Supplement of

Impact of a new emission inventory on CAM5 simulations of aerosols and aerosol radiative effects in eastern China

T. Fan et al.

5 Correspondence to: T. Fan (fantianyi@bnu.edu.cn)

1. Emission

Table S1. Mapping the MEIC emission to CAM5-MAM3 emission input data in China.

Species	Elevation	Sectors in	AR5 emission rates ^e	Sectors in MEIC and	MEIC emission rates ^f
		CAM5 ^a	(Gg/year)	mapping treatment ^b	(Gg/year)
SO ₂	Surface	dom	1692.2	res SO ₂ x 97.5%	1593.3
		tra	289.0	tra SO ₂ x 97.5%	101.1
		awb	29.9	_c	29.9
		wst	0.0	-	0.0
		shp	11.2	-	11.2
	Elevated	ene	7946.7	pow SO ₂ x 97.5% $^{\rm d}$	4650.3
		ind	2937.5	Ind SO ₂ x 97.5%	7826.3
		forest fire	7.0	-	7.0
		grass fire	1.4	-	1.4
		contvolc	0.0	-	0.0
Acc. mode	Surface	awb	0.8	-	0.8
sulfate		wst	0.0	-	0.0
		shp	0.3	-	0.3
	Elevated	ene	203.3	pow SO ₂ x 2.5%	119.2
		ind	75.3	ind $SO_2 x 2.5\%$	200.7
		forest fire	0.2	-	0.2
		grass fire	0.0	-	0.0
		contvolc	0.0	-	0.0
Ait. mode	Surface	dom	43.4	res SO ₂ x 2.5%	40.9

sulfate		tra	7.4	tra SO ₂ x 2.5%	2.6
	Elevated	contvolc	0.0	-	0.0
Total sulfur			13246.0		14585.2
BC	Surface	ene	20.5	pow BC	1.9
		ind	853.8	Ind BC	546.4
		dom	581.9	res BC	881.3
		tra	74.7	tra BC	286.1
		awb	43.9	-	43.9
		wst	6.4	-	6.4
		shp	0.3	-	0.3
	Elevated	fst	9.8	-	9.8
		grs	3.6	-	3.6
Total BC			1595.0		1779.8
РОМ	Surface	ene	93.6	pow OC x 1.4	0.0
		ind	1567.8	ind OC x 1.4	707.5
		dom	2314.5	res OC x 1.4	3778.8
		tra	129.5	tra OC x 1.4	148.3
		awb	292.8	-	292.8
		wst	9.0	-	9.0
		shp	0.5	-	0.5
	Elevated	fst	185.3	-	185.3
		grs	36.2	-	36.2
Total POM		C	4629.0		5158.4
SOAG	Surface	BIGALK	179.8	(pow + ind + tra + res	376.2
				ALK3, ALK4,	
				ALK5)*molecular	
				weight *mass	
				vield*1.5 ^g	
		BIGENE	33.6	(pow + ind + tran + res	91.4
				OLE2) *molecular	

DMS	Surface	8.2	-	8.2
Total SOAG		2568.3		3501.6
	TERPENE	1289.6	-	1289.6
	ISOPRENE	712.6	-	712.6
			*mass yield*1.5	
			*molecular weight	
			ARO1, ARO2)	
	TOLUENE	352.8	(pow + ind + tra + res	1031.9
			yield*1.5	
			weight *mass	

^a The AR5 sector abbreviations are dom (domestic), tra (transportation), ind (industry), ene (energy), wst (waste treatment), awb (agricultural waste burning), shp (shipping), fst (forestfire), grs (grass fire)and contvolc (continuous volcano).

10 ^b The MEIC sector abbreviations are res (residential), tra (transportation), ind (industry), and pow(power).

^c "-" means that the species in the sector is the same as AR5 emission.

^d The elevated energy and industry emissions are emitted in mass fraction of 15.5%, 75.1%, and 9.4% at approximately 30, 130, and 280 meters.

^e The masses of SO₂, sulfate and DMS are in unit of Gg of Sulfur per year in China. The unit of BC mass is Gg of Carbon

15 per year and the units of POM and SOAG mass are Gg of POM per year, which is assumed to be 1.4 times OC (or Carbon) mass.

^f The units are the same as in the column of AR5 emission rates.

^g Atmoic compositions for BIGALK, BIGENE, TOLUENE are C_5H_{12} , C_4H_8 , and $C_6H_5(CH_3)$, respectively. Mass yields of BIGALK, BIGENE, and TOLUENE are 5%, 5%, 15%, respectively.

20

2. Observed surface concentration of aerosol in China

Locations	Coordinates	Time	Chemical species	References	Location type
Harbin	45.82°N,	Aug-Dec, 2010	SO ₄ ,BC,OC	Huang et al.[2014]	urban
	126.56°E				
Chengde	40.95°N,	April/July/Oct,	SO ₄ ,BC,OC	Zhao et al. [2013]	urban
	117.96°E	2009;Jan, 2010			
Shangdianzi	38.04°N,	April/July/Oct,	SO ₄ ,BC,OC	Zhao et al. [2013]	rurual
	114.51°E	2009;Jan, 2010			
Beijing1	39.93°N,	April/July/Oct,	SO ₄ ,BC,OC	Zhao et al. [2013]	urban
	116.30°E	2009;Jan, 2010			
Beijing2	39.99°N,	April/July/Oct,	SO ₄ ,BC,OC	Zhang et al. [2013]	urban
	116.30°E	2009;Jan, 2010			
Tianjin	39.08°N,	April/July/Oct,	SO ₄ ,BC,OC	Zhao et al. [2013]	urban
	117.20°E	2009;Jan, 2010			
Shijiazhuan	38.04°N,	April/July/Oct,	SO ₄ ,BC,OC	Zhao et al. [2013]	urban
g	114.51°E	2009;Jan, 2010			
Zhengzhou	34.80°N,	April/July/Oct,	SO ₄ ,BC,OC	Geng et al. [2013]	urban
	113.50°E	2009;Jan, 2010			
Shanghai	31.18°N,	Jan, 2009	SO ₄ ,BC,OC	Feng et al. [2012]	urban
	121.42 °E				
	31.25°N,	Oct, 2005;	SOA	Feng et al. [2009]	urban,
	121.46 °E	Jan/Apr/July,2006			suburban
Wuhan	30.50°N,	Aug 2012- July	SOA	Zhang et al. [2015]	urban,
	114.3 °E	2013			suburban
Chengdu [*]	30.65°N,	Apr/May, 2009	SO ₄ ,BC,OC	Tao et al., [2013]	urban
	104.00°E				
Xiamen	24.58°N,	Jun,2009-	SO ₄ ,BC,OC	Zhang et al. [2012]	urban
	118.09°E	May,2010			
Guangzhou	23.10°N,	April/July/Oct,	SO ₄ ,BC,OC	Tao et al. [2014]	urban
	113.3°E	2009;Jan, 2010			
	23.70°N,	Mar,2012-	SOA	Lai et al.[2015]	rurual
	113.6°E	Mar,2013			

Table S2. The observations of surface concentrations of chemica	l species in PM _{2.5} over	eastern China in 2009	and 2010.

* Tao et al. [2013] highlights the importance of the dust and biomass burning episodes to the chemical composition of

PM2.5. We use their data on non-episodic days.

25

3. Observed aerosol direct radiative effects in China

Table S3. Aerosol direct radiative effects (ADREs) at TOA, surface (SFC), and within the atmosphere (ATM) in different regions and periods in China.

Region	References	Period	TOA	SFC	ATM
			(W m ⁻²)	(W m ⁻²)	(W m ⁻²)
CSHNET	Li et al. (2010)	JanDec. 2005			
Ansai (36.85°N, 109.31°E)	Xin et al. (2007)		-0.46	-12.08	12.58
Beijing (39.97°N, 116.37°E)			-3.30	-30.60	27.30
Beijing Forest (39.96°N, 115.43°E)			-0.91	-7.59	6.66
Changbai Mt. (42.40°N, 128.63°E)				-6.67	6.82
Eerduosi (39.48°N, 110.18°E)				-6.02	6.02
Fengqiu (35.00°N, 114.40°E)			-0.12	-14.34	14.22
Fukang (44.28°N, 87.92°E)			2.03	-5.80	7.80
Haibei (37.45°N, 101.32°E)					3.57
Hailun (47.43°N, 126.63°E)				-6.78	7.06
Jiaozhou Bay (35.90°N, 120.18°E)			-2.81	-24.12	21.31
Lanzhou (36.07°N, 103.82°E)				-22.29	21.94
Lhasa (29.67°N, 91.33°E)				-4.28	4.83
Sanjiang (47.58°N, 133.52°E)			0.93	-6.92	7.85
Shanghai (31.12°N, 121.75°E)				-24.26	25.09
Shapotou (37.45°N, 104.95°E)				-7.45	7.42
Shenyang (41.52°N, 123.63°E)				-14.58	16.15
Taihu (31.40°N, 120.22°E)			-2.64	-15.79	13.15
Taoyuan (28.92°N, 111.45°E)			0.35		19.95
Xianghe (39.75°N, 116.96°E)			-1.28	-28.78	27.50
Yanting (31.27°N, 105.45°E)			1.26	-29.61	30.78
Xishuangbanna(21.9°N, 101.27°E)			2.40	-18.17	20.55
Others					
Xianghe (39.75°N, 116.96°E)	Li et al. (2007)	JanDec. 2004-2005		-24	
Beijing (39.98°N, 116.38°E)	Xia et al. (2007a)	DecFeb.	-8.0	-20.3	

		MarMay	-13.9	-46.1	
		JunAug.	-13.5	-45.6	
		SepNov.	-10.7	-30.0	
		2001-2005			
Liaozhong (41.50°N, 120.70°E)	Xia et al. (2007b)	MarMay 2005		-30	
Taihu (31.70°N, 120.36°E)	Xia et al. (2007c)	JanDec. 2005-2006	0	-38.4	
Nanjing (32.05°N, 118.78°E)	Zhuang et al. (2014)	JanDec. 2011-2012	-6.9	-21.3	
SACOL (35.95°N, 104.10°E)	Liu et al. (2011)	May 2009	-7.78	-38.45	30.68

30 References

- Feng, J., Sun, P., Hu, X., Zhao, W., Wu, M., and Fu, J.: The chemical composition and sources of PM_{2.5} during the 2009 Chinese New Year's holiday in Shanghai, Atmos. Res., 118, 435-444, 2012.
- Feng, Y., Chen, Y., Guo, H., Zhi, G., Xiong, S., Li, J., Sheng, G., and Fu, J.: Characteristics of organic and elemental carbon in PM_{2.5} samples in Shanghai, China, Atmos. Res., 92(4), 434-442, 2009.
- 35 Geng, N., Wang, J., Xu, Y., Zhang, W., Chen, C., and Zhang, R.: PM_{2.5} in an industrial district of Zhengzhou, China: chemical composition and source apportionment, Particuology, 11(1), 99-109, 2013.

Huang, L. and Wang, G.: Chemical characteristics and source apportionment of atmospheric particles during heating period in Harbin, China, J. Environ. Sci., 26(12), 2475-2483, 2014,.

- Lai, S., Zhao, Y., Ding, A., Zhang, Y., Song, T., Zheng, J., Ho, K. F., Lee, S.-C., and Zhong, L.: Characterization of
- 40 PM_{2.5} and the major chemical components during a 1-year campaign in rural Guangzhou, Southern China, Atmos. Res., 167, 208-215, 2016.
 - Li, Z., Xia, X., Cribb, M, Mi,W., Holben,B., Wang, P., Chen, H., Tsay S. C., Eck, T. F., Zhao, F., Dutton, E. G., and Dickerson, R. E.: Aerosol optical properties and their radiative effects in northern China, J. Geophys. Res., 112, D22S01, doi:10.1029/2006JD007382, 2007.
- 45 Li, Z., Lee, K. H., Wang, Y., Xin, J., Hao, W.-M.: First observation based estimates of cloud free aerosol radiative forcing across China, J. Geophys. Res.-Atmos., 115(D7), 2010.
 - Liu, Y., Huang, J., Shi, G., Takamura, T., Khatri, P., Bi, J., Shi, J., Wang, T., Wang, X., and Zhang, B.: Aerosol optical properties and radiative effect determined from skyradiometer over Loess Plateau of Northwest China, Atmos. Chem. Phys., 11, 11455-11463, 2011.
- 50 Tao, J., Zhang, L., Engling, G., Zhang, R., Yang, Y., Cao, J., Zhu, C., Wang, Y., and Luo, L.: Chemical composition of PM_{2.5} in an urban environment in Chengdu, China: importance of springtime dust storms and biomass burning[, Atmos. Res., 122, 270-283, 2013.

Tao, J., Zhang, L., Ho, K., Zhang, R., Lin, Z., Zhang, Z., Lin, M., Cao, J., Liu, S., and Wang, G.: Impact of PM_{2.5} chemical compositions on aerosol light scattering in Guangzhou-the largest megacity in South China, Atmos. Res,

55 135, 48-58, 2014,.

60

Xia, X., Chen, H., Goloub, P., Zhang, W., Chatenet, B., and Wang, P.: A complication of aerosol optical properties and calculation of direct radiative forcing over an urban region in northern China, J. Geophy. Res., 112, d12203, doi:10.1029/2006JD008119, 2007a.

Xia, X., Chen, H., Li, Z., Wang, P., and Wang J.: Significant reduction of surface solar irradiance induced by aerosols in a suburban region in northeastern China, J. Geophys. Res., 112, doi:10.1029/2006JD007562, 2007b.

Xia, X., Li, Z., Holben, B., Wang, P., Eck, T., Chen, H., Cribb, M., and Zhao, Y.: Aerosol optical properties and radiative effects in the Yangtze Delta region of China, J. Geophys. Res., 112, D22S12, 2007c.

Zhang, F., Xu, L., Chen, J., Yu, Y., Niu, Z., and Yin, L.: Chemical compositions and extinction coefficients of PM_{2.5} in peri-urban of Xiamen, China, during June 2009–May 2010, Atmos. Res., 106, 150-158, 2012.

65 Zhang, R., Jing, J., Tao, J., Hsu, S.-C., Wang, G., Cao, J., Lee, C. S. L., Zhu, L., Chen, Z., Zhao, Y., and Shen, Z.: Chemical characterization and source apportionment of PM_{2.5} in Beijing: seasonal perspective, Atmos. Chem. Phys., 13(14), 7053-7074, 2013.

Zhao, P. S., Dong, F., He, D., Zhao, X. J., Zhang, X. L., Zhang, W. Z., Yao, Q., and Liu, H. Y.: Characteristics of concentrations and chemical compositions for PM_{2.5} in the region of Beijing, Tianjin, and Hebei, China, Atmos.

- 70 Chem. Phys., 13, 4631-4644, 2013.
- Zhuang, B.L., Wang, T.J., Li, S., Liu, J., Talbot, R., Mao, H.T., Yang, X.Q., Fu, C.B., Yin, C.Q., Zhu, J. L., Che, H.Z., and Zhang, X.Y.: Optical properties and radiative forcing of urban aerosols in Nanjing, China, Atmos. Environ., 83, 43-52, 2014.