
We thank the reviewers for their thoughtful and detailed comments. Below we respond to 
the individual comments.  
 
Reviewer #1 
The authors make an interesting contribution to the quantification of CO surface emissions 
and of their trend over the past 15 years. I recommend its publication provided the 
following issues are addressed. Most of them are minor, but a couple of them deserve much 
more attention. 
 
Thank you for your comments. Modifications have been made to improve this manuscript. 
 
Q1: l. 80: The authors anticipate on their results, which is not really appropriate in an 
introduction (it breaks the logic flow). 
 
Changed. 
 
Q2: l. 97: measurement and model systematic errors can be damped but not suppressed. 
 
Changed. 
 
Q3: l. 98: “systematic biases” -> “systematic errors”. 
 
Changed. 
 
Q4: l. 143: the previous example of the SCIAMACHY bias is time-dependent. The authors 
should explain why they think that the MOPITT bias does not vary much with time (mostly 
with the season). 
 
The limited measurements provided by the HIPPO aircraft will result in uncertainties in 
the correction factors, which is more significant in the seasonal average than annual 
average. On the other hand, we are focusing on the interannual variation of CO emissions. 
The seasonal variation of CO emissions is not very important in this work. Consequently, 
we decided to use the annual mean correction factor. More description has been added. 
 
Q5: l. 185: the authors seem to neglect the error statistics provided by the retrieval product. 
We can understand that they prefer raising them at 20% to be conservative, given likely 
systematic errors, but ignoring the vertical correlations is really surprising. This point is 
important because it bears most of the credibility of the following profile/lower profile 
inversion results vs. column inversion results. In addition, the ad-hoc uncorrelated 
observation budget used here is not internally consistent: when summing the profile level 
(error) covariances, one does not get the column (error) variance. This inconsistency 
basically suppresses the possibility to compare the two types of results meaningfully. Last, 
model errors are very likely correlated in the vertical and even uncertain large or medium 
vertical correlations (let us say 0.5 for instance) for this term of the observation error 
budget are better than the null correlations assumed here. 
 



A very good question! We have compared the discrepancies associated with two types of 
error covariance matrix in the preparation stage of this work: 1) diagonal matrix (this work); 
2) full error covariance matrix including vertical correlation, based on MOPITT error 
covariance. Our results show that the difference in the scaling factors is small, perhaps due 
to the large amount of satellite measurements in our global scale inversion. Because we are 
focusing on the mitigation of effects of systematic errors, we used the diagonal matrix to 
keep consistency with our previous studies. However, as the reviewer indicated, a better 
description for the error covariance matrix is important. We will improve our methodology 
in our future study. 
 
Q6: l. 186: the authors seem to combine combustion and VOC sources of CO together but 
later in Section 4.2 they show result by source type. They should explain how they split the 
information on the source type with simple column or profile retrievals of CO. In particular, 
I cannot see how VOC sources and their trends can be separated from the rest. 
 
As the reviewer indicated, we cannot completely separate the a posteriori emission 
estimates from different sources. However, the various spatial and temporal distribution of 
emissions sources (e.g. anthropogenic vs. biomass burning) provides valuable information 
to distinguish the contribution from each category. In order to further isolate the influences 
of biomass burning, the months dominated by biomass burning (biomass burning CO > 50% 
of total CO emission in an individual grid) are excluded in the trend analysis for 
anthropogenic and VOC sources (Figure 5). More description has been added. 
 
Q7: l. 215-216: This sentence (“: : : indicated that regional inversions have more 
advantages than global inversions : : : better controlled”) is unnecessarily polemical and 
may actually be wrong depending on how we understand “better controlled”. There are 
pros and cons and the statement cannot leave the impression that the case has been closed. 
 
Thank you for your suggestion! The statement has been changed. 
 
Q8: l. 219: “ model” -> “ models” . 
 
Changed. 
 
Q9: l. 228: the authors need to be clear that they do not use the same land data in the first 
and in the second step. Otherwise they would correlate boundary condition errors and 
observation errors in the second step and possibly induce weird side effects on their results 
(because those correlations are not accounted for). 
 
I am sorry for the confusion. In the two-step approach: 
 
Step 1: We directly modify CO concentrations using sequential Kalman filter assimilation. 
Both MOPITT data over land and ocean are used. 
Step 2: We constrain CO emissions over land with MOPITT data over land only. The 
boundary condition is from step 1. 
 



The objective of Step 1 is to provide the best global CO fields, based on MOPITT. We 
need to assimilate MOPITT data over land in the first step to keep the consistency between 
boundary conditions and emissions. 
 
Q10: l. 254: Montzka et al. (2011) is recalled, but these authors wrote “Despite the much 
lower atmospheric CH3CCl3 mixing ratios in recent years ('13 ppt in 2007), they remained 
precisely measured through 2007. Precision for the analysis of CH3CCl3 (0.5 to 0.75% as 
repeatability) has remained comparable to the nearly constant (on a relative basis) 
standard deviation of paired flask means collected within a month at remote stations of 
0.7 1.1% through 2007. Data after the end of 2007 are not included in this report owing 
to instrumental problems that developed in 2008.” The present authors should give the 
same level of detail and clarify the fact that the instrumental problem does not affect their 
results. 
 
The website (NOAA) shows: “NOAA flask data obtained by the GCMS for some 
compounds analyzed during the 2008.5-2009.5 period are subject to some small biases 
owing to instrumental issues during that period.  Data obtained for CH3CCl3 during that 
time period, for example, should not be used for deriving hydroxyl radical concentrations” 
 
According to Figure 4, we believe the influence of the instrumental problems (2008.5-
2009.5) on our analysis (2001-2015) is small. 
 
Q11: l. 276: “demonstrate” is too strong. 
 
Changed. 
 
Q12: l. 296: there is also an initial increase in the measurements that should be commented. 
 
The initial increase at 2001-2002 could be caused by uncertainties in the data. We are trying 
to avoid to make a conclusion about trend based on short (2 years) period data. A sentence 
has been added for this issue. 
 
Q13: l. 313: this is only true for the profile results. 
 
As shown in Table 1, an increase of Chinese emissions from 2001 to 2004 is shown by all 
three analyses. 
 
Q14: l. 335: large PBL height errors happen everywhere over the globe. Why should they 
just affect India and SE Asia? 
 
Thank you for pointing out this issue. We have removed “PBL height” in the discussion. 
 
Q15: l. 374: these 2014 and 2015 studies are not “more recent” than Field et al.(2016). 
Actually, the authors could discuss the “more recent” study of Yin et al. (2016) that seems 
to well overlap with their approach. 
 



The discussion has been changed. We didn’t cite Yin’s work here, because we hope to 
demonstrate the consistency between our inversion results with studies using different 
approach (not an inverse modelling). 
 
Q16: l. 376: extra comma. 
 
Changed. 
 
Q17: l. 396: the above-mentioned issue in the observation error statistics is also a likely 
explanation.  
 
The lower tropospheric profile data includes the lowest three levels (1000hPa, 900hPa and 
800 hPa). The influence of correlation of these three levels should be small.  
 
Q18: l. 464: to be fair and consistent with the second part of the sentence, the authors 
should also speak of an update about this question, since it has been (imperfectly) 
addressed before. 
 
Changed. 
 
Q19:  References should be ordered. 
 
Changed. 
 
 
Reviewer #2 
 
The work investigates the possible cause of the observed trend of a reduction of Carbon 
Mononixde (CO) emissions over the last 15 years over the northern hemisphere and parts 
of China. This trend is somewhat mitigated by an increased trend of CO emissions over 
India. The authors use global MOPITT remote sensing data of CO in the thermal infrared 
region to constrain model forecasts of CO concentrations and surface emissions. The 
model being used is the adjoint of the off-line global chemistry transport model GEOS-
Chem. 
 
The authors make 4 big assumptions: 1) Unknown model biases can be handled with by 
providing independent boundary conditions of CO concentrations over oceans each month 
from a Kalman Filter inversion run, 2) Local continental scale emissions can be estimated 
then by a 4dvar method constrained by MOPITT observations over land (and constrained 
by the boundary conditions of CO concentrations over the oceans), 3) The inversion system 
works best by removing a latitudional bias in MOPITT retrievals as derived from the 
HIAPER Pole to Pole Observations campaign (HIPPO), 4) The hydroxyl radical (OH) 
variability cannot explain the decrease in CO emissions if we put trust in the method of 
using MCF (methyl chloroform) measurements as a proxy for estimating atmospheric OH 
concentration change. 
 



Thank you for your comments. Modifications have been made to improve this manuscript. 
 
 
Q1: Chapter: 2.1 MOPITT: Did you do any data thinning on the MOPITT data and how 
did you screen the MOPITT data? 
 
We employed the same data quality control as our previous studies. Detailed description 
has been added in Section 2.1. 
 
Q2: line 176-178: You need to describe the 4dvar adjoint method in more detail. What are 
typical numbers of N and it is not clear from the equation (line 178) or Figure 3 how you 
defined the length of the assimilation window in your 4dvar system. In GEOS-Chem met 
fields are typically updated every 6 hours – does this also correspond to your assimilation 
window (e.g. 6 hour window)? Or is your assimilation window a full month and 
observations are sampled every hour? 
 
Thank you for your suggestion! More description has been added. 
 
In order to match model output, the high resolution MOPITT measurements are averaged 
temporally (one-hour resolution) and spatially (4°x5° resolution) to produce grid mean 
observations. The length of assimilation window is one month. The number (N) of grid 
mean observations in one month is around 10000. 
 
Q3: line 186-189: Cite: D.B.Jones, et al: Potential of observations from the Tropospheric 
Emission Spectrometer to constrain continental sources of carbon monoxide, 
doi:10.1029/2003JD003702, J. Geopys. Res, 2003 
 
It is not clear to me why the authors cannot follow the method of constructing the 
observation error covariance matrix as outlined in the above paper (Dylan et al 2003). Of 
course TES and MOPITT are different products but as far as I remember MOPITT will 
also let you construct a retrieval error matrix as part of their released data products (they 
come with the averaging kernels). It is true that there is some vertical correlation in the 
averaging kernels but cannot account for the information loss of a uniform or flat 
construed observation error. 
 
Jones et al. (2003) used the NMC method to assess the model transport errors. This 
approach uses pairs of model forecasts, of different length, but which are valid for the same 
time, to characterize the model errors. We do not have such forecasts available during this 
analysis period.  
 
We have compared the discrepancies associated with two types of error covariance matrix 
in the preparation stage of this work: 1) diagonal matrix (this work); 2) full error covariance 
matrix including vertical correlation, based on MOPITT error covariance. Our results show 
that the difference in the scaling factors is small, perhaps due to the large amount of satellite 
measurements in our global scale inversion.  
 



Because we are focusing on the mitigation of effects of systematic errors, we used the 
diagonal matrix to keep consistency with our previous studies. However, as the reviewer 
indicated, a better description for the error covariance matrix is important. We will improve 
our methodology in our future study. 
 
Q4: 190-196: Reword and emphasise that posterior emissions estimates (e.g. Table 1) do 
not have uncertainty reduction error bars because of the way the adjoint method works 
and ask Daven Henze if there is a reference for that. 
 
Thank you for your suggestion! The discussion has been modified. 
 
Q5: line 194-196: “As shown by Heald et al (2004), different assumptions about the 
inversion configuration can produce differences in the source estimates that are 
significantly larger than the a posteriori errors.” Is this statement related to the bias 
correction in the next paragraph (line 197-209)? Why is this important here? 
 
We hope to demonstrate that the actual a posteriori uncertainty (including systematic errors) 
is much larger than the a posteriori uncertainty calculated based on Gaussian assumption 
(random errors). 
 
Q6: line 197-198: “Removing the bias in initial conditions is essential for inverse analysis, 
and can be performed with various data assimilation techniques.” Have you got a 
reference for this? I have heard people claiming (I am not one of them) that in a good 
inversion system there is no bias correction needed. Have you tested your system without 
bias correction? 
 
We have tested the effects of initial condition in our previous study. As shown in Figure 
4a of Jiang et al. (2013), there are large discrepancies between MOPITT and original model 
simulation due to the accumulation of model errors prior to the assimilation window. We 
cannot use the biased initial condition for the inverse analysis. 
 
“a good inversion system there is no bias correction needed” is valid for the ideal condition. 
However, there are always systematic biases, and we cannot ignore them. For example, 
Figure 1 shows noticeable discrepancies between MOPITT and HIPPO. We have to 
mitigate these discrepancies using latitude dependent correction factors, although we know 
the best approach is an update of retrieval algorithm. 
 
Q7: line 218-220: “They demonstrated that the systematic bias associated with North 
American CO emissions due to OH distribution can be reduced by up to 50% with 
optimised boundary conditions. Similar optimisation on the boundary condition can also 
be employed in global model, for example, Pfister et al. (2005) constrained biomass 
burning CO emissions from boreal North America with optimised CO fields outside the 
impacted region.”  
 
How does this relate to your work? Your are using pre-calculated OH fields from a full 
chemistry run. Are you making the point here that the influence of the badly understood 



OH bias can be reduced by optimised CO 3D boundary conditions (e.g. from your Kalman 
Filter at the beginning of each month)? Please clarify. 
 
We hope to demonstrate that the influences of systematic errors can be mitigated by the 
optimization on the boundary condition. We have changed the statement to make it more 
concise. 
 
As the reviewer indicated, the optimization on the boundary conditions (e.g. around North 
America) can really mitigate the influences of OH bias on a posteriori estimation of North 
American CO emissions. Although the OH distribution over North America continent is 
still biased in a reginal inversion, the adverse effects of biased OH distribution on the CO 
inflow from outside of North America can be significantly reduced.  
 
Q8: Figure 3: This needs clarification in the Figure caption or text. If I am right to assume 
that your Kalman filter runs from 1st of March until 31nd December first and is completely 
independet of the 4dvar inversion in the assimilation window? And there is no feedback of 
the 4dvar inversion results to the boundary conditions of the following months? 
 
Thank you for your suggestion! The Figure caption has been changed. 
 
Q9: 4.1 Long-term variation of global tropospheric OH. Krol et al. found a somewhat 
different result of OH trends based on MCF measurements and model studies. Admittedly 
for a different study period (1978-1998). You could (or should) cite that paper: M. Krol et 
al., 1998: Global OH trend inferred from methylchloroform measurements, 103, 
p.10,697—10,711, 1998, J. Geopys. Res. 
 
The citation has been added. 
 
Q10: 4.2 Long-term variation of global CO emissions. It would be a good idea if you split 
the section into different smaller subsections: 4.2.1 Emission;s US 4.2.2 Emissions EU; 
4.2.3 Emissions India + South East Asia; 4.2.4 Biomas Burning Emissions etc. 
 
Thank you for your suggestion! Two subsections “Regional analysis for anthropogenic 
emissions” and “Regional analysis for biomass burning emissions” have been added. 
 
Q11: line 425-427: “In a recent study, Schnell et al. 92015) evaluate surface O3 
concentrations simulated by multi-models for North America and Europe. They found most 
models can provide good simulations for the patterns of O3 but cannot reproduce the 
magnitude.” I do not think citing an ozone study supports your argument in terms of CO. 
 
This citation has been removed. 
 
Q12: line 466-468. Reformulate the part including ‘MCF’. I do not think you have used 
MCF to ‘evaluate changes in the sources and sinks of atmospheric CO … ’. 
 
The statement has been modified. 



 
Q13: Table 1. Add a fifth column of global total posterior emissions to the 3 individual sub 
tables: ‘MOPITT Columns (Tg/year)’, ‘MOPITT Profile (Tg/year)’ and ‘MOPITT Lower 
Profile (Tg/year)’. 
 
Add a sixth column to the 3 individual sub tables for posterior CH4 and VOC production. 
Also append 4 single columns for the global prior emissions in each year. e.g. 
Year,US,EU,China,India,CH4,VOC, US,EU,China,India,CH4,VOC,US,EU,China,India 
CH4,VOC, PRIOR ANTHRO, PRIOR CH4, PRIOR VOC, PRIOR, TOTAL, And comment 
on these global budgets in the main text. 
 
Thank you for your suggestion! Three columns of global total anthropogenic emissions 
have been added in Table 1. A new table (Table 2) was added to show the annual variation 
of biomass burning emissions. 
 
We didn’t provide values for CO sources from VOC and CH4 oxidization because our 
results for these two sources are inconclusive. The values for a priori emissions are also 
excluded because the tables are already complex. 
 
Q14: Figure 11. I am not convinced your method of singling out the meteorological effects 
works as intented. Firstly, what exactly is being defined as meteorological conditions? I 
think the accumulation of surface CO, especially over the tropical regions and to a lesser 
extened the slight loss of CO at higher latitudes is an artifact and CO builds up, 
unrealistically, in GEOS-Chem tagged tracer mode. I am not asking you to conduct more 
model calculations. However, it would have beend interesting to see if a full global 4x5 
GEOS-Chem CO chemistry run gives a similar answer than Figure 11a and 11b. 
 
A very good question! Our forward model simulation, based on various versions of the 
meteorological fields (i.e. GEOS-4, GEOS-5 and GEOS-FP), is not an ideal tool for the 
analysis of influences of meteorological fields. We have modified the text to emphasize on 
this point. 
 
 



 

 1 

A fifteen year record of CO emissions constrained by MOPITT CO 1 
observations 2 

 3 
Zhe Jiang1,2, John R. Worden1, Helen Worden2, Merritt Deeter2, Dylan B. A. Jones3, Avelino F. 4 
Arellano4, Daven K. Henze5 5 

 6 
 7 
1Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA 8 
2National Center for Atmospheric Research, Boulder, CO, USA 9 
3Department of Physics, University of Toronto, Toronto, ON, Canada 10 
4Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ, USA 11 
5Department of Mechanical Engineering, University of Colorado, Boulder, CO, USA 12 
 13 
 14 
 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 

 26 

 27 

 28 



 

 2 

Abstract 29 

Long-term measurements from satellites and surface stations have demonstrated a 30 

decreasing trend of tropospheric carbon monoxide (CO) in the Northern Hemisphere over the past 31 

decade. Likely explanations for this decrease include changes in anthropogenic, fires, and/or 32 

biogenic emissions or changes in the primary chemical sink hydroxyl radical�(OH). Using 33 

remotely sensed CO measurements from the Measurement of Pollution in the Troposphere 34 

(MOPITT) satellite instrument, in-situ methyl chloroform (MCF) measurements from World Data 35 

Centre for Greenhouse Gases (WDCGG), and the adjoint of the GEOS-Chem model, we estimate 36 

the change in global CO emissions from 2001-2015. We show that the loss rate of MCF varies by 37 

0.2% in the past 15 years, indicating that changes in global OH distributions do not explain the 38 

recent decrease in CO. Our two-step inversion approach for estimating CO emissions is intended 39 

to mitigate the effect of bias errors in the MOPITT data as well as model errors in transport and 40 

chemistry, which are the primary uncertainties when quantifying CO emissions using these 41 

remotely sensed data. Our results confirm that the decreasing trend of tropospheric CO in the 42 

Northern Hemisphere is due to decreasing CO emissions from anthropogenic and biomass burning 43 

sources. In particular, we find decreasing CO emissions from the United States and China in the 44 

past 15 years, unchanged anthropogenic CO emissions from Europe since 2008. We find 45 

decreasing trends of biomass burning CO emissions from boreal North America, boreal Asia and 46 

South America, but little change over Africa. In contrast to prior results we find positive trend in 47 

CO emissions is likely for India and southeast Asia. 48 

 49 

1. Introduction 50 

Tropospheric CO is a product of incomplete combustion and a byproduct of the oxidation 51 

Deleted: , and likely a positive trend from India and 52 
southeast Asia, in contrast to recently reported results.53 
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of hydrocarbons. It plays a key role in atmospheric chemistry because it is the main sink for OH, 58 

and an important precursor for tropospheric ozone (O3). Recent studies demonstrated significant 59 

change in tropospheric CO abundance in the past decade. Using Atmospheric Infrared Sounder 60 

(AIRS) CO measurements, Warner et al. (2013) indicated that Northern Hemispheric CO mixing 61 

ratio decreased by 1.28 ppb/year in the period of 2003-2012. Worden et al. (2013) demonstrated 62 

Northern Hemispheric CO column measurements from MOPITT show a decrease of ~0.92%/year 63 

in the period of 2000-2011. Using observations from Mt. Bachelor Observatory, Gratz et al. (2015) 64 

also show a negative trend of CO concentration by 1.9%/year in the period of 2004-2013. 65 

However, the reason for the large variation of tropospheric CO abundance is still unclear; for 66 

example, Strode et al. (2016) found decreases in modeled CO abundance over North America and 67 

Europe, but increases over China, based on bottom-up emissions.  68 

There is currently much effort focused on accurately quantifying emissions of CO. For 69 

fossil fuels and biofuels, energy consumption statistics and emission factors are usually used to 70 

construct the emission inventories (e.g. Streets et al. 2006; Ohara et al. 2007; Zhang et al. 2009; 71 

Zhao et al. 2012). Biomass burning emissions are commonly calculated as the product of burned 72 

area, fuel loads, combustion completeness and emission factors (e.g. van der Werf et al. 2006, 73 

2010; van Leeuwen and van der Werf 2011). Because of the large uncertainties in the emission 74 

inventories, space-based remotely sensed measurements and surface/aircraft in-situ observations 75 

have been assimilated to provide “top-down” constraints on CO emissions (e.g., Arellano et al., 76 

2006; Chevallier et al. 2009; Jones et al., 2009; Kopacz et al., 2010; Jiang et al., 2011; Fortems-77 

Cheiney et al. 2011; Hooghiemstra et al. 2012; Miyazaki et al. 2015). In a recent study, Yin et al. 78 

(2015) constrained global CO emissions for the period 2002-2011 to investigate the possible 79 

reasons for the decreasing CO abundance in the Northern Hemisphere. Using MOPITT column 80 

Deleted: The budget of tropospheric CO is determined by its 81 
sources and sinks. 82 
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data (version 6J) over the whole globe, Yin et al. (2015) indicate that the negative trend in the 83 

Northern Hemisphere is driven by decreasing anthropogenic emissions from North America, 84 

Europe and China.  85 

The major sink of tropospheric CO is OH. Because of its high variability and short lifetime 86 

(about one second), it is difficult to assess the spatial and temporal variation of global OH through 87 

direct measurements (Spivakovsky et al. 2000; Lelieveld et al. 2004). Alternatively, Montzka et 88 

al. (2011) demonstrated small interannual variability of global OH for the period 1997-2007 by 89 

using the loss rate of MCF as a proxy. The measurements of MCF are assimilated in recent CO 90 

inversion studies to provide updated OH (e.g. Fortems-Cheiney et al. 2011, 2012; Yin et al. 2015), 91 

but the estimates are adversely affected by the sparse distribution of measurements.  92 

The objective of this work is to investigate the dominant reasons for the decreasing CO 93 

trend in the Northern Hemisphere, and to provide updated CO emission estimates for model studies. 94 

Using methods and results from our prior work, our approach for estimating emissions is intended 95 

to reduce the effects of model errors of transport and chemistry, as well as bias errors in the data, 96 

on our conclusions about CO emissions; these are the primary uncertainties that affect CO 97 

emissions estimates. For example, bias errors as a function of latitude in MOPITT data can have a 98 

substantial impact on emissions estimates (Deeter et al., 2014). Model errors of transport and 99 

chemistry will have variable and substantial effects on CO emissions in different parts of the globe 100 

due to seasonal and latitudinal variations in convection, advection, and boundary layer height 101 

(Jiang et al., 2013, 2015a, 2015b).  102 

 In order to reduce the influences from these measurement and model transport systematic 103 

errors, we performed a two-step inversion by combining sequential Kalman Filter (Jiang et al. 104 

2013, 2015a, 2015b) with four-dimensional variational (4D-Var) assimilation (Henze et al. 2007) 105 

Deleted: , similar to our result.106 
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in this work, using the GEOS-Chem model. Instead of optimizing the CO concentrations and 111 

emissions simultaneously (e.g. Fortems-Cheiney et al. 2011, 2012; Yin et al. 2015), our first step, 112 

the sequential Kalman Filter, modifies the atmospheric CO concentration directly to provide low 113 

bias initial (monthly) and boundary (hourly) conditions, whereas the second step (4D-Var) 114 

constrains CO emissions assuming perfect initial and boundary conditions. We also apply bias 115 

corrections to MOPITT and compare the surface CO concentrations obtained by constraining the 116 

model with either MOPITT profile, total column, or lower troposphere data to test which data type 117 

provides the most accurate comparison with independent surface in-situ measurements. 118 

This paper is organized as follows: in Section 2 we describe the MOPITT instruments and 119 

the GEOS-Chem model used in this work. In Section 3 we outline the inverse method. We then 120 

investigate the long-term variations of global tropospheric OH and CO emissions in Section 4, and 121 

we discuss the changes in tropospheric CO, and the contributions from emissions and 122 

meteorological conditions. Our conclusions follow in Section 5. 123 

2. Observations and Model 124 

2.1. MOPITT 125 

The MOPITT instrument was launched on December 18, 1999 on the NASA/Terra 126 

spacecraft. The satellite is in a sun-synchronous polar orbit of 705 km and crosses the equator at 127 

10:30 local time. The instrument makes measurements in a 612 km cross-track scan with a 128 

footprint of 22 km x 22 km, and provides global coverage every three days. The MOPITT data 129 

used here were obtained from the joint (J) retrieval (V6J) of CO from TIR (4.7µm) and NIR (2.3µm) 130 

radiances using an optimal estimation approach (Worden et al., 2010; Deeter et al., 2011). The 131 

retrieved volume mixing ratios (VMR) are reported as layer averages of 10 pressure levels (surface, 132 

900, 800, 700, 600, 500, 400, 300, 200 and 100 hPa). The relationship between the retrieved CO 133 
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profile and the true atmospheric state can be described as: 134 

! = !# + % ! − !# + '(                                                       (1) 135 

where !#  is the MOPITT a priori CO profile, ! is the true atmospheric state, ') describes the 136 

retrieval error, and % = 𝜕! 𝜕! is the MOPITT averaging kernel matrix, which gives the sensitivity 137 

of the retrieval to the actual CO in the atmosphere. The MOPITT V6 data have been evaluated by 138 

Deeter et al. (2014) using aircraft measurements from HIAPER Pole-to-Pole Observations (HIPPO) 139 

and the National Oceanic and Atmospheric Administration (NOAA). For the TIR/NIR multi-140 

spectral retrievals, they found negative bias drift (-1.27%/year) at lower troposphere (800 hPa), 141 

and positive bias drift (1.64%/year) at upper troposphere (200 hPa). The bias drift in the total 142 

column is negligible (0.003%/year). Following our previous studies (Jiang et al. 2013; 2015a; 143 

2015b), we reject MOPITT data with CO column amounts less than 5x1017 molec/cm2 and with 144 

low cloud observations. The threshold of 5x1017 molec/cm2 was selected to prevent unrealistically 145 

low CO columns from adversely impacting the inversion analyses. Since the NIR radiances 146 

measure reflected solar radiation, only daytime data are considered here. 147 

Figure 1 shows the comparison between MOPITT CO retrievals and HIPPO aircraft 148 

measurements. The aircraft measurements are smoothed with MOPITT averaging kernels. The 149 

comparison demonstrates a negative bias of MOPITT CO retrievals in the tropics and a positive 150 

bias at the middle latitudes in the lower troposphere. Opposite bias is observed in the upper 151 

troposphere. Similar latitude dependent biases in remote sensing retrievals have been revealed for 152 

methane (CH4) observations from Scanning Imaging Absorption Spectrometer for Atmospheric 153 

Chartography (SCIAMACHY, Bergamaschi et al. 2007, 2009; Meirink et al. 2008), Greenhouse 154 

Gases Observing Satellite (GOSAT, Turner et al. 2015), and CO observation from MOPITT 155 

(version 4, Hooghiemstra et al. 2012). Similar to previous studies, we reduce the adverse effect of 156 
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the latitude dependent bias by applying latitude dependent correction factors to MOPITT CO 157 

retrievals, based on the black solid line in Figure 1, which represents a 4-order polynomial curve 158 

fitting (in a least-squares sense) for all data points. It should be noted that the possible seasonal 159 

variations of MOPITT retrieval biases are not included in our analysis because we are focusing on 160 

the interannual variation of CO emissions. 161 

2.2. GEOS-Chem 162 

The GEOS-Chem global chemical transport model (CTM) [www.geos-chem.org] is driven 163 

by assimilated meteorological fields from the NASA Goddard Earth Observing System (GEOS-5) 164 

at the Global Modeling and data Assimilation Office. For the simulations in this work, various 165 

versions of GEOS meteorological fields are used, including GEOS-4 (2000-2003), GEOS-5 (2004-166 

2012) and GEOS-FP (2013-2015). We use version v35j of the GEOS-Chem adjoint, which is based 167 

on v8-02-01 of the forward GEOS-Chem model, with relevant updates through v9-02-01. Our 168 

analysis is conducted at a horizontal resolution of 4°x5° with 47 vertical levels and employs the 169 

CO-only simulation in GEOS-Chem, which uses archived monthly OH fields from the full 170 

chemistry simulation. The OH fields used in this work are from GEOS-Chem version v5-07-08, 171 

with a global annual mean OH concentration of 0.99x106 molec/cm3 (Evans et al. 2005). The 172 

potential long-term variation of global tropospheric OH is evaluated in section 4.  173 

The global anthropogenic emission inventory is from EDGAR 3.2FT2000 (Olivier et al., 174 

2001), but are replaced by the following regional emission inventories: the US Environmental 175 

Protection Agency National Emission Inventory (NEI) for 2008 in North America, the Criteria Air 176 

Contaminants (CAC) inventory for Canada, the Big Bend Regional Aerosol and Visibility 177 

Observational (BRAVO) Study Emissions Inventory for Mexico (Kuhns et al. 2003), the 178 

Cooperative Program for Monitoring and Evaluation of the Long-range Transmission of Air 179 
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Pollutants in Europe (EMEP) inventory for Europe in 2000 (Vestreng et al. 2002) and the INTEX-180 

B Asia emissions inventory for 2006 (Zhang et al. 2009). Biomass burning emissions are based on 181 

the Global Fire Emission Database (GFED3, van der Werf et al. 2010). The a priori biomass 182 

burning emissions in Sep-Nov 2006 were applied to Sep-Nov 2015 over Indonesia. Additional CO 183 

sources come from oxidation of methane and biogenic volatile organic compounds (VOCs) as 184 

described in previous studies (Kopacz et al. 2010; Jiang et al. 2013). The biogenic emissions are 185 

simulated using the Model of Emissions of Gases and Aerosols from Nature, version 2.0 186 

(MEGANv2.0, Guenther et al. 2006). The distribution of the annual mean CO emissions for 2001-187 

2015 is shown in Figure 2. The annual global sources are 892 Tg CO from fossil fuel, biofuel and 188 

biomass burning, 623 Tg CO from the oxidation of biogenic VOCs, and 876 Tg CO from the 189 

oxidation of CH4.  190 

3. Inversion Approach 191 

We use the 4D-var data assimilation system in GEOS-Chem (Henze et al. 2007) to 192 

constrain the CO sources. In this approach, we minimize the cost function defined as:   193 

* + = ,- + − !- ./012 ,- + − !- + + − +# .3
-42 /512(+ − +#)              (2) 194 

where + is the state vector of CO emissions, N is the number of MOPITT observations that are 195 

distributed in time over the assimilation period, !-	is a given MOPITT measurement, and ,(+) is 196 

the forward model. The temporal resolution of forward model output (,(+)) is one hour, and 197 

consequently, the high resolution MOPITT measurements are averaged temporally (one-hour 198 

resolution) and spatially (4°x5° resolution) to produce grid mean observations. The number (N) of 199 

grid mean observations in our assimilation window (one month) is around 10000.  200 

The error estimates are assumed to be Gaussian, and are given by /0, the observational 201 

error covariance matrix, and /#, the a priori error covariance matrix, respectively. The Gaussian 202 
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assumption excludes important systematic errors, such as biases in OH distribution, long-range 203 

transport and satellite retrievals in the cost function. Due to lack of meaningful information about 204 

the systematic errors, we assume a uniform observation error of 20% without spatial correlation. 205 

The combustion CO sources (fossil fuel, biofuel and biomass burning) and the oxidation source 206 

from biogenic VOCs are combined together, assuming a 50% uniform a priori error. We optimize 207 

the source of CO from the oxidation of CH4 separately as an aggregated global source, assuming 208 

an a priori uncertainty of 25%.  209 

Without consideration of systematic errors, the a posteriori error covariance matrix is the 210 

inverse of the Hessian matrix, which is not stored in the 4D-var optimization scheme. Bousserez 211 

et al. (2015) presented an approach to construct the a posteriori error covariance matrix using the 212 

approximation of Hessian matrix. As opposed to earlier studies using surface measurements, the 213 

high spatial density of measurements from satellite instruments can effectively suppress the 214 

contribution from random errors in the cost function, leaving systematic errors as the critical factor 215 

in the uncertainty. As shown by Heald et al. (2004), different assumptions about the inversion 216 

configuration (systematic errors) can produce differences in the source estimates that are 217 

significantly larger than the a posteriori errors calculated based on random errors. Consequently, 218 

estimates of a posteriori uncertainties are not provided in this work (e.g. Table 1 and Table 2). 219 

Removing the bias in initial conditions is essential for inverse analysis (Jiang et al. 2013), 220 

and can be performed with various data assimilation techniques. Model simulations driven by 221 

optimized emissions can provide good initial conditions (e.g. Gonzi et al. 2011; Bruhwiler et al. 222 

2014; Deng et al. 2014; Houweling et al. 2014). Alternatively, tracer concentrations can be 223 

modified directly to avoid the effect from long-range transport error (e.g. Kopacz et al. 2009; Jiang 224 

et al. 2013, 2015a). There are also efforts to optimize emissions and concentrations simultaneously 225 
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(e.g. Fortems-Cheiney et al. 2011, 2012; Bergamaschi et al. 2013; Yin et al. 2015), however, the 233 

contributions from emissions and concentrations to model bias may be hard to be distinguished. 234 

Figure 3 shows the methodology of our assimilation system. Following our previous studies (Jiang 235 

et al. 2013, 2015a, 2015b), we produce initial conditions at the beginning of each monthly 236 

assimilation window by assimilating MOPITT data using a sequential Kalman filter. For the results 237 

presented here, the Kalman filter assimilation was carried out from March 1, 2000 to December 238 

31, 2015. 239 

Systematic errors have critical influences on inverse analysis. Jiang et al. (2013) found that 240 

the modeled CO concentration from a 10-day forecast simulation have large discrepancy with 241 

assimilated CO fields, because of bias in model convective transport. Jiang et al. (2015a) 242 

demonstrated that free tropospheric CO is more susceptible to the influences of OH bias than lower 243 

tropospheric CO due to the process of long-range transport. Previous studies suggest the influences 244 

of systematic errors can be mitigated by enhancing the contributions from local emissions to the 245 

discrepancy between model and data, while keeping the influence from long-range transport as 246 

low as possible due to sources of uncertainties that are difficult to quantify. For example, Pifster 247 

et al. (2005) constrained biomass burning CO emissions from boreal North America with 248 

optimized CO fields outside the impacted region; Jiang et al. (2015b) indicated that the results of 249 

regional inversions are more reliable when the boundary conditions are optimized. 250 

In this work, we designed a two-step inversion to reduce the effects of these systematic 251 

errors. As shown in Figure 3, we define the ocean scene (red grids) as boundary conditions. In the 252 

first step of our inverse analysis, sequential Kalman filter assimilation, we directly modify CO 253 

concentrations without any change to emissions in order to provide an optimized CO fields as 254 

consistent as possible with MOPITT. In the second step, the optimized CO fields are used to 255 
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rewrite CO concentrations over the ocean every hour, while 4D-var inversion is employed to 272 

constrain CO emissions, without any change on CO distribution over ocean. Only MOPITT data 273 

over land (white grids) were assimilated to constrain CO emissions in the second step. With the 274 

fixed/optimized boundary conditions, the global inversion system has been converted to a 275 

combination of several regional inversions. Consequently, the emission and transport errors from 276 

one continent (e.g. North America) will not affect the emission estimation of another continent 277 

(e.g. Europe). 278 

4. Results and Discussion 279 

4.1. Long-term variation of global tropospheric OH 280 

The distribution of tropospheric OH has significant influence on the inverse analysis of CO 281 

emissions (Jiang et al. 2011). Various approaches have been employed to improve the OH 282 

distribution in previous studies. Jiang et al. (2013) assimilated MOPITT CO retrievals in full 283 

chemistry model simulation to provide updated OH fields. Miyazaki et al. (2015) demonstrated 284 

that assimilation of Tropospheric Emission Spectrometer (TES) O3, Ozone Monitoring Instrument 285 

(OMI) NO2, and MOPITT CO can provide a better description of tropospheric OH. There are also 286 

recent efforts that have assimilated surface in-situ MCF measurements (Fortems-Cheiney et al. 287 

2011, 2012; Yin et al. 2015). However, because of the uncertainties in model chemistry schemes, 288 

potential bias drifts in satellite remotely sensed observation, and sparse distribution of surface in-289 

situ measurements, OH abundances provided by these approaches may not be ideal for the 290 

estimation of long-term CO variation. 291 

Emissions of MCF are regulated by the Montreal Protocol agreement. The loss rate of MCF 292 

has become a good tool to evaluate the variation of tropospheric OH (e.g. Krol et al. 1998; 293 

Bousquet et al. 2005; Prinn et al. 2005; Montzka et al. 2011). Using the same approach as Montzka 294 
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et al. (2011), we assess the variation of tropospheric OH in the period of 2001-2015. Figure 4a 295 

shows the locations of WDCGG sites with MCF measurements, and  Figure 4b shows the global 296 

mean MCF concentration in the past 15 years. Similar as Montzka et al. (2011), our result shows 297 

a exponential decrease of MCF concentration. The loss rate of MCF, derived from 12-month apart 298 

of monthly means [e.g., ln(MCFJan2007/MCFJan2006)] varies by 0.2% in the past 15 years (Figure 299 

4c). The interannual variation is more likely due to the sparsity and discontinuity of measurements. 300 

The small variation of loss rate of MCF demonstrates that the long-term variation of global 301 

mean OH distributions is negligible in the past 15 years. Consequently, the decreasing trend of 302 

tropospheric CO in North Hemisphere is driven by decreasing CO sources, rather than sinks. For 303 

this reason, the default monthly OH fields of GEOS-Chem model (Evans et al. 2005), without 304 

interannual variability, are used in this work to constrain the long-term variation of CO emissions. 305 

Because the abundances of tropospheric OH have large regional discrepancies (e.g. Jiang et al. 306 

2015a), it is possible that the actual OH is more variable at regions lacking MCF measurements 307 

(e.g. India and southeast Asia). Futhermore, the magnitude and seasonality of the default monthly 308 

OH fields could also have uncertainty. Consequently, the magnitude of CO emissions in our 309 

analysis may still be affected by biases in OH, although the two-step assimilation system is 310 

designed to suppress their influence. 311 

4.2. Long-term variation of global CO emissions 312 

In this work, we performed monthly inversions for the period of 2001-2015, using 313 

MOPITT column, profile and lower tropospheric profile (lowest three retrieval levels) data to 314 

investigate the influences associated with vertical sensitivity of satellite instrument and model 315 

transport error. Figure 5 shows the CO emission trends for 2001-2015 constrained by these 316 

different datasets. Because of the combination of various emission categories (i.e. anthropogenic, 317 
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biomass burning and VOC oxidation) in our methodology, we cannot completely separate the a 318 

posteriori emission estimates from different sources. However, the various spatial and temporal 319 

distribution of emissions sources (e.g. anthropogenic vs. biomass burning) provides valuable 320 

information to distinguish the contribution from each category. In order to further isolate the 321 

influences of biomass burning, the months dominated by biomass burning (biomass burning CO > 322 

50% of total CO emission in an individual grid) are excluded in the trend analysis for 323 

anthropogenic and VOC sources (Figure 5). 324 

For anthropogenic sources, all three analysis show significant emission reduction from 325 

North America, Europe and China. The emission estimates constrained with MOPITT column and 326 

profile data suggest increasing CO emissions from India and Southeast Asia. Conversely, the 327 

emission estimate constrained with MOPITT lower tropospheric profile data shows a decreasing 328 

trend in this region, and this decreasing trend is also obtained by Yin et al. (2015). As shown in 329 

Jiang et al., (2013), errors in model convection in this region have a large effect on CO emissions 330 

estimates, and information about the vertical profile of CO has a stronger influence on the results. 331 

For biomass burning sources, we found a negative trend over boreal North America, boreal 332 

Asia and South America, and a positive trend over Indonesia that is primarily due to the strong 333 

impacts of El Nino in 2006 and 2015 on biomass burning in this region (e.g. Field et al., 2016). 334 

Our results for biogenic VOCs are inconclusive; the emission estimates constrained with MOPITT 335 

column and profile data show moderate positive trends in the tropics, and slight negative trends in 336 

mid-latitude regions, whereas the emission estimate constrained with MOPITT lower tropospheric 337 

profile data shows a negative trend globally. 338 

4.2.1. Regional analysis for anthropogenic emissions 339 

Figure 6a shows the regional variation of anthropogenic emissions from the United States 340 

Deleted: demonstrate341 



 

 14 

(US). The emission estimates constrained with MOPITT column and profile data match very well 342 

with the a priori emissions, whereas the emission estimate constrained with MOPITT lower 343 

tropospheric profile data is much higher. All three analyses demonstrate a significant emission 344 

reduction over our study period. As shown in Table 1, the total anthropogenic CO emission 345 

(constrained with MOPITT profile data) from US is 56.8 Tg in 2015, which is 35% lower than that 346 

in 2001 (87.7 Tg). Figure 7a shows the monthly mean CO concentrations from WDCGG stations 347 

in US, which demonstrates a similar decreasing trend as our analysis. The initial increase at 2001-348 

2002 could be caused by uncertainties in the data. The decreasing trend is consistent with the US 349 

Environmental Protection Agency (EPA) Emissions Trends Data (https://www.epa.gov/air-350 

emissions-inventories/air-pollutant-emissions-trends-data), and other observation records for 351 

western US (Gratz et al. 2015), southeast US (Hidy et al. 2014) and North Atlantic (Kumar et al. 352 

2013).  353 

Figure 6b shows the regional variation of anthropogenic emissions from Europe. All three 354 

analyses show an underestimation of a priori emissions, suggesting the CO emissions in the EMEP 355 

inventory are too low. Our results show that anthropogenic emissions decrease during the period 356 

of 2001-2007, but are almost unchanged in the following years, which is consistent with the 357 

observations from WDCGG stations (Figure 7b). Recent studies (Hilboll et al. 2013; Schneider et 358 

al. 2015) showed that NO2 over Europe from SCIAMACHY is decreasing in the period of 2002-359 

2008, and almost unchanged in the period of 2008-2011. Henschel et al. (2015) indicated that the 360 

unchanged NO2 over Europe could be caused by European emissions that are failing to achieve 361 

the expected reduction standards. Because anthropogenic CO and NO2 share some of the same 362 

combustion sources, it is possible that the unchanged CO emission in our analysis is also due to a 363 

failure of emission controls.   364 
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Figure 6c shows the regional variation of anthropogenic emissions from east China. We 365 

found Chinese anthropogenic emissions are increasing in the period of 2001-2004. Accompanied 366 

with the global economy recession, the total anthropogenic CO emission (constrained with 367 

MOPITT profile data) from east China decreases to 175.4 Tg in 2008, which is 15% lower than 368 

that in 2004 (205.6 Tg). Our analysis shows a temporary increase of Chinese emissions in 2009 369 

(185.9 Tg), followed by continuous decrease. The total Chinese anthropogenic CO emission is 370 

159.0 Tg in 2015, which is 7% lower than that in 2001 (170.4 Tg). Using surface in-situ 371 

measurements at Hateruma Island, Tohjima et al. (2014) constrained CO emissions from China 372 

for the period 1999-2010. They found Chinese CO emission increases from 1999-2004, and 373 

decreases since 2005. Using a “bottom-up” approach, recent studies (Zhao et al. 2012; Xia et al. 374 

2016) indicated that the growth trend of Chinese CO emissions has been changed since 2005 375 

because of improvements in energy efficiency and emission control regulations (e.g. Liu et al. 376 

2015). Figure 7c shows the observation records from 2 stations in the East China outflow region, 377 

which demonstrate similar variations. 378 

Figures 6d-6e show the regional variation of anthropogenic emissions from India and 379 

Southeast Asia. The emission estimates constrained with MOPITT column and profile data 380 

demonstrate significant positive trend in our study period, whereas the emission estimate 381 

constrained with MOPITT lower tropospheric profile data shows a decreasing trend. Schneider et 382 

al. (2015) showed that NO2 over south Asia from SCIAMACHY is increasing in the period of 383 

2003-2011. Using OMI NO2 measurements, recent studies (e.g., Duncan et al. 2016) demonstrated 384 

that NO2 over India has a positive trend during 2005-2015. Observations from Cape Rama (CRI) 385 

station (Figure 7d) demonstrate that CO concentration in 2010-2013 is significantly higher than 386 

that in 2001-2002. For these reasons, we have more confidence in our results that indicate 387 
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increasing anthropogenic CO emissions from India and Southeast Asia in the past 15 years. The 388 

trend based on the MOPITT lower-tropospheric data is incorrect because of model error in 389 

convection in this dynamically varying region, and the negative bias drift in MOPITT lower 390 

tropospheric retrievals (Deeter et al., 2014). The total anthropogenic CO emission (constrained 391 

with MOPITT profile data) from India and Southeast Asia is 130.4 Tg in 2015, which is 34% 392 

higher than that in 2001 (97.5 Tg). It should be noted that the inconsistency between our analysis 393 

with Yin et al. (2015) suggests more studies are needed for robust conclusion about the variation 394 

of anthropogenic CO emissions for this region. 395 

Although our inverse analysis (constrained with MOPITT profile data) suggests similar 396 

anthropogenic CO emissions from East China in 2008 and 2014, Figure 7c demonstrates that mean 397 

CO concentrations over the outflow region of East China are 6 ppb higher in 2014 compared to 398 

2008. Our previous study (Jiang et al. 2015c) indicated that anthropogenic emissions from India 399 

and southeast Asia have an important influence on pollutant concentrations in the east China 400 

outflow region. It is possible that the increase of CO concentration observed by WDCGG stations 401 

in this region is caused by the significant increase of anthropogenic CO emission from India and 402 

southeast Asia. In the most recent 5 years (2011-2015), our results (constrained with MOPITT 403 

profile data) suggested a 20.5 Tg emission reduction from East China, and a 10.1 Tg emission 404 

increase from India and Southeast Asia. Assuming a fixed emission growth rate, projected 405 

anthropogenic CO emissions from India and Southeast Asia will overtake Chinese emissions in 406 

2020, resulting in  serious socioeconomic issues on both local and global scales. 407 

4.2.2. Regional analysis for biomass burning emissions 408 

Figure 8 and Table 2 show the regional variation of biomass burning emissions. There are 409 

significant decreasing trends in three regions (i.e. boreal North America, boreal Asia, and South 410 
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America). Our results show high biomass burning emissions from boreal North America (mainly 413 

Alaska and western Canada) in 2004 (Figure 8a), which have been reported by previous studies 414 

(e.g. Pfister et al. 2005; Turquety et al. 2007), and also from  boreal Asia during 2001-2003 (Figure 415 

8b) due to significant fire activity in Siberia (e.g., Yurganov et al., 2005,  Stroppiana et al., 2010). 416 

For South America (Figure 8c), we found higher biomass burning emissions in the periods of 2004-417 

2007 and 2010, consistent with fire activity reported in previous studies (e.g. Hooghiemstra et al. 418 

2012; Bloom et al. 2015). 419 

Figure 8d shows the regional variation of biomass burning emissions from Africa. The fire 420 

activities in Africa demonstrates obvious seasonality: peak in boreal winter for Northern 421 

Hemispheric Africa, and in austral winter for Southern Hemispheric Africa. Similar to previous 422 

studies (e.g. Chevallier et al. 2009; Tosca et al. 2015), there is no obvious emission trend in Africa 423 

in the past 15 years. This is also consistent with the burned area trends described by Andela et al. 424 

(2014) which show opposite directions for Northern Africa (decreasing) versus Southern Africa 425 

(increasing) and would have cancelling effects in the trend for the continent as a whole.   426 

Our results exhibit two strong biomass burning events in Indonesia, 2006 and 2015, 427 

individually (Figure 8e). Previous studies (e.g. Logan et al. 2008; Zhang et al. 2011; Worden et al. 428 

2013b, 2013c, Field et al., 2016) demonstrate the direct relationship between strong Indonesian 429 

fires and El Niño. Recent studies (Huang et al. 2014; Inness et al. 2015) confirm low biomass 430 

burning activities in Indonesia in the period of 2007-2012. CO emissions from the Indonesian fires 431 

associated with the 2015 El Niño were 92 Tg (for October, 2015, as constrained with MOPITT 432 

profile data), and were about three times higher than the October 2006 El Nino driven fire 433 

emissions (32 Tg). Not including the 2015 El Niño driven fires, our analysis indicates a negative 434 

trend of global biomass burning emissions in the past 15 years, as shown in Figure11f. 435 
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4.3. Changes in tropospheric CO during 2001-2015 440 

In this section, we evaluate our inversion results using independent long-term surface in-441 

situ measurements from WDCGG stations. Figure 9a shows the annual trend of surface CO 442 

concentration for 2001 – 2015 from WDCGG sites, and from model simulations driven with a 443 

priori emissions. Most WDCGG sites exhibit negative trends in the past 15 years, confirming the 444 

decreasing trend of global tropospheric CO, which is consistent with satellite observations (e.g. 445 

Warner et al. 2013; Worden et al. 2013). There are also stations with positive trends, for example, 446 

Tae-ahn Peninsula (TAP, Korea), Ascension Island (ASC, equtorial Atlantic Ocean), Cape Rama 447 

(CRI, India),  Bukit Koto Tabang (BKT, Indonesia) and Cape Grim (CGO, Australia). Globally, 448 

the a priori model simulation is in reasonable agreement with WDCGG measurements: both show 449 

negative trends in middle/high latitude, and positive trends in some tropical regions. However, 450 

there are noticable discrepancies, for example, the surface observation from Yonagunijima (YON, 451 

east China sea) shows a negative trend in our study period, suggesting decreasing trend from 452 

Chinese CO emission, whereas the a priori simulation demonstrates significant positive trend. 453 

Figure 9b-9d show the model simulations driven with a posteriori emissions. The a 454 

posteriori emissions constrained with MOPITT lower tropospheric profile data (Figure 9d) results 455 

in unrealistic large CO reduction, which could be caused by the negative bias drift of MOPITT 456 

retrievals at lower troposphere (Deeter et al. 2014) and the influence from possible variability in 457 

model convective transport. The a posteriori emissions constrained with MOPITT column and 458 

profile data have similar comparisons. For example, both of them suggest a negative trend over 459 

east China, consistent with observations from YON, and positive trend over northeast Asia, 460 

consistent with observations from TAP. 461 

In order to better compare the discrepancy between model simulation and surface 462 
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observations, Figure 9e-9g show the improvement due to a posteriori emissions, derived by 463 

abs(Trendaposteriori – TrendWDCGG) - abs(Trendapriori - TrendWDCGG). Blue (red) means the a posteriori 464 

emissions improves (degrades) the agreement with WDCGG measurements compared to the 465 

simulated surface CO using a priori emissions, while white indicates no change from the prior. As 466 

shown in Figure 9f, the CO emissions constrained with MOPITT profile data improved the model 467 

simulation for most WDCGG sites in the Northern Hemisphere. The a posteriori emissions 468 

constrained with MOPITT column data are somewhat worse, particularly over Europe, while CO 469 

emissions constrained with MOPITT profile data over Europe give improved comparisons to 470 

WDCGG surface CO measurements. Worden et al. (2010) demonstrated that the degrees of 471 

freedom for signal (DFS) of MOPITT multi-spectral profile retrievals (TIR+NIR) is about 1.5-2.0 472 

over land, which is reduced to about 1 DFS when converted to a total column.  This reduction in 473 

vertical information in MOPITT column data can affect the the reliability of inverse analysis 474 

results (Jiang et al., 2015a). It should be noticed that the vertical correlation in model simulation 475 

is not considered in our assimilation, which could be another possible reason for this discrepancy. 476 

Figure 10a-10d show the long-term mean value of surface CO concentration for 2001 – 477 

2015 from WDCGG sites, and model simulations driven with a priori and a posteriori emissions. 478 

All simulations provide similar results for long-term mean value. Figure 10e-10g show the 479 

improvement due to a posteriori emissions, derived by abs(COaposteriori – COWDCGG) - abs(COapriori 480 

- COWDCGG). Figure 10f demonstrates that CO emissions constrained with MOPITT profile data 481 

improved the model simulation in about half of the sites in the Northern Hemisphere, whereas the 482 

a posteriori emissions constrained with MOPITT column data are somewhat worse (Figure 10e). 483 

Evaluating modeled tracer concentrations using surface in-situ measurements is more challenging 484 

than evaluating long-term trends. Important sources of uncertainty include the representation error 485 
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(e.g. Chang et al. 2015; Kharol et al. 2015) and vertical mixing of boundary layer (e.g. Castellanos 491 

et al. 2011; Cuchiara et al. 2014).  492 

Because our a posteriori simulation, particularly using emissions constrained with 493 

MOPITT profile data, results in significant improvement in the long-term trend, and moderate 494 

improvement in the mean value, we believe these a posteriori estimates provide a better description 495 

for the long-term variation of global CO emissions. A remaining question is to explore how 496 

changes in meterological conditions affect the long-term variation. By fixing CO emissions to 497 

2001 levels, Figure 11a-11b show the long-term trend of modeled surface and column CO during 498 

2001-2015, due only to changes in meterological conditions. At the surface level (Figure 11a), we 499 

found changes in meterology result in a moderate positive trend in the Northern Hemisphere, 500 

particularly, over northeast Asia, consistent with observation records from the TAP station; and 501 

significant positive trend in tropics, consistent with observation record from ASC station. On the 502 

other hand, the influence of meterological conditions on column CO (Figure 11b) is much weaker. 503 

The discrepancy between surface and column CO suggests the possible contribution from variable 504 

convective transport. It should be noted that our analysis for the contributions from meterological 505 

conditions could be affected by the discrepancies among various versions of the meterological 506 

fields (i.e. GEOS-4, GEOS-5 and GEOS-FP), and the lack of consistency in model physics of 507 

GEOS-5 (e.g. the transition from GEOS 5.1.0 to GEOS 5.2.0 in late 2008). 508 

Figure 11c-11h show the variation of global tropospheric CO due to changes in emissions. 509 

Yin et al. (2015) indicated that the negative trend of tropospheric CO in the Northern Hemisphere 510 

is driven by decreasing anthropogenic emissions from North America, Europe and China. Along 511 

with reductions in anthropogenic emissions (Figure 11c, 11d), we found the decrease of biomass 512 

burning emissions from boreal North America and boreal Asia (Figure 11e, 11f) to be an important 513 
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factor for this negative trend. In constrast to the emission reduction from North America, Europe 526 

and China, we found increasing anthropogenic emissions from India and southeast Asia, which 527 

result in a pronounced positive trend of tropospheric CO, while Yin et al. (2015) obtain a negative 528 

trend for this region. This discrepancy requires further study and we will need to test the relative 529 

importance of the primary differences in our methods, i.e., models and inversion approaches, 530 

climatological OH (this study) vs. assimilated surface measurements of CH4 and MCF to update 531 

OH (Yin et al.) and the use of MOPITT profile vs. column CO retrievals (Yin et al., assimilate 532 

only column CO). 533 

5. Summary 534 

The objective of this work is to investigate the dominant reasons for the observed variation 535 

of global tropospheric CO over the past 15 years. We provide an update for this critical question 536 

and also an updated CO emission estimates for model studies. In particular, we use surface 537 

measurements of MCF to evaluate changes in the sinks of atmospheric CO, and constrain the 538 

sources using MOPITT CO measurements to explain the observed decrease in CO concentrations. 539 

Our two-step approach for estimating global CO emissions mitigates the effects of model errors 540 

from transport and chemistry, as well as measurement bias error.  541 

Using the same approach as Montzka et al. (2011), we assess the variation of tropospheric 542 

OH (the primary CO sink) in the period of 2001-2015 using MCF measurements from WDCGG 543 

stations. Our result demonstrates negligible variation of global tropospheric OH in the past 15 544 

years, and consequently we suggest that the global sink of CO due to chemical loss through OH 545 

has not likely changed during this time period. We therefore expect the decreasing trend of 546 

tropospheric CO in North hemisphere (e.g. Warner et al. 2013; Worden et al. 2013; Gratz et al. 547 

2015) to be driven by decreasing CO sources. Total anthropogenic CO emissions from the US 548 
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were 56.8 Tg in 2015, which are 35% lower than emissions in 2001 (87.7 Tg). Total anthropogenic 553 

CO emissions from East China were 159.0 Tg in 2015, which are 7% lower than 2001 emissions 554 

(170.4 Tg) and 23% lower than 2004 emissions (205.6 Tg). This pronounced decrease of emissions 555 

from US and China is an indication of progress for fuel efficiency and emission control regulations. 556 

Conversely, our results demonstrate that anthropogenic emissions from Europe decreased from 557 

2001 to 2007 but are almost unchanged during 2008-2015. We also found a significant increase of 558 

anthropogenic emissions for India and Southeast Asia. The total anthropogenic CO emission from 559 

India and southeast Asia is 130.4 Tg in 2015, which is 34% higher than that in 2001 (97.5 Tg). 560 

Assuming the same emission growth rate as 2011-2015, we expect that anthropogenic CO 561 

emissions from India and Southeast Asia will be larger than Chinese emissions by 2020. 562 

In a recent study, Yin et al. (2015) indicated that the decreasing tropospheric CO in the 563 

Northern Hemisphere is caused by the decrease of anthropogenic emissions from North America, 564 

Europe and China. We find that a decrease of biomass burning emissions from boreal North 565 

America and boreal Asia is also an important contributor for the negative trend. Globally, our 566 

analysis indicates a negative trend of biomass burning emissions in the past 15 years, except in 567 

Indonesia due to the strong biomass burning event in 2015 associated with El Niño. Our results 568 

demonstrate a significant decrease of biomass burning emissions from South America, which 569 

could be associated with the reduction of deforestation in Brazil (Reddington et al. 2015), and the 570 

predominant change from El Nino to La Nina in our study period (Andela et al. 2014). For Africa, 571 

there is no obvious CO emission trend in the past 15 years, consistent with previous results 572 

(Chevallier et al. 2009; Tosca et al. 2015; Andela et al., 2014). Our results are inconclusive in 573 

characterizing the CO sources from oxidation of biogenic VOCs. More efforts are needed in the 574 

future to better understand the mechanism for tropical CO emissions. 575 
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Our analysis highlights the importance of space-based instruments for monitoring changes 576 

in global pollutant emissions. Our results demonstrate successful emission controls in US and 577 

China over the past 15 years, and suggest that emission controls in Europe may need re-evaluation. 578 

We also recommend more efforts in the future to better understand the regional and global effects 579 

of increasing pollutant emissions from India and Southeast Asia. 580 
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 933 

Tables and Figures 934 

Table 1. Annual total anthropogenic CO emission in different regions, from 2001 to 2015, 935 
constrained with MOPITT column, profile and lower tropospheric data. The region definition is 936 
shown in Figure 2e. 937 
 938 
Table 2. Annual total biomass burning CO emission in different regions, from 2001 to 2015, 939 
constrained with MOPITT column, profile and lower tropospheric data. The region definition is 940 
shown in Figure 2f. 941 
 942 
Figure 1. Difference between MOPITT CO retrievals and HIPPO aircraft measurements. The 943 
aircraft measurements are smoothed with MOPITT averaging kernels. The black solid line shows 944 
the 4-order polynomial curve fitting, which is used to correct MOPITT data in this work. 945 
 946 
Figure 2. (a-d) Mean a priori CO emissions from combustion sources and the oxidation of biogenic 947 
VOCs and CH4 from 2001 to 2015. The unit is 1012 molec/cm2/sec. (e-f) Region definitions for (e) 948 
anthropogenic and (f) biomass burning sources. 949 
 950 
Figure 3. Schematic diagram for methodology of the assimilation system. Sequential Kalman 951 
Filter was run from March 1 2000 to December 31 2015 to produce the optimized initial conditions 952 
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(monthly) and boundary conditions (hourly). Monthly 4-DVAR inversions were performed with 953 
the optimized initial conditions. Only MOPITT data over land (white grids) were assimilated in 954 
the 4-DVAR inversions, while the CO abundances over ocean (red grids) were defined as 955 
boundaries and rewritten using the optimized hourly CO fields from Kalman Filter. The Kalman 956 
filter run is completely independent of the 4-DVAR inversions. There is no feedback of the 4-957 
DVAR inversion results to the boundary conditions. 958 
 959 
Figure 4. (a) Locations of WDCGG sites with MCF measurements. (b) Global mean MCF 960 
concentration. (c) Exponential loss rate of MCF, derived from 12-month apart of monthly means 961 
[e.g., ln(MCFJan2007/MCFJan2006)]. The black solid line shows the 12-month mean value. 962 
 963 
Figure 5. CO emission trends for 2001 – 2015, constrained with MOPITT column, profile and 964 
lower tropospheric profile data. The months dominated by biomass burning emissions are excluded 965 
from the trend calculation for anthropogenic and biogenic VOC emissions. 966 
 967 
Figure 6. 12-month mean value of anthropogenic CO emissions (with unit Tg/month) for 2001 – 968 
2015: a priori emission (green) and a posteriori emissions constrained with MOPITT column data 969 
(black), MOPITT profile data (blue) and MOPITT lower tropospheric profile data (red). The green 970 
dash line shows the monthly a priori anthropogenic CO emissions. The region definition is shown 971 
in Figure 2e. 972 
 973 
Figure 7. Monthly mean CO concentrations (green) and 12-month mean value (black) from 974 
WDCGG stations for 2001 – 2015. (a) 15-station average in United States (b) 20-station average 975 
in Europe (c) 2-station (YON and JMA) average in east China outflow (4) Cape Rama (CRI) in 976 
India. 977 
 978 
Figure 8. Monthly biomass burning CO emissions (with unit Tg/month) for 2001 – 2015: a priori 979 
emission (green) and a posteriori emissions constrained with MOPITT column data (black), 980 
MOPITT profile data (blue) and MOPITT lower tropospheric profile data (red). The region 981 
definition is shown in Figure 2f. 982 
 983 
Figure 9. Panels (a-d): long-term trend (annual) of surface CO concentration for 2001 – 2015 from 984 
WDCGG sites, and model simulations driven with a priori and a posteriori emissions. Panels (e-985 
g): effect of a posteriori emissions, derived by abs(Trendaposteriori – TrendWDCGG) - abs(Trendapriori - 986 
TrendWDCGG); blue (red) means the a posteriori emissions improves (degrades) the agreement with 987 
WDCGG measurements compared to the a priori emissions, while white indicates no change from 988 
the priori. Only stations with more than 10 year observations (the time range between the first and 989 
last observations) during 2001-2015 are included. 990 
 991 
Figure 10. Panels (a-d): long-term mean value of surface CO concentration for 2001 – 2015 from 992 
WDCGG sites, and model simulations driven with a priori and a posteriori emissions. Panels (e-993 
g): effect of a posteriori emissions, derived by abs(COaposteriori – COWDCGG) - abs(COapriori - 994 
COWDCGG); blue (red) means the a posteriori emissions improves (degrades) the agreement with 995 
WDCGG measurements compared to the a priori emissions, while white indicates no change from 996 
the priori. Only stations with more than 10 year observations (the time range between the first and 997 
last observations) during 2001-2015 are included. 998 
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 999 
Figure 11. Long-term trend (annual) of modeled surface and column CO for 2001 – 2015 with (a-1000 
b) all emission sources are fixed at 2001 level. (c-d) variable anthropogenic emissions; (e-f) 1001 
variable biomass burning emissions; (g-h) variable biogenic VOCs emissions; The variable 1002 
emissions are constrained with MOPITT profile data.  1003 
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On the other hand, Jiang et al. (2015b) indicated that regional inversions have more 

advantages than global inversions because the boundary conditions can be better controlled. They 

demonstrated that the systematic bias associated with North American CO emissions due to OH 

distribution can be reduced by up to 50% with optimized boundary conditions. Similar 

optimization on the boundary condition can also be employed in global model, for example, Pifster 

et al. (2005) constrained biomass burning CO emissions from boreal North America with 

optimized CO fields outside the impacted region.  

In order to reduce the effects of systematic errors, we designed a two-step inversion to enhance 
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