthly means 845 
[e.g., ln(MCFJan2007/MCFJan2006)]. The black solid line shows the 12-month mean value. 846 
 847 
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Figure 5. CO emission trends for 2001 – 2015, constrained with MOPITT column, profile and 848 
lower tropospheric profile data. The months dominated by biomass burning emissions are excluded 849 
from the trend calculation for anthropogenic and biogenic VOC emissions. 850 
 851 
Figure 6. 12-month mean value of anthropogenic CO emissions (with unit Tg/month) for 2001 – 852 
2015: a priori emission (green) and a posteriori emissions constrained with MOPITT column data 853 
(black), MOPITT profile data (blue) and MOPITT lower tropospheric profile data (red). The green 854 
dash line shows the monthly a priori anthropogenic CO emissions. The region definition is shown 855 
in Figure 2e. 856 
 857 
Figure 7. Monthly mean CO concentrations (green) and 12-month mean value (black) from 858 
WDCGG stations for 2001 – 2015. (a) 15-station average in United States (b) 20-station average 859 
in Europe (c) 2-station (YON and JMA) average in east China outflow (4) Cape Rama (CRI) in 860 
India. 861 
 862 
Figure 8. Monthly biomass burning CO emissions (with unit Tg/month) for 2001 – 2015: a priori 863 
emission (green) and a posteriori emissions constrained with MOPITT column data (black), 864 
MOPITT profile data (blue) and MOPITT lower tropospheric profile data (red). The region 865 
definition is shown in Figure 2f. 866 
 867 
Figure 9. Panels (a-d): long-term trend (annual) of surface CO concentration for 2001 – 2015 from 868 
WDCGG sites, and model simulations driven with a priori and a posteriori emissions. Panels (e-869 
g): effect of a posteriori emissions, derived by abs(Trendaposteriori – TrendWDCGG) - abs(Trendapriori - 870 
TrendWDCGG); blue (red) means the a posteriori emissions improves (degrades) the agreement with 871 
WDCGG measurements compared to the a priori emissions, while white indicates no change from 872 
the priori. Only stations with more than 10 year observations (the time range between the first and 873 
last observations) during 2001-2015 are included. 874 
 875 
Figure 10. Panels (a-d): long-term mean value of surface CO concentration for 2001 – 2015 from 876 
WDCGG sites, and model simulations driven with a priori and a posteriori emissions. Panels (e-877 
g): effect of a posteriori emissions, derived by abs(COaposteriori – COWDCGG) - abs(COapriori - 878 
COWDCGG); blue (red) means the a posteriori emissions improves (degrades) the agreement with 879 
WDCGG measurements compared to the a priori emissions, while white indicates no change from 880 
the priori. Only stations with more than 10 year observations (the time range between the first and 881 
last observations) during 2001-2015 are included. 882 
 883 
Figure 11. Long-term trend (annual) of modeled surface and column CO for 2001 – 2015 with (a-884 
b) all emission sources are fixed at 2001 level. (c-d) variable anthropogenic emissions; (e-f) 885 
variable biomass burning emissions; (g-h) variable biogenic VOCs emissions; The variable 886 
emissions are constrained with MOPITT profile data.  887 
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Table 1. Annual total anthropogenic CO emission in different regions, from 2001 to 2015, 889 
constrained with MOPITT column, profile and lower tropospheric data. The region definition 890 
is shown in Figure 2e. 891 
 892 
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 896 
Table 2. Annual total biomass burning CO emission in different regions, from 2001 to 2015, 897 
constrained with MOPITT column, profile and lower tropospheric data. The region definition 898 
is shown in Figure 2f. 899 
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 905 
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 907 
 908 
 909 
 910 
 911 

 912 
Figure 1. Difference between MOPITT CO retrievals and HIPPO aircraft measurements. The 913 
aircraft measurements are smoothed with MOPITT averaging kernels. The black solid line 914 
shows the 4-order polynomial curve fitting, which is used to correct MOPITT data in this work. 915 
 916 
 917 
 918 
 919 
 920 
 921 
 922 
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 923 
Figure 2. (a-d) Mean a priori CO emissions from combustion sources and the oxidation of 924 
biogenic VOCs and CH4 from 2001 to 2015. The unit is 1012 molec/cm2/sec. (e-f) Region 925 
definitions for (e) anthropogenic and (f) biomass burning sources. 926 

 927 
Figure 3. Schematic diagram for methodology of the assimilation system. Sequential Kalman 928 
Filter was run from March 1 2000 to December 31 2015 to produce the optimized initial 929 
conditions (monthly) and boundary conditions (hourly). Monthly 4-DVAR inversions were 930 
performed with the optimized initial conditions. Only MOPITT data over land (white grids) 931 
were assimilated in the 4-DVAR inversions, while the CO abundances over ocean (red grids) 932 
were defined as boundaries and rewritten using the optimized hourly CO fields from Kalman 933 
Filter. The Kalman filter run is completely independent of the 4-DVAR inversions. There is no 934 
feedback of the 4-DVAR inversion results to the boundary conditions. 935 
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 936 

Figure 4. (a) Locations of WDCGG sites with MCF measurements. (b) Global mean MCF 937 
concentration. (c) Exponential loss rate of MCF, derived from 12-month apart of monthly 938 
means [e.g., ln(MCFJan2007/MCFJan2006)]. The black solid line shows the 12-month mean value. 939 
 940 

 941 

Figure 5. CO emission trends for 2001 – 2015, constrained with MOPITT column, profile and 942 
lower tropospheric profile data. The months dominated by biomass burning emissions are 943 
excluded from the trend calculation for anthropogenic and biogenic VOC emissions. 944 
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 945 

 946 
Figure 6. 12-month mean value of anthropogenic CO emissions (with unit Tg/month) for 2001 947 
– 2015: a priori emission (green) and a posteriori emissions constrained with MOPITT column 948 
data (black), MOPITT profile data (blue) and MOPITT lower tropospheric profile data (red). 949 
The green dash line shows the monthly a priori anthropogenic CO emissions. The region 950 
definition is shown in Figure 2e. 951 
 952 
 953 

 954 
Figure 7. Monthly mean CO concentrations (green) and 12-month mean value (black) from 955 
WDCGG stations for 2001 – 2015. (a) 15-station average in United States (b) 20-station 956 
average in Europe (c) 2-station (YON and JMA) average in east China outflow (4) Cape Rama 957 
(CRI) in India. 958 
 959 
 960 
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 964 
 965 
 966 
 967 
 968 
 969 
 970 
 971 
 972 

 973 
Figure 8. Monthly biomass burning CO emissions (with unit Tg/month) for 2001 – 2015: a 974 
priori emission (green) and a posteriori emissions constrained with MOPITT column data 975 
(black), MOPITT profile data (blue) and MOPITT lower tropospheric profile data (red). The 976 
region definition is shown in Figure 2f. 977 
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 990 
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 992 
 993 

 994 

Figure 9. Panels (a-d): long-term trend (annual) of surface CO concentration for 2001 – 2015 995 
from WDCGG sites, and model simulations driven with a priori and a posteriori emissions. 996 
Panels (e-g): effect of a posteriori emissions, derived by abs(Trendaposteriori – TrendWDCGG) - 997 
abs(Trendapriori - TrendWDCGG); blue (red) means the a posteriori emissions improves (degrades) 998 
the agreement with WDCGG measurements compared to the a priori emissions, while white 999 
indicates no change from the priori. Only stations with more than 10 year observations (the 1000 
time range between the first and last observations) during 2001-2015 are included. 1001 
 1002 
 1003 
 1004 
 1005 
 1006 
 1007 
 1008 
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 1014 

Figure 10. Panels (a-d): long-term mean value of surface CO concentration for 2001 – 2015 1015 
from WDCGG sites, and model simulations driven with a priori and a posteriori emissions. 1016 
Panels (e-g): effect of a posteriori emissions, derived by abs(COaposteriori – COWDCGG) - 1017 
abs(COapriori - COWDCGG); blue (red) means the a posteriori emissions improves (degrades) the 1018 
agreement with WDCGG measurements compared to the a priori emissions, while white 1019 
indicates no change from the priori. Only stations with more than 10 year observations (the 1020 
time range between the first and last observations) during 2001-2015 are included. 1021 
 1022 
 1023 
 1024 
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 1026 
 1027 
 1028 
 1029 
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 1037 

 1038 
Figure 11. Long-term trend (annual) of modeled surface and column CO for 2001 – 2015 with 1039 
(a-b) all emission sources are fixed at 2001 level. (c-d) variable anthropogenic emissions; (e-f) 1040 
variable biomass burning emissions; (g-h) variable biogenic VOCs emissions; The variable 1041 
emissions are constrained with MOPITT profile data.  1042 
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